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Abstract— Satellite servicing is a rapidly developing industry
which requires a number advances in semi- and fully-automated
space robotics to unlock many key servicing capabilities. One
upcoming mission example is the NASA Restore-L Robotic
Servicing spacecraft, which is equipped with two 7-joint robotic
manipulators used to capture a satellite and perform a complex
series of refueling tasks, including swapping between various
end-effector tools stored on board. In this scenario, planning
of the manipulator motions must account for a number of con-
straints, such as collision avoidance and the potential need for
uninterrupted visual tracking of objects or of the end-effector.
Such complex constraints in a cluttered environment, such as
the interface between two spacecraft, are time-consuming to
incorporate into hand-designed trajectories. Thus, in this work
we present a software tool which uses robot motion planning and
path refinement algorithms for automated, real-time computa-
tion of near-optimal, collision-free trajectories which satisfy the
aforementioned perception constraints. The tool is built on the
ROS MoveIt! framework, which can simulate and visualize tra-
jectories as well as seamlessly switch between motion planning
and refinement algorithms depending on task requirements. Ad-
ditionally, we performed experimental campaigns to benchmark
a number of available algorithms for performance in handling
such perception constraints. Although the framework is applied
to a mock-up of Restore-L satellite servicer in this paper, the tool
can be applied to any fixed-base manipulator planning scenario
with a similar class of constraints.
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1. INTRODUCTION
In its history and through to the present, the space industry
continues to lose billions of dollars as a result of satellite
system failures [1] and the decommissioning of functional
satellites due to depletion of fuel [2]. This presents an
open opportunity for on-orbit satellite servicing, a broad field
incorporating rendezvous, docking, and a variety of satellite
repair and maintenance tasks. Currently, due to the high cost
of crewed missions in space, satellite servicing operations
often rely on robotic tools to complete tasks [3]. Thus,
a robust and agile workflow between ground operators and
servicing robots is necessary to make full use of available
robotic capabilities, reduce operator workload, and ultimately
reduce costs. In particular, adding more autonomous or semi-
autonomous functionality to these robotic tools is crucial to
streamlining operations.

To perform tooling and servicing tasks, space servicing
technologies have often incorporated manipulator systems
for complex object and environment interaction. Early 6-
degree-of-freedom (DoF) systems, such as the Canadarm and
the European Robotic Arm (ERA) [4], [5], provided basic
SE(3) end-effector interaction using the minimum number of
manipulator joints. These led to later systems, such as the 7-
DoF Canadarm2 and the 15-DoF Special Purpose Dexterous
Manipulator (SPDM) for the International Space Station, us-
ing the additional DoF to improve avoidance of singularities
and collisions [6], [7]. Unfortunately, these more recent
manipulator systems still make use only of astronaut tele-
operated control or pre-designed trajectories, forcing opera-
tors to personally direct task-specific end-effector movements
around obstacles [8]. Designing these trajectories is both
difficult and tedious, especially when operating in cluttered
environments and given redundancy in the manipulator.

In some areas of on-orbit satellite servicing, researchers
are continuing to investigate the design and implementation
of autonomous capabilities. For example, research in Au-
tonomous Rendezvous and Capture (AR&C) aims to perform
the entire process of localization, navigation, capture, and sta-
bilization of target satellites with minimal human intervention
[9]. This includes operations such as the motion synchro-
nization and capture of non-cooperative target objects with a
chaser spacecraft [10], [11], [12]. However, while AR&C is
an ongoing, active field of research, there has been limited
work on implementing autonomy on robot manipulators to
complete satellite servicing tasks after a target object has been
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captured.

Fortunately, within the broader robotics community, such
automated algorithms for guiding robotic manipulators are
readily available. For example, in early work, Khatib intro-
duced artificial potential fields to model obstacles as repul-
sive surfaces within the classical manipulator torque control
framework [13]. This approach had some success for sim-
ple obstacle avoidance, but in more cluttered environments,
the method gets stuck in local minima, halting manipulator
movement or leading it into dead ends. Later work includes
the broad field of trajectory optimization, which makes use of
advances in convex and nonconvex solvers to plan new tra-
jectories or refine coarse trajectories. Well-known algorithms
of this class include CHOMP [14], STOMP [15], and TrajOpt
[16]. These approaches have been quite successful in provid-
ing low-cost manipulator trajectories in environments which
require collision avoidance, sometimes even when seeded
with simple, naive initializations. However, their dependence
on initialization is quite severe, and when planning in very
cluttered environments or on complex dynamical systems, the
task of finding a seed trajectory that leads to a successful or
desirable solution is a difficult one on its own [17].

Another available option is sampling-based planning (SBP),
which performs a global search for near-optimal, collision-
free robot trajectories. SBP algorithms sample collision-free
robot configuration states (also referred to as nodes) from the
configuration space of the robot and then connect the nodes
with subpaths (referred to as edges) validated by a collision-
checker. The scheme for choosing nodes and edges is often
designed to result in full trajectories that optimize some cost
function. In addition, since the collision-checker can be
considered as a black-box within these algorithms, SBP is
amenable to robot planning problems having a wide variety
of complex constraints such as collision-avoidance. SBP
has been particularly successful for high-dimensional robots
requiring fast computation of collision-free geometric paths
[18]. Within space robotics, SBP has historically been used
for tasks such as attitude control [19], docking [20], multi-
robot control [21], and manipulator control in the pre-capture
phase [22], but not for fine robotic satellite servicing tasks.
Accordingly, a key objective of this paper is to investigate the
use of SBP in the context of manipulator planning for satellite
servicing tasks.

Importantly, SBP approaches alone are not always sufficient
for generating desirable trajectories, as although they are
adept at quickly generating coarse, near-globally-optimal
paths, the full refinement of trajectories to optimality via SBP
algorithms can be very computationally intensive. As such,
various post-processing techniques are often used for path
refinement. Such post-processing can be accomplished us-
ing the class of previously discussed trajectory optimization
algorithms. However, quick quality improvements can also
be achieved for a SBP-generated path via simple approaches
such as path-pruning and shortcutting by removing unneces-
sary nodes and performing simple interpolations [23].

When designing trajectories for spacecraft manipulation
tasks, there are often special requirements desired by mission
designers and operators. A key example that we address in
this paper is the ability to enforce desired camera visibility
constraints throughout a manipulator trajectory. For example,
it may be desired that a supervising camera can always keep
the manipulator end-effector in view or that an end-effector-
mounted camera keep a particular target in view throughout
a maneuver. Though previous work has incorporated visual

information into manipulator control (e.g. visual-servo con-
trol, using camera data streams within a manipulator position
control loop [24], [25], [26], [27]), it has not been used
for planning of optimal nominal trajectories. In particular,
the consideration of hard perception constraints of this sort
within planning for robotic spacecraft systems, alongside
other constraints such as collision avoidance, has not yet been
addressed. Thus, an additional key objective of this paper
is to incorporate such perception constraints naturally into a
planning pipeline while maintaining fast planning times.

Statement of Contributions

The goal of this paper is to provide a planning tool to compute
manipulator motions for satellite servicing tasks, with a key
emphasis on accounting for perception constraints and avoid-
ance of complex obstacles. Specifically, the contribution of
this paper is twofold. First, we formulate field-of-view and
line-of-sight perception constraints within a SBP framework
to generate trajectories which guarantee that specified cam-
eras retain view of desired targets throughout a robot manip-
ulator maneuver. Second, by leveraging such a formulation,
we present a SBP and trajectory refinement pipeline and tool
to rapidly generate collision-free trajectories for a satellite-
servicing robotic manipulator, providing detailed simulation
data to evaluate and select the best combination of SBP and
trajectory refinement algorithms. The planning tool can be
applied to a variety of satellite servicing tasks in the phase
after docking with the satellite has been achieved; in this
paper, we use a mock-up of the Restore-L satellite servicing
mission scenario as an environment for evaluating the tool.

Paper Organization

The paper is organized as follows: In Sec. 2 we review the
motion planning problem solved by the tool and detail the
SBP and trajectory refinement algorithms evaluated for use
in the planning pipeline. Then, in Sec. 3, we discuss the
perception constraints and their integration into the planning
process. Next, in Sec. 4, we provide a high-level overview of
the manipulator trajectory generation tool, which is the main
contribution of the paper, as well as further implementation
details of the tool. Sec. 5 presents simulations evaluating
SBP and refinement algorithm combinations in various en-
vironments, and Sec. 6 discusses the experimental results.
Finally, Sec. 7 provides the conclusions and directions for
future research.

2. PROBLEM FORMULATION AND
ALGORITHMS

A. The Motion Planning Problem

SBP algorithms generate plans by connecting feasible states
of the robot in the configuration space. The configuration
space, or C-space, represents all possible configurations of
the manipulator (i.e. combinations of joint angles). The C-
space is further divided into two regions: the obstacle-space
Cobs, representing infeasible robot states due to collisions,
and its complement, the free-space Cfree. To clarify, collision
states do not only include undesired contact between the robot
and its environment, but also violation of other problem con-
straints (e.g., breaking visual line-of-sight with a perception
target).

The motion planning problem is defined as the determination
of a robot action trajectory u(t) yielding a feasible C-space
path x(t) such that x(t) ∈ Cfree within a specified time
horizon t ∈ [0, T ] and also satisfying x(0) = xstart and
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x(T ) ∈ Xgoal [28]. In other words, a successful motion
planner will provide a feasible trajectory linking the starting
configuration xstart to the goal region Xgoal within a specified
amount of time T . A motion planner may additionally
attempt minimize a cost J =

∫ T
0
g(x, u)dt, where g(x, u)

penalizes motions by some criteria (in this paper, we consider
path length in the manipulator joint space). Thus, an optimal
motion planner will provide a set of controls, u(t) that
produces the successful trajectory having a globally minimal
total cost.

B. Sampling-Based Motion Planning Algorithms

There exists a wide variety of sampling-based motion plan-
ning algorithms, amenable to many different applications.
For this work, we select three of the most commonly used
classes of SBP algorithms, described at a high level below.
Of these, five total variants are chosen for simulation com-
parisons, as described in Sec. 5.

Rapidly-Exploring Random Trees (RRT)— RRT is an SBP
algorithm that performs simultaneous graph construction and
search, incrementally building a tree of feasible paths through
the space. At each step, RRT randomly samples nodes within
the Cfree and attempts to connect the node to the closest
feasible node in the tree [29].

We use two variants of RRT for benchmarking. The first
variant is RRTConnect, a bi-directional version of RRT which
grows two trees from the start and goal towards one another
in order to reduce overall planning time [30]. Second, we use
RRT*, an asymptotically optimal version of RRT that con-
verges towards the globally optimal solution as the number of
samples increases through a process of rewiring connections
between nodes when a new node is connected to the tree [31].

Probabilistic Roadmaps (PRM)—PRM takes a different ap-
proach from RRT, first representing the free space by sam-
pling a large batch of collision-free nodes and connecting
nodes to all of their k-nearest neighbors with collision-free
edges where possible. This creates a graph or “roadmap,”
which can be queried for optimal paths using standard graph-
search algorithms (e.g. Djikstra’s) [32]. Furthermore, PRM*,
an asymptotically optimal variant, improves path quality and
uses fewer collision-checks by using a particular scaling of
k for the k-nearest neighborhood construction, chosen as a
function of the size of the sample set [31]. In this case,
the main computational bottleneck is the full creation of a
collision-free roadmap before beginning a path search. This
is often wasteful since an exhaustive roadmap is not required
for most planning problems, and if obstacles or constraints
change, the roadmap must be regenerated.

Fast Marching Tree (FMT*)— Like RRT, FMT* performs
graph construction and search simultaneously. However,
FMT* makes use of a “lazy” collision-checking technique,
reducing the total number of computationally expensive edge
collision-checks needed to solve a planning problem com-
pared to RRT and PRM variants. In order to maintain
the same guarantees of asymptotic optimality as RRT* and
PRM* while using this technique, FMT* operates on a fixed
batch of collision-free nodes sampled in advance [33].

We use FMT* and a bi-directional variant of FMT* called
BFMT*. Like RRTConnect, BFMT* grows two trees, one
from the start and one from the goal, towards each other
[34]. Using this approach, the algorithm is able to find
solutions using two small trees that connect somewhere in

the middle of the search space, rather than using a single
large tree that must expand the entire way from the start to the
goal. Since the number of actively exploring nodes (referred
to as the search frontier) tends to grow with the size of a
tree, the dual-tree approach of BFMT* tends to find solutions
with a much smaller frontier than FMT*, thereby decreasing
computational expense.

The algorithm can use different strategies for alternating
between the two trees, such as by taking turns (“Alternating
Trees”) or by operating on the tree with the lowest-cost
frontier node from the tree’s root (“Balanced Trees”). Addi-
tionally, the algorithm can be either be specified to terminate
on the first connection between the two trees returned (“First
Path”) or when the trees have expanded sufficiently far into
one another (“Best Path”). We use the Balanced Trees and
Best Path combination as a balance between computation
speed and path quality.

C. Shortcutting Refinement Algorithms

Additionally, a variety of shortcutting methods are available
for refining coarse paths generated by SBP algorithms. The
simplest shortcutting methods are path-pruning techniques,
which only remove single nodes in a path and attempt to
reconnect the remaining nodes. However, there are a num-
ber of more complex variants, of which we chose four for
comparison.

Shortcut— The first shortcutting technique, Shortcut, im-
proves upon simple path-pruning techniques by attempting
to optimally connect two random nodes along a robot joint
trajectory via a straight line. If the path is feasible, the
former intermediate nodes are discarded, and the shortcut is
cemented with interpolated points [23].

Adaptive Shortcut—The Adaptive Shortcut method builds on
Shortcut by including an oracle to assist in reducing clearance
between the manipulator joints trajectory and constraints in
order to further decrease path length [35]. After completion
of a Shortcut routine, the oracle inserts additional nodes along
the new path and starts another Shortcut routine. The addi-
tional inserted points give the Shortcut routine new vantage
points from which to find interpolated paths that go through
the free region while cutting closer to constraints. This results
in better final path quality at the cost of extra computation due
to running the Shortcut algorithm multiple times.

Partial Shortcut—The Partial Shortcut method improves path
optimization over Shortcut by employing Shortcut on ma-
nipulator joints individually. After selecting two random
nodes x(i) and x(j) along a trajectory and selecting a spe-
cific joint k to shortcut, Partial Shortcut replaces the val-
ues x(i)k , x

(i+1)
k , ..., x

(j)
k representing joint k’s trajectory from

nodes x(i) to x(j) with a linear interpolation between x(i)k and
x
(j)
k . Due to employing more incremental shortcutting along

single manipulator joints, Partial Shortcut provides higher
quality paths than Shortcut, at the cost of more iterations.

Adaptive Partial Shortcut—The final shortcut method, Adap-
tive Partial Shortcut, is a variant of Partial Shortcut that priori-
tizes manipulator joints which contribute the most cost to the
full trajectory [36]. Specifically, in each iteration, Adaptive
Partial chooses a joint to optimize according to a weighted
distribution, where higher probability is assigned to joints
which contribute higher additional cost across the current
trajectory, relative to the optimal obstacle-free trajectory from
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the start state to goal region. Using this approach, Adaptive
Partial can often produce high cost reduction in the first few
iterations compared to other algorithms. However, in the end,
the algorithm may also get stuck prioritizing and repeatedly
choosing joints that contribute towards overall trajectory cost
but cannot be optimized further, thus wasting iterations.

3. FORMULATING THE
PERCEPTION CONSTRAINTS

The objective of the perception constraints is to guarantee
that generated manipulator motions maintain visual tracking
of desired targets. One such constraint is an “eye-in-hand”
perception constraint, which provides continual visibility of
a target in the environment from a camera mounted on the
manipulator end-effector. This would allow operators to
perform an additional visual check of trajectory accuracy and
gain better insight of target-manipulator interactions during
complex task sequencing. Another perception constraint is
an “eye-to-hand” constraint, where the camera is attached
somewhere else in the environment, such as on a secondary
arm or on the body of the servicing spacecraft. Here, the
goal is to restrict end-effector movement to within the field-
of-view of the camera. Similarly, this limitation provides
increased supervision and understanding for an observing
operator. Both constraints require constant field-of-view
(Figure 1) and line-of-sight (Figure 2) of the target.

To enforce these constraints within a SBP pipeline, we simply
add them to the collision-checking process. As such, samples
are considered in collision not only when the manipulator
is in undesired contact with an obstacle, but when either
of the perception constraints are violated. In particular, for
each camera within a scenario, the following two types of
constraints are formulated and applied:

A. Field-of-View Constraint

An example diagram of a field-of-view cone constraint can
be seen in Figure 1. Let p represent the camera’s location
and t represent the target location. If û represents the unit
vector along the direction the camera is facing, then the vector
l along the camera’s normal vector to the target is

l = [(t− p) · û]û.

The vector d to the target point within a plane normal to the
camera’s direction is determined by

d = t− (p+ l).

Thus, the cone constraint is satisfied if the angle θ to the target
is within the field-of-view cone, defined by the angle ψ:

θ ≤ ψ

where θ = tan−1 ‖d‖‖l‖ .

B. Line-of-Sight Vision Constraint

To implement the line-of-sight constraint, a thin rectangular
prism is added to the end-effector to ensure no obstacles are
present between the target and the camera. The following
calculations show how to transform an arbitrarily-oriented
thin rectangular prism with length ‖t− p‖ to span the length
between the target and the camera, as shown in Figure 2:

Figure 1: Diagram of a field-of-view cone constraint from
an end-effector camera to a target.

Figure 2: Line-of-sight perception constraints are shown by
the purple rectangular prisms stretching from the

end-effector to the target (the object the end-effector is
facing) and to a camera mounted in the environment.

Let ẑ represent the unit direction of the long axis of the prism
upon creation and before rotation. The axis of rotation â and
the angle of rotation φ to correctly orient the prism are then
found by

â = ẑ × t− p
‖t− p‖

,

φ = cos−1
(
ẑ · t− p
‖t− p‖

)
.

Then, the quaternion q rotating the prism into proper orienta-
tion is calculated by

q =

[
â sin(φ2 )

â cos(φ2 )

]
.
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After the rotation the prism is translated into its position
between the target and the camera.

4. THE PERCEPTION-CONSTRAINED
MOTION PLANNING TOOL

The motion planning pipeline developed in this work is
built on the ROS MoveIt! library in order to easily in-
terface the shortcutting post-processing techniques with ex-
isting Open Motion Planning Library (OMPL) SBP algo-
rithms. For further specialization to our problem setting,
we modified the core MoveIt! collision-detection mod-
ule to add optional perception constraints for target and/or
end-effector tracking during motion execution. The work-
flow of the tool is depicted in Figure 3, and the code
is available at https://github.com/StanfordASL/
PerceptionConstrArmPlanning.

The tool’s modularity allows for the integration of custom
motion planners and pairings of SBPs and refinement algo-
rithms. Additionally, although the tool is applied in this
paper to a satellite-servicing arm on a spacecraft berthed to
a servicing target, the tool can be readily applied to any
fixed-base robot planning scenario. Definitions of robots and
environments can be imported through URDF files, and by
starting robot configurations and goal regions are updated,
operators or high-level decision-making modules can repeat-
edly query the tool for rapid planning, as demonstrated in
our experiments. Generated trajectories can also be viewed
through RViz for final verification by ground operators.

Figure 3: Diagram showing the tool’s motion planning
workflow.

To quickly generate trajectories, MoveIt! solves a kinody-
namic planning problem which is divided into two stages.
During the first stage, MoveIt! determines path nodes (ma-
nipulator joint configurations) using geometric straight-line
planning. Then, the path is turned into a full trajectory
using time parameterization, scaling in time in order to satisfy
dynamics constraints. To allow finer velocity and accelera-
tion control, the tool interpolates additional waypoints into
the trajectory before time parameterization. As there are a
number of algorithms implemented and available for use in
this tool, the next two sections benchmark a number of SBP
and refinement algorithm combinations, in order to provide
guidelines on algorithm selection.

Environment Max Time (s)
Sphere 1.0

Box 1.0
Cluttered 3.0

Maze 11.0
Satellite 22.0

Table 1: Enforced maximum computation time for planning
environments.

5. EXPERIMENTAL SETUP
To test the planning pipeline and evaluate different SBP and
refinement algorithm combinations, we used a model of the
Motoman SIA20D robot arm, which has the same joint con-
figuration and similar scale to the Restore-L servicer arms and
can thus serve as an effective analog in simulation. Specifi-
cally, the 7-DoF arm incorporates revolute joints in a standard
shoulder-elbow-wrist configuration, with a redundant joint
in the elbow. We placed the manipulator in five different
planning environments: (1-3) three simple environments
without perception constraints applied, (4) a maze of floating
rubble with an eye-in-hand perception constraint applied, and
(5) a mock-up of a satellite with both an eye-in-hand and
eye-to-hand perception constraint applied. The three simple
environments (a sphere environment, a box environment, and
a cluttered environment, as shown in Figure 4), served as iso-
lated test cases to provide baseline statistics on the planners in
simple planning tasks. In particular, the sphere environment
offered minimal obstruction to demonstrate small obstacle-
induced path perturbations, the box environment forced the
manipulator to stretch while moving around the box’s ex-
tremities, and the cluttered environment offered a variety
of pathways through which the manipulator could reach the
goal. Conversely, the maze of space rubble, shown in Figure
5, challenged the robotic arm to navigate around obstacles
to a new vantage point while maintaining perception of the
target. This leads to the final application, the Restore-L
mission mock-up, where the manipulator was tasked with
maneuvering to a tooling location while maintaining vision
of a target in the environment. Additionally, the end-effector
was further constrained to operate within the vision of a
camera mounted in the environment. As such, the robot needs
to perform a cork-screwing motion while moving forward to
settle near the tooling location, guaranteeing constant end-
effector and target visibility.

As mentioned in Sec. 2, five SBP algorithms were considered
for comparison: BFMT*, FMT*, RRTConnect, RRT*, and
PRM*. After planning, the SBP solutions were fed into
one of four different shortcutting methods for trajectory post-
processing. Each algorithm and shortcutting pair were run
100 times and the results were averaged. Additionally, we
imposed a maximum time limit to prevent excessive planning
times, as shown in Table 1.

6. RESULTS AND ANALYSIS
Using the results of our experiments, we evaluated SBP and
shortcutting algorithm pairs to determine the best combi-
nation for manipulator arm planning for different types of
satellite-servicing scenarios. SBP algorithms were evaluated
by computation time, path quality, and failure rate, and short-
cutting techniques were evaluated by computation time and
path quality improvement. As shortcutting techniques per-
formed similarly across all experiments, they are discussed at
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(a) Sphere environment. (b) Box environment. (c) Cluttered environment.

Figure 4: Simple environments with no perception constraints.

Figure 5: Maze environment with target perception
constraint.

Figure 6: Satellite environment with target and
environmental camera constraint.

the end of the section.

A. Three Simple Environments (No Perception Constraints)

The trajectory cost and computation time results for the SBP
algorithms in the simple environments are summarized in
Figures 7 and 8, respectively. RRTConnect produced the
fastest solutions using less than 10% of the computation of
its closest competitor, BFMT*. However, RRTConnect paths
also had the poorest quality, due to the algorithm’s emphasis
on quickly finding a feasible path rather than refining its
search to seek optimality. On the other end of the spectrum,
RRT* produced the highest quality paths but had the longest
computation times. These excessive times can be attributed to
RRT*’s excessive collision-checking both while searching for
initial node connections and during the subsequent rewiring
step.

Alternatively, BFMT* and FMT* struck a balance between
RRT* and RRTConnect both in terms of path quality and
time. In particular, their resulting path quality was only
marginally lower than RRT*, but they had significantly faster
computation times in the more challenging cluttered environ-
ment. However, of the two, BFMT* was the most promising,
producing better quality paths up to twice as fast as FMT*.

B. Maze Environment (Eye-in-Hand Constraint)

For the maze environment, the SBP results are provided in
Figure 9. It is worth noting that in this and the satellite
environments, the added perception constraints and obstacle
complexity resulted in some rate of failure for each of the
algorithms, due to their inability to find any feasible solution
within the maximum allotted planning times, shown in Table
1. Indeed, the excessive collision-checking of RRT* during
node connection and rewiring caused it to rarely succeed
within the enforced time limits, resulting in over a 70%
failure rate. Thus, RRT* was replaced by PRM* as a SBP
algorithm for evaluation in these scenarios.

As in the simple environments, RRTConnect produced the
lowest quality trajectories by a significant margin, although
it produced solutions the fastest and thereby had the lowest
failure rate. PRM* improved path quality over RRTConnect,
but was the slowest and had the highest failure rate. Indeed,
FMT* outperformed PRM* by every metric, though it was in
turn outperformed by BFMT*, which required only half the
planning time, while trading off with a slightly higher failure
rate.
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Figure 7: Average computation time of the SBP algorithms
for the simple environments.

Figure 8: Average trajectory cost of the SBP algorithms in
the simple environments.

Figure 9: Average SBP computation time, trajectory cost,
and failure ras for the maze environment.

Figure 10: Average computation time and trajectory cost for
SBP with shortcutting for the maze environment.

Figure 11: Average SBP computation time, trajectory cost,
and failure rate for the satellite environment.

C. Satellite Environment (Eye-to-Hand and Eye-in-Hand
Constraints)

The satellite environment induced the heaviest strain on the
SBP algorithms, incorporating four perception constraints
(two field-of-view and two line-of-sight) alongside a very
complex obstacle set. As a result, planning times were longer
and failure rates were significantly higher than in the maze
environment. In particular, PRM* experienced a high 29%
failure due to number of edge collision-checks required in
the initial construction of a roadmap. This failure rate and
the associated slowdown was avoided by FMT*, which draws
samples in the same fashion as PRM*, but has a significant
advantage in cluttered and tightly constrained environments
such as this due to the algorithm’s “lazy” collision-checking
technique. However, FMT* was again outperformed by
BFMT* in this environment, this time by all metrics.

D. Shortcutting Results

The shortcutting algorithms produced consistent results in
comparison to each other across all environments, as shown
in Tables 2-4. Shortcut and Adaptive Shortcut provided
the lowest path quality improvement as well as the highest
computation time. On the other hand, Partial and Adaptive
Partial provided much higher path cost reduction, for ex-
ample up to 23.8% and 22.9%, respectively, in the simple
environment. This demonstrated the importance of Partial’s
and Adaptive Partial’s freedom to refine the subpaths of single
manipulator joints individually rather than shortcutting over
full-state joint subpaths. In contrast, in Shortcut and Adaptive
Shortcut, a collision caused by one manipulator joint in a
potential shortcutting subpath would immediately invalidate
it, negating the remaining potential for refinement along the
other joints present in that subpath.

As might be expected, the shortcutting algorithms had re-
duced effectiveness in scenarios that were more tightly con-
strained by obstacle complexity and perception constraints.
By reducing the number of eligible collision-free states avail-
able in the sample space, the perception constraints made
straight-line replacements more difficult, thus diminishing the
cost reduction locally available to the algorithms. Indeed, the
shortcutting algorithms produced half the cost reduction in
the satellite environment (two perception constraints) com-
pared to the simple cluttered environment (no perception
constraints).

Overall, the computation time of the shortcutting techniques
was trivial compared to that of the SBP algorithms, and given
their often significant trajectory cost reduction, it is clear that
it is worth including shortcutting within the planning pipeline.
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Box Sphere Clutter

Algorithm
Shortcutting Time (s) Cost Red. (%) Time (s) Cost Red. (%) Time (s) Cost Red. (%)

Shortcut 0.04 5.0 0.05 4.8 0.06 5.5
Adaptive 0.17 8.2 0.22 7.5 0.30 9.6

Partial 0.02 18.9 0.01 14.8 0.03 23.8
Adaptive Partial 0.01 19.0 0.01 13.2 0.03 22.9

Table 2: Average computation time and cost reduction results from using shortcutting algorithms for SBP solution path
refinement in the simple environments.

Algorithm
Shortcutting Time (s) Cost Red. (%)

Shortcut 0.05 2.5
Adaptive 0.17 5.4

Partial 0.05 14.4
Adaptive Partial 0.04 13.4

Table 3: Average path refinement computation time and cost
reduction for the maze environment .

Algorithm
Shortcutting Time (s) Cost Red. (%)

Shortcut 0.16 2.1
Adaptive 0.65 3.9

Partial 0.14 11.3
Adaptive Partial 0.11 9.8

Table 4: Average path refinement computation time and cost
reduction for the satellite environment.

Figure 12: Average computation time and trajectory cost for
SBP with shortcutting for the satellite environment.

E. SBP and Shortcut Selection

Based these results, we determined that the BFMT* + Par-
tial Shortcut combination offered the best balance of speed,
success rate, and path quality for scenarios similar to what
may be expected in a satellite servicing task. The paired SBP
and shortcutting results in Figures 10 and 12 demonstrate
the efficacy of this combination. In complex environments
with the perception constraints included, BFMT* produced
the highest quality paths with a low failure rate and a com-
paratively fast planning time. However, in situations where
planning time is more precious, for example if the tool is
being used for rapid replanning during a maneuver, RRT-
Connect + Partial Shortcut can be used for fast, immediate
planning. The downside of this approach is lower path

quality, potentially requiring more energy expense and time
to complete maneuvering tasks.

Indeed, it is worth noting that although shortcutting is im-
portant, the choice of SBP algorithm is the main driver
for cost reduction. As such, it is important to choose
an asymptotically-optimal planner (e.g. variants of FMT*,
RRT*, PRM*, etc.) to ultimately find high-quality paths, as
they tend to return paths that are close to the global optimum.
As shown in our experiments, shortcutting on a method such
as RRTConnect cannot recover the path quality achieved
by an asymptotically-optimal planner, as an algorithm like
RRTConnect will often return paths that are refined to a bad
local optimum.

7. CONCLUSIONS
In this paper, we have presented a fast motion planning tool
that can be used to generate collision-free trajectories for
satellite servicing manipulators, such as the 7-DoF Restore-L
manipulator arms, while incorporating perception constraints
for target and end-effector visibility. By automating the
manipulator planning, the tool eliminates the cumbersome
process of hand-designing end-effector paths and/or trajec-
tories during satellite-servicing procedures. Additionally,
BFMT* for initial planning and Partial Shortcut for post-
processing were found to be the best combination in tightly
constrained scenarios, such as those including perception
constraints, which are typical of task scenarios that may be
encountered during satellite-servicing operations.

There are several potential directions for future work, in
addition to demonstration on a hardware test bed or in a
satellite servicing mission. One direction is to extend this
tool to a larger class of tasks within satellite servicing. For
example, in cases where the servicing spacecraft is not rigidly
attached to the target satellite, the fixed-based planning used
by this tool may not provide sufficient accuracy. Additionally,
for missions which include servicing manipulators having
a very high number of total DoF, biased sampling [37] or
planning using latent representations [38] may be required
to plan trajectories in a reasonable amount of time. Also,
integrating the tool into the operations of a mission may
call for improved interface tools and visualizations of the
planning space to let operators better evaluate and request
adjustments to planned trajectories, allowing the planning
pipeline to seamlessly fill in adjustments which continue to
satisfy constraints.
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[21] J. Cortés and T. Siméon, “Sampling-based motion plan-
ning under kinematic loop-closure constraints,” in Algo-
rithmic Foundations of Robotics VI. Springer, 2005.

[22] F. James, S. Shah, K. Krishna, and A. Misra, “Reaction-
less maneuvering of a space robot in precapture phase,”
in AIAA Journal of Guidance, Control, and Dynamics,
2016.

[23] R. Geraerts and M. Overmars, “Creating high-quality
paths for motion planning,” Int. Journal of Robotics
Research, vol. 26, no. 8, pp. 845–863, 2007.

[24] N. P. Papanikolopoulos, P. K. Khosla, and T. Kanade,
“Visual tracking of a moving target by a camera
mounted on a robot: A combination of control and vi-
sion,” IEEE Transactions on Robotics and Automation,
vol. 9, no. 1, pp. 14–35, 1993.

[25] S. Morikawa, T. Senoo, A. Namiki, and M. Ishikawa,
“Realtime collision avoidance using a robot manipulator
with light-weight small high-speed vision systems,” in
Proc. IEEE Conf. on Robotics and Automation, 2007.

[26] K. Hosoda, K. Sakamoto, and M. Asada, “Trajec-
tory generation for obstacle avoidance of uncalibrated
stereo visual servoing without 3D reconstruction,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems,
1997.

[27] R. Lampariello, H. Mishra, N. Oumer, P. Schmidt,
M. De Stefano, and A. Albu-Schäffer, “Tracking control
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