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Abstract
In this paper we present queueing-theoretical methods for the modeling, analysis, and control of autonomous mobility-
on-demand (MOD) systems wherein robotic, self-driving vehicles transport customers within an urban environment and
rebalance themselves to ensure acceptable quality of service throughout the network. We first cast an autonomous MOD
system within a closed Jackson network model with passenger loss. It is shown that an optimal rebalancing algorithm
minimizing the number of (autonomously) rebalancing vehicles while keeping vehicle availabilities balanced throughout
the network can be found by solving a linear program. The theoretical insights are used to design a robust, real-time
rebalancing algorithm, which is applied to a case study of New York City and implemented on a 8-vehicle mobile robot
testbed. The case study of New York shows that the current taxi demand in Manhattan can be met with about 8,000 robotic
vehicles (roughly 70% of the size of the current taxi fleet operating in Manhattan). Finally, we extend our queueing-
theoretical setup to include congestion effects, and study the impact of autonomously rebalancing vehicles on overall
congestion. Using a simple heuristic algorithm, we show that additional congestion due to autonomous rebalancing can be
effectively avoided on a road network. Collectively, this paper provides a rigorous approach to the problem of system-wide
coordination of autonomously driving vehicles, and provides one of the first characterizations of the sustainability benefits
of robotic transportation networks.
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1. Introduction

According to United Nations estimates, urban population will double in the next 30 years (UN, 2011). Given the limited
availability for additional roads and parking spaces in current (mega)-cities, private automobiles appear as an unsustainable

solution for the future of personal urban mobility (Mitchell et al., 2010). Arguably, one of the most promising approaches
to cope with this problem is one-way vehicle sharing with electric cars (referred to as Mobility-On-Demand, or MOD),
which directly targets the problems of parking spaces, pollution, and low vehicle utilization rates (Mitchell et al., 2010).
Limited-size MOD systems with human-driven vehicles have recently been deployed in several European and American
cities (CAR2GO, 2011). However, such systems lead to vehicle imbalances, that is some stations become rapidly depleted
of vehicles while others have too many, due to some stations being more popular than others. Somewhat surprisingly, even
if the transportation network is symmetric (that is, the underlying network topology is a regular grid and arrival rates and
routing choices of customers at all nodes are uniform), the stochastic nature of customer arrivals to the stations will quickly
drive the system out of balance and hence to instability, since the customer queue will grow without bound at some stations
(Fricker & Gast, 2012).

The related problem of rebalancing in the increasingly popular bike-sharing systems is solved using trucks which
can carry many bikes at the same time, and algorithms have very recently been developed to optimize the truck routes
(Di Gaspero et al., 2013; Dell’Amico et al., 2014). Since this approach is not feasible with cars, the work in (Smith et al.,
2013) considers the possibility of hiring a team of rebalancing drivers whose job is to rebalance the vehicles throughout
the transportation network. However, with this approach the rebalancing drivers themselves become unbalanced, and one
needs to “rebalance the rebalancers,” which significantly increases congestion and costs (Smith et al., 2013). Another option
would be to incentivize ride sharing (Barth et al., 2001), which, unfortunately, defeats the purpose of a MOD system to
ensure personal mobility.

Recently, a transformational technology has been proposed in (Pavone et al., 2012; Burns et al., 2013), whereby
driverless electric cars shared by the customers provide on-demand mobility. Autonomous driving holds great promise for
MOD systems because robotic vehicles can rebalance themselves (thus eliminating the rebalancing problem at its core),
enable system-wide coordination, free passengers from the task of driving, and potentially increase safety. Indeed, robotic
vehicles specifically designed for personal urban mobility are already being tested, e.g., the Induct Navia vehicle (Induct,
2013), the General Motors’ EN-V vehicle (GM, 2011), and the Google car (Fisher, 2013). Yet, little is known about how
to design and operate robotic transportation networks (Pavone et al., 2012).

Statement of contributions: The objective of this paper is to develop a model of, study rebalancing algorithms for, and
evaluate the potential benefits of a MOD system where mobility is provided by driverless cars (henceforth referred to as
autonomous MOD system). Rebalancing algorithms for autonomous MOD systems have been investigated in (Pavone et al.,
2012) under a fluidic approximation (i.e., customers and vehicles are modeled as a continuum). While this approach provides
valuable insights for the operation of an autonomous MOD system, by its very nature, it does not provide information about
the effect of stochastic fluctuations in the system (e.g., due to the customers’ arrival process) and, most importantly, it does
not allow the computation of key performance metrics such as availability of vehicles at stations and customer waiting
times. This motivates the queueing-theoretical approach considered in this paper. In this respect, our work is related to
(George & Xia, 2011; Waserhole & Jost, 2013), where a transportation network comprising traditional (i.e., human-driven)
shared vehicles is modeled within the framework of Jackson networks (Serfozo, 1999). The key technical difference is that
in this paper we address the problem of synthesizing a rebalancing policy, rather than analyzing the evolution of the vehicle
distribution under the customers’ routing choices. Our work is also related to the Dynamic Vehicle Routing problem (Bullo
et al., 2011; Pavone et al., 2011) and, more specifically, to the Dynamic Pickup and Delivery Problem (DPDP) (Berbeglia
et al., 2010; Treleaven et al., 2013). However, current DPDP works do not explicitly consider rebalancing, and system
performance results, whenever available, are usually limited to asymptotic cases where the load on the system approaches
zero or approaches the capacity of the system (Treleaven et al., 2013).



Control of Robotic Mobility-On-Demand Systems 3

Specifically, the contribution of this paper is fourfold. First, we propose a queueing-theoretical model of an autonomous
MOD system cast within a Jackson network model (valid under any load condition). Second, we study the problem of
synthesizing rebalancing algorithms, where the control objective is to minimize the number of (autonomously) rebalancing
vehicles on the roads while keeping vehicle availabilities balanced throughout the network. Remarkably, we show that
under certain assumptions an optimal policy can be solved as a linear program. Third, we apply our theoretical results to a
case study of New York City and an experimental testbed with 8 mobile robots. The case study of New York City shows
that the current taxi demand in Manhattan can be met with about 8,000 robotic vehicles (roughly 70% of the size of the
current taxi fleet operating in Manhattan). This shows the potential of autonomous MOD systems. Finally, by leveraging
our queueing-theoretical setup, we study the potential detrimental effect of rebalancing on traffic congestion (rebalancing
vehicles, in fact, increase the number of vehicles on the roads). Our study suggests that while autonomously rebalancing
vehicles can have a detrimental impact on traffic congestion in already-congested systems, in most cases this is not generally
a concern as rebalancing vehicles can be routed to travel along less congested roads. To the best of our knowledge, this is
the first paper (together with its conference version (Zhang & Pavone, 2014)) to provide a rigorous, stochastic approach to
the problem of system-wide coordination of autonomously driving vehicles.

Organization: The remainder of the paper is structured as follows: In Section 2 we briefly review some well-known
results for queueing networks, specifically Jackson networks. In Section 3 we show how to model an autonomous MOD
system with rebalancing within a Jackson network model. In Section 4 we formulate the optimal rebalancing problem, we
show that it can be solved via a linear program, we provide an iterative algorithm to compute relevant performance metrics
(chiefly, vehicle availability at stations), and we use the theoretical insights to design a robust, real-time rebalancing policy.
In Section 5 we apply our model and algorithms to a case study of New York City, while in Section 6 we apply the same
algorithms to a 8-vehicle hardware testbed. In Section 7 we extend our queueing-theoretical setup to include congestion
effects and numerically analyze the impact of rebalancing on congestion through a heuristic scheme. Finally, in Section 8
we draw our conclusions and present directions for future research.

2. Background Material

In this section we review some key results from the theory of Jackson networks, on which we will rely extensively later
in the paper. Consider a network consisting of |N | first-come first-serve nodes, or queues, where N represents the set of
nodes in the network. Discrete customers arrive from outside the network according to a stochastic process or move among
the nodes. Customers that arrive at each node are serviced by the node, and proceed to another node or leave the system.
A network is called closed if the number of customers in the system remains constant and no customers enter or leave
the network. A Jackson network is a Markov process where customers move from node to node according to a stationary
routing distribution rij and the service rate µi(n) at each node i depends only on the number of customers at that node,
n (Serfozo, 1999, p. 9). For the remainder of this paper, we consider only closed networks. The state space of a closed
Jackson network with m customers is given by

Ωm :=
{

(x1, x2, . . . , x|N |) : xi ∈ N for all i ∈ N ,
|N |∑
i=1

xi = m
}
,

where xi is the number of customers at node i. Jackson networks are known to admit a product-form stationary distribution,
where the stationary distribution of the network is given by a product of the distribution of each node. In equilibrium, the
throughput at each node (average number of customers moving through a node per unit time), denoted by πi for i ∈ N ,
satisfies the traffic equations

πi =
∑
j∈N

πjrji for all i ∈ N . (1)
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For a closed network, equation (1) does not have a unique solution, and π := (π1, π2, . . . , π|N |)
T only determines the

throughput up to a constant factor, and is therefore called the relative throughput. The stationary distribution of the network
is given by

P(x1, x2, . . . , x|N |) =
1

G(m)

|N |∏
j=1

π
xj

j

xj∏
n=1

µj(n)−1.

The quantityG(m) is the normalization constant needed to make P(x1, x2, ..., x|N |) a probability measure, and is given
by

G(m) =
∑
x∈Ωm

|N |∏
j=1

π
xj

j

xj∏
n=1

µj(n)−1,

where x := (x1, x2, . . . , x|N |). Many performance measures of closed Jackson networks can be expressed in terms of the
normalization factor G(m). In (Serfozo, 1999, p. 27), it is shown that the actual throughput of each node is given by

Λi(m) = πiG(m− 1)/G(m). (2)

One can further define the quantity
γi = πi/µi(1) for all i ∈ N , (3)

where γi is referred to as the relative utilization of node i. Lavenberg (Lavenberg, 1983, p. 128) showed that the marginal
distribution of the queue length variable Xi at node i ∈ N is given by

P(Xi = xi) = γxi
i [G(m− xi)− γiG(m− xi − 1)] /G(m).

A quantity of interest is the probability that a node has at least 1 customer, which we refer to as the availability of node
i, Ai(m). This is given by

Ai(m) = 1− P (Xi = 0) = 1− G(m)− γiG(m− 1)

G(m)
=
γiG(m− 1)

G(m)
. (4)

Finally, we note that the term “customer” is widely used in the queueing theory literature to identify the agents moving
through the queues. However, in our abstract model of an autonomous MOD system, these agents are actually vehicles
driving through the system. To avoid confusion, for the remainder of this paper, the term “customers” will only be used to
refer to passengers, not to vehicles.

3. Model Description and Problem Formulation

3.1. Model of autonomous MOD system

In this paper, we model an autonomous MOD system within a queueing theoretical framework. ConsiderN stations placed
within a given geographical area and m (autonomous) vehicles that provide service to passengers. Customers arrive at
each station i according to a time-invariant Poisson process with rate λi ∈ R>0. Upon arrival, a customer at station i
selects a destination j with probability pij , where pij ∈ R≥0, pii = 0, and

∑
j pij = 1. Furthermore, we assume that the

probabilities {pij}ij constitute an irreducible Markov chain. If there are vehicles parked at station i, the customer takes
the vehicle and travels to her/his selected destination. Instead, if the station is empty of vehicles, the customer immediately
leaves the system. This type of customer model will be referred to as a “passenger loss” model (as opposed to a model
where passengers form a queue at each station). A consequence of the passenger loss model is that the number of customers
at each station at a fixed instant in time is 0 (since customers either depart immediately with a vehicle or leave the system).
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We assume that each station has sufficiently many parking spaces so that vehicles can always immediately park upon arrival
at a station. The travel time from station i to station j is an exponentially distributed random variable with mean equal
to Tij ∈ R>0. The travel times for the different passengers are assumed to constitute an independently and identically
distributed sequence (i.i.d.). The vehicles can autonomously travel throughout the network in order to rebalance themselves
and best anticipate future demand. The performance criterion that we are interested in is the availability of vehicles at each
station (the probability that at least one vehicle is at the station or conversely the probability that a customer will be lost).

A few comments are in order. First, our model captures well the setup with impatient customers, not willing to make
use of a MOD system if waiting is required. In this respect, our model appears to be suitable for studying the benefits of
autonomous MOD systems whenever high quality of service (as measured in terms of average waiting times for available
vehicles) is required. From a practical standpoint, the loss model assumption significantly simplifies the problem, as
it essentially allows us to decouple the “vehicle process” and the “customer process” (see Section 3.2). Second, travel
times, in practice, do not follow an exponential distribution. However we make this assumption as (i) it simplifies the
problem considerably, and (ii) reasonable deviations from this assumption have been found not to alter in any practical
way the predictive accuracy of similar spatial queueing models used for vehicle routing (Larson & Odoni, 1981). Third,
the assumption that the probabilities {pij}ij constitute an irreducible Markov chain appear appropriate for dense urban
environments. Finally, our model does not consider congestion, which is clearly a critical aspect for the efficient system-
wide coordination of autonomous vehicles in a MOD system. The inclusion of congestion effects will be discussed in
Section 7.

3.2. Casting an autonomous MOD system into a Jackson model

The key idea to cast an autonomous MOD system into a Jackson model is to consider an abstract queueing network where
we identify the stations with single-server (SS) nodes (also referred to as “station” nodes) and the roads with infinite-
server (IS) nodes (also referred to as “road” nodes). Assume, first, the simplified scenario where vehicles do not perform
rebalancing trips (in which case, the model is essentially identical to the one in (George & Xia, 2011)). In this case, at each
station node, vehicles form a queue while waiting for customers and are “serviced” when a customer arrives. A vehicle
departing from a SS node moves to the IS node that connects the origin to the destination selected by the customer. After
spending an exponentially distributed amount of time in the IS node (i.e., the “travel time”), the vehicle moves to the
destination SS node. According to our model, once a vehicle leaves a SS (station) node i, the probability that it moves to
the IS (road) node ij is pij . The vehicle then moves to SS (station) node j with probability 1 (see Figure 1). Note that with
this identification we have modeled a MOD system (at least in the case without rebalancing) as a closed queueing network

with respect to the vehicles. Note that the road queues are modeled as infinite-server queues as the model does not consider
congestion effects (in Section 7 we will see that if congestion is taken into account the road queues become finite-server
queues).

More formally, denote by S the set of single-server nodes and I the set of infinite-server nodes. Each station is mapped
into a SS node, while each road is mapped into an IS node. The set of all nodes in the abstract queueing network is then
given by N = S ∪ I . Since each SS node is connected to every other SS node, and since pii = 0 (hence the road node ii
does not need to be represented), the number of nodes in the network is given by N(N − 1) + N = N2, in other words,
|N | = N2. For each IS node i ∈ I , let Parent(i) and Child(i) be the origin and destination nodes of i, respectively. As
explained before, vehicles in the abstract queueing network move between SS nodes and IS nodes according to the routing
matrix {rij}ij :

rij =


pil i ∈ S, j ∈ I where i = Parent(j), l = Child(j),

1 i ∈ I, j ∈ S where j = Child(i),

0 otherwise,

(5)
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Fig. 1. A 3-station network. Circles represent the SS nodes (stations) and rectangles represent the IS nodes (roads).

where the first case corresponds to a move from a SS node to an IS node (according to the destination selected by a customer),
and the second case to a move from an IS node to the unique SS node corresponding to its destination. Furthermore, the
service times at each node i ∈ N are exponentially distributed with service rates given by

µi(n) =

λi if i ∈ S,

n · µjk if i ∈ I, j = Parent(i), k = Child(i),
(6)

where n ∈ {0, 1, . . . m} is the number of vehicles at node i, and µjk = 1/Tjk. The first case is the case where vehicles wait
for customers at stations, while the second case is the case where vehicles spend an exponentially distributed travel time to
move between stations (note that the IS nodes correspond to infinite-server queues, hence the service rate is proportional
to the number of vehicles in the queue). As defined, the abstract queueing network is a closed Jackson network, and hence
can be analyzed with the tools discussed in Section 2.

Assume, now, that we allow the vehicles to autonomously rebalance throughout the network. To include rebalancing
while staying within the Jackson network framework, we focus on a particular class of stochastic rebalancing policies
described as follows. Each station i generates “virtual passengers” according to a Poisson process with rate ψi, independent

of the real passenger arrival process, and routes these virtual passengers to station j with probability αij (with
∑
j αij = 1

and αii = 0). As with real passengers, the virtual passengers are lost if the station is empty upon generation. Such class of
rebalancing policies encourages rebalancing but does not enforce a rebalancing rate, which allows us to maintain tractability
in the model.

One can then combine the real passenger arrival process with the virtual passenger process (assumed independent) using
the independence assumption to form a model of the same form as the one described earlier in this section while taking
into account vehicle rebalancing. Specifically, we consider the same set of SS nodes and IS nodes (since the transportation
network is still the same). Let {A(i)

t , t ≥ 0} be the total arrival process of real and virtual passengers at station i ∈ S,
and denote its rate with λ̃i. The process A(i)

t is Poisson since it is the superposition of two independent Poisson processes.
Hence, the rate λ̃i is given by

λ̃i = λi + ψi. (7)

Equivalently, one can view the passenger arrival process and the rebalancing process as the result of Bernoulli splitting on
A

(i)
t with a probability pi satisfying

ψi = piλ̃i, λi = (1− pi)λ̃i. (8)
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Let us refer to passengers arriving according the the processes {A(i)
t , t ≥ 0} as generalized passengers. The probability

p̃ij that a generalized passenger arriving at station i selects a destination j is given by

p̃ij = P(i→ j | virtual) pi + P(i→ j | ¬virtual) (1− pi)

= αijpi + pij(1− pi), (9)

whereP(i→ j | virtual) is the probability that a virtual passenger selects station j as its destination, andP(i→ j | ¬virtual)
is the probability that a real passenger selects station j as its destination. One can then identify an autonomous MOD system
with rebalancing (for the specific class of rebalancing policies discussed above) with an abstract queueing network with
routing matrix and service rates given, respectively, by equations (5) and (6), where pil is replaced by p̃il, λi is replaced by
λ̃i, and rij is replaced by r̃ij . In this way, the model is still a closed Jackson network model. For notational convenience,
we order γi and πi (as defined in Section 2) in such a way that the first N components correspond to the N stations (for
example, γi corresponds to station i, or the ith SS node, where i = 1, 2, . . . , N ).

As already mentioned, in order to identify an autonomous MOD system with rebalancing with a Jackson queueing
model, we restricted the class of rebalancing policies to open-loop, “rebalancing promoting" policies. We will consider
closed-loop policies in Section 4.3.

3.3. Problem formulation

Within our model, the optimization variables are the rebalancing rates ψi and αij of the rebalancing promoting policies.
One might wonder in the first place if and when rebalancing is even required. Indeed, one can easily obtain that, for the case
without rebalancing (George & Xia, 2011), limm→∞Ai(m) = γi/γ

max
S , for all i ∈ S, where γi is the relative utilization

of node i ∈ S, Ai(m) is the availability of vehicles at node i ∈ S (see Section 2) and γmax
S := maxi∈S γi. Hence, as m

approaches infinity, the set of stations B := {i ∈ S : γi = γmax
S } can have availability arbitrarily close to 1 while all other

stations have availability strictly less than 1 regardless of m. In other words, without rebalancing, a MOD system will
always experience passenger losses no matter how many vehicles are employed!

The above discussion motivates the need for rebalancing. The tenet of our approach is to ensure, through rebalancing,
that the network is (on average) in balance, i.e., Ai(m) = Aj(m) for all i, j ∈ S (or, equivalently, γi = γj for all i, j ∈ S,
as implied by equation (4)). The motivation behind this philosophy is twofold (i) it provides a natural notion of service
fairness, and (ii) it fulfills the intuitive condition that as m goes to +∞ the availability of each station goes to one (since
in this case γi = γmax

S for all i in S). The objective then is to manipulate the rebalancing rates αij and ψi such that all
the γi’s in S are equal while minimizing the number of rebalancing vehicles on the road. Note that the average number of
rebalancing vehicles traveling between station nodes i and j is given by Tijαijψi. The rebalancing problem we wish to
solve is then as follows:

Optimal Rebalancing Problem (ORP): Given an autonomous MOD system modeled as a closed Jackson network,
solve

minimize
ψi,αij

∑
i,j

Tijαijψi (10)

subject to γi = γj∑
j

αij = 1

αij ≥ 0, ψi ≥ 0 i, j ∈ {1, . . . , N}

where γi = πi

λi+ψi
and πi satisfies equation (1).
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Note that to solve the ORP one would need to explicitly compute the relative throughputs π’s using the traffic equation
(1). This involves finding the 1-dimensional null space of a RN2×N2

matrix, which becomes computationally expensive as
the number of stations become large. Furthermore, the objective function and the constraints γi = γj are nonlinear in the
optimization variables. In the next section we show how to reduce the dimension of the problem to RN and how the ORP
can be readily solved as a minimum cost flow problem.

4. Optimal Rebalancing

4.1. Optimal rebalancing

In this section, we show how the ORP can be readily solved as a minimum cost flow problem. The main result of this
section is presented in Theorem 4.3. We first present two lemmas that will be key in the proof of the theorem. The first
lemma shows how the traffic equations (1) can be written only in terms of the SS nodes.

Lemma 4.1 (Folding of traffic equations). Consider an autonomous MOD system modeled as a closed Jackson network

as described in Section 3.2. Then the relative throughputs π’s for the SS nodes can be found by solving the reduced traffic

equations

πi =
∑
k∈S

πkp̃ki for all i ∈ S, (11)

where SS nodes are considered in isolation. The π’s for the IS nodes are then given by

πi = πParent(i) p̃Parent(i)Child(i) for all i ∈ I. (12)

Proof. For each node i ∈ N equation (1) can be separated into SS nodes and IS nodes as follows

πi =
∑
j∈N

πj r̃ji =
∑
j∈S

πj r̃ji +
∑
j∈I

πj r̃ji.

Consider, first, an SS node, i.e., consider i in S. Then one can write,

πi =
∑
j∈S

πj r̃ji︸ ︷︷ ︸
=0

+
∑
j∈I

πj r̃ji =
∑
j∈I

i=Child(j)

πj ,

where
∑
j∈S πj r̃ji = 0 since SS nodes are connected exclusively by IS nodes. The last equality follows from the fact that

whenever a child node of an IS node j is the SS node i, then r̃ji = 1.
Consider, now, an IS node, i.e., consider i in I . Let Parent(i) = k and Child(i) = l. Then one can write,

πi =
∑
j∈S

πj r̃ji +
∑
j∈I

πj r̃ji︸ ︷︷ ︸
=0

= πkp̃kl,

where
∑
j∈I πj r̃ji = 0 since IS nodes are connected exclusively to SS nodes, and the second equality follows from the

fact that a single SS node feeds into each IS node with probability p̃kl. This proves the second claim.
Collecting the results so far, we obtain, for each i in S,

πi =
∑
j∈I

i=Child(j)

πj =
∑
j∈I

i=Child(j)

πParent(j) p̃Parent(j) i =
∑
k∈S

πkp̃ki,
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which proves the first claim.

Lemma 4.2. For any rebalancing policy {ψi}i and {αij}ij , it holds for all i ∈ S

1. γi > 0,

2. (λi + ψi)γi =
∑
j∈S γj(αjiψj + pjiλj).

Proof. Let us prove the first part of the lemma. By assumption, the probabilities {pij}ij constitute an irreducible Markov
chain. By equation (9), the probabilities {p̃ij}ij lead to an irreducible Markov chain as well. The π vector satisfying
equation (11) is the steady state distribution for the transition probabilities {p̃ij}ij and by the Perron-Frobenius theorem,
it is positive (Meyer, 2000, p. 673). In other words, πi > 0 for all i ∈ S. By the definition of the relative utilizations γi (see
equation (3)), we obtain the first part of the claim.

Let us now consider the second part of the lemma. Recall that, by assumption, pii = 0 and αii = 0. By Lemma 4.1,
for any i ∈ S, one can write

πi =
∑
j∈S

πj p̃ji

=
∑
j∈S

πj

(
αjipj + pji(1− pj)

)
=
∑
j∈S

πj

(
αji

ψj
λj + ψj

+ pji
λj

λj + ψj

)
=
∑
j∈S

πj
λj + ψj

(αjiψj + pjiλj)

=
∑
j∈S

γj(αjiψj + pjiλj),

where the second equality follows from equation (9), the third equality follows from equation (8), and the last equality
follows from equations (3), (6), and (7). This concludes the proof.

The next theorem (which represents the main result of this section) shows that we can always solve problem ORP by
solving a low dimensional linear optimization problem.

Theorem 4.3 (Solution to problem ORP). Consider the linear optimization problem

minimize
βij

∑
i,j

Tijβij (13)

subject to
∑
j 6=i

(βij − βji) = −λi +
∑
j 6=i

pjiλj

βij ≥ 0

The optimization problem (13) is always feasible. Let {β∗ij}ij denote an optimal solution. By setting ψi =
∑
j 6=i β

∗
ij ,

αii = 0, and, for j 6= i,

αij =

β∗ij/ψi if ψi > 0

1/(N − 1) otherwise,

one obtains an optimal solution to problem ORP.
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Proof. First, we note that problem (13) is an uncapacitated minimum cost flow problem and thus is always feasible. Consider
an optimal solution to problem (13), {β∗ij}ij , and set {ψi}i and {αij}ij as in the statement of the theorem. We want to show
that, with this choice, {ψi}i and {αij}ij represent an optimal solution to the ORP. Since {β∗ij}ij is an optimal solution to
problem (13), then one easily concludes that {ψi}i and {αij}ij are an optimal solution to problem

minimize
ψi,αij

∑
i,j

Tijαijψi (14)

subject to λi + ψi =
∑
j

αjiψj + pjiλj∑
j

αij = 1

αij ≥ 0, ψi ≥ 0

The objective is now to show that the constraint

λi + ψi =
∑
j

αjiψj + pjiλj (15)

is equivalent to the constraint
γi = γj . (16)

Consider, first, the case where the {αij}ij and {ψi}i satisfy constraint (15). Then, considering Lemma 4.2, one can write,
for all i, (∑

j

αjiψj + pjiλj

)
γi =

∑
j∈S

γj(αjiψj + pjiλj). (17)

Let ϕij := αjiψj + pjiλj and ζij := ϕij/
∑
j ϕij . (Note that

∑
j ϕij = λi + ψi > 0 as λi > 0 by assumption.) Since

αii = 0 and pii = 0, one has ζii = 0. The variables {ζij}ij’s can be considered as transition probabilities of an irreducible

Markov chain (since, by assumption, the probabilities {pij}ij constitute an irreducible Markov chain). Then, one can rewrite
equation (17) as γi =

∑
j γj ζij , which can be rewritten in compact form as Z γ = γ, where γ = (γ1, . . . , γN )T and Z is

an irreducible, row stochastic matrix whose ith row is given by [ζi1, ζi2, . . . , ζi i−1, 0, ζi i+1 . . . ζiN ], where i = 1, 2, . . . , N .
Since Z is an irreducible, row stochastic matrix, by the Perron-Frobenius theorem (Meyer, 2000, p. 673), the eigenspace
associated with the eigenvalue equal to 1 is one-dimensional, which implies that the equationZ γ = γ has a unique solution
given by γ = (1, . . . , 1)T , up to a scaling factor. This shows that γi = γj for all i, j. Conversely, assume that {αij}ij and
{ψi}i satisfy constraint (16). Considering Lemma 4.2 (note, in particular, that γi > 0), since γi = γj for all i, j, then one
immediately obtains that {αij}ij and {ψi}i satisfy constraint (15). Hence, we can equivalently restate problem (14) as
problem (10), which proves the claim.

Remarkably, problem (13) has the same form as the linear optimization problem in (Pavone et al., 2012) used to find
rebalancing policies within a fluidic model of an autonomous MOD system. In this respect, the analysis of our paper
provides a theoretical foundation for the fluidic approximation performed in (Pavone et al., 2012).

The importance of Theorem 4.3 is twofold: it allows us to efficiently find an optimal open-loop, rebalancing promoting
policy, and it enables the computation of quality of service metrics (namely, vehicle availability) for autonomous MOD
systems as shown next.
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4.2. Computation of performance metrics

By leveraging Theorem 4.3, one can readily compute performance metrics (i.e. vehicle availability) for an autonomous
MOD system. First, we compute an optimal solution to the ORP using Theorem 4.3, which involves solving a linear
optimization problem with N2 variables. Next, we compute the relative throughputs π’s using Lemma 4.1. Finally, we
apply a well-known technique called mean value analysis (MVA) (Reiser & Lavenberg, 1980) in order to avoid the explicit
computation of the normalization constant in equation (4), which is prohibitively expensive for large numbers of vehicles
and stations. The MVA algorithm is an iterative algorithm to calculate the mean waiting times Wi(n) and the mean queue
lengths Li(n) at each node i of a closed separable system of queues, where n = 1, . . . ,m is the numbers of vehicles over
which the algorithm iterates. For the Jackson model in Section 3.2, subject to the initial conditions Wi(0) = Li(0) = 0,
the equations for MVA read as:

• Wi(n) = 1
µi(1) = TParent(i) Child(i) for all i ∈ I ,

• Wi(n) = 1
µi

(1 + Li(n− 1)) = 1
λ̃i

(1 + Li(n− 1)) for all i ∈ S,

• Li(n) = nπiWi(n)∑
j∈N πjWj(n) for all i ∈ N .

Finally, the throughput (or mean arrival rate of vehicles) to each station is given by Little’s theorem (Bertsekas et al.,
1992, p. 152): Λi(m) = Li(m)/Wi(m) for all i ∈ S. Combining equations (3), (2) and (4), one readily obtains the
availability at each station as Ai(m) = Λi(m)/λ̃i.

This procedure scales well to a large number of stations and vehicles, and is applied in Section 5 to real-world settings
involving hundreds of stations and thousands of vehicles, to assess the potential performance of an autonomous MOD
system in New York City.

The rebalancing promoting policy considered so far, while providing useful insights into the performance and operations
of an autonomous MOD system, is ultimately an open-loop policy and hence of limited applicability. In the next section,
we use insights gained from the ORP to formulate a closed-loop rebalancing policy for the robotic vehicles that appears to
perform well in practice.

4.3. Real-time rebalancing policy

In this section, we introduce a practical real-time rebalancing policy that can be implemented on real autonomous MOD
systems. In reality, customers arriving at a station would wait in line rather than leave the system immediately (as in the
loss model) if a vehicle is not available. In the meantime, information could be collected about the customer’s destination
and used in the rebalancing process. Let vown

i (t) be the number of vehicles “owned” by station i, that is, vehicles that are at
station i, on their way to station i, or will be on their way to station i. We can write vown

i (t) = vi(t)+
∑
j vji(t)+

∑
j c̃ji(t),

where vi(t) is the number of vehicles at station i, vji(t) is the number of vehicles enroute from station j to i, and c̃ji is the
number of passengers at station j that are about to board an available vehicle to station i. Note that

∑
i c̃ji(t) ≤ vj(t). Let

vei (t) := vown
i (t)− ci(t) be the number of excess vehicles there will be at station i, where ci(t) is the number of customers

at station i. The total number of excess vehicles is given by∑
i

vei (t) =
∑
i

(
vi(t) +

∑
j

vji(t) +
∑
j

c̃ji(t)− ci(t)
)

= m+
∑
i

min{vi(t), ci(t)} −
∑
i

ci(t) = m−
∑
i

max{ci(t)− vi(t), 0}.
(18)

The second equality replaces vi(t) +
∑
i vji(t) with the total number of vehicles and asserts that in the current time step,

either all of the customers or all the vehicles will leave the station. The last equality is obtained by considering both cases
when ci(t) ≥ vi(t) and when ci(t) < vi(t).
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Through rebalancing, we may wish to distribute these excess vehicles evenly between all the stations, in which case
each station will have no less than vdi (t) vehicles, given by vdi (t) = b(m−

∑
i max{ci(t)− vi(t), 0})/Nc . Accordingly,

every thor > 0 time periods, the number of vehicles to rebalance from station i to j, numij , is computed by solving the
linear integer optimization problem

minimize
numij

∑
i,j

Tijnumij (19)

subject to vei (t) +
∑
j 6=i

(numji − numij) ≥ vdi (t) for all i ∈ S

numij ∈ N for all i, j ∈ S, i 6= j

This rebalancing policy takes all the current information known about the system and sets the rebalancing rates (in this
case, the number of rebalancing vehicles) so that excess vehicles are distributed evenly to all the stations. This is in part
inspired by the optimization problem in Theorem 4.3. It can be shown that the constraint matrix is totally unimodular, and
the problem can be solved as a linear program, as the resulting solution will be necessarily integer-valued (Pavone et al.,
2012, Section 5). The rebalancing policy presented here is closely related to the one presented in (Pavone et al., 2012), the
main difference being the inclusion of the current customers in line within the optimization process.

The real-time rebalancing policy will be used in Section 5 to validate the vehicle availability performance criterion.

5. Case Study: Autonomous MOD in Manhattan

In this section we apply our availability analysis using the loss model to see how many robotic vehicles in an autonomous
MOD system would be required to replace the current fleet of taxis in Manhattan while providing quality service at current
customer demand levels. (We recently leveraged the theoretical results in this paper to perform a similar study for Singapore
in (Spieser et al., 2014).) We then discuss the impact of the placement/number of stations on the case study and ways to
further improve the performance of the system.

5.1. Case study overview and results

In 2012, over 13,300 taxis in New York City made over 15 million trips a month or 500,000 trips a day, with around 85%
of trips within Manhattan. Our study used taxi trip data collected on March 1, 20121 consisting of 439,950 trips within
Manhattan. First, trip origins and destinations are clustered into N = 100 stations throughout the city using k-means
clustering. The resulting locations of the stations are such that a demand is on average less than 300m from the nearest
station, or approximately a 3-minute walk. The system parameters λi, pij , and Tij are estimated for each hour of the day
using trip data between each pair of stations with Laplace smoothing. Some congestion effects are implicitly taken into
account in the computation of Tij , which uses the Manhattan distance and an average speed estimated from the data.

Vehicle availability is calculated for 3 cases - peak demand (29,485 demands/hour, 7-8pm), low demand (1,982
demands/hour, 4-5am), and average demand (16,930 demands/hour, 4-5pm). For each case, vehicle availability is cal-
culated as a function of the fleet size using MVA techniques. In addition to vehicle availability, the average number of
vehicles on the road is given by

∑
i,j Λip̃ijTij by Little’s theorem (Bertsekas et al., 1992, p. 152). The results are sum-

marized in Figure 2. From Figure 2(a), we see that with 7,000 vehicles, the average number of vehicles traveling is 6,060,
corresponding to a vehicle utilization rate of 86%. This utilization rate drops off significantly with more than 8,000 vehicles
in the system, as the number of vehicles on the road levels off. This suggests that the operating point of the system should
be between 7,000 and 8,000 vehicles at peak demand. From Figure 2(b), for high vehicle availability (say, 95%), we would

1 The data is courtesy of the New York City Taxi & Limousine Commission.
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Fig. 2. 2(a): Average number of vehicles on the road as a function of system size for 100 stations in Manhattan. 2(b): Vehicle availability
as a function of system size. Availability and number of vehicles on the road are calculated for peak demand (7-8pm), low demand
(4-5am), and average demand (4-5pm).

need around 8,000 vehicles (∼70% of the current fleet size operating in Manhattan, which, based on taxi trip data, we
approximate as 85% of the total taxi fleet) at peak demand and 6,000 vehicles at average demand. The results suggest that an
autonomous MOD system with 8,000 vehicles would be able to meet 95% of the taxi demand in Manhattan, assuming 5%
of passengers are impatient and are lost when a vehicle is not immediately available. However, in a real system, passengers
would wait in line for the next vehicle rather than leave the system, thus it is important to determine how vehicle availability
relates to customer waiting times. We characterize the customer waiting times through simulation, using the real-time
rebalancing policy described in Section 4.3. Figure 4 shows a snapshot of the simulation environment with 100 stations
and 8,000 vehicles. Simulation are performed with discrete time steps of 2 seconds and a simulation time of 24 hours. The
time-varying system parameters λi, pij , and average speed are piecewise constant, and change each hour based on values
estimated from the taxi data. Travel times Tij are based on average speed and Manhattan distance between i and j, and
rebalancing is performed every 15 minutes. Three sets of simulations are performed for 6,000, 7,000, and 8,000 vehicles,
and the resulting average waiting times are shown in Figure 3.
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Fig. 3. Average customer wait times over the course of a day, for systems of different sizes.

Figure 3 shows that for a 7,000 vehicle fleet, the peak averaged wait time is less than 5 minutes (9-10am) and for 8,000
vehicles, the average wait time is only 2.5 minutes. The simulation results show that high availability (90-95%) does indeed
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Fig. 4. Simulation environment with 100 stations in Manhattan. Red bars indicate waiting customers, green bars indicate available
vehicles, cyan dots are vehicles traveling with passengers and blue dots are rebalancing vehicles.

correspond to low customer waiting time and that an autonomous MOD system with 7,000 to 8,000 vehicles (60-70% of
the size of the current taxi fleet) can provide adequate service with current taxi demand levels in Manhattan.

5.2. Placement and number of stations

In the previous analysis, the locations of the stations were determined by a k-means clustering algorithm based on historical
demand data. We can evaluate the adequacy of these locations by looking at the waiting time distribution throughout the
city. Figure 5(a) shows the distribution of waiting time for 100 stations and 8,000 vehicles at peak demand (between 9 and
10 am). For most stations, the wait times are very low (0 – 2 minutes) but a few stations have wait times much higher than
the average. This is in part due to the geographic placement of the stations and in part due to the tuning of the real-time
rebalancing policy. For example, in Figure 4, the station just northwest of central park sees high customer demand but
is geographically isolated from midtown and lower Manhattan, where most excess vehicles are. During the rebalancing
optimization (19), the number of rebalancing vehicles sent to this station takes into account the number of vehicles that
will eventually reach the station, but does not take into account the length of time it will take to get there. Due to the longer
travel time, there is an effective delay for rebalancing vehicles to reach the station, resulting in longer wait times. This
delay can be reduced by tuning the parameters vdi (t) to send more rebalancing vehicles to the few isolated stations with
high customer demand.

The number of stations, n, may also impact the waiting time distribution. To gain insight into the effects of different
n, additional simulations were performed with 8,000 vehicles at peak demand (9–10 am). We studied a range of values
for n from 50 to 200. For each n, the stations were placed using k-means, and 10 simulations were performed. Figure 5(b)
shows the maximum wait time across all stations for different n values. It is clear that a higher number of stations tends to
yield a lower maximum wait time. However, as previously stated, the locations of the stations are just as important as the
number of stations, and can significantly impact the maximum wait times. The spike in wait time at 120 stations in Figure
5(b) can be attributed to poor placement of the stations (a local optimum in the k-means algorithm). Overall, this analysis
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illustrates that the customer wait times can serve as a metric to determine the optimal number of stations and the locations
of the stations.

In practice, an autonomous MOD system may not necessarily need fixed infrastructure to serve as stations. Indeed, in a
system where customer requests are made through a smartphone app and vehicles provide door-to-door service, the concept
of a “station” may simply be a geographical region where vehicles in the vicinity service requests that arrive within the
region. Hence, the number of “stations” and their locations may be changed to dynamically adapt to the current demand
distribution. Demand prediction can be achieved with Bayesian nonparametric techniques such as Dirichlet process mixture
models Kulis & Jordan (2012); Campbell et al. (2013). In this way, the system can simultaneously predict demand and
route vehicles to provide service, which can be an effective way of handling time-varying customer demands. This is an
interesting avenue of future work.

0 5 10 15 20
0

20

40

60

80

100

Average wait time (min)

N
u

m
b

e
r 

o
f 

s
ta

ti
o

n
s

(a)

50 100 150 200
10

15

20

25

30

35

40

45

n (Number of stations)

M
a

x
im

u
m

 w
a

it
 t

im
e

 (
m

in
)

(b)

Fig. 5. Figure 5(a) shows a histogram of the wait times of all 100 stations. Figure 5(b) shows the maximum wait time in the system for
systems with different n (number of stations). For 16 values of n ranging from 50 to 200, the simulation (8,000 vehicles, peak demand)
was performed 10 times. The solid line denotes the mean of the 10 runs and the dashed lines denote one standard deviation above and
below the mean.

6. Hardware Experiments

To further compare the availability metric from the queueing model with customer wait times in a real system, we developed
a small-scale testbed consisting of mobile robots driving in a “mock” city with 4 stations (see Figure 6 and Extension 2).
Customers are generated by a central computer according to a Poisson process with rate λi and routing distribution pij ,
i, j ∈ {1, 2, 3, 4}. Once generated, customers form first-come-first-serve queues at each station to wait for vehicles (as
opposed to leaving immediately if a vehicle is not at the station). The vehicles are modified Pololu m3pi line-following
robots, and communicate with the central computer through a shared WiFi network. When a customer arrives at a station,
a vehicle takes the customer to the desired destination by following the black lines along a pre-programmed path. A Vicon
motion capture system is used to implement collision avoidance between the vehicles, which 1) allows vehicles to stop
behind a stopped vehicle traveling in the same direction, and 2) allow vehicles to traverse intersections using a first-in-first-
out rule. Each vehicle takes around 15 seconds to travel to an adjacent station and 22 seconds to travel to the station on the
opposite corner of the city. Eight vehicles were used in the experiment.

The experiments were performed by first randomly generating a demand intensity λ0 and routing distribution p0
ij that

yielded a stable system in terms of customer wait times in simulation under the real-time rebalancing policy. Three runs
were performed with demand intensity at 0.5λ0, λ0, and 2λ0, while the routing distribution was held fixed. The real-time
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rebalancing policy in Section 4.3 was implemented with a time horizon of 2 seconds. Figure 7(a) shows the corresponding
availability plots for reference (if the same demands were applied to the loss model) and Figure 7(b) shows the number of
waiting customers in each run. The number of idle vehicles is shown in Figure 7(c). In these experiments, the high demand
run (corresponding to 57% availability) was unstable, as the number of customers arrived faster than they can be serviced.
The medium demand case (corresponding to 66% availability) had on average one customer waiting at one of the four
stations, with an average wait time of 6.4 seconds. The low demand case (corresponding to 69% availability) only had an
average of 0.07 waiting customers with an average wait time of less than 1 second. It is interesting to note that the low
demand run had very low wait times, but its corresponding availability in the loss model was only 69%. This reveals a
limitation of the loss model, where rebalancing is implemented by randomly generating virtual customers according to a
Poisson process. The real-time rebalancing policy only rebalances vehicles when needed, and hence is able to provide a
better quality of service (low wait times). Finally, we see from Figure 7(c) that in the medium demand case, the average
number of idle vehicles is only 1.75, which corresponds to a 78% vehicle utilization rate. This high utilization rate suggests
that the system is near its stability limit and is comparable to that of the Manhattan analysis (see Figure 2(a)) at peak
demand with 8,000 vehicles. Future efforts will focus on scaling up the testbed to more than 20 vehicles so that congestion
effects can be visualized and studied.

Fig. 6. Hardware testbed with 4 stations and 8 vehicles.

7. A Mean Value Analysis Approach to the Analysis of Congestion Effects

The queueing model described in Section 3 does not consider congestion effects (roads are modeled as infinite server
queues, so the travel time for each vehicle is independent of all other vehicles). However, if too many rebalancing vehicles
travel on a route that is already congested, they can cause a traffic jam and decrease throughput in the entire system. Hence,
in some scenarios, adding robotic vehicles to improve the quality of service might indeed have the opposite effect.

In this section, we propose an approach to study congestion effects that leverages our queueing-theoretical setup. The
key idea is to change the infinite-server road queues to queues with a finite number of servers, where the number of servers
on each road represents the capacity of that road. This road congestion model is similar to “vertical queueing” models that
have been used in congestion analysis for stop-controlled intersections (Madanat et al., 1994) and for traffic assignment
(Huang & Lam, 2002). In traditional traffic flow theory (Lieu, 2003), the flow rate of traffic increases with the density
of vehicles up to a critical value at which point the flow decreases, marking the beginning of a traffic jam. By letting the
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Fig. 7. Figure 7(a) shows the availability curves for the three test cases. Figure 7(b) shows the total number of customers waiting at the
four stations for the three test cases. Figure 7(c) shows the total number of idle vehicles at the four stations.

number of servers represent the critical density of the road, the queueing model becomes a good model for traffic flow up
to the point of congestion.

Remarkably, the Jackson network model presented in Section 3 can be extended to the case where roads are modeled
as finite-server queues; furthermore, the results presented in Section 2 are equally valid. However, the travel times are no
longer simply equal to the inverse of the service rates of the road queues, which significantly complicates the formulation of
an analogue of problem ORP. While the issue of finding optimal rebalancing policies in the presence of congestion effects
is left for future research, in this paper we show how given a rebalancing policy one can compute performance metrics such
as vehicle availability (for example, one can study the effects of congestion on the performance of the rebalancing policies
considered in Section 4).

In our approach, we first model the road network as an abstract queueing network with finite-server road queues, then
we apply an extended version of the MVA algorithm for finite-server queues, the details of which are presented in (Reiser
& Lavenberg, 1980).
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7.1. Mapping physical roads into finite-server road queues

The main difficulty in mapping the capacities of the road network into the number of servers of the queueing model (or
“virtual” capacities, denoted bymij) is that trips from different origins and destinations may share the same physical road.

i j k

mij mjk

mik

qij qjk

Fig. 8. A simple 3-station example showing the procedure of mapping physical roads into finite-server road queues.

As a simple example, consider the 3-station network shown in Figure 8. Let qij represent the maximum number of
vehicles that can travel on the road between station i and station j without causing significant congestion. Let mij , the
number of servers between i and j, represent the number of vehicles that can travel between i and j before delays occur
due to queueing. In the simple network, to go from station i to station k, one must pass through station j. Hence, one has
the following consistency constraints

mij +mik ≤ qij , mjk +mik ≤ qjk. (20)

To maximize the overall road usage, we can define a quadratic objective that seeks to minimize the difference between the
real road capacities and the sum of the virtual road capacities:

min
mij ,mjk,mik

(mij +mik − qij)2 + (mjk +mik − qjk)2

However, this optimization problem, along with the constraints (20), does not yield a unique solution because nothing
is assumed about the relative usage rates of the road queues. If relative road usage is known, the mij’s can be assigned
proportional to the amount of traffic between each pair of stations that use the road. Let πij be the relative throughput of
the road queue between station i and j, consistent with the earlier definition. Heuristically, the throughputs {πij}ij may be
obtained from the arrival rates and travel patterns of passengers or from the analysis of a given rebalancing policy assuming
no congestion (according to the procedure discussed in Section 4.2). For the simple example, one can write

mik ≤
qijπik

πik + πij
, mik ≤

qjkπik
πik + πjk

. (21)

Similar constraints can be written for mij and mjk so that (20) is satisfied.
For a general road network, letBij be the set of possible non-cyclic paths from station i to j (assuming no back tracking)

and Cbij be the set of road segments along path bij ∈ Bij . The number of possible paths from i to j is given by |Bij |.
Let acij denote the fraction of trips from i to j that go through road segment c = {origin, destination}, where c ∈ Cbij .
Denote by qc the capacity of road segment c. For trips going through multiple road segments, the virtual road capacity is
determined by the segment with the lowest capacity. One can then consider as virtual road capacities:

mij =
∑
b∈Bij

min
c∈Cbij

{ qca
c
ijπij∑

k,l,such that c∈Cbkl
acklπkl

}
.

However, this formulation can lead to over-conservative results for example if one road segment along one of the paths
fills to capacity while the road segments of other paths are relatively unused. Thus, the routing scheme, represented by
acij , is central to the characterization of the mapping from the road network into the queueing network model. One can
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further optimize the routing scheme using methods similar to dynamic traffic assignment (DTA) (Janson, 1991) to maximize
the virtual capacities of the queueing model. The combination of system rebalancing and route optimization to minimize
congestion is a very interesting avenue of future reseach.

An alternative approach, described in the next section, can be very useful for evaluating the impact of rebalancing
on congestion. We make the key observation that the throughput of each station (rate of vehicles leaving each station) is
the total arrival rate of customers multiplied by the availability, so in systems with a high quality of service, the actual
throughput Λi can be closely approximated by the arrival rates λ̃i. In the next section we will apply this approach to study
congestion effects for autonomous MOD systems on a very simple transportation network.

7.2. Numerical study of congestion effects

In this section we use a simple 9-station road network (shown in Figure 9) to illustrate the impact of rebalancing vehicles
on congestion.

1 2 3

4 5 6

7 8 9

(a) (b) (c)

Fig. 9. Left: Layout of the 9-station road network. Each road segment has a capacity of 40 vehicles in each direction. Center: A randomly
generated system on the 9-station road network without rebalancing. The color on each road segment indicates the level of congestion,
where green is no congestion, and red is heavy congestion. Right: The same road network with rebalancing vehicles.

The stations are placed on a square grid, and joined by 2-way road segments each of which is 0.5 km long. Each road
consists of a single lane, with a critical density of 80 vehicles/km.2 This means that the capacity of each road segment c
is qc = 40 vehicles. Each vehicle travels at 30 km/h (8.33 m/s) in free flow, which means the travel time along each road
segment is 1 minute in free flow.

To gain insight into the general system behavior, a variety of systems with different levels of imbalance must be studied.
First, arrival rates and routing distributions are randomly generated and rebalancing rates are computed using (13). In steady
state, the fraction of vehicles in each road queue ij is given by πip̃ij (Lemma 4.1). If we assume 100% availability (Ai = 1),
the expected rate of vehicles entering each road queue is given by Λij = λipij . Using Little’s theorem, the expected number
of vehicles on each road queue is given by Lij = ΛijTij . The availability assumption can be justified by the fact that a
real system would operate within the regime of high availability and that the number of vehicles on the road gets very
close to Lij as availability increases. Similarly, the expected number of rebalancing vehicles on each road queue is given
by Lreb

ij = βijTij .
To map the queueing network onto the road network, we adopt a similar procedure as the one used to estimate mij

in Section 7.1. Recall that Bij is the set of paths from station i to station j. We adopt the routing strategy that uniformly
distributes vehicles from i to j along each path bij ∈ Bij . The number of vehicles that go through each road segment,

2 If each vehicle is 5 m, this critical density represents a vehicle-to-vehicle separation of 1.5 car-lengths.
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Lroad
c , is then the sum of the number of vehicles from each station to every other station that pass through the road segment,

given by

Lroad
c =

∑
i,j,such that c∈Cbij

Lij
|Bij |

.

Note that for stability, Lroad
c < qc. The road utilization is given by ρroad

c = Lroad
c /qc.

Figure 10(a) plots the vehicle and road utilization increases due to rebalancing for 500 randomly generated systems. The
x-axis shows the ratio of rebalancing vehicles to passenger vehicles on the road, which represents the inherent imbalance
in the system. The red data points represent the increase in average road utilization due to rebalancing and the blue data
points represent the utilization increase in the most congested road segment due to rebalancing. It is no surprise that the
average road utilization rate is a linear function of the number of rebalancing vehicles. However, remarkably, the maximum
congestion increases are much lower than the average, and are in most cases, zero. This means that while rebalancing
generally increases the number of vehicles on the road, rebalancing vehicles mostly travel along less congested routes
and rarely increase the maximum congestion in the system. This can be seen in Figure 9 right, where rebalancing clearly
increases the number of vehicles on many roads but not on the most congested road segment (from station 6 to station 5).

In roughly 10% of the systems simulated, the maximum road utilization in the system increased from rebalancing
(Figure 10(a)). This may cause heavy congestion in systems where congestion is already prevalent. Though different
routing strategies may help decrease the maximum road utilization, we can also adjust the rebalancing rates by using a
“corrected” travel time in the rebalancing optimization (13) that takes into account the congestion in the system. For this
example, the travel time is calculated using the Bureau of Public Roads model, a simple relation between road utilization
and travel time (Bureau of Public Roads, 1964). The corrected travel time along road segment c is

T cor
c = Tc(1 + 0.15ρ̄4

c),

where Tc is the free flow travel time, ρ̄c = Lroad
c /L̄road

c , and L̄road
c is the mean number of vehicles on each road segment.

The intuition here is to penalize rebalancing trips on routes with higher-than-average utilization. The corrected mean travel
time from station i to j is then

T cor
ij =

∑
bij∈Bij

a
bij
ij

∑
c∈Cbij

Tc,

where abijij is the fraction of trips from i to j taking path bij . In this example, since trips are divided evenly between all
paths, abijij = 1/|Bij |. The rebalancing rates βij are then recalculated from (13) using T cor

ij instead of Tij .
Figure 10(b) shows the impact of rebalancing on road utilization with the rebalancing rates adjusted using the method

described above. Comparing with Figure 10(a), we see that the new rebalancing scheme reduced the number of systems
with increased maximum road utilization. Of the 500 simulated systems, only 7 (1.4%) saw an increase in the maximum
road utilization. Remarkably, the mean road utilization increase due to rebalancing was reduced as well. This shows that by
solely adjusting the rebalancing parameters βij we can almost always prevent additional congestion in the most congested
parts of the system.

We further validate these results by considering a larger 7× 7 grid road network consisting of 16 stations (one station
every 2 blocks). The larger grid permits more routes between stations and is more representative of a real road network
than the 3×3 grid 9-station example. The same analysis is carried out for this road network and shown in Figure 11. Rather
than focusing on the most congested road segment as in the 9-station example, we look at the 10 most congested road
segments in the network, and whether rebalancing increases the congestion on these segments. From Figure 11(c), we see
that the increases in utilization on the 10 most congested roads is far less than the average utilization increase (an even more
promising result than the 9-station case). In Figure 11(d), the rebalancing correction scheme is applied and the number
of systems with increased top 10 road utilization (blue dots) is reduced from 143 (28.6%) to 25 (5%). This is achieved at
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Fig. 10. 10(a): The effects of rebalancing on congestion on a 9-station road network illustrated using 500 randomly generated systems
with different arrival rates and routing distributions. The x-axis is the ratio of rebalancing vehicles to passenger vehicles on the road.
The y-axis is the fractional increase in road utilization due to rebalancing. Red dots show the mean increase in road utilization. Blue
dots show the increase in utilization of the most congested road segment. 10(b): The same 500 systems with rebalancing rates calculated
using a “corrected” travel time that takes into account road utilization.

the expense of slightly higher overall rebalancing rates, but with the majority of rebalancing occurring along less utilized
routes.

In the few rare cases where maximum road utilization does increase, an intelligent routing strategy similar to (Aslam
et al., 2012) becomes crucial. While uniform routing along different paths helps distribute vehicles throughout the road
network, a better routing strategy would actively route vehicles away from congested roads, limit rebalancing when it may
cause further delays, and perhaps even stagger passenger trips to reduce congestion. This is related to the simultaneous
departure and routing problem (Huang & Lam, 2002), a class of dynamic traffic assignment problems, and will be the
subject of future work.

8. Conclusions

In this paper we presented and analyzed a queueing-theoretical model for autonomous MOD systems. We showed that
an optimal open-loop policy can be readily found by solving a linear program. Based on this policy, we developed a
closed-loop, real-time rebalancing policy that appears to be quite efficient, and we applied it to a case study of New York
City. Finally, we showed that while vehicle rebalancing can potentially have a detrimental impact on traffic congestion in
already-congested systems, in most cases, rebalancing vehicles tend to travel along less congested roads and by rerouting
these vehicles, the detrimental impact can be effectively avoided.

This paper leaves numerous important extensions open for further research. First, it is of interest to develop rebalancing
policies that can both route rebalancing vehicles along less congested roads and limit the number of rebalancing vehicles
when the system is overly congested. Second, we plan to study different performance metrics (e.g., minimization of waiting
times) and include a richer set of constraints (e.g., time windows to pick up the customers). Third, it is of interest to include
in the model the provision of mass transit options (e.g., a metro) and develop optimal coordination algorithms for such an
intermodal system. Fourth, we plan to extend the theoretical model to more realistic time-varying customer arrival rates and
develop rebalancing algorithms by combining demand prediction and routing. Fifth, we plan to consider additional case
studies (e.g., from Asia and Europe) and study in more details the economic and societal benefits of robotic MOD systems.
Finally, we plan to extend the small-scale hardware testbed to study congested systems and demonstrate the algorithms on
real driverless vehicles providing MOD service in a gated community.
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Fig. 11. 11(a): A randomly generated system without rebalancing on a 7 × 7 square grid road network with 16 stations (shown with
large blue squares). Green represents low congestion and red represents heavy congestion. 11(b): The same system with rebalancing.
11(c): 500 randomly generated systems with different arrival rates and routing distributions on the 7× 7 grid 16-station road network.
The x-axis is the ratio of rebalancing vehicles to passenger vehicles on the road. The y-axis is the fractional increase in road utilization
due to rebalancing. Red dots show the mean increase in road utilization. Blue dots show the mean increase in utilization of the top 10
most congested road segments. 11(d): The same 500 systems with adjusted rebalancing rates.
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A. Index to Multimedia Extensions
Extension Media Type Description

1 Video Simulation of case study in Manhattan

2 Video AMOD Testbed
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