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Abstract— This paper presents a routing algorithm for in-
termodal Autonomous Mobility on Demand (AMoD) systems,
whereby a fleet of self-driving cars provides on-demand mobility
in coordination with public transit. Specifically, we present a
time-variant flow-based optimization approach that captures
the operation of an AMoD system in coordination with public
transit. We then leverage this model to devise a model predictive
control (MPC) algorithm to route customers and vehicles
through the network with the objective of minimizing cus-
tomers’ travel time. To validate our MPC scheme, we present a
real-world case study for New York City. Our results show that
servicing transportation demands jointly with public transit
can significantly improve the service quality of AMoD systems.
Additionally, we highlight the differences of our time-variant
framework compared to existing mesoscopic, time-invariant
models.

I. INTRODUCTION

ROAD congestion annually causes billions of dollars of
economic losses resulting from the time people spend

stuck in traffic and health issues due to pollution. Currently,
this loss ranges in between 83 to 110 billion dollars annually,
excluding additional externalities such as threats to public
health and environmental harm caused by pollution [1].
Experts estimate the severity of these losses to increase in the
future owing to population growth and rapid urbanization [2].

Resolving the congestion problem without disrupting ev-
eryday mobility services preoccupies municipalities as well
as mobility providers. Experts agree that a paradigm shift
in mobility services is necessary to address congestion,
but compatibility with the existing infrastructure heavily
constrains potential solutions. Additionally, current trends,
such as ride-hailing services, are disrupting the mobility
landscape by offering low-cost urban road transport, which
increases congestion even further due to induced demands.
This cheaper, more comfortable service shifts customer de-
mands from public transit to road transport. In Manhattan,
the number of for-hire vehicles rose from 47,000 to 103,000
between 2003 and 2018, while the average traffic speed
decreased from 6.5 mph to 4.7 mph [3] and public transit
usage dropped for the first time in history [4].

The advent of self-driving technology opens the door for
many possibilities towards new solutions that can help to
mitigate congestion problems. In current mobility systems,
each agent (e.g., a single taxi driver, or a company like Uber),
aims to maximize their own profit without cooperating with
other service providers. This lack of cooperation between
service providers leads to global inefficiencies, resulting in
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Fig. 1. The time-varying intermodal AMoD network consists of a time-
expansion of a road digraph (blue), a public transit digraph (orange) and
pick-up/drop-off nodes (yellow). The colored dots denote intersections or
stops and the arrows represent sample connections. Specifically, dotted
arrows denote geographical links and grey dotted lines denote geograph-
ically close nodes. Colored solid arrows represent road and public transit
connections, whilst the colored dashed lines denote waiting links. Black
solid arrows represent mode switching arcs.

increased traffic and thus additional congestion. In contrast,
systems that merge the concepts of self-driving vehicles
and ride-hailing, also known as Autonomous Mobility-on-
Demand (AMoD) systems, can centrally control the au-
tonomous service vehicles in line with a global objective,
e.g., in a congestion-aware fashion.

In such a system, a central operator assigns passenger
requests to the vehicles and coordinates re-balancing routes
to align the position of empty vehicles with upcoming
transportation demand [5]. AMoD systems feature several
advantages, which allow for mobility services at lower
prices and increased availability. However, an isolated AMoD
system may itself cause induced demand and cannibalize
other means of transport. While isolated AMoD systems may
be more efficient than existing solutions, they may not be
sufficient to resolve congestion problems in a sustainable
fashion. Hence efficient means of public transport that are
less convenient, such as trains and buses, may suffer a strong
reduction in utilization due to this demand-shift effect.

Accordingly, efficient and sustainable large-scale deploy-
ment of AMoD will only be possible if vehicle fleets interact
intelligently with existing public transit infrastructures, to
support a sustainable utilization of both systems and to
avoid demand cannibalization. Preliminary mesoscopic stud-
ies showed that an intelligent interaction between AMoD and
public transit in the form of intermodal AMoD (I-AMoD)
can yield significant benefits compared to an AMoD system
operating in isolation [6], [7]. In this paper, we develop a



routing algorithm which allows to control such a system
in practice and further enables us to verify and refine the
findings of previous time-invariant studies.

Related literature: Our work contributes to two different
research streams, namely control of AMoD systems as well
as intermodal passenger transport. In the following, we
review and discuss these research streams.

Several approaches exist to model and control AMoD
systems, ranging from queuing-theoretical models [8] to
simulation-based models [9], [10], [11] and multi-commodity
network flow models [12], [13]. Queueing-theoretical models
capture the stochasticity of the customer arrival process
and are amenable to efficient control synthesis. However,
their complex structure is not well suited to capture the
interaction with other modes of transportation. These models
also assume that the demand distribution is time invariant,
which may not be accurate in practice. Simulation-based
models capture transportation systems with very high fidelity,
but are generally not amenable to optimization. Network
flow models are amenable to optimization and can capture
a variety of complex constraints. In fact, they have been
widely used in problems ranging from (congestion-aware)
route planning schemes for AMoD systems [14], [15], [16],
to the joint control of AMoD systems and the electric power
network [17], and stochastic model predictive control (MPC)
algorithms for single-customer [18], [19] and ride-sharing
AMoD [20].

Research on intermodal passenger transportation is still
sparse. Existing work on the interplay between AMoD and
public transportation is either based on simulation [21], [22],
[10] or on fluidic [23] models. However, these studies focus
on the analysis of specific scenarios, and do not consider
the optimization of joint control policies for AMoD systems
and public transit. So far, only our previous studies [6], [7]
offered a mesoscopic optimization framework for an I-AMoD
system but are limited to system analysis in a time-invariant
setting.

In summary, some frameworks for the operation of AMoD
systems are available but lack the consideration of public
transit. Vice versa, frameworks that consider public transit
lack an optimization-based routing component.

Statement of contributions: This paper presents a routing
algorithm that provides customer and vehicle routes for I-
AMoD systems. Specifically, our contribution is threefold:
First, we develop a time-variant multi-commodity network
flow optimization model that captures the joint operation of
AMoD systems and public transit (cf. Fig. 1). To increase
social welfare, our objective comprises a combination of
customers’ travel time and operational costs. Additionally,
we consider congestion effects by capturing the impact of
exogenous traffic on travel time and, accordingly, limiting
additional transit delays induced by the operation of an
AMoD fleet. Second, we propose a high-level MPC scheme
which periodically solves a time-variant network flow opti-
mization problem and samples routes from the solution in a
receding-horizon fashion to incorporate new information as
it is revealed. Third, we present a real-world case study for
Manhattan which we use to test the proposed controller and
compare its performance to an AMoD system operating in
isolation. We show that the total time spent in traffic can be

reduced by up to 25 % by jointly coordinating public transit
and AMoD. Additionally, we analyze differences between
our time-variant and time-invariant results obtained from
previous studies.

Organization: The remainder of this paper is structured as
follows: In Section II we present a multi-commodity network
flow optimization model for time-variant I-AMoD, which
we leverage via MPC to produce a routing algorithm for
I-AMoD in Section III. In Section IV, we introduce our case
study for Manhattan and present simulation results. Finally,
Section V concludes this paper with a short summary and an
outlook on future research.

II. MODEL

This section introduces a flow optimization model for
time-variant I-AMoD systems. We present a centralized
system with the following functionalities: i) it assigns trans-
portation requests to services, ii) it considers multiple modes
of transportation, namely walking, subway, and AMoD vehi-
cles, iii) it respects road capacity limits, whilst accounting for
exogenous and endogenous congestion, and iv) it rebalances
empty vehicles to re-align their distribution with future
transportation demand. Section II-A introduces a multi-
commodity network flow optimization model. We describe
a model for congestion in Section II-B, whilst presenting a
time and space clustering approach in Section II-C.

A. Time-variant Intermodal Network Flow Model

We describe the intermodal transportation network as a
directed graph G = (V ,A ), with a set of arcs A and a set
of vertices V . Time is to a resolution of τ for a finite number
of n time steps such that the time horizon is

T (t0,n) := {t0 + τ, t0 +2τ, ..., t0 +nτ}, (1)

with the current time t0 and a length of nτ . We use a time-
expanded graph representation, i.e., every vertex j = (l j, t j)∈
V is characterized by its geographical location l j and a time
index t j ∈ T (t0,n). An arc exists between two vertices i =
(li, ti) and j = (l j, t j) if a transportation mode (i.e., walking,
subway, or AMoD) can depart from location li at time ti and
arrive at l j at time t j. Due to the time discretization, the travel
time of each arc is a multiple of τ .

The transportation network G has three modes of trans-
portation: walking, AMoD vehicles and subway. Accord-
ingly, we partition vertices into three sets such that V =VW∪
VR∪VP, with VW,VR,VP representing the walking, road, and
public transit nodes of the network, respectively. Arcs within
VW,VR,VP describe movement via the corresponding mode,
and arcs between the sets VW,VR,VP represent changing
modes of transportation. Accordingly, we partition arcs A =
Acus ∪Areb ∪Aveh into a set Acus comprising all arcs that
denote sidewalks and subway lines on which customers can
walk, ride the public transit or just wait; a set Areb used
to signify when an empty vehicle is en route to pick up a
customer or has just dropped off a customer; and a set Aveh
that denotes vehicle flow arcs between different regions. To
fully specify the intermodal structure in such a graph, we
further categorize arcs into intra-regional and inter-regional
arcs. These arcs describe mode-switching, waiting, pick-up
and drop-off (intra-regional, see Fig. 2), and transportation



(inter-regional). To keep this paper concise, we exhaustively
explain this concept in Appendix A.

To formulate the I-AMoD system as a multi-commodity
network, we represent consumers and vehicles as com-
modities. To this end, we introduce two different types of
commodities: service vehicles and transportation demand.
Each commodity is defined by a sink, a source, and a
quantity. The transportation demand of the system is given
by the set of all travel request commodities R. There are M
different request commodities. Each transportation request
rm = (om,dm, tm,am) ∈ R for some m ∈ {1,2, ...,M} =: M
is a 4-tuple specifying its geographical location of the
origin om and the destination dm, the time of the request
tm, and the number of customers am associated with it.
Note that the source of a request commodity is given by
a vertex i = (om, tm), whilst its sink is given by all vertices
j = (dm, t) ∀t ≥ tm ∈T (t0,n). We denote commodity flow
variables as fm (i, j) and f0 (i, j), where fm (i, j) represents
the number of customers of request type m traveling on arc
(i, j)∈A and f0 (i, j) denotes the number of empty vehicles
moving on arcs (i, j) ∈A to rebalance vehicles. Hereby we
assume that all cars can be occupied by one single customer.
We define {at

m}t∈T so that at
m is the number of type m

requests that are delivered at time t. With this notation, we
state the I-AMoD routing objective:

J
(
{ fm (·, ·)}m, f0 (·, ·)

)
:= (2)(

∑
(i, j)∈A

M

∑
m=1

ρ
t
i j · fm (i, j)

)
+
(

∑
(i, j)∈A

ρ
o
i j ·
[

f0 (i, j)+
M

∑
m=1

fm (i, j)
])

.

The objective function in (2) penalizes customer incon-
venience and operation cost. The constants ρ t

i j represent the
customer costs of traversing arc (i, j). Similarly, the constant
ρo

i j denotes the cost of moving vehicles on across arc (i, j).
The routing strategy { fm (·, ·)}m, f0 (·, ·) must satisfy the

following constraints: i) flow non-negativity, ii) road capac-
ity constraints, iii) conservation of customers, iv) request
completion and v) conservation of vehicles. Formally, these
constraints hold as follows:

fm(i, j)≥ 0 ∀ m ∈ {0}∪M (3)

f0 (i, j)+ ∑
m∈M

fm (i, j)≤ ci j ∀(i, j) ∈Aveh∪Areb (4)

∑
i:(i, j)

∈Acus\Areb

fm (i, j)+1{om=l j ,tm=t j}am = ∑
k:( j,k)
∈A \Areb

fm ( j,k)+1dm=l j a
t j
m

∀m ∈M , j ∈ V
(5)

am =
|T (t0,n)|

∑
t=1

at
m ∀m ∈M (6)

t = 1 t = 2 t = 3
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Fig. 2. Illustration of intra-regional arcs at three different time steps. Inside
the region there are three public transportation stations. Colored dashed
arrows represent waiting arcs. Solid black arrows denote AMoD pickup,
delivery or idling, whilst dotted black arrows are mode-switching arcs for
rebalancing vehicles.

∑
m∈M

∑
i:(i, j)∈Aveh

fm(i, j)+ ∑
i:(i, j)

∈Areb∪Aveh

f0(i, j)+Dinitial = (7)

∑
m∈M

∑
k:( j,k)∈Aveh

fm ( j,k)+ ∑
k:( j,k)

∈Areb∪Aveh

f0 ( j,k)+Dfinal ∀ j ∈ V .

Non-negative flows: Constraint (3) enforces flow variables
to be positive, as commodities can only move forward in
time.

Road capacity constraints: The inequality constraint (4)
ensures that the total number of vehicles traversing any arc
(i, j) ∈A cannot exceed its capacity ci j.

Conservation of customers: Customers cannot appear
or disappear at locations other than their origins and des-
tinations, respectively. For each trip type m, constraint (5)
ensures that each customer entering a node must leave it.

Request completion: The system should serve all cus-
tomers who request rides. Since am is the total number of
type m requests, the constraint to serve all customers is then
captured by constraint (6).

Conservation of vehicles: Since the number of AMoD
vehicles is fixed, the constraint (7) ensures that each vehicle
entering a node j ∈ V has to exit it. Recalling the definition
of Aveh, a customer is traveling on an arc in Aveh only if
they are riding in an AMoD vehicle. Therefore the flow fm
restricted to Aveh is precisely the flow of customer carrying
AMoD vehicles. The terms Dinitial,Dfinal specify the initial
and final distributions of the vehicles with respect to the
planning horizon.

With the objective function and system constraints formal-
ized, we now present the optimization problem for control-
ling an I-AMoD system:

minimize
{ fm(·,·)}m, f0(·,·)

J
(
{ fm (·, ·)}m, f0 (·, ·)

)
(8)

s.t. (3), (4), (5), (6), (7).

Problem (8) is a linear program (LP) and can be solved
efficiently using interior point methods.

B. Congestion Model
Congestion influences travel times on road arcs. We as-

sume the I-AMoD fleet to be significantly smaller than the



number of privately owned vehicles on the road so that
the road congestion levels are approximately independent
of the actions of the I-AMoD fleet. This is to say that
the road congestion is well approximated by the exogenous
congestion, which is independent of the I-AMoD fleet. We
use the Bureau of Public Roads (BPR) function [24] of the
form FBPR(x) = 1+0.15x4 to calculate congestion dependent
travel times. Here x represents the ratio between the vehicle
flow traversing a road link and its nominal capacity. With
this model the time it takes to traverse the link (li, l j) can be
written as

tlil j = tN
lil j

FBPR

(
uR

lil j
/cR

lil j

)
, (9)

where tN
li,l j

is the free flow traversal time on link (li, l j), uR
li,l j

the exogenous traffic flow and cR
li,l j

its nominal capacity. The
endogenous congestion effect can either be modeled with a
term in the objective function or by the presence of capacity
constraints. As proposed in [7], we choose to set the capacity
limits of our system in such a way that the AMoD traffic does
not increase travel time more than a factor ∆rtime. Therefore,
we impose a maximum capacity threshold cR,th

i j . Formally, it
holds that

tlil j = tN
lil j
·FBPR

(
cR,th

lil j
/cR

lil j

)
. (10)

Therefore, the capacity available to the I-AMoD system is

clil j =

∆rtime

0.15
+

(
uR

lil j

cR
lil j

)4
 1

4

cR
lil j
−uR

lil j
∀(i, j)∈Aveh∪Areb.

(11)
This way, we can calculate the travel times and road capac-
ities once the values of cR

lil j
,uR

lil j
,∆rtime are specified.

C. Clustering the road network
We partition the road network into regions for two main

reasons: First, travel times need to be multiples of τ to
be accurately represented in G ; second, such a partitioning
additionally limits the size of G and keeps the I-AMoD
optimization problem computationally tractable.

We propose a Greedy Clustering Heuristic to
partition the nodes of a high resolution network G0 whose
nodes are locations (such as street intersections or public
transit stops) and arcs are roads or public transit routes as
follows: First, we fix a cluster radius r and initialize a set
of centroids to the empty set N ← /0. Then, we check if
there exists a vertex in G0 with a distance greater than rτ

to all vertices in N . If such a vertex exists, we add it to
N as a centroid; otherwise, our clustering terminates and
we assign each vertex in G0 to the cluster representing its
closest centroid. We calculate the distance between clusters
as the mean distance between their vertices in G0 and the
capacity between the clusters by the sum of capacities of the
direct links between two clusters in G0.

Recall that time is discretized into time units of size τ , and
that this can cause rounding errors for travel times if they
are not multiples of τ . Specifically, travel times are rounded
up to the next multiple of τ and thus the rounding error for
a travel time t is given by ετ(t) := τd t

τ
e− t. To keep the

rounding errors small, for a specified congestion level we

run Greedy Clustering Heuristic with a radius rτ

where rτ is the distance a vehicle can travel in τ time for
clustering.

III. MODEL PREDICTIVE CONTROL SCHEME

The LP as presented in Section II is not directly applicable
as a routing strategy, for three main reasons. First, the model
assumes perfect information about future demand, which
is not feasible in practice. Second, the problem becomes
intractable if the optimization horizon is too large. Third, the
solution to problem (8) is fractional, but an integer solution
is required to operate a transportation system. We address
these issues in Sections III-A, III-B and III-C, respectively.
Based on this, we present an MPC scheme for the operation
of I-AMoD systems in Section III-D, based on Problem (8)
in Section II-A.

A. Forecasting Customer Demand

In the absence of perfect information on future customer
demand, estimates of the demand can be used instead.
Machine learning models are used to forecast travel demand
for the near future ,based on the recent history of the
system in [18],[19],[20]. They show that accurate forecast-
ing models can be learned on a wide range of taxi and
transportation data sets, and that leveraging these forecasts
can provide significant improvements on customer waiting
times compared to reactive algorithms, i.e., algorithms that
do not act on estimates of future information. Following
this methodology, for a time horizon T , let ΛT denote the
demand that appears in the horizon. Similarly, we define Λ̂T

to be a demand forecast for T that serves as an estimate of
ΛT . Demand that appears at the very end of the horizon
may be impossible to deliver within the horizon. For this
reason, we use two time horizons Tpred(t) := T (t,m) and
Topt(t) := T (t,n) where t is the current time and m < n are
integers specifying the lengths of the horizons as per (1). To
assimilate the forecasting framework into the model proposed
in Section II-A, we solve (8) with a time horizon Topt(t)
where the requests are given by Λ̂Tpred(t). Since Topt(t) is
longer than Tpred(t), the optimizer has time to schedule
requests appearing near the end of the prediction horizon
Tpred(t).

B. Computational Tractability

We address computational tractability by reducing the
lengths of Tpred(t) and Topt(t). Using a shorter time horizon,
however, reduces the amount of information that can be used
in the optimization. To address this, we periodically update
the forecast Λ̂Tpred(t) to incorporate new information and re-
solve (8) in a receding-horizon fashion. In such an approach,
(8) may become infeasible if Λ̂Tpred(t) contains too many cus-
tomers who cannot all be served within Topt(t). Accordingly,
constraint (6) might be violated. To preserve feasibility, we
allow customers to be dropped and remove constraint (6).
To avoid the trivial solution with all customers dropped, we
reformulate (2) by adding a drop penalty term to incentivize
serving as many customers as possible. Accordingly, the soft-



constrained I-AMoD optimization problem is

minimize
{ fm(·,·)}m, f0(·,·)

J
(
{ fm (·, ·)}m, f0 (·, ·)

)
(12)

+
M

∑
m=1

(
∑

(i, j)∈A
s.t. l j 6=dm

t j=|Topt(t)|

P · fm (i, j)
)

s.t. (3), (4), (5), (7).

The second term in the objective imposes a drop penalty P
for any request that has not reached its destination by the
end of the planning horizon.

To further reduce the computational complexity of (12)
we bundle customer flows and distinguish them by their ge-
ographical destination [27]. To translate flows back to the 4-
tuple request commodities, we apply the post-processing flow
decomposition algorithm presented in [27] to decompose the
optimal solution ( f ?0 , f ?m) into a set of K routes. A route is
given by a tuple (rm

k ,α
m
k ) ∈R? ∀k = 1,2, ...,K, where rm

k
is the sequence of nodes on route k, αm

k is the customer
flow on route k, and m is the corresponding unbundled
customer commodity. This significantly reduces the number
of commodity flow variables, whilst not changing the optimal
solution of the problem. In the flow bundling formulation, the
problem size does not depend on the number of vehicles or
customers, making it suitable for a large scale settings.

C. Fractional Flows
The flow values αm

k obtained from the solution of the LP
are noninteger. To obtain an integer routing from R? whilst
incurring low rounding errors, we use flow decomposition to
extract as many integer flows from R? as possible. After one
route k is chosen, we update the residual flow (rm

k ,α
m
k ) with

(rm
k ,α

m
k −1) in the set R?. If for a given demand m there are

no remaining routes with αm
k ≥ 1 we sample one route rm

k
randomly from the distribution proportional to the remaining
flow. In practice the solution of (8) and the rounded version
described here are very similar, but in principle it is not clear
how different the objective values of the rounded and original
solutions can be in general.

D. Algorithm
We denote St(D t ,C t , Λ̂Topt(t)) as the state of our system at

time t. Herein, D t denotes the expected spatial and temporal
distribution of cars at time t. To account for capacity limits,
C t denotes the set of expected capacities for each road arc.

We present an MPC algorithm based on (8) which is
outlined in Algorithm 1. First, we estimate the system’s state,
i.e., we generate a forecast Λ̂Tpred(t), check road congestion
levels to obtain C t and measure the vehicles’ locations to
obtain D t . Second, we solve (8) using the current state as
an input to obtain a fractional bundled solution ( f ?0 , f ?m).
Third, we debundle the solution and convert it into an integer
flow by the procedures described in Sections III-B and III-
C respectively. Fourth, we execute the integer routing for
τ units of time. To address the fact that Topt(t) is only
a subset of the entire operation horizon, these four steps
are repeated every τ units of time so that D t ,C t , Λ̂Topt(t)
can be periodically updated to incorporate new information
observed in the system during operation.

Algorithm 1 Model Predictive Control
1: procedure I-AMOD-MPC
2: while Λ̂Tpred(t) 6= /0 do . There is predicted demand
3: St ← estimate Λ̂Tpred(t), D t and C t

4: ( f ?0 , f ?m)← solve LP (12)
5: R?← flow decomposition of ( f ?0 , f ?m)
6: Route customers and vehicles
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Fig. 3. Road network and subway lines of Manhattan with exemplary
origin-destination pairs. Taken from [6].

IV. NUMERICAL EXPERIMENTS

We validate the proposed MPC Algorithm 1 in a case
study of New York City, whereby we simulate an I-AMoD
system servicing transportation requests taken from the NYC
Taxi & Limousine Commission data set. Specifically, we
introduce the New York City Taxi & Limousine data set
and the simulation environment in Section IV-A. Section IV-
B discusses the experimental design. We present numerical
results of two experiments in Sections IV-C and IV-D,
respectively. Section IV-E concludes with a discussion of the
results.

A. Simulation Environment
The New York Taxi and Limousine Commission data set

contains 53,932 taxi rides served on March 1, 2012 between
6 and 8 pm within Manhattan. Among these trips are 6,772
unique origin-destination pairs. The road network topology is
obtained by OpenStreetMap data [28] and the road capacities
are proportional to the number of lanes multiplied by the
road’s speed limit.

We consider the transportation network of Manhattan
shown in Fig. 3, consisting of a road network and subway
lines. Since the subway is the dominant public transit mode
in Manhattan, we use it to build the public transportation net-
work for our case study. We construct the public transporta-
tion digraph based on the geographical location of the lines
and the stops found in the NYC Open Data database [29].
Our time discretization is τ = 2 min and the time ex-
panded graph is constructed via the Greedy Clustering
Heuristic described in Section II-C. ∆rtime is chosen to
be 5%. The choice of clustering radius rτ from Section II-
C ensures that the geographical resolution of the model



TABLE I
NUMERICAL DATA FOR THE CASE STUDY

Parameter Variable Value Source

Value of time VT 24.40 USD/h [30]
Vehicle operational cost VD,R 0.486 USD/mile [32]
Subway operational cost VD,P 0.47 USD/mile [31]

is proportional to the congestion level, allowing for high
resolution routing strategies in high congestion situations.
In accordance with public transit schedules, the subway can
be boarded from a subway station once every 6 min. For
the sake of simplicity, we assume that perfect forecasts for
the horizon Tpred(t) are available, i.e., Λ̂Tpred(t) = ΛTpred(t).
This assumption is without loss of generality as [18], [19],
[20] show that estimates of future demand also lead to
substantial improvement over reactive algorithms in AMoD
problems. Finally, we assume exogenous traffic to be known
a priori. Therefore, as the travel times in the congestion
model presented in Section II-B are deterministic, D t andC t

do not need to be estimated.

B. Experimental Design

We conduct two experiments in this study. In the first
experiment, we compare the performance of the proposed
MPC Algorithm 1 with and without the intermodality feature.
In the second experiment, we compare the time-variant model
from Section II-A to the time-invariant model from [7] to
understand how non-stationarity of demand and public transit
schedules affect the system operation.

I-AMoD VS AMoD: In the first experiment, we simulate
the Manhattan transportation network on March 1st, 2012
from 7pm to 8pm. During this time, the data set com-
prises 20,000 requests. We use Algorithm 1 to coordinate
the I-AMoD fleet with the subway network to serve these
requests. As a benchmark, we simulate an AMoD system
operating in isolation. Specifically, we use an AMoD-MPC
scheme consisting of Algorithm 1 with the subway disabled.
Both algorithms control a fleet of 5000 vehicles, and have
prediction and optimization horizons of 36 and 40 minutes,
respectively. We chose a 40-minute length for the optimiza-
tion horizon because 99% of the trips in the taxi data set
are at most 40 minutes long. Comparing these results, we
highlight the significance of considering intermodality in
Algorithm 1.

To study the impact of congestion on the system’s perfor-
mance, we run simulations for various levels of exogenous
congestion. We quantify exogenous congestion as a percent-
age share of road capacity, that is the ratio of exogenous
vehicles on a road related to its nominal capacity. We con-
sider a service fleet with 5000 vehicles, which is significantly
smaller than the amount of vehicles in Manhattan. This
way, the approximation of congestion being exogenous is
in order, and, therefore, we can remove constraints (4) for
Experiment 1 as they are never active.

We evaluate the performance of the algorithms with a
combination of the average travel time of the customers and
the operational cost incurred by the transportation system
operator. Table I summarizes the cost parameters used in
our case study and their sources. With these costs, for
an arc (i, j) ∈ A with travel time ti j and length `i j we

Fig. 4. Comparison of the I-AMoD-MPC and the AMoD-MPC controller.
For each level of exogenous congestion, the colored bars specify the
distance-based modal share (AMoD or subway) utilized by the AMoD-MPC
(left) and the I-AMoD-MPC (right). The black lines denote the average
travel time as a function of congestion for both algorithms.

have ρ t
i j = VT · ti j for customer cost and ρo

i j = VD,R · `i j and
ρo

i j = VD,P · `i j for vehicle and subway arcs, respectively.
We penalize unserviced requests with a fee of P = 50USD,
corresponding to a monetary compensation for a loss of about
two hours.

Time-variant VS Time-invariant: To allow for fair com-
parison, we make several adjustments to the demand and the
time-variant model. First, we scale the original demand by
a factor of six to account for the actual number of ride-
hailing requests in NYC in 2017 [33]. To avoid a bias
while comparing a transient to a steady state modeling
approach, we modify the time-variant model as follows:
First, since in [7] the algorithm can choose the size of the
fleet, we consider Dfinal and Dinitial to be decision variables.
Second, since the distribution of vehicles in [7] is time-
invariant, we include the constraint Dfinal = Dinitial. Similar
to Experiment 1, we consider various levels of exogenous
congestion ranging from 70% to 150% of the nominal road
capacity. We optimize over the entire horizon of one hour
and analyze the fractional solution ( f ?0 , f ?m).

C. Experiment 1: MPC Algorithm Implementation

Fig. 4 shows the results of the comparison between the
I-AMoD-MPC and the AMoD-MPC scheme. As can be seen,
the total trip times increase when the level of exogenous
congestion increases. Even for low levels of congestion,
the I-AMoD-MPC is able to decrease the average request
time compared to the AMoD-MPC. At high congestion the
rebalancing of the vehicles becomes difficult, resulting the
AMoD-MPC performing significantly worse than its inter-
modal counterpart. Indeed, the I-AMoD-MPC suffers less
from the increased congestion by allocating more demand to
public transit. Overall, the I-AMoD-MPC is able to decrease
the total trip time by up to 25%.

We also conducted a system sensitivity analysis to the
fleet size. Specifically, we ran the experiment with 130%
exogenous road usage for fleet sizes of 4500 and 5500
vehicles. In the former case, the subway share increased from



Fig. 5. Comparison between the time-invariant (TI) and the time-variant
(TV) I-AMoD system

Fig. 6. Temporal variation of the travel demand for different origin regions.

19% to 27% to compensate for the smaller fleet size, and
only increased the average total trip time by 48 seconds. In
the latter case, the larger fleet size only improves average
trip time by 20 seconds. This suggests that cooperation with
the subway network can reduce the number of ride-hailing
vehicles needed.

D. Experiment 2: Model Comparison

Fig. 5 shows the distance-based modal share and the
societal cost (travel time and operational cost) of the time-
invariant and time-variant modeling approaches for various
levels of exogenous congestion. Both models show a mono-
tone behavior: As exogenous road usage increases, the share
of trips served using the subway increases. The time-variant
model, however, always has a higher projected cost and
lower subway share. This difference is largely explained
by two factors. First, the time-invariant model assumes a
time-invariant demand. This is only true to some extent.
Although the total quantity of requests is relatively stable
over the 2-hour time horizon, there are still considerable

local spatial and temporal fluctuations in demand. This can
be seen in Fig. 6 which shows the the number of requests of a
given origin region over time. Second, due to the clustering,
the time-variant model typically overestimates travel times
due to its lower geographical resolution. An overestimation
of travel time, however, renders the model robust towards
inaccuracies in travel time and congestion models, which is
valuable in a time-variant setting where missing the subway
can significantly increase the trip time.

E. Discussion

In Experiment 1, the linear optimization problem (12) was
solved on a lab workstation (Intel Xeon Gold 6136 CPU,
128 GB RAM) using Gurobi 8.0.1 in less than 10 min. This,
however, is not fast enough for real-time applications as a
solution is needed once every τ = 2 min. Using computer
clusters dedicated to logistics application with distributed op-
timization schemes such as dual decomposition or alternating
direction method of multipliers (ADMM) may enable a real-
time implementation of Algorithm 1.

From Experiment 2 we see that low geographical reso-
lution in the time-variant model leads to discrepancies in
system cost with the time-invariant model, as shown in Fig. 5.
This suggests that a higher resolution should be used for
low congestion situations. However, a lower geographical
resolution tends to overestimates of travel times and thus
provides routes that are robust towards inaccuracies in the
congestion model.

V. CONCLUSION

We developed a time-variant network flow based opti-
mization model and leveraged it to devise a MPC algorithm
to operate an I-AMoD system that jointly coordinates an
AMoD fleet and public transit to service travel demands. We
compared the I-AMoD MPC scheme to a pure-AMoD MPC
scheme and showed intermodality to significantly improve
service quality. Additionally, we compared the time-variant
I-AMoD model with a time-invariant framework which re-
vealed that both high geographical and temporal resolutions
are needed to obtain high quality solutions.

This work opens the field for several research directions.
First of all, the development of a low-level controller would
allow for intelligent routing within geographically clustered
regions. Furthermore, incorporating fairness for customers is
paramount to applications since the current model only aims
to optimize the average quality of service. Finally, we would
like the MPC algorithm to explicitly account for stochastic
effects such as demand fluctuation, congestion deviations and
public transit delays.
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APPENDIX

A. Intermodal Structure of the Time-expanded Graph
For further clarity we would like to elaborate on the

categorization of arcs in A . Arcs between vertices can
be categorized into two categories: intra-regional and inter-
regional arcs. Arcs that connect different vertices in one
region are intra-regional arcs. They model waiting time,
mode switching, customer pickup and delivery. The intra-
regional arcs of a region are represented in Fig. 2. The
orange arrows represent arcs in Acus. They model the the
fact that customers can wait inside the region and at public
transit stations. The black solid arrows represent arcs in Aveh.
Such an arrow from a road vertex to a walking vertex of
a region models the drop off of a customer in the region,
which takes one time-step τ . Equivalently, here are black
solid arrows from the road vertex to the subway vertex for
a drop off directly at the public transit station. The pickup
of the customer is represented as well by black solid arrows
but from walking or subway vertices to the road vertex. The
black dotted arrows represent arcs in Areb. They model the
fact that once a customer is dropped off by a vehicle, the
vehicle can directly leave the region via a road vertex or
enable the pickup of a customer in the same region.

Arcs that connect vertices of different regions are inter-
regional arcs. They either connect vertices of the road
network or subway vertices. The connection between road
vertices is given by the road arc set AR, which is a subset
of Aveh. AR results from the topology of the road network
and the travel time between regions, depending on the levels
of exogenous congestion. The inter-regional connections
between public transit station represent the topology of the
public transit network and schedule. If some public transit
stations are geographically close but not connected by a
public transit line they are connected by an arc that represents
the time it takes to walk in between them, to allow the
switching of lines.


