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Abstract— We present a framework to enable a fleet of
rigidly attached quadrotor aerial robots to transport heavy
objects along a known reference trajectory without inter-
robot communication or centralized coordination. Leveraging a
distributed wrench controller, we provide exponential stability
guarantees for the entire assembly, under a mild geometric
condition. This is achieved by each quadrotor independently
solving a local optimization problem to counteract the biased
torque effects from each robot in the assembly. We rigorously
analyze the controllability of the object, design a distributed
compensation scheme to address these challenges, and show
that the resulting strategy collectively guarantees full group
control authority. To ensure feasibility for online implemen-
tation, we derive bounds on the net desired control wrench,
characterize the output wrench space of each quadrotor, and
perform subsequent trajectory optimization under these input
constraints. We thoroughly validate our method in simulation
with eight quadrotors transporting a heavy object in a cluttered
environment subject to various sources of uncertainty, and
demonstrate the algorithm’s resilience.

I. INTRODUCTION

In this paper, we present a distributed controller that
allows a group of rigidly-attached quadrotor aerial robots
to cooperatively transport heavy objects in 3D. Distinct
from existing cooperative aerial manipulation literature, our
approach addresses the challenging problem where no peer
communication is allowed among the robots. The only avail-
able information to each individual robot are the inertial
properties of the object, its own attachment point on the
object, and a reference trajectory that is broadcast to all
robots. Notably, the robots do not know the locations, nor
the actions taken by other robots. Instead, each quadrotor
locally solves an independent optimization problem at each
time-step, the collective result of which guarantees the
desired group behavior. By eliminating the communication
bottleneck, which has been shown to be noisy, vulnerable,
complicated and non-scalable in large swarm systems [1],
our method is suitable for a broad range of applications that
require fast response, quick setup, and frequent reconfigura-
tion. For example, in a disaster relief scenario, our approach
can be used as a modular system to deliver equipment of
various sizes, by utilizing up to tens or hundreds of drones
at a time. In the civil sector, packages can be delivered in
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Fig. 1. An example of object transport in 3D with six rigidly attached
quadrotors. The quadrotors do not communicate with each other, thus
allowing for fast reconfiguration for objects of different sizes. This is
achieved by each quadrotor independently computing their control action
onboard based on a reference trajectory that is broadcast to them.

the most efficient and economical way by matching the size
of the package with the required number of robots.

Our controller is based upon the SE(3) geometric con-
troller and differential flatness theory [2], [3], [4], which
are powerful tools for controlling a single quadrotor. In our
method, each quadrotor takes equal responsibility for the
desired nominal wrench for the object with respect to its
center of mass, computed independently by each quadrotor.
This nominal wrench is usually not feasible for a single
quadrotor due to its inherent biased torque controllability.
Through a decomposition into unbiased axes and biased
axis (see Figure 3 for an illustration), we show that three
components of the 4D nominal wrench are feasible for a
single quadrotor. A local optimization is then solved by each
quadrotor to best realize the desired moment along the biased
axis while still adhering to the three feasible components of
the nominal wrench along the unbiased axes.

Under a mild centro-symmetric condition (Assumption 1),
we show that the proposed control strategy is exponentially
stable and is tolerant of non-centro-symmetric robot con-
figurations as well. We perform thorough analysis of the
feasibility of the controller, where we derive explicit bounds
on the required thrust and moments and characterize each
quadrotor’s wrench output space. Finally, we leverage bi-
level constrained trajectory optimization to compute snap-
and time-optimal paths that satisfy the computed control
bounds and solve the problem using an exterior point method
and iterative coordinate descent.

Our work is related to a number of cooperative object
transport methods for 2D planar motion that also do not
require explicit inter-robot communication [5], [6], [7], [8],
[9], and [10] where a decentralized adaptive control scheme
is developed to allow multiple robots to estimate unknown
parameters online. Our solution to the 3D case greatly



broadens the allowable workspace. In terms of cooperative
aerial manipulation, a centralized control allocation approach
is presented in [11] for rigidly attached quadrotors. A tele-
manipulation framework is proposed in [12] by translating
hand motion into quadrotor formation and interaction force
control. Other researchers have considered using cables to
suspend the payload by multiple aerial robots [13], [14], [15].
However, in many applications it is impractical to connect
a large number of cables to a payload. In package delivery
or autonomous construction applications where significant
aerial traffic is expected, entangled cables and collisions
between swinging payloads becomes a concern. In addition,
the unilateral nature of cable tensions introduces hybrid
dynamics [13] that renders stability analysis challenging,
especially for the multi-robot case. Alternatively, one may
use multidirectional thrusters [16] for full 6D pose control.
However, for lifting heavy objects where the primary hurdle
is gravity, lateral thrusters are an inefficient design choice.
In [17] and [18], the quadrotors are augmented with a 2-
DOF robotic arm and the problems are addressed from
the perspective of path planning and decentralized flatness-
based control. A formation-based cooperative manipulation
approach is presented in [19]. Finally, our work is also
inspired by trajectory generation methods for quadrotors in
[20], [21]. However, we additionally incorporate closed-loop
control constraints and tracking stability into the design.

The contributions of this paper are threefold. First, we
propose a decentralized wrench controller for cooperative
aerial manipulation without peer communication (Section
III). Under a mild centro-symmetric condition (Assumption
1), we show that the net assembly is exponentially stable in
position and attitude tracking, based on pairwise controllabil-
ity analysis. Second, in Section IV, we conduct a feasibility
analysis for the online execution of the control algorithm by
computing bounds on the tracking error and control effort,
and characterize each quadrotor’s control space. Third, we
present a differential flatness-inspired trajectory optimization
algorithm (Section V) that additionally incorporates the
bounds from feasibility analysis as constraints, yielding the
open-loop reference inputs. Simulation results are presented
in Section VI that successfully validate the proposed ap-
proach.

II. PROBLEM FORMULATION

We use a group of quadrotors to collectively manipulate
a heavy object, which has mass m and inertia tensor J . The
motion of the object in 3D space is governed by the Newton-
Euler equations. Denote the 12-dimensional state variable as
ξ = (x, y, z, vx, vy, vz, φ, θ, ψ, p, q, r), corresponding to the
3D inertial position h := (x, y, z), linear velocities v :=
(vx, vy, vz), Euler angles (φ, θ, ψ) and (body-frame) angular
velocities ω := (p, q, r). We adopt the “z down” body frame
convention as shown in Figure 2, and the ZY X Euler angle
rotation sequence.

Consider a fleet of N quadrotors, each rigidly attached to
the object with their body z-axis aligned with that of the ob-
ject. We assume that each individual quadrotor does not have
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Fig. 2. The configuration and axes definition of a single quadrotor. Without
loss of generality, we follow the “x” quadrotor convention in this paper,
though all the results are also applicable to other quadrotor configurations.

sufficient power to lift the object. Let fi = [f i1, f
i
2, f

i
3, f

i
4]T

denote the thrust forces corresponding to quadrotor i’s four
propellers, subject to the limits

0 ≤ f ij ≤ fmax, i ∈ {1, · · · , N}, j ∈ {1, 2, 3, 4}.
Each quadrotor can generate a net thrust and three inde-
pendent moments and will contribute a fraction of the total
required wrench. The net resultant wrench due to quadrotor
i expressed in its own body aligned frame is given by

wi
b :=

 1 1 1 1
−r r r −r
r −r r −r
c c −c −c



f i
1

f i
2

f i
3

f i
4

 , (1)

where r is the moment arm length of each motor with respect
to the quadrotor center of mass (see Figure 2), and c is a
constant coefficient for the induced torque of the motor. The
quadrotors are assumed to be attached to the x-y plane of
the object with distance di and angle αi ∈ [−π, π] measured
with respect to the object x-axis, as shown in Figure 1. The
wrench imparted by quadrotor i to the object is given by

wi
obj :=

(
f i
z

τ i

)
=


f i
z

τ ix
τ iy
τ iz

 =

 1 0 0 0
−di sinαi 1 0 0
di cosαi 0 1 0

0 0 0 1

wi
b, (2)

where without loss of generality, we assume that all quadro-
tor frames are aligned with the object’s frame. Under the
combined inputs from all quadrotors, wobj :=

∑N
i=1 wiobj =:

(fz, τ ), the equations of motion of the object are

v̇ = ge3 −
1

m
Rfze3, (3)

ḣ = v, (4)

ω̇ = J−1τ − J−1ω̂Jω, (5)

Ṙ = Rω̂, (6)

where R is the body-to-inertial rotation matrix, g is the
gravitational acceleration, e3 := [0, 0, 1]T , and (̂·) : R3 →
so3 is the hat map transporting vectors in R3 to the SO(3)
Lie algebra, so3.

In order to transport the object to the destination, we
assume that a smooth reference trajectory (continuously
differentiable in time up to fourth order) is broadcast to all
quadrotors. However, no peer communication is available
between any two quadrotors. We also assume that each
quadrotor knows the net mass m, inertia J , and number of



quadrotors N , as well as its own attachment point on the
object, i.e., the value of di and αi. It does not, however,
know the locations of other quadrotors. Finally, we assume
each quadrotor can measure the position, orientation, linear,
and angular velocity of the object using onboard sensors.

III. DISTRIBUTED WRENCH CONTROL

Since all quadrotors have access to the reference trajectory
and real-time state of the object, they can independently
compute the total wrench required to track the trajectory. The
combined payload and quadrotors assembly is a rigid body
whose dynamics resemble those of a single quadrotor; hence
we will leverage the SE(3) controller first proposed in [2], [3]
to compute the net object wrench. However, input constraints
prohibit one individual quadrotor from exerting the required
total wrench. In this section, we propose a distributed con-
troller that allows each quadrotor to independently compute
its control inputs, without peer communication. Collectively,
this local strategy results in a provably stable group behavior
that guarantees successful tracking. We first briefly review
the SE(3) controller.

Let σ : R≥0 → R3 denote the reference position trajectory,
continuously differentiable up to 4th order and σψ : R≥0 →
S1 the reference yaw trajectory, continuously differentiable
up to second order. Given the current state of the object, the
net desired thrust fz and torque τ are given by:

fz =−

:=Fdes︷ ︸︸ ︷
(−kpep − kvev −mge3 +mσ̈) ·Re3, (7)

τ =− kReR − kωeω + ω̂Jω+ (8)

+ J
(
−ω̂RTRdesωdes +RTRdesω̇des

)
,

where ep := h− σ, ev := v− σ̇,

eR :=
1

2
(RT

desR−RTRdes)
v, (9)

eω := ω −RTRdesωdes, (10)

(·)v : so3 → R3 is the inverse hat map, and kp, kv, kR, kω
are positive constant gains. The desired rotation matrix Rdes

is defined by the desired z-axis zb := −Fdes/‖Fdes‖, and
yaw angle σψ . The desired angular velocity ωdes and acceler-
ation ω̇des are defined by the time-derivatives of zb (thereby
incorporating acceleration and jerk feedback) and σψ; refer to
[3] for a derivation of these quantities. For simplicity, similar
to [22], we compute σ̇ψ (and by integration, σψ) online by
constraining ωdesz = 0.

A. Wrench Allocation

To achieve the desired net wrench in (7) and (8), one needs
to assign motor thrusts to each quadrotor – a challenging
problem for two reasons: (1) a quadrotor does not know the
positions of other quadrotors, and cannot communicate with
them, and (2) each quadrotor’s applied wrench is signifi-
cantly biased about one axis due to its off-center attachment
point (see Figure 3 for an illustration of this observation). To
address the first challenge, we assume that each quadrotor
takes on equal responsibility for the net thrust fz and torque
τ ; that is, the wrench command to the ith quadrotor expressed
in the object’s frame is given by: (fz/N, τ/N), with each
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Fig. 3. Illustration of the control frame {xc, yc} for quadrotor i. For
a given requested torque generated by the SE(3) controller in the object’s
frame, we can express it in the control frame and decompose it into xc and
yc axis. Along the unbiased xc axis, robot i can exert both positive and
negative torque. However, it usually cannot apply negative torque along the
biased yc axis due to the large moment arm created by di.

robot computing eqs. (7) and (8) independently. Second,
we introduce the following mild assumption regarding the
arrangement of the quadrotors on the object:

Assumption 1 (Centro-symmetry). The robots attachment
points are centro-symmetric around the center of mass of
the object, meaning that for any robot i, there exists another
robot j 6= i, such that αj = αi − π and di = dj .

In practice, although it might be hard to strictly satisfy this
assumption, the robots are likely to evenly spread out as the
number of the robots increases [1] such that the assumption is
approximately true. In addition, the symmetric configuration
is an intuitive way for a user to attach the robots to a payload.
Centro-symmetry is required for our analysis, but in practice
our controller still works well if the assumption is violated,
as explored in simulation in Section VI.

While the equal wrench assignment is generally non-
optimal for a given attachment configuration, we stress that
such a design choice stems from the constraint that no peer
communication is allowed and the limited knowledge each
quadrotor has regarding the attachment geometry. In future
work, we plan to investigate distributed adaptive strategies in
which each quadrotor estimates the configuration geometry
and appropriately adjusts its own wrench assignment.

Given the pairwise centro-symmetry assumption, it will
be useful to introduce a local reference frame for each
quadrotor, hereby referred to as the control frame, defined
by simply rotating the object reference frame around the z-
axis by angle αi; see Figure 3 for an illustration. Then, the
commanded wrench for quadrotor i in its control frame may
be expressed using the following rotation:

c
oR :=

1 0 0 0
0 cosαi sinαi 0
0 − sinαi cosαi 0
0 0 0 1

 , (11)

wi
c :=

[
f i
cz

τ i
c

]
= c

oR

[
fz/N
τ/N

]
. (12)

By centro-symmetry, τ jcx = −τ icx and τ jcy = −τ icy , while
τ jcz = τ icz = τz/N and f icz = f jcz = fz/N . We also
denote the actual wrench achieved by quadrotor i in the
control frame by wi = c

0Rwiobj := W i
c

[
f i1, f

i
2, f

i
3, f

i
4

]T
.



From (1), (2), and (11), W i
c is given by 1 1

−rCαi + rSαi rCαi − rSαi

di + rCαi + rSαi di − rCαi − rSαi

c c

. . .

1 1
rCαi + rSαi −rCαi − rSαi

di + rCαi − rSαi di − rCαi + rSαi

−c −c

 ,
(13)

where S and C denote sin and cos respectively. By express-
ing the desired and actual wrench in the control frame, one
can isolate each quadrotor’s biased torque controllability to
the control frame y-axis. In particular, observe that the third
row of W i

c is biased by a constant amount di, which prohibits
exerting negative torque along the control frame y-axis since
di is usually much larger than r. Therefore, naively solving
for motor thrusts fi by equating (12) and wi could lead
to infeasibility. In order to ensure that the fleet collectively
achieves the desired SE(3) wrench, we further analyze this
controllability in the next section.

B. Pairwise Controllability

As each quadrotor possesses the ability to generate the
desired thrust and both positive and negative torques along
its control x- and z-axes, consider the local optimization
problem:

min
0≤fi≤fmax

|wi(3)− τ icy | (14)

subject to wi(1) = f icz ,

wi(2) = τ icx ,

wi(4) = τ icz .

The objective function tries to find motor thrusts fi that
minimize the difference between the desired and actual y-
axis wrench, subject to the desired wrench constraints along
the other axes (thrust, and x- and z-axes torques).

Consider now, problem (14) for quadrotor j in the centro-
symmetric pair (i, j). Thus dj = di, and αj = αi − π. For
quadrotor j, W j

c has identical first and fourth rows as W i
c

as well as identical thrust and z-axes torque commands (i.e.,
τ jcz = τ icz , and f icz = f jcz ). The second constraint in (14) for
quadrotor i reads as

τ icx = r(Cαi − Sαi)(f i2 − f i1) + r(Cαi + Sαi)(f
i
3 − f i4),

and for quadrotor j:

τ jcx = r(Cαi − Sαi)(f j1 − f j2 ) + r(Cαi + Sαi)(f
j
4 − f j3 ),

since τ jcx = −τ icx and αj = αi−π. The two equations above
are equivalent, indicating that robot i and j have the same set
of constraints when solving (14) in their respective control
frames. For the objective, notice that

wi(3) =di(f
i
1 + f i

2 + f i
3 + f i

4) + r(Cαi + Sαi)(f
i
1 − f i

2)

+ r(Cαi − Sαi)(f
i
3 − f i

4), (15)

wj(3) =di(f
j
1 + f j

2 + f j
3 + f j

4 ) + r(Cαi + Sαi)(f
j
2 − f

j
1 )

+ r(Cαi − Sαi)(f
j
4 − f

j
3 ). (16)

desired

actual

Fig. 4. A visualization of (19) (upper-left), (20) (lower-left), and the
combined output torque profile (21) (right). The combined output torque
from the (i,j) pair, shown in blue, has a non-zero deadband around the y
axis. Note how wj(3) gets negated and reflected after being transformed
into i’s frame. Additionally, the desired torque, as shown in green, has a +2
slope since the desired output from the pair is 2τ icy given the command τ icy
for quad i in the pair (i, j). The slope on the actual output curve, shown
in blue, has +1 slope on the two non-flat sections according to (21).

Define the last two terms in (15) and (16) as

g(fi) = r(Cαi + Sαi)(f
i
1 − f i

2) + r(Cαi − Sαi)(f
i
3 − f i

4),

g(fj) = r(Cαi + Sαi)(f
j
1 − f

j
2 ) + r(Cαi − Sαi)(f

j
3 − f

j
4 ).

Due to the identical constraints, g(fi) and g(fj) must have
the same minimal and maximal value, denoted as

p∗min = min g(fi) = min g(fj), (17)

p∗max = max g(fi) = max g(fj), (18)

subject to the constraints in (14). Then according to (15),
(16), (17), (18) and provided the feasibility set of (14) is
non-empty, the optimal wi(3) and wj(3) for problem (14)
are

wi(3)∗ =


dif

i
cz + p∗min if τ icy ≤ dif

i
cz + p∗min

τ icy if p∗min < τ icy − dif i
cz ≤ p

∗
max

dif
i
cz + p∗max else.

(19)

wj(3)∗ =


djf

j
cz − p

∗
max if τ jcy ≤ djf

j
cz − p

∗
max

τ jcy if − p∗max < τ jcy − djf
j
cz ≤ −p

∗
min

djf
j
cz − p

∗
min else.

(20)
These essentially describe two biased saturated curves, as
shown in Figure 4.

To characterize the combined y-axis torque output of the
pair (i,j) under the strategy (14), we transform wj(3), which
is in j’s local frame, into i’s frame by reflecting and negating
the curve for wj(3). Then the total y-axis torque of pair (i,j),
expressed in i’s control frame is

wi(3)∗ + iwj(3)∗ =

2p∗min if τ icy ≤ −dif
i
cz + p∗min,

τ icy + dif
i
cz + p∗min if + p∗min < τ icy + dif

i
cz < +p∗max,

p∗min + p∗max if − dif i
cz + p∗max ≤ τ icy ≤ dif

i
cz + p∗min,

τ icy − dif
i
cz + p∗max if dif i

cz + p∗min < τ icy < dif
i
cz + p∗max,

2p∗max if τ icy ≥ dif
i
cz + p∗max.

(21)

which is a piecewise linear function with respect to the
requested wrench from the SE(3) controller, as visualized in



Figure 4. Given these response curves, we present a pairwise
compensation technique to address the bias and deadband
characteristics of (21).

C. Pairwise Torque Compensation

The output torque profile of (14) plotted in Figure 4 makes
control challenging and stability analysis difficult. In this
section, however, we show that under Assumption 1 the
compensation can be done without communication such that
the actual y-axis combined torque output of the (i,j) pair
exactly replicates the desired SE(3) torque, as shown in the
green dashed line in Figure 4. Observe from (21) and Figure
4 that when

p∗min + p∗max = 0, (22)

the torque output profile becomes a symmetric deadband
curve centered at the origin. Consequently, the capable
quadrotor (defined as the quadrotor with positive requested
y-axis torque in a given symmetric pair) can exert additional
torque (beyond its original local command) to compensate
for the offset from its complement in the symmetric pair.
Mathematically, this process requires each quadrotor to solve
two optimization problems. First, find p∗min and p∗max by
solving (17) and (18) under the constraints in (14). Denote

p∗ = min{|p∗min|, |p∗max|}, (23)

and choose p∗
′

min = −p∗ and p∗
′

max = p∗, thereby allowing
the pair to satisfy condition (22). This means that both
quadrotors i and j will choose their y-axis wrench within
[dif

i
cz − p∗, dif icz + p∗], which we know is feasible since it

is a subset of original y-axis torque range as a result of (23).
Second, compute thruster forces using:

Problem 1. (Distributed Wrench Controller) During the co-
operative aerial manipulation task, each quadrotor’s motor
thrusts are given by the solution of

min
fi

|wi(3)− τ i′cy | (24)

subject to Constraints in (14),

dif
i
cz − p∗ ≤ wi(3) ≤ dif icz + p∗,

where

τ i
′

cy =

{
2τ icy + dif

i
cz − p

∗ if τ icy ≥ 0,

τ icy if τ icy < 0.
(25)

In (25), τ i
′

cy is the adjusted torque along the local y-
axis. Notice that the capable quadrotor compensates for the
deadband and the offset torque created by the “incapable”
quadrotor (i.e., quadrotor j in this notation); see Figure 4
for the (i,j) pair. Finally, note that all the computation here
requires only local information so that the compensation can
be done without communication.

D. Closed-Loop Stability

Given the pairwise compensation strategy presented in
the preceding discussion, closed-loop stability is now a
straightforward conclusion of the following proposition. For

simplicity, assume all diagonal gain matrices are equal and
given by kp, kv, kR, kω .

Proposition 1 (Closed-Loop Stability). (i) Define the
(positive-definite) attitude error function

Ψ(R,Rdes) :=
1

2
tr[I −RTdesR],

and, consistent with the assumptions for Proposition 3 in [2],
suppose that (1) the initial errors satisfy the bounds:

Ψ(R(0), Rdes(0)) < ψ1 < 1,

‖eω(0)‖2 ≤ 2

λ(J)
kR(ψ1 −Ψ(R(0), Rdes(0))),

‖ep(0)‖ < epmax
,

where epmax
> 0 is a design parameter and λ(·) and λ(·)

refer to the largest, respectively, smallest eigenvalues, and (2)
define γ :=

√
ψ1(2− ψ1) < 1 and choose positive constants

A1, A2 and gains kR, kω such that:

A1 < min

{
kv(1− γ),

√
kpm,

4mkpkv(1− γ)2

k2v(1 + γ)2 + 4mkp(1− γ)

}
A2 < min

{
kω,
√
kRλ(J),

4kRkωλ
2(J)

k2ωλ(J) + 4kRλ
2(J))

}
λ(D2) >

4‖D12‖2

λ(D1)
,

where the constant matrices D1, D12, D2 (a function of the
constants introduced above) are provided in Appendix I.
(ii) Suppose problem (24) is feasible at every timestep with
optimal value zero for the “capable” quadrotor and djf jz −
p∗ for the “incapable” quadrotor.

Then, the closed-loop equilibrium (ep, ev, eR, eω) for the
object trajectory errors is exponentially stable.

Proof: The results follow from the stability of the SE(3)
controller [2] and the fact that the compensation scheme
given in (24) and (25) results in a total applied wrench equal
to the wrench commanded by the SE(3) controller.

IV. ONLINE FEASIBILITY

As Proposition 1 states, closed-loop exponential stability
is contingent upon both feasibility and optimality of (14)
and (24). By symmetry of the desired thrust, and x- and z-
axes torques for a given centro-symmetric pair (i, j), this
is equivalent to the feasibility of the following problem for
every capable quadrotor i:

0 � fi � fmax, W i
c fi = wi′

c , wi(3)− dif i
cz ∈ [−p∗, p∗], (26)

where wi
′

c = (f icz , τ
i
cx , τ

i′

cy , τ
i
cz )T . While the control law

given in eqs. (7) and (8) does not give an a priori bound
on the control input, in this section we derive conservative
bounds for the initial trajectory errors and reference trajec-
tory signals so that the problem above is always feasible. We
will do this in two steps. We first derive a bound on the SE(3)
controller given in (7) and (8) as a function of the nominal
trajectory and its derivatives, and the tracking errors. Next,
we characterize the wrench output space of each quadrotor.



A. Bounding the SE(3) Controller

We begin by deducing bounds on all tracking errors,
provided the stability conditions given in Proposition 1 are
satisfied. The proof of the following proposition is provided
in Appendix I.

Proposition 2 (Trajectory Tracking Bounds). Provided that
the assumptions of Proposition 1 hold, then

‖eR(t)‖ ≤
√

2ψ1, ‖eω(t)‖ ≤

√
2kRψ1

λ(J)
, ∀t ≥ 0, (27)

‖ep(t)‖2 + ‖ev(t)‖2 ≤
kpe

2
pmax

2λ(M1)
, ∀t ≥ 0, (28)

where M1 is the positive definite matrix given as

M1 :=
1

2

(
kp −A1

−A1 m

)
.

Having obtained bounds on all errors, we now bound the
net SE(3) control wrench. Let the nominal thrust of the
trajectory, i.e., m‖σ̈−ge3‖ be bounded between [b, B]. Then,
By Cauchy-Schwarz and triangle inequalities,

b− kp‖ep‖ − kv‖ev‖ ≤ fz ≤ kp‖ep‖+ kv‖ev‖+B. (29)

The SE(3) control torque is bounded as

‖τ‖ ≤ kR‖eR‖+ kω‖eω‖+
√
λ(J) (‖ωdes‖+ ‖eω‖)2

+

√
λ(J) (‖eω‖‖ωdes‖+ ‖ω̇des‖) ,

(30)
where

‖ωdes‖ ≤
X(‖ep‖, ‖ev‖,m‖...σ‖, B)

b− kp‖ep‖ − kv‖ev‖
. (31)

The expression for X and the derivation itself are detailed in
Appendix I. We now make the following simplifying assump-
tion: while the desired angular acceleration ω̇des depends
upon the second derivative of the unit vector −Fdes/‖Fdes‖
which in itself involves terms related to jerk feedback, we
approximate this term via its nominal value as derived from
the differential flatness mapping (see, e.g., [4]) and assume
that the relevant errors within F̈des are negligible.

The control bounds in eqs. (29), (30), (31) are a function
of tracking error bounds (Proposition 2), and the trajectory
design parameters governing nominal thrust range [b, B], jerk...
σ , and angular acceleration ω̇des. This allows us to con-
servatively bound the SE(3) wrench in the object reference
frame. In the next subsection, we show how to isolate the
most constrained quadrotor wrench output space.

B. Quadrotor Wrench Output Space

Consider problem (26) for any capable quadrotor i (i.e.,
τ icy > 0). In order for the quadrotor to achieve a y-axis torque
equal to the adjusted value τ i

′

cy , one requires wi
′

c to lie in the
set:

Wi′

c :=
{

wi
′

c ∈ R4 : W i
c fi = wi

′

c , 0 � fi � fmax,

wi
′

c (3)− dif icz ∈ [−p∗, p∗]
}
.

From (25), the constraint on τ i
′

cy is equivalent to τ icy ∈
[0, 2p∗]. Thus, we deduce that the uncompensated, i.e.,
rotated 1/N wrench output from the SE(3) controller for
each quadrotor must lie in the set:

Wi
c :=

{
wic : wi

′

c ∈ Wi′

c

}
=
{

wic : W i
c¬3

fi = wic¬3
, 0 � fi � fmax,

|wic(3)| ≤ 2p∗(wic¬3
)
}
,

(32)

where W i
c¬3

is the sub-matrix of W i
c excluding the third row

and wic¬3
is a similarly defined sub-vector of wic, and we

leverage an absolute value constraint on τ icy since a negative
τ icy simply implies that this is the incapable quadrotor and
thus only the remaining wrench commands are relevant. The
set Wi

c is referred to as the quadrotor wrench output space.
It directly follows from (32) that the projection of the set

Wi
c onto the (f icz , τcx , τcz ) dimensions is a convex polytope.

For any given point in this polytope (i.e., given wic¬3
), the

remaining wrench (y-axis torque) may be visualized as a
vector stemming from this point with direction orthogonal
to the polytope and magnitude constrained by p∗(wic¬3

). In
Appendix II, we establish that the setWi

c is convex and thus
the inequality constraint on wic(3) is also convex in wic¬3

.
Given the result above along with Euclidean bounds on

net SE(3) control thrust and torque, checking closed-loop
control feasibility reduces to verifying whether or not a set
of the form fz/N ∈ [εfz , εfz ], ‖τ‖/N ≤ ετ lies within Wi

c,
for all i = 1, . . . , N .

V. TRAJECTORY PLANNING UNDER INPUT CONSTRAINTS

In this section we design the reference trajectory σ(t)
by optimizing suitable objective functions, constrained by
the requirement that the expected closed loop SE(3) wrench
commands, conservatively bounded in Section IV-A, lie
within the smallest quadrotor output wrench space, as char-
acterized in Section IV-B.

We begin with a series of n + 1 specified waypoints,
{Pi ∈ R3}, i ∈ {1, 2, · · · , n+ 1}, for 3D position, obtained
using, for instance, a sampling-based planner [23]. The
traversal times between waypoints are unspecified, and will
be automatically determined by the trajectory optimization.
Each trajectory segment is represented by a polynomial,

σi(ti) =

L∑
j=0

aijt
j
i , 0 ≤ ti ≤ Ti, i ∈ {1, · · · , n} (33)

where L is the order of the polynomial, aij ∈ R4×1 are the
coefficients, ti is the time within each section, and Ti is the
duration of the i-th section.

Our goal is to minimize both the total time and the
integration of snap squared under the input constraints. This
is a challenging multi-objective optimization, whose variants
are also considered in [21], [20], [22] for quadrotor planning.
Notably however, the formulation in [21] only accounts for
thrust constraints while [20], [22] bound thrust and angular
rates. Neither of these works also consider expected closed-
loop tracking errors and their subsequent effect on control



effort. In the following, we detail a penalty-based bi-level
optimization method.

A. Snap Minimization with Fixed Duration

We first consider the subproblem where we only minimize
the integral of snap, assuming given section duration times
{Ti} and neglecting input constraints. The formulation here
corresponds to the one presented in [21], however, it is
included here for self-containment. Formally, we solve:

min
{aij}

n∑
i=1

∫ Ti

0

(
....
σi)

2dti (34)

subject to σi(0) = Pi, i ∈ {1, · · · , n}
σi(Ti) = Pi+1, i ∈ {1, · · · , n}
drσi

dtri

∣∣∣∣
ti=Ti

=
drσi+1

dtri+1

∣∣∣∣
ti+1=0

, r ∈ {1, · · · , 5},

i ∈ {1, · · · , n− 1},
dqσ1

dtq1

∣∣∣∣
t1=0

=
dqσn

dtqn

∣∣∣∣
tn=Tn

= 0, q = {1, · · · , 4}.

The first two constraints in (34) ensure that the trajectory
passes through the given waypoints. The third constraint
enforces continuity on derivatives up to fifth order. The last
constraint specifies initial and final velocity, acceleration,
jerk, and snap, which are all zero in our case. Using (33), the
objective has an analytical quadratic form in the polynomial
coefficients aij . Furthermore, all constraints are affine in
{aij}. Thus, (34) is a QP and can be solved efficiently.
Moreover, the four dimensions of σ are decoupled so that
(34) can be solved independently for each dimension.

B. Coordinate Descent on Section Duration

We now consider the section duration times and input con-
straints by solving the following higher-level optimization:

min
{Ti}

n∑
i=1

Ti (35)

subject to Ti ≥ 0,

wobj(σ̈,
...
σ,

....
σ )/N ∈ Wi

c, ∀i = 1, . . . , N,

where σ is the solution of the snap minimization subproblem.
Note that the wrench expression considered in (35) corre-
sponds to the closed-loop bounds derived in Section IV-A
and are therefore, implicitly parametric in the tracking error
bounds (Proposition 2), as well as explicitly dependent upon
the derivatives of σ. Due to the complexity of these bounds,
we leverage an exterior point method using penalty functions,
and evaluate the input constraints numerically, as described
in Section IV-B, by traversing the entire trajectory. Note that
by ignoring closed-loop effects and only leveraging the open-
loop control signal, the constraint verification reduces to
checking if the open-loop thrust and torque lie within the sets
{Wi

c}, instead of the set { fz/N ∈ [εfz , εfz ], ‖τ‖/N ≤ ετ}.
To solve the optimization, we use a gradient-free coordi-

nate descent algorithm and perform line search along each
dimension. Coordinate descent has the advantage of avoiding
ill-conditioned gradients which may arise, for example due
to the input constraints, or by adding penalty functions to

the cost itself. The overall solution to (35) is detailed in
Algorithm 1. In line 12, we evaluate the penalty due to the
worst case violation of control bounds along the trajectory
using δ, a measure of the amount of violation. In line 15,
we use golden section search to perform the one-dimension
line search on the interval [0, Tmax], where Tmax is given
and large enough. Also, when doing line search on the i-
th dimension, we fix Tj for ∀j 6= i and only vary Ti. The
entire algorithm thus finds a locally optimal duration set in
an iterative fashion.

Algorithm 1 Trajectory Optimization with Input Constraints
1: Ti ← Tmax, ∀i ∈ {1, · · · , n}, r = 1
2: while not converged do
3: for i = 1 to n do
4: Ti ← LINESEARCH(i, T , r)
5: end for
6: r ← 10× r
7: end while
8:
9: function LINESEARCH(i, T , r)

10: // Construct objective function
11: σ(T )← Solve (Snap Minimization)
12: P (T ) = max(max(δ(σ)), 0)
13: f(T ) =

∑n
i=1 Ti + rP (T )

14: // Line search on i-th dimension
15: Ti ← GoldenSectionSearch(f , T , i, [0, Tmax])
16: return Ti

17: end function

An important observation here is that the problem in
(35) is always feasible by selecting Ti to be sufficiently
large and initial tracking errors sufficiently small. Then,
since the QP subproblem can be solved extremely quickly
(indeed, analytically using the method given in [21]), the
full bi-level optimization algorithm may be run in anytime
fashion with solution quality only being a function of online
computational time limits.

An example result of Algorithm 1 is shown in Figures 5, 6
and 7, where we are given six waypoints, and control inputs
were verified using a single fixed size inner approximation to
the quadrotor wrench output spaces, namely: εfz = (mg −
0.5)/N , εfz = (mg + 0.5)/N , ετ = 0.01/N . As shown in
the figures, the reference thrust and moments using the full
optimization stay within the selected bounds at all times.

Fig. 5. Trajectory comparison between using only snap minimization with
handpick section duration (dashed line) and the full optimization with input
constraints (35) (solid line).



Fig. 6. Reference thrust comparison, where [(mg − 0.5), (mg + 0.5)]
is the desired bound on the thrust for entire assembly and mg = 19.8N.
Algorithm 1 effectively bounds the thrust without significantly elongating
the total time.

Fig. 7. Reference moments comparison where ‖τ‖ ≤ 0.01Nm is the
torque bound for the entire assembly. All three moments stay within the
specified bounds for all time.

VI. SIMULATION

In this section we present simulation studies1 validating
the proposed distributed control algorithms. The snapshots
of our case study is shown in Figure 10. Eight quadrotors are
used to lift an object and traverse a complex 3D environment,
where the straight line path to the destination is blocked and
numerous 3D maneuvers are necessary to avoid collision.
This emulates a disaster relief scenario where the highly
unstructured space is difficult to navigate for humans and
ground robots. The quadrotor-object assembly weighs 2kg,
with moment of inertia 0.17kg·m2 along x, y axis and
0.34kg·m2 along the z axis. Each quadrotor has a small foot-
print with maximum thrust capability fmax = 0.9N per rotor;
therefore at least 6 quadrotors are needed to balance gravity.
We used Algorithm 1 to generate the reference trajectory,
with waypoints generated using FMT* [23]. During the sim-
ulation, each quadrotor independently computes its control
inputs using (24) given the trajectory broadcast. As shown in
Figure 10, the quadrotors successfully follow the reference
trajectory and transport the object to the destination. The
position tracking performance and Euler angles of the object
are plotted in Figure 8.

To demonstrate the robustness of our approach, we per-
formed additional simulations by adding the following chal-
lenges: (i) independent zero-mean Gaussian noise is applied
to the sensors on all quadrotors, (ii) the attachment points
of the quadrotors are randomly perturbed within a 0.05m
radius around their nominal location on the object (which is
0.5m away from the center of mass of the object), thereby
violating the centro-symmetry condition, and (iii) initial

1The source code is available at: https://github.com/
StanfordMSL/QuadsManip

Fig. 8. The desired and actual position (left), actual Euler angles (right)
of the object during the simulation. The two position curves overlap with
each other, indicating an excellent tracking performance.
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Fig. 9. Position (‖ep‖) and attitude (‖eR‖) errors for the non-centro-
symmetric configuration. Each quadrotor’s location is randomly perturbed
within a 5cm radius around its nominal location (0.5m away from object
center of mass). The assembly still demonstrates tight tracking performance,
an encouraging result despite the violation of centro-symmetry.

tracking errors up to 0.1m are introduced. In Figure 9, we
plot the magnitude of position ‖ep‖ and attitude ‖eR‖ errors
for the non-centro-symmetric configuration (i.e., Challenge
(i)). Figure 11 illustrates these errors when subject to all
three challenges listed above. One observes that the assembly
still demonstrates tight tracking performance despite the
violation of centro-symmetry and effects of noise, verifying
the practicality of our approach.

VII. CONCLUSION AND FUTURE WORK

In this work we presented a distributed algorithm to
transport heavy objects using a fleet of rigidly attached aerial
robots with no peer communication. Under a mild geometric
assumption, we rigorously analyzed pairwise controllability
and derived a compensation scheme to guarantee collective
group control authority and ensure stable tracking behavior.
The feasibility of the algorithm is ensured by bounding
the expected closed-loop control, characterizing the wrench
capabilities of each quadrotor in the assembly, and explic-
itly enforcing these constraints along the time- and snap-
optimized trajectory. The algorithms were thoroughly tested
in simulation and shown to be resilient to sensor noise and
violation of the symmetry assumption.

We provide two key avenues for future investigation.
First, we wish to investigate online adaptation techniques
to eliminate the centrosymmetry condition and improve
control allocation efficiency. Second, we plan to validate
our algorithms on a hardware testbed for a variety of lifting
configurations.
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APPENDIX I
SE(3) CONTROL WRENCH BOUNDS

We first define the matrices D1, D12, D2 stated in Propo-
sition 1.

D1 =

[ A1kp
m (1− γ) −A1kv

2m (1 + γ)

−A1kv
2m (1 + γ) kv(1− γ)−A1

]
(36)

D12 =

[
A1

m B 0
B + kpepmax 0

]
(37)

D2 =

[
A2kR
λ(J)

−A2kω
2λ(J)

−A2kω
2λ(J) kω −A2

]
, (38)

where recall that B is the upper bound on the open-loop
thrust m‖σ̈ − ge3‖.

Proof: [Proof of Proposition 2] Provided the conditions
stated in the proposition above hold, Prop. 3 in [2] establishes
the following conclusions: First,

Ψ(R(t), Rdes(t)) ≤ ψ1 ∀t ≥ 0, (39)

https://youtu.be/MYOgharJuoY


i.e., the attitude error, represented by the rotation matrix
RTdesR is less than 90o for all time. Second, the function

VR :=
1

2
‖eω‖2J + kRΨ(R,Rdes), (40)

is non-increasing, and third, the function

V := ‖z1‖2M1
+ ‖z2‖2M2

, (41)

where z1 := (‖ep‖, ‖ev‖)T , z2 := (‖eR‖, ‖eω‖)T , and M2

is a strictly positive definite matrix, is bounded above by
(1/2)kpe

2
pmax

for all t ≥ 0. The matrix M2 is defined as:

M2 :=
1

2

(
kR −A2

−A2 λ(J)

)
.

As a consequence of (39), write RTdesR = exp(βv̂), where
β ∈ [0, π/2) and v ∈ S2, the 2-sphere. By Rodrigues’
formula, ‖eR‖ = | sinβ| = sinβ and Ψ(R,Rdes) = 1 −
cosβ ≤ ψ1 < 1. The bounds then follow straightforwardly
from (39), (40), and (41).

We now bound the net SE(3) control torque. Re-writing
ω as eω + RTRdesωdes, we obtain ω̂RTRdesωdes =
êωR

TRdesωdes which is simply the cross product of eω
(defined in the current object body frame) and the projection
of ωdes into the current body frame. Thus, we obtain

‖ω̂RTRdesωdes‖ ≤ ‖eω‖‖ωdes‖.

Finally, ‖ω̂Jω‖ is trivially bounded above by√
λ(J) (‖ωdes‖+ ‖eω‖)2. Thus, the net desired torque is

bounded by

‖τ‖ ≤ kR‖eR‖+ kω‖eω‖+√
λ(J) (‖ωdes‖+ ‖eω‖)2 +√
λ(J) (‖eω‖‖ωdes‖+ ‖ω̇des‖) .

To obtain a bound on ωdes, note that ωdesy
−ωdesx

0

 = RTdes

((
FdesFTdes
‖Fdes‖2

− I
)

Ḟdes

‖Fdes‖

)

which is simply the orthogonal projection of Ḟdes/‖Fdes‖
onto the plane with normal Fdes/‖Fdes‖ [22]. Furthermore,
by appropriately choosing σ̇ψ (and via integration, σψ)
online, we constrain ωdesz at 0. Then,

‖ωdes‖ ≤
∥∥∥∥∥ Ḟdes

‖Fdes‖

∥∥∥∥∥
≤ ‖−kpev − kv ėv +m

...
σ‖

b− kp‖ep‖ − kv‖ev‖

≤ X

b− kp‖ep‖ − kv‖ev‖
,

where the last inequality follows from bounding ėv whose
expression is derived in [2], and

X =
kpkv
m

(γ + 1)‖ep‖+(∣∣∣∣k2vm − kp
∣∣∣∣+ γ

k2v
m

)
‖ev‖

+m‖...σ‖+ γ
kv
m
B.

APPENDIX II
CONVEXITY OF WRENCH OUTPUT SET

Lemma 1 (Convexity of Wi
c). The set Wi

c is convex.

Proof: Consider any two elements w̃ic, ŵ
i
c ∈ Wi

c and
let wic := βw̃ic + (1− β)ŵic, where β ∈ [0, 1]. Define

F̃ := {0 � f̃
i � fmax : W i

c¬3
f̃
i

= w̃ic¬3
}

F̂ := {0 � f̂
i � fmax : W i

c¬3
f̂
i

= ŵic¬3
}

F := {0 � fi � fmax : W i
c¬3

fi = wic¬3
}.

Then, it follows that

βF̃
⊕

(1− β)F̂ ⊆ F , (42)

where
⊕

denotes the Minkowski sum. Now, by definition:

|w̃ic(3)| ≤ −2 min
f̃i∈F̃

g(̃f
i
), and |w̃ic(3)| ≤ 2 max

f̃i∈F̃
g(̃f

i
).

Similarly,

|ŵic(3)| ≤ −2 min
f̂i∈F̂

g(̂f
i
), and |ŵic(3)| ≤ 2 max

f̂i∈F̂
g(̂f

i
).

Thus, by triangle inequality,

|wic(3)| ≤ β|w̃ic(3)|+ (1− β)|ŵic(3)|
≤ −2β min

f̃i∈F̃
g(̃f

i
)− 2(1− β) min

f̂i∈F̂
g(̂f

i
)

= −2 min
f̃i∈F̃ ,̂fi∈F̂

(
βg(̃f

i
) + (1− β)g(̂f

i
)
)

= −2 min
f̃i∈F̃ ,̂fi∈F̂

g(β f̃
i
+ (1− β)̂f

i
)

= −2 min
fi∈βF̃

⊕
(1−β)F̂

g(fi)

≤ −2 min
fi∈F

g(fi) = 2|p∗min(wic¬3
)|,

where the second equality follows by linearity of g(f), and
the last inequality follows from eq. (42). Similarly, it follows
that

|wic(3)| ≤ 2 max
fi∈F

g(fi) = 2p∗max(wic¬3
).

Thus, wic lies in Wi
c, proving convexity.
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