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Abstract— This paper presents a model predictive control
(MPC) approach to optimize routes for Ride-sharing Au-
tonomous Mobility-on-Demand (RAMoD) systems, whereby
self-driving vehicles provide coordinated on-demand mobility,
possibly allowing multiple customers to share a ride. Specif-
ically, we first devise a time-expanded network flow model
for RAMoD. Second, leveraging this model, we design a real-
time MPC algorithm to optimize the routes of both empty and
customer-carrying vehicles, with the goal of optimizing social
welfare, namely, a weighted combination of customers’ travel
time and vehicles’ mileage. Finally, we present a real-world case
study for the city of San Francisco, CA, by using the micro-
scopic traffic simulator MATSim. The simulation results show
that a RAMoD system can significantly improve social welfare
with respect to a single-occupancy Autonomous Mobility-on-
Demand (AMoD) system, and that the predictive structure of
the proposed MPC controller allows it to outperform existing
reactive ride-sharing coordination algorithms for RAMoD.

I. INTRODUCTION

Traffic congestion is becoming a major challenge world-
wide [1]. Space limitations and a slowly adapting infras-
tructure make congestion even more difficult to address in
densely populated cities, where recent years have witnessed
an increase in population and mobility demand [2]. Explic-
itly, from 2007 to 2013, the annual cost of congestion in
the US increased has roughly doubled, from $78 Billion to
$124 Billion [7], [8]!

Within this context, this paper investigates how optimized
control of AMoD systems, which combine the two emerging
transportation paradigms of ride-sharing service and AMoD,
can address the congestion problem by improving traffic
throughput. Specifically, an AMoD system consists of a
fleet of unit-capacity, self-driving vehicles providing one-
way on-demand mobility. AMoD systems differ from tra-
ditional, non-autonomous mobility-on-demand systems, as
AMoD fleets are actively controlled in a centralized fashion,
with the goal of optimizing the assignment of customers
to vehicles and the routes of both customer-carrying and
empty, rebalancing vehicles (that is vehicles that travel
empty in order to align vehicle availability with anticipated
future travel demand). Due to their operation flexibility,
AMoD systems hold promise to diminish the societal cost
of mobility [9], but might not directly lead to a reduction
in congestion, and indeed could make congestion worse, for
example, due to the presence of empty traveling vehicles
or induce demand effects. This has prompted studies to
route AMoD vehicles in a “congestion-aware” fashion [11],
[12], and to investigate a synergistic integration with public
transit [10]. This paper considers the complementary strategy
of infusing ride-sharing service within the AMoD paradigm
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[Tsao, Milojevic, Ruch, Salazar, Frazzoli, Pavone, ICRA19]Fig. 1. Schematic representation of a double-occupancy RAMoD system.
Customers entering the system (downward-facing arrows) are collected and
dropped off (upward-facing arrows) in a first-in-first-out fashion.

(see Fig. 1), with the objective of designing MPC algorithms
for RAMoD systems that significantly reduce the number of
vehicles on the road while providing high-quality mobility
service.

Related literature: Our contribution pertains to two main
research fields: i) AMoD systems and ii) ride-sharing.
There are several approaches to analyse and control AMoD
systems, such as simulation models [15]–[17], queuing-
theoretical models [18], [19] and multi-commodity network
flow models [9], [20]. Simulation models describe trans-
portation systems with high precision, but at the cost of not
being amenable to optimization. Queuing-theoretical models
capture the stochasticity of the customer requests and can be
used for control synthesis, but it is extremely hard to repre-
sent external constraints in this framework. Multi-commodity
network flow models can be efficiently implemented in
optimization frameworks, whilst still being very expressive
and compatible with a variety of constraints. Consequently,
they have been applied to a number of problems: from the
control of AMoD systems in congested road networks [11],
[12], [21], in coordination with the power network [22] and
public transit [10], to the design of Model Predictive Control
(MPC) algorithms [13].

The ride-sharing problem has been studied in static and
dynamic environments, and with the objective of minimizing
the mileage driven and the average travel time, or maximiz-
ing the number of customers served [23]. There are a number
of contributions to the static ride-sharing problem, where all
the requests are assumed to be known in advance. A study
for the single-driver-single-rider setting is presented in [24].
The dynamic version of the ride-sharing problem captures
new riders and drivers continuously entering and leaving the
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system. Ride-sharing features exist today in mobility services
like Lyft and Uber, and have been studied in [14], [31]. These
works, along with ride-sharing systems by Lyft and Uber
are primarily reactive in the sense that they only consider
serving the current demand. Considering the substantial per-
formance gains presented by [13], [32] for single occupancy
mobility networks, a natural question is whether ride-sharing
systems can experience similar benefits by anticipating future
customer demand. Against this background, the scope of
the present paper is to devise MPC algorithms for RAMoD
systems.

Statement of contributions: In this paper we present a MPC
algorithm for RAMoD accounting for present and future
travel demand. Specifically, the contribution of this paper
is threefold: First, we develop a multi-commodity network
flow model capturing the operations of the double-occupancy
RAMoD system shown in Fig. 1. Second, we devise a
MPC algorithm assigning multiple customers to vehicles,
designing vehicle routes and rebalancing empty vehicles to
anticipate future requests, with the goal to maximize so-
cial welfare, namely, a weighted combination of customers’
travel time and vehicles’ mileage. Third, we evaluate the
performance of our algorithm against state-of-the-art unit
capacity AMoD approaches as well as reactive ride-sharing
algorithms. Our results show that a RAMoD system can
significantly reduce overall costs with respect to a single-
occupancy AMoD system, and that its predictive structure
allows it to outperform existing reactive ride-sharing algo-
rithms.

Organization: The remainder of this paper is structured
as follows: Section II introduces the multi-commodity flow
optimization model for RAMoD. The design and details of
the RAMoD MPC algorithm is discussed in Section III. Sec-
tion IV presents a real-world case-study for San Francisco,
CA, where we test our approach and compare it with the
state-of-the-art. We conclude the paper in Section V with a
summary and a discussion on future research.

II. FLOW OPTIMIZATION MODEL FOR
DOUBLE-OCCUPANCY RAMOD

In this section, we present a graphical model representa-
tion of road networks and pose the problem of coordinating
a fleet of vehicles for mobility service as an optimization
problem that leverages ride-sharing to service transportation
requests in the road network. All service vehicles in this
model are double-occupancy, i.e., they can carry up to two
passengers at any given time, as shown in Fig. 1.

A. Modeling the Road Network
We model the transportation network as a spatio-temporal

graph. The road network is partitioned into n stations, which
are spatially disjoint regions where customers can request
rides to and from. The nodes of the spatio-temporal graph
are then V = [n]×T so that a node (i, t) ∈ V specifies a
physical location i and a time t. We measure time in discrete
intervals of ∆t so that T = ∆t ·N. Note that the size and
number of stations dictate the resolution of the graph: Having
small stations increases the granularity, but, as a trade-off,
more stations are needed to cover the entire road network.

Each road in the network has a nominal driving speed
which may depend on the level of exogenous traffic, and a
fixed length. We model congestion as an exogenous influence
on the nominal speeds of roads, but do not model the

endogenous congestion effects induced by RAMoD vehicles.
Therefore, there is no limit to the number of RAMoD
vehicles that can be traveling at the nominal speed on a road
at any given time. The travel time to traverse a road is given
by its length divided by its nominal speed.

Paths are defined as an ordered sequence of roads, and the
travel time of a path is simply the sum of the travel time of its
roads. Then, for a given level of exogenous traffic, we denote
the time needed to travel from station i to station j taking the
fastest path as τi j. Directed edges in this graph correspond to
paths in the road network. For any two nodes (i, t1),( j, t2),
a directed edge from (i, t1) to ( j, t2) exists if τi j = t2− t1.
Because we do not consider endogenous congestion effects
from AMoD vehicles, we only need to consider shortest
paths when routing vehicles. To allow cars to idle, we also
include edges from (i, t) to (i, t +∆t) for each i ∈ [n], t ∈ T.
Defining E to be the set of all such edges, our weighted graph
representation of the road network is G := (V ,E ) where the
weight along an edge is its corresponding travel time. The
AMoD system is endowed with M self-driving cars whose
position can be at stations if they are idling, or on edges if
they are in transit. We denote the transportation demand for
a set of times T ⊂ T as ΛT , which is a n×n×|T | array,
so that ΛT (t0)(i, j, t) is the number of customers that will
request a trip from a location in station i to a location in
station j at time t ∈ T . We will use the shorthand notation
λi jt := ΛT (i, j, t) when the time set T is unambiguous.

B. Integer Network Flow Model for RAMoD Systems
We leverage network flow models and Integer Linear

Programming (ILP) to devise an algorithm for controlling
the double-occupancy RAMoD fleet shown in Fig. 1. In
accordance with the model presented in Section II-A, this
involves specifying actions for all vehicles in the fleet for a
horizon of T time-steps, where each time-step is ∆t minutes.
At time t0, the planning horizon T (t0)⊂ T is then

T (t0) := {t1, t2, ...tT}
= {t0 +∆t, t0 +2 ·∆t, ..., t0 +T ·∆t},

so that tk := t0 + k ·∆t for k ∈ [T ].
In this setting, however, the control algorithm needs to

provide instructions to empty vehicles as well as partially
occupied vehicles. Since vehicles with different occupancy
levels have varying levels of vacancy and commitments to
customer destinations, a controller needs to treat different
types of vehicles accordingly. Using the graph representation
of the road network introduced in Section II-A, we represent
the distinction between cars with different occupancy levels
by introducing the following decision variables:
• r∈Nn2T , where ri jt represents the number of completely

empty vehicles traveling from station i→ j at time t;
• {x(m)}n

m=1 ∈Nn2T , where xi jt(m) represents the number
of vehicles with exactly one passenger whose destina-
tion is station m, traveling from station i→ j at time
t;

• p ∈ Nn3T where pi jkt is the number of cars at station i
at time t with two passengers with destinations j and k,
respectively.

Moreover, in our model, RAMoD vehicles interact with
customers at stations in two phases:
• Phase 1: When a vehicle arrives at a station, it first

delivers any customers onboard whose destination is in
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this region.
• Phase 2: After delivering customers, the vehicle has

the option to pick up new customers before leaving the
station.

Additionally, we assume that cars at maximum capacity
are not controllable: They will drive directly from their cur-
rent position to their first destination and cannot be assigned
a different task until they drop off their first customer. Thus
a car of type pi jkt must drive from station i to station j.

We use sr ∈ NnT ,sx ∈ Nn2T to encode the current state of
RAMoD vehicles in the system so that:
• sr,it specifies how many currently busy vehicles will

become available as vacant cars in station i at time t;
• sx,it(m) specifies the number of currently busy cars

that will become available as partially occupied cars in
station i at time t whose on-board customers’ destination
is in station m.

These variables, however, are not enough to specify an
actionable strategy. For example, suppose an algorithm com-
putes x1,2,t(2) = 1, meaning that a car carrying one passenger
should embark from station 1 to station 2 at time t. This does
not tell us, however, whether the car should have picked up
a customer, dropped off a customer, or done nothing before
leaving station 1. To address these kinds of ambiguities,
we introduce book-keeping variables x(zo),x(so), p(zo), p(so)

where the superscripts (zo),(so) indicate that the car had
zero occupants or a single occupant after finishing phase 1.
Now if we have x(zo)

1,2,t(2) = 1, then we know that the car
at station 1 should pick up a customer before leaving for
station 2, since the car had zero occupants after phase 1.
On the other hand, if we see x(so)

1,2,t(2) = 1, then the car
should not pick up a customer before leaving the station,
since it has one passenger after phase 1, and leaves with
one passenger. Naturally, x and p are the sum of their zero
and single occupant components which we enforce using the
following constraints.

xi jt(m) = x(zo)
i jt (m)+ x(so)

i jt (m) ∀i, j,m ∈ [n], t ∈T (t0) (1)

pi jkt = p(zo)
i jkt + p(so)

i jkt ∀i, j,k ∈ [n], t ∈T (t0) (2)

Additionally, constraints (3) and (4) enforce that phase 1
(dropping off current customers) must occur before phase 2
(picking up new customers and leaving the station)

x(so)
i jt (i) = 0 ∀i, j ∈ [n], t ∈T (t0) (3)

p(so)
ii jt = 0 ∀i, j ∈ [n], t ∈T (t0) (4)

We now present the physical constraints that any action-
able strategy for the planning horizon T (t0) must satisfy:

sr,it +
n

∑
j=1

(
r jit ji + x jit ji (i)+ p jiit ji

)
=

n

∑
j=1

(
ri jt +

n

∑
m=1

x(zo)
i jt (m)+

n

∑
u=1

p(zo)
i jut

)
(5)

where t ji = t− τ ji, ∀i ∈ [n], t ∈T (t0).

Constraint (5) specifies the options available to empty
vehicles. Specifically, the left side of (5) counts the number
of cars that will have zero occupants after arriving at station i
at time t and finishing phase 1. These cars can either remain

empty, pick up one passenger, or pick up two passengers
before leaving the station, corresponding to the terms on the
right hand side of (5).

sx,it(m)+
n

∑
j=1

(
x ji(t−τ ji)(m)+ p jim(t−τ ji)

)
=

n

∑
j=1

(
p(so)

im jt + x(so)
i jt (m)

)
(6)

∀i,m ∈ [n], i 6= m, t ∈T (t0).

Constraint (6) specifies the options available to single
occupant vehicles. Specifically, the left side of (6) counts the
number of cars that will have one occupant whose destination
is m after arriving at station i at time t and finishing phase
1. These cars can leave with or without picking up another
passenger, corresponding to the first and second terms on the
right side of (6) respectively. Interactions with customers are
captured by the following two constraints:

ai jt =

(
n

∑
u=1

x(zo)
iut ( j)+ p(so)

iu jt +1[ j 6=u] ·
[

p(zo)
iu jt + p(zo)

i jut

])
+2p(zo)

i j jt (7)

∀i, j ∈ [n], t ∈T (t0)

di jt =
t

∑
τ=1

λi jτ −ai jτ (8)

∀i, j ∈ [n], t ∈T (t0)

The variable a in 7 counts the number of trips from station
i to j that are serviced at time t. This is because the right side
of (7) includes all the ways such customers can be picked up.
The variable d in (8) counts the number of customers that
are waiting for each trip type and time. This is because the
right side of (8) is the total demand from i to j up to time t
minus the number of those customers that have been served
up until time t. Finally, because we cannot have fractional
vehicles on the road, all of the decision variables must be
integer.

r ∈ Nn2T ,{x(zo),x(so)(m)}n
m=1 ∈ Nn2T , p(zo), p(so) ∈ Nn3T . (9)

The goal of a RAMoD algorithm is to maximize social
welfare. Specifically, we aim at minimizing a weighted
combination of total travel time and operational costs
represented by

J(r,x, p,d) =Vd ·
n

∑
i, j=1

∑
t∈T (t0)

di jt (10)

+
n

∑
i, j=1

∑
t∈T (t0)

τi j ·

(
Vr · ri jt +

n

∑
m=1

Vx · xi jt(m)+Vp · pi jmt

)
,

where Vr,Vx,Vp,Vd are tunable coefficients representing the
per unit time cost of rebalancing, driving customer carrying
vehicles, and delaying customer pickup respectively. The first
term measures service quality for customers and the last term
represents operation cost of the system.

Our RAMoD algorithm for servicing transportation de-
mands implements the strategy obtained by solving the
following integer linear program

minimize
r,x(zo),x(so),p(zo),p(so)

J(r,x, p,d) (11)

subject to (1)− (9).
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C. Model Discussion
A few comments are in order. Partitioning the road net-

work into stations is a general approach that encapsulates
models with a wide range of focuses as special cases includ-
ing, but not limited to, temporal resolution, spatial resolution,
and different modes of transportation [10], [11], [13], [32].
We choose to study double-occupancy fleets because most
vehicles have at least two passenger seats that can be utilized
for ride-sharing. We avoid studying higher occupancy models
due to computational complexity and the diminishing returns
on performance of increased occupancy [31].

III. A REAL-TIME RAMOD MPC ALGORITHM

In this section we use the integer network flow frame-
work discussed in Section II-B to derive a real-time MPC
algorithm for RAMoD that leverages demand forecasts to
improve service quality.

A. Real-time RAMoD MPC Algorithm
To extend the integer linear programming approach from

Section II-B to an online MPC setting, we implement it in
a receding horizon framework. Specifically, every ∆t min-
utes, we collect the system state {sr,sx}, currently waiting
customers Λ{t0}, and travel times {τi j}i, j∈[n] computed from
the road congestion levels at time t0 as input to the ILP.
The ILP uses a planning horizon of T (t0) with T time-steps
where t0 is the current time. Since the true demand in our
planning horizon ΛT (t0) is not known, we use a forecaster
Λ̂ :T→Nn×n×T instead so that Λ̂(t0) is an estimate of ΛT (t0).
After executing the first step of the control strategy resulting
from the ILP, we update the system state and re-solve the
ILP in a receding horizon manner. In general, ILPs are NP-
hard. Thus, there is no guarantee that this method will scale
to large problem instances. However, as only the first step
of the resulting strategy is implemented before the algorithm
updates the system state and recomputes, only the decision
variables at the first time-step t1 need to be integer in order
for the algorithm to be actionable. Thus, we can relax the
integer constraint in (9) on all variables at times t2, t3, ..., tT
to reduce the complexity of the problem while still having an
actionable algorithm. With this heuristic in place, the number
of integer constrained variables no longer depends on the
planning horizon T , allowing for a larger planning horizon
to be employed. This relaxation leads to the following mixed
integer linear program (MILP):

min J(r,x, p,d) (12)
subject to (1)− (8)

ri jt1 ∈ N ∀i, j ∈ [n]

{x(zo)
i jt1

(m)}m,{x(so)
i jt1

(m)}m, p(zo)
i jmt1

, p(so)
i jmt1
∈ N

∀i, j,m ∈ [n]

{x(zo)(m)}m,{x(so)(m)}m, p(zo), p(zo) � 0 ∀ m

In practice, the forecast Λ̂(t0) will not be a perfect estimate
of ΛT (t0). An incorrect forecast can cause an algorithm to
send a vehicle to a location to pick up a customer when in
fact no customer will show up. Another important situation
is if the forecaster underestimates demand and dispatches
too few vehicles, leading to unserved customers. The first
scenario causes fuel inefficiency and the second degredates
service quality. For these reasons it is important for any

predictive approach to have robustness to such inaccuracies.
To accomplish this, we implement a matching algorithm
that can be used to pickup the aforementioned unserved
customers with vehicles that are told to idle by the solution
of (12). Specifically, we choose a reserve fleet size M0 <
M so that, if the solution to (12) assigns idle tasks to
M0+Mextra vehicles, then the matching algorithm is allowed
to use Mextra cars to serve waiting customers. In this way,
we have a reactive component to serve unexpected demand
that will only act if it can gurantee that there will be M0
vehicles available to the controller (12) for the next time-
step. The purpose of the reserve fleet size M0 is to prevent
the matching algorithm from implementing a completely
greedy approach, and ultimately striking a balance between
prediction and reaction when the forecast is not perfect.
Algorithm 1 describes the full receding-horizon algorithm
for RAMoD.

Algorithm 1: Ride-Sharing Autonomous Mobility on
Demand

1 RAMoD (G ,T, Λ̂,T,M0);
Input : Graph rep. of road network G = (V ,E ),

operation horizon T, number of timesteps in
the planning horizon T , forecaster Λ̂ and
reserve fleet size M0.

Output: Control actions
r,{x(zo)}m,{x(so)}m, p(zo),x(so).

2 for t0 ∈ T do
3 Collect the vehicle state of the system sr,sx ;
4 Collect the current demand Λ(t0,t0) ;
5 Obtain forecast for the next T timesteps Λ̂(t0);
6 Solve (12) to obtain

r,{x(zo)}m,{x(so)}m, p(zo),x(so);
7 Implement the r,{x(zo)}m,{x(so)}m, p(zo),x(so)

instructions for the first timestep ;
8 if There are more than M0 idling cars;
9 then

10 Pair idling cars with nearby customers until
either there are only M0 idling cars or no
waiting customers.

11 end
12 end

B. Algorithm Discussion
A few comments are in order. First, by representing the

vehicle actions as flows between locations, the number of
decision variables in (12) does not depend on the number of
vehicles or the number of customers, enabling the algorithm
to operate effectively in highly populated areas. This is
contrary to recent approaches presented in [14], [31] where
the problem size increases with the number of cars and
the number of customers. Second, the relaxation from (11)
to (12) allows modern branch and bound solvers to find solu-
tions in under one minute, allowing Algorithm 1 to be run in
real-time. Third, Algorithm 1 is able to leverage forecasts of
future demand into its strategy. Finally by updating the travel
times using current congestion values when solving (12),
we can model congestion effects in a dynamic and time
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Fig. 2. Visualization of the San Francisco experiment with AMoDeus [35],
whereby the green dots represent empty cars, blue dots are rebalancing cars,
orange dots are cars on pick-up, and red dots are cars with customers. The
stations are separated with gray lines.

varying manner, despite not directly considering endogenous
contributions from the fleet.

IV. NUMERICAL EXPERIMENTS

In this section, we present numerical experiments to
benchmark the performance of Algorithm 1 when servic-
ing trips from transportation datasets in simulation. The
code written for experiments in [14], [31] is protected by
copyright, so we attempted to capture its characteristics in
our own implementation of a reactive ride-sharing algorithm
which we refer to as RAMoD-Reactive. The performance of
Algorithm 1 is compared to the real-time MPC algorithm
for AMoD in [32], RAMoD-Reactive, and to an existing,
high-performing rebalancing heuristic [33].

A. Scenario
We focus on the transportation network of San Fran-

cisco, CA. The Fig. 2 shows a sequence of the simulation
with the San Francisco map. The study uses a publicly
available dataset of taxi traces recorded in the city of
San Francisco [36]. The traces were recorded between May
17, at 03:00:04 and June 10, 2008, 02:25:34. The dataset
contains a total of 464’045 trips for the entire period. We
use 15 days from May 20 up to June 9, where the weekends
are not included, to fit our model data, and May 19 for
the evaluation. The model we fit is for the forecast of
customer demand needed by the RAMoD and the AMoD
MPC algorithms.

B. Simulation Environment
We use the AMoDeus [35] simulator to validate the

algorithms. It is an open-source simulator to analyze and
validate algorithms for mobility-on-demand (MoD) systems.
Internally, it uses the agent-based transportation simulator
MATSim [34], which includes well-tested high-fidelity sim-
ulation of road dynamics. The simulator is able to repre-
sent large MoD systems with unreduced fleet sizes and to
compare them directly to existing benchmark algorithms,
e.g., [33]. The simulator contains an inner loop to model
road network dynamics as well as an outer loop to take
into account varying or dynamic demand which may change

as a function of the network dynamics. For this validation,
we assumed a static demand profile, i.e., we assume that
independent of cost and performance of our implemented
RAMoD system, the stochastic user equilibrium [37] has
been reached and is invariant.

C. Experimental Design
We simulate the scenario described in Section IV-A testing

the following four controllers:
• RAMoD-MPC: The controller implementing Algo-

rithm 1.
• AMoD-MPC: The controller described in [32] that also

leverages short-term forecasts in a MPC manner, but
does not have a ride-sharing feature.

• RAMoD-Reactive: The RAMoD-MPC algorithm mod-
ified to emulate a similar behavior to the methods
presented in [14], [31]. We do this by making two
modifications: First, we provide no forecast to make the
algorithm reactive. Second, we eliminate vehicle paths
with detours that cause significant inconveniences to
customers, corresponding to the sharability graphs in
[14], [31].

• AMoD-Reactive: The controller described in [33].
A fleet size of M = 400 vehicles is provided to all

controllers. The RAMoD-MPC, AMoD-MPC and RAMoD-
Reactive controllers use a time horizon of 150 min-
utes broken up into T = 10 time steps, each of length
∆t = 15 minutes. The number of stations used for these
controllers is 25. The AMoD-Reactive controller uses 10
stations instead of 25 because using 10 stations leads to
better performance. The RAMoD algorithms uses a reserve
fleet size of M0 = 100. The network is split into stations
using a k-means partitioning method on the request origin
locations. For the MPC scheme with time horizon of T = 10,
every 15 minutes the optimization problem is solved and
the control inputs for the next 15 minutes in the simulation
are applied. For every time in T (t0), the demand forecast
for each origin, destination pair is computed by taking the
sample average of the corresponding values from different
days in the dataset mentioned in section IV-A.

D. Results
The main results obtained with the four controllers are

summarized in Table I. To evaluate the customer satisfaction
we measure the waiting times and journey times. To measure
the operational cost we use the total distance driven. The
mean waiting time corresponds to the average waiting time of
all customers during the whole day, whilst the mean journey
time is equivalent to the average time of all journeys starting
from the request submission time until the drop-off time
at destination. The distance driven describes the sum of all
distances traveled through the whole simulation day by all
cars including pickup, drop-off, and rebalancing trips.

E. Discussion
A few comments are in order. As Fig. 3 shows, the ride-

sharing algorithms drive 20% less distance than the single
occupancy algorithms. Additionally, the algorithms using
MPC achieve more than 40% lower mean waiting times than
the reactive algorithms by preemptively rebalancing available
vehicles to locations where future demand is expected to
appear. From this we see that RAMoD-MPC is at least as
good and somewhere better in terms of mean waiting time
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TABLE I
PERFORMANCE OF THE CONTROLLERS

Controller Mean
Waiting Time

Mean
Journey Time

Distance
Driven

RAMoD-MPC 4 min 3 s 22 min 18 s 372’637 km
AMoD-MPC 4 min 15 s 17 min 30 s 453’450 km
RAMoD-Reactive 6 min 8 s 24 min 25 s 367’785 km
AMoD-Reactive 6 min 48 s 20 min 476’183 km
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Fig. 3. Relative performance difference with respect to the proposed
RAMoD-MPC algorithm.

and travel distance compared to the benchmark algorithms.
For this case study, the time to solve (12) for Algorithm 1
was consistently under 15 seconds.

The number of waiting customers throughout the day
is shown in Fig. 4. Interestingly, RAMoD-MPC has more
waiting customers than AMoD-MPC between 7:00am and
9:00am. We believe this is because RAMoD-MPC waits until
there are sufficiently many customers that can be grouped
together using ride-sharing before picking up customers.
By doing this it able to serve the demand with fewer
cars, allowing it to be more prepared for later demand
between 9:00am and 2:00pm. The driving distance for both
fleets is also shown in Fig. 4, showing AMoD-MPC driving
substantially more from 7:00am-2:00pm, aligning with our
hypothesis.

These advantages, however, come at a price. As Fig. 3
shows, ride-sharing increases the average journey time of
customers by more than 10%. This is caused by vehicles tak-
ing detours to service multiple customers. Despite the extra
journey time, we emphasize that the societal and economic
advantages of ride-sharing are substantial. Having the service
fleet driving less reduces CO2 emissions and fuel costs. In
this particular case study, the RAMoD-MPC drives 80000 km
less than the AMoD-MPC while having a similar mean wait
time. Using the standard CO2 emission rate for cars equipped
with gasoline engines of 25 kg/100km [38, Chpt. 1], in this
particular case ride-sharing would reduce CO2 emissions
by 7300 metric tons every year. In terms of fuel cost,
considering a standard gasoline consumption of 8 L/100km [38]
would lead to 2.3M L gasoline saved annually, resulting in
savings exceeding 2M $ per year [39].

V. CONCLUSION

In this paper we presented a model predictive con-
trol (MPC) algorithm to coordinate a fleet of self-driving
vehicles for servicing travel requests in a ride-sharing setting.
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Fig. 4. Number of waiting customers for the controllers tested as a function
of time (upper plot) and distance traveled by the fleet per unit time (lower
plot).

To this end, we first derive an integer network flow model
to represent the transportation network. We then designed a
Ride-sharing Autonomous Mobility on Demand (RAMoD)
algorithm based on receding horizon network flow optimiza-
tion. We presented a case study for San Francisco, CA, and
compared our algorithm to the state-of-the-art, using high-
fidelity simulations in MATSim. Our experiments showed
the proposed RAMoD-MPC algorithm outperforms the state-
of-the-art unit-capacity mobility algorithms in terms of total
driving distance and reactive ride-sharing algorithms in terms
of mean wait time. In particular, by slightly increasing the
total trip length for customers, the RAMoD-MPC algorithm
is able to significantly reduce the distance traveled by mobil-
ity providers, and consequently can reduce the contribution
of mobility services to urban congestion.

This work opens the field for several research directions.
First, in addition to ride-sharing, recent work in adding fea-
tures to Autonomous Mobility-on-Demand (AMoD) systems
include interactions with public transit [10] and the power
grid [22], congestion-aware routing algorithms [11], [12],
[21] and improved real-time rebalancing leveraging demand
forecasts [13], [32]. The models and algorithms presented in
these works are not unified and there does not exist a general
framework which considers all of these features together.
Such a unified algorithm would be of great practical interest,
since all of these factors play a crucial role in the operation
and service quality of AMoD. Third, it is advisable to extend
the study presented here and develop models with more than
double-occupancy. Finally, because this MPC framework
involves forecasts of future travel demand, improving the
quality of the forecasts using time series and deep learning
techniques could provide performance improvements.
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