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This paper presents a sampling-based motion planning algorithm for real-time and propellant-optimized

autonomous spacecraft trajectory generation in near-circular orbits. Specifically, this paper leverages recent

algorithmic advances in the field of robot motion planning to the problem of impulsively actuated, propellant-

optimized rendezvous and proximity operations under the Clohessy–Wiltshire–Hill dynamics model. The approach

calls upon a modified version of the FMT* algorithm to grow a set of feasible trajectories over a deterministic, low-

dispersion set of sample points covering the free state space. To enforce safety, the tree is only grown over the subset of

actively safe samples, from which there exists a feasible one-burn collision-avoidance maneuver that can safely

circularize the spacecraft orbit along its coasting arcunder a given set of potential thruster failures.Key features of the

proposed algorithm include 1) theoretical guarantees in terms of trajectory safety and performance, 2) amenability to

real-time implementation, and 3) generality, in the sense that a large class of constraints can be handled directly. As a

result, the proposed algorithm offers the potential for widespread application, ranging from on-orbit satellite

servicing to orbital debris removal and autonomous inspection missions.

I. Introduction

R EAL-time guidance for spacecraft proximity operations near

circular orbits is an inherently challenging task, particularly for

onboard applications for which computational capabilities are limited.

Fortunately, for the unconstrained case, many effective real-time

solutions have been developed (e.g., state transition matrix

manipulation [1], Lambert targeting [2], glideslope methods [3],

safety ellipses [4], and others [5]). However, the difficulty of real-time

processing increases when there is a need to operate near other objects

and/or incorporate some notion of propellant optimality or control-

effort minimization. In such cases, care is needed to efficiently handle

collision-avoidance, plume-impingement, sensor line-of-sight, and

other complex guidance constraints, which are often nonconvex and

may depend on time and amixture of state and control variables. State-

of-the-art techniques for collision-free spacecraft proximity operations

(both with and without optimality guarantees) include artificial

potential function guidance [6,7], nonlinear trajectory optimization

with [8,9] or without [10] convexification, line-of-sight or approach

corridor constraints [11–13], relative separation techniques [14],Keep-

Out Zone (KOZ) constraints with mixed-integer programming [15],

and kinodynamic motion planning algorithms [16–19].

Requiring hard assurances of mission safety with respect to a wide

variety and number of potential failure modes [20] provides an

additional challenge. Often the concept of passive safety (safety
certifications on zero-control-effort failure trajectories) over a finite
horizon is employed to account for the possibility of control failures,
though this potentially neglects mission-saving opportunities and
fails to certify safety for all time. A less conservative alternative that
more readily adapts to infinite horizons, aswewill see, is to use active
safety in the form of positively invariant set constraints. For instance,
[11] enforces infinite-horizon active safety for a spacecraft by
requiring each terminal state to lie on a collision-free orbit of equal
period to the target. Reference [17] achieves a similar effect by only
planning between waypoints that lie on circular orbits (a more
restrictive constraint). Likewise, [21] requires an autonomous
spacecraft to maintain access to at least one safe forced equilibrium
point nearby. Finally, [22] devises the Safe and Robust Model
Predictive Control algorithm, which employs invariant feedback
tubes about a nominal trajectory (which guarantee resolvability)
together with positively-invariant sets (taken about reference
safety states) designed to be available at all times over the planning
horizon.
The objective of this paper is to design an automated approach to

actively-safe spacecraft trajectory optimization for rendezvous and
proximity operations near circular orbits, which we model using
Clohessy–Wiltshire–Hill (CWH) dynamics. Our approach leverages
recent advances from the field of robot motion planning, particularly
sampling-based motion planning [23]. Several decades of research in
the robotics community have shown that sampling-based planning
algorithms (dubbed “planners” throughout this paper) show promise
for tightly constrained, high-dimensional optimal control problems
such as the one considered in this paper. Sampling-based motion
planning essentially breaks down a complex trajectory control
problem into a series ofmany local relaxed two-point boundary value
problems (2PBVPs, or steering problems) between intermediate
waypoints (called samples), which are later evaluated a posteriori for
constraint satisfaction and efficiently strung together into a graph
(i.e., a tree or roadmap). Bymoving complex constraints like obstacle
avoidance or plume impingement into a posteriori evaluation, we can
decouple trajectory generation from constraint checking, a fact we
exploit to achieve real-time capability. Critically, this approach
avoids the explicit construction of the unconstrained state space, a
computationally prohibitive task for complex planning problems. In
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this way, sampling-based algorithms can address a large variety of

constraints and provide significant computational benefits with
respect to traditional optimal control methods and mixed-integer

programming [23]. Furthermore, through a property called as-

ymptotic optimality (AO), sampling-based algorithms can be
designed to provide guarantees of optimality in the limit that

the number of samples taken approaches infinity. This makes
sampling-based planners a strong choice for the problem of space-

craft control.
Although the aforementioned works [16–19] on sampling-based

planning for spacecraft proximity operations have addressed several

components of the safety-constrained, optimal CWH autonomous

rendezvous problem, few have addressed the aspect of real-time
implementability in conjunction with both a 2-norm propellant-cost

metric and active trajectory safety with respect to control failures.

This paper seeks to fill this gap. The paper’s central theme is a
rigorous proof of asymptotic optimality for a particular sampling-

based planner, namely a modified version of the FMT* algorithm
[24], under impulsive CWH spacecraft dynamics with hard safety

constraints. First, a description of the problem scenario is provided in

Sec. II, along with a formal definition of the sum-of-2-norms cost
metric that we employ as a proxy for propellant consumption.

Section III then follows with a thorough discussion of chaser/target
vehicle safety, defining precisely how abort trajectories may be

designed under CWH dynamics to deterministically avoid for all

future times an ellipsoidal region about the CWH frame origin under
a prescribed set of control failures. Next, we proceed in Sec. IV to our

proposed approach employing the modified FMT* algorithm. The

section begins with presentation of a conservative approximation to
the propellant-cost reachability set, which characterizes the set of

states that are nearby a given initial state in terms of propellant use.
These sets, bounded by unions of ellipsoidal balls, are then used to

show that the modified FMT* algorithm maintains its (asymptotic)

optimalitywhen applied toCWHdynamics under our propellant-cost
metric. From there, in Sec. V, the paper presents two techniques for

improving motion planning solutions: 1) an analytical technique that

can be called both during planning and postprocessing to merge Δv
vectors between any pair of concatenated graph edges and 2) a

continuous trajectory smoothing algorithm, which can reduce the
magnitude of Δv vectors by relaxing the implicit constraint to pass

through sample points while still maintaining solution feasibility.
Put together, these tools yield a flexible, real-time framework for

near-circular orbit spacecraft guidance that handles a wide variety

of (possibly nonconvex) state, time, and control constraints and

provides deterministic guarantees on abort safety and solution quality
(propellant cost). The methodology is demonstrated in Sec. VI on a

single-chaser, single-target scenario simulating a near-field low-
Earth-orbit (LEO) approach with hard constraints on the total

maneuver duration, relative positioning (including KOZ and antenna
interference constraints), thruster plume-impingement avoidance,
individual and net Δv-vector magnitudes, and a two-fault thruster
stuck-off failure tolerance. Trades are then conducted studying
the effects of the sample count and a propellant cost threshold on
the performance of FMT* (both with and without trajectory
smoothing).
Preliminary versions of this paper appear in [25,26]. This extended

and revised work introduces the following as additional contri-
butions: 1) a more detailed presentation of the FMT* optimality
proof, 2) improved trajectory smoothing, and 3) a six-dimensional (3
degree-of-freedom) numerical example demonstrating nonplanar
LEO rendezvous.

II. Problem Formulation

Consider the problem of a chaser spacecraft seeking to maneuver
toward a single target moving in a well-defined, circular orbit (see

Fig. 1a). Define the state space X ⊂ Rd as a d-dimensional region in
the target’s local vertical, local horizontal (LVLH) frame, and let the
obstacle region or Xobs be the set of states in X that result in mission
failure (e.g., states outside of an approach corridor or in collisionwith
the target). Let the free space orX free be the complement ofXobs. As
seen in Fig. 1b, let xinit represent the chaser’s initial state relative to
the target, and let xgoal ∈ Xgoal be a goal state inside goal region

X goal. Finally, define a state trajectory (or simply “trajectory”) as a

piecewise-continuous function of time x�t�: R → X , and let Σ
represent the set of all state trajectories. Every state trajectory is
implicitly generated by a control trajectory u�t�: R → U, where U is
the set of controls, through the system dynamics _x � f�x; u; t�,
where f is the state transition function. A state trajectory is called a
feasible solution to the planning problem (X free, tinit, xinit, xgoal) if:
1) it satisfies the boundary conditions x�tinit� � xinit and x�tfinal� �
xgoal for some time tfinal > tinit; 2) it is collision free, that is, x�t� ∈
X free for all t ∈ �tinit; tfinal�; and 3) it obeys all other trajectory
constraints. The optimal motion planning problem can then be
defined as follows.
Definition 1 (Optimal Planning Problem): Given a planning

problem (X free, tinit, xinit, xgoal) and a cost functional J: Σ × U × R →
R≥0, find a feasible trajectory x

��t�with associated control trajectory
u��t� and time span t � �tinit; tfinal� for tfinal ∈ �tinit;∞� such that
J�x��·�; u��·�; t� � minfJ�x�·�; u�·�; t� j x�t� andu�t� are feasibleg.
If no such trajectory exists, report failure.
Tailoring Definition 1 to impulsively actuated propellant-optimal

motion planning near circular orbits (using a control-effort cost
functional J that considers only u�t� and the final time tfinal, denoted
as J�u�t�; tfinal��), the optimal spacecraft motion planning problem
may be formulated as

(Cross-track)
"radial"

(In track)

(Normal to orbital plane)
"out of plane"

Attractor

Reference line

Target

Chaser

a) Schematic of CWH dynamics, which models
relative guidance near a target in circular orbit

b) A representative motion planning query between
feasible states xinit and xgoal

Fig. 1 Illustration of the CWH planning scenario.
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Given: initial state xinit�tinit�; goal regionXgoal; free spaceX free

minimize
u�t�;tfinal

J�u�t�;tfinal��
Z

tfinal

tinit

ku�t�k2 dt�
XN
i�1

kΔvik2

subject to x�tinit��xinit initial condition

x�tfinal�∈Xgoal terminal condition

_x�t��f�x�t�;u�t�;t� system dynamics

x�t�∈X free for all t∈ �tinit;tfinal� obstacle avoidance

g�x�t�;u�t�;t�≤0

h�x�t�;u�t�;t��0
for all t∈ �tinit;tfinal� other constraints

∃ safe xCAM�τ�; τ>t for all x�t� active safety (1)

where tinit and tfinal are the initial and final times and xCAM�τ� refers
to an infinite-horizon collision-avoidance maneuver (CAM). Note

we restrict our attention to impulsive control laws u�t� �P
N
i�1 Δviδ�t − τi�, where δ�·� denotes the Dirac delta function,

which models finite sequences of instantaneous translational burns

Δvi fired at discrete times τi (note that the number of burns N is not

fixed a priori). Although it is possible to consider all control laws, it is

both theoretically and computationally simpler to optimize over a

finite-dimensional search space of Δv vectors; furthermore, these

represent the most common forms of propulsion systems used on

orbit (including high-impulse cold-gas and liquid bipropellant

thrusters), and they can (at least in theory) approximate continuous

control trajectories in the limit in which N → ∞.

We now elaborate on the objective function and each constraint

in turn.

A. Cost Functional

A critical component of our problem is the choice of cost

functional. Consistent with [27], we define our cost as theL1-norm of

the lp-norm of the control. The best choice for p ≥ 1 depends on the
propulsion system geometry and on the frame within which u�t� �P

N
i�1 Δviδ�t − τi� in J is resolved. Unfortunately, minimizing the

propellant exactly involves resolving vectors Δvi into the spacecraft
body-fixed frame, requiring the attitude q to be included in our state

x. To avoid this, a common standard is to employ p � 2 so that each
Δvi is as short as possible, allocating the commandedΔvi to thrusters
in a separate control allocation step (conducted later, once the attitude

is known; see Sec. II.E). Although this moves propellant mini-

mization online, it greatly simplifies the guidance problem in a

practical way without neglecting attitude. Because the cost of Δv
allocation can only grow from the need to satisfy torque constraints or

impulse bounds (e.g., necessitating counteropposing thrusters to

achieve the same netΔv vector), we are in effect minimizing the best-

case, unconstrained propellant use of the spacecraft. As wewill show

in our numerical experiments, however, this does not detract

significantly from the technique; the coupling of J with p � 2 to the
actual propellant use through theminimum control-effort thrusterΔv
allocation problem seems to promote low propellant-cost solutions.

Hence, J serves as a good proxy to propellant use, with the added

benefit of independence from propulsion system geometry.

B. Boundary Conditions

Planning is assumed to begin at a known initial state xinit and
time tinit and end at a single goal state x

T
goal � � δrTgoal; δvTgoal � (exact

convergence, Xgoal � fxgoalg), where δrgoal is the goal position and

δvgoal is the goal velocity. During numerical experiments, however,

we sometimes permit termination at any state of which the position

and velocity liewithin Euclidean ballsB�δrgoal; ϵr� andB�δvgoal; ϵv�,
respectively (inexact convergence,Xgoal�B�rgoal;ϵr�×B�vgoal;ϵv�),
where the notation B�r; ϵ� � fx ∈ X jkr − xk ≤ ϵg denotes a ball

with center r and radius ϵ.

C. System Dynamics

Because spacecraft proximity operations incorporate significant

drift, spatially dependent external forces, and changes on fast time

scales, any realistic solution must obey dynamic constraints; we

cannot assume straight-line trajectories. In this paper, we employ the

classical CWH equations [28,29] for impulsive linearized motion

about a circular reference orbit at radius rref about an inverse-square-
law gravitational attractor with parameter μ. This model provides a

first-order approximation to a chaser spacecraft’s motion relative to a

rotating target-centered coordinate system (see Fig. 1). The linearized

equations of motion for this scenario as resolved in the LVLH frame

of the target are given by

δ �x − 3n2refδx − 2nrefδ _y � Fδx

m
(2a)

δ �y� 2nrefδ _x � Fδy

m
(2b)

δ�z� n2refδz �
Fδz

m
(2c)

where nref �
�����
μ
r3
ref

q
is the orbital frequency (mean motion) of the

reference spacecraft orbit; m is the spacecraft mass; F �
�Fδx; Fδy; Fδz�T is some applied force; and (δx, δy, δz) and (δ _x, δ _y,
δ_z) represent the cross-track (radial), in-track, and out-of-plane

relative position and velocity vectors, respectively. The CWHmodel

is used often, especially for short-duration rendezvous and proxi-

mity operations in LEO and for leader–follower formation flight

dynamics.
Defining the state x as �δx; δy; δz; δ _x; δ _y; δ_z�T and the control u as

the applied force per unit mass 1
mF, the CWH equations can be

described by the linear time-invariant (LTI) system,

_x � f�x;u; t� � Ax�Bu (3)

where the dynamics matrix A and input matrix B are given by

A �

266666666664

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2ref 0 0 0 2nref 0

0 0 0 −2nref 0 0

0 0 −n2ref 0 0 0

377777777775
B �

266666666664

0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1

377777777775
As for any LTI system, there exists a unique solution to Eq. (3) given

initial condition x�t0� and integrable input u�t� that can be ex-

pressed using superposition and the convolution integral as x�t��
eA�t−t0�x�t0��∫ t

t0
eA�t−τ�Bu�τ�dτ for any time t ≥ t0. The expression

Φ�t; τ� ≜ eA�t−τ� is called the state transition matrix, which impor-

tantly provides an analytical mechanism for computing state tra-

jectories that we rely on heavily in simulations. Note, throughout this

work, we sometimes represent Φ�t; τ� as Φ when its arguments are

understood.
We now specialize our solution to the case ofN impulsive velocity

changes at times t0 ≤ τi ≤ tf for i ∈ �1; : : : ; N�, inwhich caseu�τ��P
N
i�1Δviδ�τ−τi�, where δ�y�� f1wherey� 0; or 0otherwiseg

signifies the Dirac-delta distribution. Substituting for Φ and u�τ�,

x�t� � Φ�t; t0�x�t0� �
Z

t

t0

Φ�t; τ�B
�XN
i�1

Δviδ�τ − τi�
�
dτ

� Φ�t; t0�x�t0� �
XN
i�1

Z
t

t0

Φ�t; τ�BΔviδ�τ − τi� dτ
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where on the second linewe used the linearity of the integral operator.

By the sifting property of δ, denoting Nt �
P

N
i�1 1�τi ≤ t� as the

number of burns applied from t0 up to time t, we have for all times

t ≥ t0 the following expression for the impulsive solution to Eq. (3):

x�t� � Φ�t; t0�x�t0� �
XNt

i�1

Φ�t; τi�BΔvi (4a)

� Φ�t; t0�x�t0� � �Φ�t; τ1�B : : : Φ�t; τNt
�B �|��������������������������{z��������������������������}

≜Φv�t;fτigi�

2664
Δv1
..
.

ΔvNt

3775
|����{z����}

≜ΔV

(4b)

� Φ�t; t0�x�t0� �Φv�t; fτigi�ΔV (4c)

Throughout this paper, the notations ΔV for the stacked Δv vector

andΦv�t; fτigi� for the aggregated impulse state transition matrix (or

simply Φv for short, when the parameters t and fτigi are clear)

implicitly imply only those burns i occurring before time t.

D. Obstacle Avoidance

Obstacle avoidance is imposed by requiring that the solution x�t�
stay within X free (or, equivalently, outside of Xobs), typically a

difficult nonconvex constraint. For CWH proximity operations,Xobs

might include positions in collision with a nearby object, position/

velocity pairs outside of a given approach corridor, etc. In our

numerical experiments, to prevent the chaser from interfering with

the target, we assumeXobs comprises an ellipsoidal KOZ centered at

the origin and a conical nadir-pointing region that approximates the

target’s antenna beam pattern.
Note that, according to the definition of X free, this also requires

x�t� to stay within X (CWH dynamics do not guarantee that state

trajectories will lie inside X despite the fact that their endpoints do).

Although not always necessary in practice, if X marks the extent of

reliable sensor readings or the boundary inside which linearity

assumptions hold, then this can be useful to enforce.

E. Other Trajectory Constraints

Many other types of constraints may be included to encode

additional restrictions on state and control trajectories, which we

represent here by a set of inequality constraints g and equality

constraints h (note that g and h denote vector functions). To illustrate

the flexibility of sampling-based planning, we encode the following

into constraints g (for brevity, we omit their exact representation,

which is a straightforward exercise in vector geometry):

Tplan;max ≤ tfinal − tinit ≤ Tplan;max plan duration bounds

Δvi ∈ U�x�τi�� for all i � �1; : : : ; N� control feasibility[
k∈�1; : : : ;K�

Pik�Δv̂k; βplume; Hplume� ∩ Starget � ∅ for all i � �1; : : : ; N� plume impingement avoidance

Here, 0 ≤ Tplan;min < Tplan;max represent minimum and maximum
motion plan durations, U�x�τi�� is the admissible control set
corresponding to state x�τi�,Pik is the exhaust plume emanating from
thruster k of the chaser spacecraft while executing burnΔvi at time τi,
and Starget is the target spacecraft circumscribing sphere.Wemotivate
each constraint in turn.

1. Plan Duration Bounds

Plan duration bounds facilitate the inclusion of rendezvous

windows based on the epoch of the chaser at xinit�tinit�, as determined

by illumination requirements, ground communication opportunities,

or mission timing restrictions, for example. Tplan;max can also ensure

that the errors incurred by linearization, which growwith time, do not

exceed acceptable tolerances.

2. Control Feasibility

Control set constraints are intended to encapsulate limitations on

control authority imposed by propulsive actuators and their

geometric distribution about the spacecraft. For example, given the

maximum burn magnitude 0 < Δvmax, the constraint

kΔvik2 ≤ Δvmax for all i � �1; : : : ; N� (5)

might represent an upper bound on the achievable impulses of a

gimbaled thruster system that is free to direct thrust in all directions.

In our case, we use U�x�τi�� to represent all commanded net Δv
vectors that 1) satisfy Eq. (5) and also 2) can be successfully allocated

to thrusters along trajectory x�t� at time τi according to a simple

minimum-control-effort thruster allocation problem (a straight-

forward linear program [30]). To keep the paper self-contained, we

repeat the problem here and in our own notation. LetΔvijbf andMijbf
be the desired netΔv andmoment vectors at burn time τi, resolved in
the body-fixed frame according to attitude q�τi� (we henceforth drop
the bar, for clarity). Note the attitude q�τi�must either be included in

the state x�τi� or be derived from it, as we assume here by imposing

(along nominal trajectories) a nadir-pointing attitude profile for the

chaser spacecraft. Let Δvik � kΔvikk2 be the Δv magnitude

allocated to thruster k, which generates an impulse in direction Δv̂ik
at position ρik from the spacecraft center-of-mass (both are constant

vectors if resolved in the body-fixed frame). Finally, to account for

the possibility of on or off thrusters, let ηik be equal to 1, if thruster k is
available for burn i, or zero otherwise. Then, the minimum-effort

control allocation problem can be represented as

Given: on-of flagsηik; thruster positions ρik; thruster axesΔv̂ik;

commandedΔv-vectorΔvi;andcommanded

momentvectorMi

minimize
Δvik

XK
k�1

Δvik

subject to
XK
k�1

Δv̂ik�ηikΔvik� �Δvi netΔv-vector allocation

XK
k�1

�ρik ×Δv̂i��ηikΔvik� �Mi net moment allocation

Δvmin;k ≤Δvik ≤Δvmax;k thrusterΔvbounds (6)

where Δvmin;k and Δvmax;k represent minimum- and maximum-
impulse limits on thruster k (due to actuator limitations, minimum
impulse bits, pulse-width constraints, or maximum on-time
restrictions, for example). Note that, by combining the minimization
of commanded Δv-vector lengths kΔvik with minimum-effort
allocation Δv�ik to thrusters k in Eq. (6), the previous formulation
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corresponds directly to minimum-propellant consumption (by the
Tsiolkovsky rocket equation, subject to our thrust bounds and net
torque constraints); see also Sec. II.A. In this work, we setMi � 0 to
enforce torque-free burns and minimize disturbances to our assumed
attitude trajectory q�t�.
Note that we do not consider aminimum-norm constraint in Eq. (5)

forΔvi, as it is not necessary and would significantly complicate the
theoretical characterization of our proposed planning algorithms,
provided in Sec. IV. As discussed in Sec. II.A, kΔvik is only a proxy
for the true propellant cost computed from the thrust allocation
problem [Eq. (6)].

3. Plume Impingement

Impingement of thruster exhaust on neighboring spacecraft can
lead to dire consequences, including destabilizing effects on attitude
caused by exhaust gas pressure, degradation of sensitive optical
equipment and solar arrays, and unexpected thermal loading [31,32].
To account for this during guidance, we first generate representative
exhaust plumes at the locations of each thruster firing. For burn i
occurring at time τi, a right circular cone with axis −Δv̂ik, half-angle
βplume, and height Hplume is projected from each active thruster k
(ηik � 1), the allocated thrust Δv�ik of which is nonzero, as
determined by Eq. (6). Intersections are then checked with the target
spacecraft circumscribing sphere Starget, which is used as a simple
conservative approximation to the exact target geometry. For an
illustration of the process, refer to Fig. 2.

4. Other Constraints

Other constraints may easily be added. Solar array shadowing,
pointing constraints, approach corridors, and so forth all fit within the
framework and may be represented as additional inequality or
equality constraints. For more, we refer the interested reader to [33].

F. Active Safety

An additional feature we include in our work is the concept of
active safety, in which we require the target spacecraft to maintain a

feasible CAM to a safe higher or lower circular orbit from every point
along its solution trajectory in the event that any mission-threatening
control degradations take place, such as stuck-off thrusters (as in
Fig. 3). This reflects our previous work [25] and is detailed more
thoroughly in Sec. III.

III. Vehicle Safety

In this section, we devise a general strategy for handling the active
safety constraints introduced in Eq. (1) and Sec. II.F, which we use to
guarantee solution safety under potential control failures.
Specifically, we examine how to ensure in real-time that safe abort
trajectories are always available to the spacecraft up to a given
number of thruster stuck-off failures. As will be motivated, the idea
behind our approach is to couple positively invariant set safety
constraints with escape trajectory generation and embed them into
the sampling routines of deterministic sampling-based motion
planners. We prioritize active safety measures in this section (which
allow actuated CAMs over passive safety guarantees (which shut off
all thrusters and restrict the system to zero control) in order to broaden
the search space for abort trajectories. Because of the propellant-
limited nature of many spacecraft proximity operations missions,
emphasis is placed on finding minimum-Δv escape maneuvers in
order to improve mission reattempt opportunities. In many ways, we
emulate the rendezvous design process taken byBarbee et al. [34] but
numerically optimize abort propellant consumption and remove
much of its reliance on user intuition by automating the satisfaction of
safety constraints.
Consistent with the notions proposed by Schouwenaars et al. [35];

Fehse [36] Sec. 4.1.2; and Fraichard [37], our general definition for
vehicle safety is taken to be the following.
Definition 2 (vehicle safety): A vehicle state is safe if and only if

there exists, under the worst-possible environment and failure
conditions, a collision-free, dynamically feasible trajectory satis-
fying the constraints that navigates the vehicle to a set of states in
which it can remain indefinitely.
Note “indefinitely” (or “sufficiently long” for all practical pur-

poses under the accuracy of the dynamics model) is a critical
component of the definition. Trajectories without infinite-horizon
safety guarantees can ultimately violate constraints [11], thereby
posing a risk that can defeat the purpose of using a hard guarantee in
the first place. For this reason, we impose safety constraints over an
infinite-horizon (or, as we will show using invariant sets, an
effectively infinite horizon).
Consider the scenario described in Sec. II for a spacecraft with

nominal state trajectory x�t� ∈ X and control trajectory u�t� ∈
U�x�t�� evolving over time t in time spanT � �tinit;∞�. LetT fail ⊆ T
represent the set of potential failure times we wish to certify (for
instance, a set of prescribed burn times fτig, the final approach phase
T approach, or the entire maneuver span T ). When a failure occurs,
control authority is lost through a reduction in actuator functionality,
negatively impacting system controllability. Let U fail�x� ⊂ U�x�
represent the new control set, wherewe assume that 0 ∈ U fail for all x
(i.e., we assume that no actuation is always a feasible option).
Mission safety is commonly imposed in two different ways
([36] Sec. 4.4):
1) For all tfail ∈ T fail, ensure that xCAM�t� satisfies Definition 2

with uCAM�t� � 0 for all t ≥ tfail (called passive safety). For a
spacecraft, this means its coasting arc from the point of failure must
be safe for all future time (though practically this is imposed only over
a finite horizon).
2) For all tfail ∈ T fail and failure modes U fail, devise actuated

collision-avoidancemaneuvers xCAM�t� that satisfy Definition 2with
uCAM�t� ∈ U fail for all t ≥ tfail, where uCAM�t� is not necessarily
restricted to 0 (called active safety).
See Fig. 4a for an illustration. In much of the literature, only

passive safety is considered out of a need for tractability (to avoid
verification over a combinatorial explosion of failure mode
possibilities) and to capture the common case in which control
authority is lost completely. Although considerably simpler to

Fig. 2 Illustration of exhaust plume impingement from thruster firings.

a) Thruster allocation without 
stuck-off failures

b) The same allocation problem,
with both upper-right thrusters 
stuck off

Fig. 3 Changes to torque-free control allocation in response to thruster
failures.
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implement, this approach potentially neglects many mission-saving

control policies.

A. Active Safety Using Positively-Invariant Sets

Instead of ensuring safety for all future times t ≥ tfail, it is more

practical to consider finite-time abort maneuvers starting at x�tfail�
that terminate inside a safe positively invariant set X invariant. If the

maneuver is safe and the invariant set is safe for all time, then vehicle

safety is assured.

Definition 3 (positively invariant set): A set X invariant is positively

invariant with respect to the autonomous system _xCAM � f�xCAM� if
and only if xCAM�tfail� ∈ X invariant implies xCAM�t� ∈ X invariant for

all t ≥ tfail.
See Fig. 4b. This yields the following definition for finite-time

verification of trajectory safety.

Definition 4 (finite-time trajectory safety verification): For all

tfail ∈ T fail and for all U fail�x�tfail�� ⊂ U�x�tfail��, there exists

fu�t�; t ≥ tfailg ∈ U fail�x�tfail�� and Th > tfail such that x�t� is feasible
for all tfail ≤ t ≤ Th and x�Th� ∈ X invariant ⊆ X free.

Here, Th is some finite safety horizon time. Although, in principle,

any safe positively invariant set X invariant is acceptable, not just any

will do in practice; in real-world scenarios, unstable trajectories

caused by model uncertainties could cause state divergence toward

configurations of which the safety has not been verified. Hence, care

must be taken to use only stable positively-invariant sets.

Combining Definition 4 with our constraints in Eq. (1) from

Sec. II, spacecraft trajectory safety after a failure at x�tfail� � xfail can
be expressed in its full generality as the following optimization

problem in decision variables Th ∈ �tfail;∞�, xCAM�t�, and uCAM�t�,
for t ∈ �tfail; Th�:

Given: failure state xfail�tfail�; failure control setU fail�xfail�; the free space X free;

a safe; stable invariant setX invariant; and a fixed number of impulsesN

minimize
uCAM�t�∈Ufail�xfail�

Th;xCAM�t�

J�xCAM�t�; uCAM�t�; t� �
Z

Th

tfail

kuCAM�t�k2 dt �
XN
i�1

kΔvCAM;ik2

subject to _xCAM�t� � f�xCAM�t�; uCAM�t�; t� system dynamics

xCAM�tfail� � xfail initial condition

xCAM�Th� ∈ X invariant safe termination

xCAM�t� ∈ X free for all t ∈ �tfail; Th� obstacle avoidance

g�xCAM; uCAM; t� ≤ 0

h�xCAM; uCAM; t� � 0
for all t ∈ �tfail; Th� other constraints (7)

This is identical to Eq. (1), except that now, under failure mode

U fail�xfail�, we abandon the attempt to terminate at a goal state inXgoal

and instead replace it with a constraint to terminate at a safe, stable

positively invariant set X invariant. We additionally neglect any timing

constraints encoded in g as we are no longer concerned with our

original rendezvous. Typically, any feasible solution is sought

following a failure, in which case one may use J � 1. However, to
enhance the possibility of mission recovery, we assume the same

minimum-propellant cost functional as before, but with the exception

that here, aswewillmotivate,weusea single-burn strategywithN � 1.

B. Fault-Tolerant Safety Strategy

The difficulty of solving the finite-time trajectory safety problem lies

in the fact that a feasible solution must be found for all possible failure

times (typically assumed to be any time during the mission) as well as

for all possible failures. To illustrate, for an F-fault tolerant spacecraft
with K control components (thrusters, momentum wheels, control

moment gyroscopes, etc.), each of which we each model as either

operational or failed, this yields a total of Nfail �
P

F
f�0

�
K
f

�
�P

F
f�0

K!
�K−f�!f! possible optimization problems that must be solved for

every time tfail along the nominal trajectory. By any standard, this is

intractable and hence explains why so often passive safety guarantees

are selected (requiring only one control configuration check instead of

Nfail, since we prescribe uCAM � 0, which must lie in U fail given our

assumption; this is analogous to setting f � K withF ≜ K). One idea
for simplifying this problemwhile still satisfying safety [the constraints

of Eq. (7)] consists of the following strategy.
Definition 5 (fault-tolerant active safety strategy): As a

conservative solution to the optimization problem in Eq. (7), it is

sufficient (but not necessary) to implement the following procedure:
1) From each x�tfail�, prescribe a CAM policy ΠCAM that gives a

horizon time Th and escape control sequence uCAM � ΠCAM�x�tfail��
designed to automatically satisfy uCAM�τ� ⊂ U for all tfail ≤ τ ≤ Th

and x�Th� ∈ X invariant.

2) For each failure mode U fail�x�tfail�� ⊂ U�x�tfail�� up to tolerance
F, determine if the control law is feasible; that is, see if uCAM �
ΠCAM�x�tfail�� ⊂ U fail for the particular failure in question.

This effectively removes decision variables uCAM from Eq. (7),

allowing simple numerical integration for the satisfaction of the

Passive Abort

Active Abort

Failure

a) Comparing passive and active abort safety following
the occurrence of a failure

b) A positively invariant set, within which state
trajectories stay once entered

Fig. 4 Illustrations of various vehicle abort safety concepts.
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dynamic constraints and a straightforward a posteriori verification of
the other trajectory constraints (inclusion in X free and satisfaction of
constraintsg andh). This checks if the prescribedCAM, guaranteed to
provide a safe escape route, can actually be accomplished in the given
failure situation. The approach is conservative due to the fact that the
control law is imposed and not derived; however, the advantage is a
greatly simplified optimal control problem with difficult-to-handle
constraints relegated toaposteriori checks, exactly identical to theway
that steering trajectories are derived and verified during the planning
process of sampling-based planning algorithms. Note that formal
definitions of safety require that this be satisfied for all possible failure
modes of the spacecraft; we do not avoid the combinatorial explosion
of Nfail. However, each instance of problem Eq. (7) is greatly
simplified, and with F typically at most 3, the problem remains
tractable. The difficult part, then, lies in computingΠCAM, but this can
easily be generated offline. Hence, the strategy should work well for
vehicles with difficult, nonconvex objective functions and constraints,
as is precisely the case for CWH proximity operations.
Note that it is always possible to reduce this approach to the (more-

conservative) definition of passive safety that has traditionally been
seen in the literature by choosing some finite horizon Th and setting
uCAM � ΠCAM�x�tfail�� � 0 for all potential failure times tfail ∈ T fail.

C. Safety in CWH Dynamics

We now specialize these ideas to proximity operations under
impulsive CWH dynamics. Because manymissions require stringent
avoidance (before the final approach and docking phase, for
example), it is quite common for aKOZXKOZ, typically ellipsoidal in
shape, to be defined about the target in the CWH frame. Throughout
its approach, the chaser must certify that it will not enter this KOZ
under any circumstance up to a specified thruster fault tolerance F,
where here faults imply zero-output (stuck-off) thruster failures. Per
Definition 4, this necessitates a search for a safe invariant set for
finite-time escape along with, as outlined by Definition 5, the
definition of an escape policy ΠCAM, which we describe next.

1. CAM Policy

We now have all the tools we need to formulate an active abort
policy for spacecraft maneuvering under CWH dynamics. Recall
from Definition 4 that for mission safety following a failure we must
find a terminal state in an invariant set X invariant entirely contained
within the free state space X free. To that end, we choose for X invariant

the set of circularized orbits of which the planar projections lie
outside of the radial band spanned by the KOZ. The reasons we
choose this particular set for abort termination are threefold: circular
orbits are 1) stable (assuming Keplerian motion, which is reasonable
even under perturbations because the chaser and target are perturbed
together and it is their relative state differences that matter),
2) accessible (given the proximity of the chaser to the target’s circular
orbit), and 3) passively safe (once reached, provided there is no

intersection with the KOZ). In the planar case, this set of safe

circularized orbits can fortunately be identified by inspection. As

shown in Fig. 5, the set of orbital radii spanning theKOZare excluded

in order to prevent an eventual collisionwith theKOZellipsoid, either

in the short term or after nearly one full synodic period. In the event of

an unrecoverable failure or an abort scenario taking longer than one

synodic period to resolve, circularization within this region would

jeopardize the target, a violation of Definition 2. Such a region is

called a zero-thrust region of inevitable collision (RIC), which we

denote asX ric, as without additional intervention a collision with the

KOZ is imminent and certain. To summarize this mathematically,

XKOZ � fxjxTEx ≤ 1g (8)

where E � diag�ρ−2δx ; ρ−2δy ; ρ−2δz ; 0; 0; 0�, with ρi representing the

ellipsoidal KOZ semi-axis in the i-th LVLH frame axis direction,

X ric �
�
xjjδxj < ρδx; δ _x � 0; δ _y � −

3

2
nrefδx

	
⊃ XKOZ (9)

X invariant �
�
xjjδxj ≥ ρδx; δ _x � 0; δ _y � −

3

2
nrefδx

	
� X c

ric (10)

In short, our CAM policy to safely escape from a state x at which

the spacecraft arrives (possibly under failures) at time tfail, as

visualized in Fig. 6, consists of the following:
1) Coast from x�tfail� to some new Th > tfail such that xCAM�T−

h �
lies at a position in X invariant.
2) Circularize the (in-plane) orbit at xCAM�Th� such that

xCAM�T�
h � ∈ X invariant.

3) Coast along the neworbit (horizontal drift along the in-track axis
in the CWH relative frame) in X invariant until allowed to continue the
mission (e.g., after approval from ground operators).

a) Safe circularization burn zones invariant for planar

b) Inertial view of the radial band spanned by the
KOZ that defines the unsafe RIC

CWH dynamics

Fig. 5 Visualizing the safe and unsafe circularization regions used by the CAM safety policy.

Coasting
Arc

Circularized Orbit

Fig. 6 Examples of safe abort CAMs xCAM following failures.
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2. Optimal CAM Circularization

In the event of a thruster failure at state x�tfail� that requires an
emergency CAM, the time Th > tfail at which to attempt a circulari-
zation maneuver after coasting from x�tfail� becomes a degree of
freedom. As we intend to maximize the recovery chances of the
chaser after a failure, we choose Th so as to minimize the cost of the
circularization burnΔvcirc, the magnitude of which we denoteΔvcirc.
Details on the approach, which can be solved analytically, can be
found in Appendix A.

3. CAM Policy Feasibility

Once the circularization time Th is determined, feasibility of the
escape trajectory under every possible failure configuration at x�tfail�
must be assessed in order to declare a particular CAM as actively safe.
To show this, the constraints of Eq. (7) must be evaluated under every
combination of stuck-off thrusters (up to fault tolerance F), with the
exception ofKOZ avoidance as this is embedded into the CAMdesign
process. How quickly thismay be done depends on howmany of these
constraints may be considered static (unchanging, i.e., independent of
tfail, in the LVLH frame of reference) or time varying (otherwise).

Fortunately, most practical mission constraints are static (i.e.,
imposed in advance by mission planners), allowing CAM trajectory
feasibility verification to bemoved offline. For example, considering
our particular constraints in Sec. II.E, if we can assume that the target
remains enclosed within its KOZ near the origin and that it maintains
a fixed attitude profile in the LVLH frame, then obstacle and antenna
lobe avoidance constraints become time invariant (independent of the
arrival time tfail). If we further assume the attitude q�t� of the chaser is
specified as a function of x�t�, then control allocation feasibility and
plume-impingement constraints become verifiable offline as well.
Better still, because of their time independence, we need only to
evaluate the safety of arriving at each failure state xfail once; this
means the active safety of a particular state can be cached, a fact we
will make extensive use of in the design of our planning algorithm.

Some constraints, on the other hand, cannot be defined a priori.
Thesemust be evaluated online, once the time tfail and current environ-
ment are known, which can be expensive due to the combinatorial ex-
plosion of thruster failure combinations. In such cases, these
constraints can instead be conservatively approximated by equivalent
static constraints, or otherwise omitted from online guidance until after
a nominal guidance plan has been completely determined (called lazy
evaluation). These strategies can help ensure active safety while
maintaining real-time capability.

IV. Planning Algorithm and Theoretical
Characterization

With the proximity operations scenario established, we are now in
position to describe our approach. As previously described, the

constraints that must be satisfied in Eq. (1) are diverse, complex, and
difficult to satisfy numerically. In this section, we propose a guidance
algorithm to solve this problem, followed by a detailed proof of its
optimality with regard to the sum-of-2-norms propellant-cost metric

J under impulsive CWH dynamics. As will be seen, the proof relies

on an understanding of: 1) the steering connections between sampled

points assuming no obstacles or other trajectory constraints and 2) the

nearest-neighbors or reachable states from a given state. We hence

start by characterizing these two concepts, in Secs. IV.A and IV.B,

respectively. We then proceed to the algorithm presentation (Sec. IV.

C) and its theoretical characterization (Sec. IV.D), before closingwith

a description of two smoothing techniques for rapidly reducing the

costs of sampling-based solution trajectories for systems with

impulsive actuation (Sec. V).

A. State Interconnections: Steering Problem

For sample-to-sample interconnections, we consider the un-

constrained minimal-propellant 2PBVP, or steering problem,

between an initial state x0 and a final state xf under CWH dynamics.

Solutions to these steering problems provide the local building

blocks from which we construct solutions to the more complicated

problem formulation in Eq. (1). Steering solutions serve two main

purposes:
1) They represent a class of short-horizon controlled trajectories

that are filtered online for constraint satisfaction and efficiently
strung together into a state-space spanning graph (i.e., a tree or
roadmap)

2) The costs of steering trajectories are used to inform the graph
construction process by identifying the unconstrained nearest neigh-
bors as edge candidates.

Because these problems can be expressed independently of the

arrival time t0 (as will be shown), our solution algorithm does not

need to solve these problems online; the solutions between every

pair of samples can be precomputed and stored before receiving a

motion query. Hence, the 2PBVP presented here need not be solved

quickly. However, we mention techniques for speedups due to the

reliance of our smoothing algorithm (Algorithm 2) on a fast solution

method.
Substituting our boundary conditions into Eq. (4), evaluating at

t � tf, and rearranging, we seek a stacked burn vector ΔV such that

Φv�tf; fτigi�ΔV � xf −Φ�tf; t0�x0 (11)

for some numberN of burn times τi ∈ �t0; tf�. Formulating this as an

optimal control problem that minimizes our sum-of-2-norms cost

functional (as a proxy for the actual propellant consumption, as

described in Sec. II.A), we wish to solve

Given: initial state x0; final state xf; burn magnitude boundΔvmax;

and maneuver duration boundTmax

minimize
Δvi;τi ;tf;N

XN
i�1

kΔvik2

subject to Φv�tf; fτigi�ΔV � xf −Φ�tf; t0�x0 dynamics=boundary conditions

0 ≤ tf − t0 ≤ Tmax maneuver duration bounds

t0 ≤ τi ≤ tf for burns i burn time bounds

kΔvik2 ≤ Δvmax for burns i burn magnitude bounds (12)

Notice that this is a relaxed version of the original problem
presented as Eq. (1), with only its boundary conditions, dynamic
constraints, and control norm bound. As it stands, because of the
nonlinearity of the dynamics with respect to τi, tf, andN, Eq. (12) is
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nonconvex and inherently difficult to solve. However, we can make

the problem tractable if we make a few assumptions. Given that we

plan to string many steering trajectories together to form our overall

solution, let us ensure they represent the most primitive building

blocks possible such that their concatenation will adequately rep-
resent any arbitrary trajectory. Set N � 2 (the smallest number of

burns required to transfer between any pair of arbitrary states, as it

makesΦv�tf; fτigi� square), and select burn times τ1 � t0 and τ2 �
tf (which automatically satisfy our burn time bounds). This leaves

Δv1 ∈ Rd∕2 (an intercept burn applied just after x0 at time t0),
Δv2 ∈ Rd∕2 (a rendezvous burn applied just before xf at time tf), and
tf as our only remaining decisionvariables. If we conduct a search for

t�f ∈ �t0; t0 � Tmax�, the relaxed 2PBVP can nowbe solved iteratively
as a relatively simple bounded one-dimensional nonlinear

minimization problem, where at each iteration one computes

ΔV�tf� � Φ−1
v �tf; ft0; tfg��xf −Φ�tf; t0�x0�

where the argument tf is shown for ΔV to highlight its dependence.

By uniqueness of the matrix inverse (provided Φ−1
v is nonsingular,

discussed in what follows), we need only check that the resulting

impulsesΔvi�tf� satisfy the magnitude bound to declare the solution
to an iteration feasible. Notice that, becauseΦ andΦ−1

v depend only

on the difference between tf and t0, we can equivalently search over
maneuver durations T � tf − t0 ∈ �0; Tmax� instead, solving the

following relaxation of Eq. (12):

Given∶ initial state x0; final state xf; burn magnitude boundΔvmax

and maneuver duration boundTmax <
2π

nref

minimize
T∈�0;Tmax �

X2
i�1

kΔvik2

subject to ΔV � Φ−1
v �T; f0; Tg��xf −Φ�T; 0�x0� dynamics∕boundary conditions

kΔvik2 ≤ Δvmax for burns i burn magnitude bounds (13)

This dependence on the maneuver duration T only (and not on the

time t0 at which we arrive at x0) turns out to be indispensable for

precomputation, as it allows steering trajectories to be generated and

stored offline. Observe, however, that our steering solution ΔV�
requires Φv to be invertible, i.e., that �tf − τ1� − �tf − τ2� �
tf − t0 � T avoids singular values (including zero, orbital period

multiples, and other values longer than one period [38]), and we

ensure this by enforcingTmax to be shorter than one period. To handle

the remaining case of T � 0, note a solution exists if and only if x0
and xf differ in velocity only; in such instances, we take the solution
to be Δv�2 set as this velocity difference (with Δv�1 � 0).

B. Neighborhoods: Cost Reachability Sets

Armed with a steering solution, we can now define and identify

state neighborhoods. This idea is captured by the concept of

reachability sets. In keeping with Eq. (13), since ΔV� depends only
on the trajectory endpoints xf and x0, we henceforth refer to the cost
of a steering trajectory by the notation J�x0; xf�. We then define the

forward reachability set from a given state x0 as follows.
Definition 6 (forward reachable set): The forward reachable setR

from state x0 is the set of all states xf that can be reached from x0 with
a cost J�x0; xf� below a given cost threshold �J, i.e.,

R�x0; �J� ≜ fxf ∈ X jJ�x0; xf� < �Jg

Recall fromEq. (13) in Sec. IV.A that the steering cost may bewritten

as

J�x0; xf� � kΔv1k � kΔv2k � kS1ΔVk � kS2ΔVk (14)

whereS1 � �Id∕2×d∕2; 0d∕2×d∕2�,S2 � �0d∕2×d∕2; Id∕2×d∕2�, andΔV is

given by

ΔV�x0; xf� �
�
Δv1
Δv2

�
� Φ−1

v �tf; ft0; tfg��xf −Φ�tf; t0�x0�

The cost function J�x0; xf� is difficult to gain insight into directly;
however, as we shall see, we can work with its bounds much more

easily.
Lemma 1 (fuel burn cost bounds): For the cost function in Eq. (14),

the following bounds hold:

kΔVk ≤ J�x0; xf� ≤
���
2

p
kΔVk

Proof: For the upper bound, note that by the Cauchy–

Schwarz inequality we have J � kΔv1k · 1� kΔv2k · 1 ≤��������������������������������������
kΔv1k2 � kΔv2k2

p
·

����������������
12 � 12

p
. That is, J ≤

���
2

p kΔVk. Similarly,

for the lower bound, note that J �
����������������������������������������
�kΔv1k � kΔv2k�2

p
≥��������������������������������������

kΔv1k2 � kΔv2k2
p

� kΔVk. □

Now, observe that kΔVk���������������������������������������������������������������������������������
�xf−Φ�tf;t0�x0�TG−1�xf−Φ�tf;t0�x0�

q
, where G−1 � Φ−T

v Φ−1
v .

This is the expression for an ellipsoid E�xf� resolved in the LVLH

frame with matrix G−1 and center Φ�tf; t0�x0 (the state T � tf − t0
time units ahead of x0 along its coasting arc). Combined with

Lemma 1, we see that for a fixedmaneuver timeT and propellant cost

threshold �J the spacecraft at x0 can reach all states inside an area

underapproximated by an ellipsoid with matrix G−1∕ �J2 and

overapproximated by an ellipsoid of matrix
���
2

p
G−1∕ �J2. The forward

reachable set for impulsiveCWHdynamics under our propellant-cost
metric is therefore bounded by the union over all maneuver times of
these under- and overapproximating ellipsoidal sets, respectively. To
better visualize this, see Fig. 7 for a geometric interpretation.

C. Motion Planning: Modified FMT* Algorithm

Wenowhave all the tools we need to adapt sampling-basedmotion
planning algorithms to optimal vehicle guidance under impulsive
CWHdynamics, as represented by Eq. (1). Sampling-based planning
essentially breaks down a continuous trajectory optimization
problem into a series of relaxed, local steering problems (as in
Sec. IV.A) between intermediate waypoints (called samples) before
piecing them together to form a global solution to the original
problem. This framework can yield significant computational
benefits if: 1) the relaxed subproblems are simple enough, and 2) the a
posteriori evaluation of trajectory constraints is fast compared to a
single solution of the full-scale problem. Furthermore, provided
samples are sufficiently dense in the free state-space X free and graph
exploration is spatially symmetric, sampling-based planners can
closely approximate global optima without fear of convergence to
local minima. Althoughmany candidate planners could be used here,
we rely on the AO FMT* algorithm for its efficiency (see [24] for
details on the advantages of FMT* over its state-of-the-art counter-
parts) and its compatibilitywith deterministic (as opposed to random)
batch sampling [39], a key benefit that leads to a number of algo-
rithmic simplifications (including the use of offline knowledge).
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The FMT* algorithm, tailored to our application, is presented as

Algorithm 1 (we shall henceforth refer to our modified version of

FMT* as simply FMT*, for brevity). Like its path-planning variant,
our modified FMT* efficiently expands a tree of feasible trajectories

from an initial state xinit to a goal state xgoal around nearby obstacles.
It begins by taking a set of samples distributed in the free state space

X free using the SAMPLEFREE routine, which restricts state sampling to
actively safe feasible states (which lie outside ofXobs and have access

to a safe CAM as described in Sec. III.C). In our implementation, we

assume samples are taken using theHalton sequence [40], though any
deterministic, low-dispersion sampling sequence may be used [39].

After selecting xinit first for further expansion as the minimum cost-
to-come node z, the algorithm then proceeds to look at reachable

samples or neighbors (samples that can be reached with less than a
given propellant cost threshold �J, as described in the previous

subsection) and attempts to connect those with the cheapest cost-to-

come back to the tree (using Steer). The cost threshold �J is a free
parameter of which the value can have a significant effect on

performance; see Theorem 2 for a theoretical characterization and
Sec. VI for a representative numerical trade study. Those trajectories

satisfying the constraints of Eq. (1), as determined by CollisionFree,
are saved. As feasible connections are made, the algorithm relies on

adding and removing nodes (savedwaypoint states) from three sets: a

set of unexplored samples Vunvisited not yet connected to the tree, a
frontier Vopen of nodes likely to make efficient connections to

unexplored neighbors, and an interior Vclosed of nodes that are no
longer useful for exploring the state space X . More details on FMT*

can be found in its original work [24].
To make FMT* amenable to a real-time implementation, we

consider an online–offline approach that relegates as much compu-

tation as possible to a preprocessing phase. To be specific, the sam-

ple set S (Line 2), nearest-neighbor sets (used in Lines 5 and 6),
and steering trajectory solutions (Line 7) may be entirely pre-
processed, assuming the planning problem satisfies the following
conditions:
1) The state space X is known a priori, as is typical for most LEO

missions (notewe do not impose this on the obstacle spaceXobs ⊂ X ,
which must generally be identified online using onboard sensors
upon arrival to X ),
2) Steering solutions are independent of sample arrival times t0, as

we show in Sec. IV.A.
Here, Item1allows samples tobe precomputed,while Item2enables

steering trajectories to be stored onboard or uplinked from the ground
up to the spacecraft, since their values remain relevant regardless of the
times at which the spacecraft actually follows them during the mission.
This leaves only constraint checking, graph construction, and termi-
nation checks as parts of the online phase, greatly improving the online
run time and leaving the more intensive work to offline resources for
which running time is less important. This breakdown into online and
offline components (inspired by [41]) is a valuable technique for
imbuing kinodynamicmotion planning problems with real-time online
solvability using fast batch planners like FMT*.

D. Theoretical Characterization

It remains to show that FMT* provides similar asymptotic
optimality guarantees under the sum-of-2-norms propellant-cost
metric and impulsive CWH dynamics (which enter into Algorithm 1
under Lines 6 and 7), as has already been shown for kinematic
(straight-line path-planning) problems [24]. For sampling-based
algorithms, asymptotic optimality refers to the property that, as the
number of samples n → ∞, the cost of the trajectory (or path)
returned by the planner approaches that of the optimal cost. Here, a

Algorithm 1 The fast marching tree algorithm (FMT*): Computes a minimal-cost
trajectory from an initial state x�t0� � xinit to a target state xgoal through a fixed number

n of samples S

1) Add xinit to the root of the tree T , as a member of the frontier set Vopen

2) Generate samples S← SAMPLEFREE (X , n, t0), and add them to the unexplored set Vunvisited

3) Set the minimum cost-to-come node in the frontier set as z←xinit
4) while true do
5) for each neighbor x of z in Vunvisited do
6) Find the neighbor xmin in Vopen of cheapest cost-to-go to x
7) Compute the trajectory between them as �x�t�; u�t�; t�←Steer�xmin; x� (see Sec. IV.A)
8) if COLLISIONFREE �x�t�; u�t�; t�, then
9) Add the trajectory from xmin to x to tree T
10) Remove all x from the unexplored set Vunvisited

11) Add any new connections x to the frontier Vopen

12) Remove z from the frontier Vopen, and add it to Vclosed

13) if Vopen is empty, then
14) return failure
15) Reassign z as the node in Vopen with smallest cost-to-come from the root (xinit)
16) if z is in the goal region Xgoal, then
17) return success, and the unique trajectory from the root (xinit) to z

a) The set of reachable positions δrf within
duration Tmax and propellant cost Δυmax

b) The set of reachable velocities δvf within duration
 Tmax and propellant cost Δυmax

Fig. 7 Bounds on reachability sets from initial state x�t0� under propellant-cost threshold �J.
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proof is presented showing asymptotic optimality for the planning
algorithm and problem setup used in this paper. We note that, while
CWH dynamics are the primary focus of this work, the following
proof methodology extends to any general linear system controlled
by a finite sequence of impulsive actuations, the fixed-duration
2-impulse steering problem of which is uniquely determined (e.g., a
wide array of second-order control systems).
The proof proceeds analogously to [24] by showing that it is

always possible to construct an approximate path using points in S
that closely follows the optimal path. Similarly to [24] are great, we
will make use here of a concept called the l2 dispersion of a set of
points, which places upper bounds on how far away a point inX can
be from its nearest point in S as measured by the l2-norm.
Definition 7 (l2 dispersion): For a finite, nonempty set S of points

in a d-dimensional compact Euclidean subspace X with positive
Lebesgue measure, its l2 dispersion D�S� is defined as

D�S� ≜ sup
x∈X

min
s∈S

ks − xk

� supfR > 0j∃ x ∈ X withB�x; R� ∩ S � ∅g
where B�x; R� is a Euclidean ball with radius R centered at state x.
We also require a means for quantifying the deviation that small

endpoint perturbations can bring about in the two-impulse steering
control. This result is necessary to ensure that the particular
placement of the points of S is immaterial; only its low-dispersion
property matters.
Lemma 2 (steering with perturbed endpoints) : For a given steering

trajectory x�t� with initial time t0 and final time tf, let x0 ≔ x�t0�,
xf ≔ x�tf�, T ≔ tf − t0, and J ≔ J�x0; xf�. Consider now the per-
turbed steering trajectory ~x�t� between perturbed start and endpoints
~x0�x0�δx0 and ~xf�xf�δxf and its corresponding cost J� ~x0; ~xf�.
Case 1 (T � 0): There exists a perturbation center δxc (consisting of

only a position shift) with kδxck � O�J2� such that, if kδx0k ≤
ηJ3 and kδxf − δxck ≤ ηJ3, then J� ~x0; ~xf�≤J�1�4η�O�J��
and the spatial deviation of the perturbed trajectory ~x�t� from
x�t� is O�J�.

Case 2 (T > 0): If kδx0k ≤ ηJ3 and kδxfk ≤ ηJ3, then
J� ~x0; ~xf� ≤ J�1�O�ηJ2T−1��, and the spatial deviation of the
perturbed trajectory ~x�t� from x�t� is O�J�.

Proof: For the proof, see Appendix B. □

We are now in a position to prove that the cost of the trajectory
returned by FMT* approaches that of an optimal trajectory as the
number of samples n → ∞. The proof proceeds in two steps. First,
we establish that there is a sequence of waypoints in S that are placed
closely along the optimal path and approximately evenly spaced in
cost. Then, we show that the existence of these waypoints guarantees
that FMT* finds a path with a cost close to that of the optimal cost.
The theorem and proof combine elements from Theorem 1 in [24]
and Theorem IV.6 from [42].
Definition 8 (strong δ clearance): A trajectory x�t� is said to have

strong δ clearance if, for some δ > 0 and all t, the Euclidean distance
between x�t� and any point in Xobs is greater than δ.
Theorem 1 (existence of waypoints near an optimal path): Let x�t�

be a feasible trajectory for the motion planning problem Eq. (1) with

strong δ clearance, let u��t� � P
N
i�1 Δv�i · δ�t − τ�i � be its asso-

ciated control trajectory, and let J� be its cost. Furthermore, let
S ∪ fxinitg be a set of n ∈ N points from X free with dispersion

D�S� ≤ γn−1∕d. Let ϵ > 0, and choose �J � 4�γn−1∕d∕ϵ�1∕3. Then,
provided that n is sufficiently large, there exists a sequence of points

fykgKk�0, yk ∈ S such that J�yk; yk�1� ≤ �J, the cost of the path y�t�
made by joining all of the steering trajectories between yk and yk�1 isP

K−1
k�0 J�yk; yk�1� ≤ �1� ϵ�J�, and y�t� is itself strong �δ∕2� clear.
Proof: We first note that, if J� � 0, then we can pick y0 � x��t0�

and y1 � x��tf� as the only points in fykg, and the result is trivial.
Thus, assume that J� > 0. Construct a sequence of times ftkgKk�0 and
corresponding points x�k � x��tk� spaced along x��t� in cost intervals
of �J∕2. We admit a slight abuse of notation here in that x��τ�i � may
represent a statewith any velocity along the length of the impulseΔv�i ;
to be precise, pick x�0 � xinit, t0 � 0, and for k � 1; 2; : : : define
jk � minfjjPj

i�1 kΔv�i k > k
�J
2
g, and select tk and x�k as

tk � τ�jk

x�k � lim
t→t−

k

x��t� �


k
�J

2
−
Xjk−1
i�1

kΔv�i k
�
B

Δv�i
kΔv�i k

Let K � dJ�e∕� �J∕2�, and set tK � tf, x
�
K � x��tf�. Since the

trajectory x��t� to be approximated is fixed, for sufficiently small �J
(equivalently, sufficiently large n), we may ensure that the control
applied between each x�k and x�k�1 occurs only at the endpoints. In

particular this may be accomplished by choosing n large enough so

that �J < minikΔv�i k. In the limit �J → 0, the vast majority of the

two-impulse steering connections between successive x�k will be

zero-time maneuvers (arranged along the length of each burn Δv�i )
with only N positive-time maneuvers spanning the regions of x��t�
between burns. By considering this regime of n, we note that
applying two-impulse steering between successive x�k (which

otherwise may only approximate the performance of amore complex
control scheme) requires cost no greater than that of x� itself along

that step, i.e., �J∕2.
We now inductively define a sequence of points fx̂�kgKk�0 by

x̂�0 � x�0 and for each k > 0:
1) If tk � tk−1, pick x̂

�
k � x�k � δxc;k � �x̂�k−1 − x�k−1�, where δxc;k

comes from Lemma 2 for zero-time approximate steering between
x�k−1 and x�k subject to perturbations of size ϵJ

3.
2) Otherwise, if tk > tk−1, pick x̂�k � x�k � �x̂�k−1 − x�k−1�. The

reason for defining these x̂�k is that the process of approximating
eachΔv�i by a sequence of small burns necessarily incurs some short-
term position drift. Since δxc;k � O� �J2� for each k, and since
K � O� �J−1�, the maximum accumulated difference satisfies
maxkkx̂�k − x�kk � O� �J�.
For each k, consider the Euclidean ball centered at x̂�k with radius

γn−
1
d; i.e., let Bk ≔ B�x̂�k ; γn−

1
d�. By Definition 7 and our restriction

on S, eachBk contains at least one point from S. Hence, for everyBk,

we can pick awaypoint yk such that yk ∈ Bk ∩ S. Then, kyk − x̂�kk ≤
γn−

1
d � ϵ� �J∕2�3∕8 for all k, and thus by Lemma 2 (with η � ϵ∕8), we

have that

J�yk; yk�1� ≤
�J

2

�
1� ϵ

2
�O� �J�

�
≤

�J

2
�1� ϵ�

for sufficiently large n. In applying Lemma 2 to Case 2 for k such that
tk�1 > tk, we note that the T

−1 term is mitigated by the fact that there
is only a finite number of burn times τ�i along x��t�. Thus, for each
such k, tk�1 − tk ≥ minj�tj�1 − tj� > 0, so in every case, we have

J�yk; yk�1� ≤ � �J∕2��1� ϵ�. That is, each segment connecting yk to
yk�1 approximates the cost of the corresponding x�k to x

�
k�1 segment

of x��t� up to a multiplicative factor of ϵ, and thus

XK−1
k�0

J�yk; yk�1� ≤ �1� ϵ�J�

Finally, to establish that y�t�, the trajectory formed by steering
through the yk in succession, has sufficient obstacle clearance, we

note that its distance from x��t� is bounded by maxkkx̂�k − x�kk �
O� �J� plus the deviation bound from Definition 7, again O� �J�. For
sufficiently large n, the total distance O� �J� will be bounded by δ∕2,
and thus y�t� will have strong �δ∕2� clearance. □

We now prove that FMT* is asymptotically optimal in the number
of points n, provided the conditions required in Theorem 1 hold; note
the proof is heavily based on Theorem VI.1 from [43].
Theorem 2 (asymptotic performance of FMT*): Let x��t� be a

feasible trajectory satisfying Eq. (1) with strong δ clearance and cost
J�. LetS ∪ fx0g be a set of n ∈ N samples fromX free with dispersion
D�S� ≤ γn−1∕d. Finally, let Jn denote the cost of the path returned by
FMT* with n points in S while using a cost threshold �J�n� �
ω�n−1∕3d� and �J � o�1�. [That is, �J�n� asymptotically dominates
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n−1∕3d and is asymptotically dominated by 1.] Then,
limn→∞ Jn ≤ J�.
Proof: Let ϵ > 0. Pick n sufficiently large so that δ∕2 ≥ �J ≥

4�γn−1∕d∕ϵ�1∕3 such that Theorem 1 holds. That is, there exists a

sequence of waypoints fykgKk�0 approximating x��t� such that the

trajectory y�t� created by sequentially steering through the yk is

strong δ∕2 clear, the connection costs of which satisfy J�yk; yk�1� ≤
�J and the total cost of which satisfies

P
K−1
k�0 J�yk; yk�1� ≤ �1� ϵ�J�.

We show that FMT* recovers a path with cost at least as good as y�t�;
that is, we show that limn→∞Jn ≤ J�.
Consider running FMT* to completion, and for each yk, let c�yk�

denote the cost-to-come of yk in the generated graph (with value∞ if
yk is not connected). We show by induction that

min�c�ym�; Jn� ≤
Xm−1

k�0

J�yk; yk�1� (15)

for all m ∈ �1; : : : ; K�. For the base case m � 1, we note by the
initialization of FMT* in Line 1 of Algorithm 1 that xinit is in Vopen;
therefore, by the design of FMT* (per Lines 5–9), every possible
feasible connection ismade between the first waypoint y0 � xinit and
its neighbors. Since J�y0; y1� ≤ �J and the edge �y0; y1� is collision
free, it is also in the FMT* graph. Then, c�y1� � J�y0; y1�. Now
assuming that Eq. (15) holds for m − 1, one of the following
statements holds:
1) Jn ≤

P
m−2
k�0 J�yk; yk�1�.

2) c�ym−1� ≤
P

m−2
k�0 J�yk; yk�1�, and FMT* ends before

considering ym.
3) c�ym−1� ≤

P
m−2
k�0 J�yk; yk�1�, and ym−1 ∈ Vopen when ym is

first considered.
4) c�ym−1� ≤

P
m−2
k�0 J�yk; yk�1�, and ym−1 ∈= Vopen when ym is

first considered.
We now show for each case that our inductive hypothesis holds.

Case 1: Jn ≤
P

m−2
k�0 J�yk; yk�1� ≤

P
m−1
k�0 J�yk; yk�1�.

Case 2: Since at every step FMT* considers the node that is the
endpoint of the path with the lowest cost, if FMT* ends before
considering ym, we have

Jn ≤ c�ym� ≤ c�ym−1� � J�ym−1; ym� ≤
Xm−1

k�0

J�yk; yk�1�

Case 3: Since the neighborhood of ym is collision free by the
clearance property of y, and since ym−1 is a possible parent
candidate for connection, ym will be added to the FMT* tree as
soon as it is considered with c�ym� ≤ c�ym−1� � J�ym−1; ym� ≤P

m−1
k�0 J�yk; yk�1�.

Case 4: When ym is considered, it means there is a node z ∈ Vopen

(with minimum cost to come through the FMT* tree) and
ym ∈ R�z; �J�. Then, c�ym�≤c�z��J�z;ym�. Since c�ym−1� <
∞, ym−1 must be added to the tree by the time FMT* terminates.
Consider the path from xinit to ym−1 in the final FMT* tree, and
let w be the last vertex along this path, which is in Vopen at the

time when ym is considered. If ym ∈ R�w; �J�, i.e.,w is a parent
candidate for connection, then

c�ym� ≤ c�w� � J�w; ym�
≤ c�w� � J�w; ym−1� � J�ym−1; ym�
≤ c�ym−1� � J�ym−1; ym�

≤
Xm−1

k�0

J�yk; yk�1�

Otherwise, if ym ∈= R�w; �J�, then J�w; ym� > �J, and

c�ym� ≤ c�z� � J�z; ym�
≤ c�w� � �J

≤ c�w� � J�w; ym�
≤ c�w� � J�w; ym−1� � J�ym−1; ym�
≤ c�ym−1� � J�ym−1; ym�

≤
Xm−1

k�0

J�yk; yk�1�

where we used the fact that w is on the path of ym−1 to establish
c�w� � J�w; ym−1� ≤ c�ym−1�. Thus, by induction, Eq. (15) holds
for all m. Taking m � K, we finally have that Jn ≤ c�yK� ≤P

K−1
k�0 J�yk; yk�1� ≤ �1� ϵ�J�, as desired.
Remark 1: (asymptotic optimality of FMT*): If the planning

problem at hand admits an optimal solution that does not itself have
strong δ clearance, but is arbitrarily approximable both pointwise and
in cost by trajectories with strong clearance (see [43] for additional
discussion on why such an assumption is reasonable), then
Theorem 2 implies the asymptotic optimality of FMT*.

V. Trajectory Smoothing

Because of the discreteness caused by using a finite number of
samples, sampling-based solutions will necessarily be approxima-
tions to true optima. In an effort to compensate for this limitation, we
offer in this section two techniques to improve the quality of solutions
returned by our planner from Sec. IV.C. We first describe a straight-
forwardmethod for reducing the sum ofΔv-vectormagnitudes along
concatenated sequences of edge trajectories that can also be used to
improve the search for propellant-efficient trajectories in the feasible
state spaceX free.We then followwith a fast postprocessing algorithm
for further reducing the propellant cost after a solution has been
reported.
The first technique removes unnecessary Δv vectors that occur

when joining subtrajectories (edges) in the planning graph. Consider
merging two edges at a nodewith position δr�t� and velocity δv�t� as
in Fig. 8a. A naive concatenation would retain both Δv2�t−� (the
rendezvous burn added to the incoming velocity v�t−�) and Δv1�t�

a) Smoothing during graph construction
(merges Δ  vectors at edge endpoints)

b) Smoothing during postprocessing 
(see algorithm 2)υ

Fig. 8 Improving sampling-based solutions under minimal-propellant impulsive dynamics.
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(the intercept burn used to achieve the outgoing velocity v�t��)
individually within the combined control trajectory. Yet, because
these impulses occur at the same time, a more realistic approach

should merge them into a single net Δv vector Δvi�t−�. By the

triangle inequality, we have that

kΔvnet�t−�k � kΔv2�t−� � Δv1�t�k ≤ kΔv2�t−�k � kΔv1�t�k

Hence, merging edges in this way guarantees Δv savings for

solution trajectories under our propellant-cost metric. Furthermore,
incorporating netΔv into the cost to come during graph construction

can make the exploration of the search space more efficient; the cost

to come c�z� for a given node z would then reflect the cost to
rendezvous with z from xinit through a series of intermediate

intercepts rather than a series of rendezvous maneuvers (as a
trajectory designer might normally expect). Note, on the other hand,

that these new net Δv vectors may be larger than either individual

burn, which may violate control constraints; control feasibility tests
(allocation feasibility to thrusters, plume impingement, etc.) must

thus be reevaluated for each new impulse. Furthermore, observe that
the node velocity δv�t� is skipped altogether at edge endpoints when
two edges as in Fig. 8a are merged in this fashion. This can be

problematic for the actively safe abort CAM (see Sec. III.C) from
states along the incoming edge, which relies on rendezvousing with

the endpoint x � �δr�t�; δv�t�� exactly before executing a one-burn
circularization maneuver. To compensate for this, care must be taken

to ensure that the burn Δv2�t−� that is eliminated during merging is

appropriately appended to the front of the escape control trajectory
and verified for all possible failure configurations. Hence, we see the

price of smoothing in this way is 1) reevaluating control-dependent
constraints at edge endpoints before accepting smoothing and 2) that

our original one-burn policy now requires an extra burn, which may

not be desirable in some applications.
The second technique attempts to reduce the solution cost by

adjusting the magnitudes of Δv vectors in the trajectory returned by
FMT* [denoted by xn�t� with associated stacked impulse vector

ΔVn]. By relaxing FMT*’s constraint to pass through state samples,

strong cost improvements may be gained. The main idea is to deform
our low-cost, feasible solution xn�t� as much as possible toward the

unconstrained minimum-propellant solution x��t� between xinit and
xgoal, as determined by the 2PBVP [Eq. (12)] solution from Sec. IV.A

[in other words, use a homotopic transformation from xn�t� to x��t�].
However, a naive attempt to solve Eq. (12) in its full generality would
be too time consuming to be useful and would threaten the real-time

capability of our approach. Assuming our sampling-based trajectory
is near optimal (or at least in a low-cost solution homotopy), we can

relax Eq. (12) by keeping the number of burnsN, end time tf ≔ tfinal,
and burn times τi fixed from our planning solution and solve for an

approximate unconstrained minimum-propellant solution ΔV† with

associated state trajectory x†�t� via

minimize
Δvi

XN
i�1

kΔvik2

subject to Φv�tfinal; fτigi�ΔV � xgoal −Φ�tfinal; tinit�xinit
dynamics=boundary conditions

kΔvik2 ≤ Δvmax for all burns i

burn magnitude bounds (16)

(see Sec. II.C for definitions). It can be shown that Eq. (16) is a

second-order cone program and is hence quickly solved using

standard convex solvers. As the following theorem shows explicitly,

we can safely deform the trajectory xn�t� toward x†�t� without

violating our dynamics and boundary conditions if we use a convex

combination of our two control trajectories ΔVn and ΔV†. This

follows from the principle of superposition, given that the CWH

equations are LTI and the fact that both solutions already satisfy the

boundary conditions.
Theorem 3 (dynamic feasibility of CWH trajectory smoothing):

Suppose xn�t� and x†�t� with respective control vectors ΔVn and

ΔV† are two state trajectories satisfying the steering problemEq. (11)

between states xinit and xgoal. Then, the trajectory x�t� generated by

the convex combination of ΔVn and ΔV† is itself a convex

combination of xn�t� and x†�t� and hence also satisfies Eq. (11).
Proof: Let ΔV � αΔVn � �1 − α�ΔV† for some value α ∈ �0; 1�.

From our dynamics equation,

x�t� � Φ�t; tinit�xinit �Φv�t; fτigi�ΔV
� �α� �1 − α��Φ�t; tinit�xinit �Φv�t; fτigi��αΔVn � �1 − α�ΔV†�
� α�Φ�t; tinit�xinit �Φv�t; fτigi�ΔVn�
� �1 − α��Φ�t; tinit�x0 �Φv�t; fτigi�ΔV†�

� αxn�t� � �1 − α�x†�t�

which is a convex combination, as required. Substituting t � tinit or
t � tgoal, we see that x�t� satisfies the boundary conditions given that
xn�t� and x†�t� do.
We take advantage of this fact for trajectory smoothing. Our

algorithm, reported as Algorithm 2 and illustrated in Fig. 8b,

computes the approximate unconstrained minimum- propellant

solution x†�t� and returns it (if feasible) or otherwise conducts a

bisection line search on α, returning a convex combination of our

original planning solution xn�t� and x†�t� that comes as close to x†�t�

Algorithm 2 Trajectory smoothing algorithm for impulsive CWH dynamics:
Given a trajectory xn�t�, t ∈ �tinit;tgoal� between initial and goal states xinit and xgoal
satisfying Eq. (1) with impulses ΔVn applied at times fτigi, returns another feasible

trajectory with reduced propellant cost

1) Initialize the smoothed trajectory xsmooth�t� as xn�t�, with ΔVsmooth � ΔVn

2) Compute the unconstrained optimal control vector ΔV† by solving Eq. (16)
3) Compute the unconstrained optimal state trajectory x†�t� using Eq. (4) (See Sec. II.C)
4) Initialize weight α and its lower and upper bounds as α←1, αl←0, αu←1
5) while true do
6) x�t�←�1 − α�xn�t� � αx†�t�
7) ΔV←�1 − α�ΔVn � αΔV†

8) if COLLISIONFREE (x�t�;ΔV; t) then
9) αl←α
10) Save the smoothed trajectory xsmooth�t� as x�t� and control ΔVsmooth as ΔV
11) else
12) αu←α
13) if αu − αl is less than tolerance δαmin ∈ �0; 1� then
14) break
15) α←�αl � αu�∕2
16) return the smoothed trajectory xsmooth�t�, with ΔVsmooth
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as possible without violating trajectory constraints. Note because
ΔVn lies in the feasible set of Eq. (16) the algorithm can only improve
the final propellant cost. By design, Algorithm 2 is geared toward
reducing our original solution propellant cost as quickly as possible
while maintaining feasibility; the most expensive computational
components are the calculation of ΔV† and constraint checking
(consistent with our sampling-based algorithm). Fortunately, the
number of constraint checks is limited by the maximum number of
iterations dlog2� 1

δαmin
�e � 1, given tolerance δαmin ∈ �0; 1�. As an

added bonus, for strictly time-constrained applications that require a
solution in a fixed amount of time, the algorithm can be easily
modified to return the αl-weighted trajectory xsmooth�t� when time
runs out, as the feasibility of this trajectory is maintained as an
algorithm invariant.

VI. Numerical Experiments

Consider the two scenarios shown in Fig. 9 modeling both planar
and nonplanar near-field approaches of a chaser spacecraft in close
proximity¶ to a target moving on a circular LEO trajectory (as in
Fig. 1).We imagine the chaser, which starts in a circular orbit of lower
radius, must be repositioned through a sequence of prespecified
CWH waypoints (e.g., required for equipment checks, surveying,
etc.) to a coplanar position located radially above the target, arriving
with zero relative velocity in preparation for a final radial (R-bar)
approach. Throughout the maneuver, as described in detail in Sec. II,
the chaser must avoid entering the elliptic target KOZ, enforce a hard
two-fault tolerance to stuck-off thruster failures, and otherwise avoid
interfering with the target. This includes avoiding the target’s nadir-

pointing communication lobes (represented by truncated half-cones)
and preventing exhaust plume impingement on its surfaces. For

context, we use the Landsat-7 [44] spacecraft and orbit as a reference
([45] Sec. 3.2) (see Figs. 10 and 11).

A. Simulation Setup

Before proceeding to the results, we first outline some key features
of our setup. Taking the prescribed query waypoints one at a time as

individual goal points xgoal, we solve the given scenario as a series of
motion planning problems (or subplans) linked together into an

overall solution, calling FMT* from Sec. IV.C once for each subplan.
For this multiplan problem, we take the solution cost to be the sum of

individual subplan costs (when using trajectory smoothing, the
endpoints between two plans are merged identically to two edges

within a plan, as described in Sec. V).
As our steering controller from Sec. IV.A is attitude independent,

states x ∈ Rd are either xT � �δx; δy; δ _x; δ _y� with d � 4 (planar
case) or xT � �δx; δy; δz; δ _x; δ _y; δ_z� with d � 6 (nonplanar case).

This omission of the attitude q from the state is achieved by
employing an attitude policy (assuming a stabilizing attitude

controller), which produces q�t� from the state trajectory x�t�. For
illustration purposes, a simple nadir-pointing attitude profile is

chosen during nominal guidance, representing a mission requiring

constant communication with the ground; for actively safe abort, we
assume a simple turn–burn–turn policy, which orients the closest-

available thruster under each failure mode as quickly as possible into
the direction required for circularization (see Sec. III.C).
Given the hyperrectangular shape of the state space, we call upon

the deterministic, low-dispersion d-dimensional Halton sequence

[40] to sample positions and velocities. To improve sampling
densities, each subplan uses its own sample space defined around its

respective initial and goal waypoints, with some arbitrary threshold

a) Planar motion planning query b) 3-dimensional motion planning query
Fig. 9 Illustrations of the planar and 3D motion plan queries in the LVLH frame.

Fig. 10 Target spacecraft geometry and orbital scenario used in numerical experiments.

¶Close proximity in this context implies that any higher-order terms of the
linearized relative dynamics are negligible, e.g., within a few percent of the
target orbit mean radius.
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space added around them. Additionally, extra samples ngoal are taken
inside each waypoint ball to facilitate convergence.
Finally, we make note of three additional implementation details.

First, for clarity, we list all relevant simulation parameters in Table 1.
Second, all position-related constraint checks regard the chaser
spacecraft as a point at its center of mass, with all other obstacles
artificially inflated by the radius of its circumscribing sphere. Third
and finally, all trajectory constraint checking is implemented by
pointwise evaluation with a fixed time-step resolution Δt, using the
analytic state transition equations Eq. (4) together with steering
solutions from Sec. IV.A to propagate graph edges; for speed, the line
segments between points are excluded. Except near very sharp
obstacle corners, this approximation is generally not a problem in
practice (obstacles can always be inflated further to account for this).
To improve performance, each obstacle primitive (ellipsoid, right-
circular cone, hypercube, etc.) employs hierarchical collision
checking using hyperspherical and/or hyperrectangular bounding
volumes to quickly prune points from consideration.

B. Planar Motion Planning Solution

A representative solution to the posed planning scenario, bothwith
and without the trajectory smoothing algorithm (Algorithm 2), is
shown in Fig. 12. As shown, the planner successfully finds safe
trajectories within each subplan, which are afterward linked to form
an overall solution. The state space of the first subplan shown at the
bottom is essentially unconstrained, as the chaser at this point is too
far away from the target for plume impingement to come into play.

This means every edge connection attempted here is added, so the
first subplan illustrates well a discrete subset of the reachable states
around xinit and the unrestrained growth of FMT*. As the second
subplan is reached, the effects of the KOZ position constraints come
in to play, and we see edges begin to take more leftward loops. In
subplans 3 and 4, plume impingement begins to play a role. Finally, in
subplan 5 at the top, where it becomes very cheap to move between
states (as the spacecraft can simply coast to the right for free), we see
the initial state connecting to nearly every sample in the subspace,
resulting in a straight shot to the final goal. As is evident, straight-line
path planning would not approximate these trajectories well,
particularly near coasting arcs, along which our dynamics allow the
spacecraft to transfer for free.
To understand the smoothing process, examine Fig. 13. Here, we

see how the discrete trajectory sequence from our sampling-based
algorithm may be smoothly and continuously deformed toward the
unconstrained minimal-propellant trajectory until it meets trajectory
constraints (as outlined in Sec. V); if these constraints happen to be
inactive, then the exact minimal-propellant trajectory is returned, as

Table 1 List of parameters used during near-circular orbit
rendezvous simulations

Parameter Value

Chaser plume half-angle, βplume 10 deg
Chaser plume height, Hplume 16 m
Chaser thruster fault tolerance, F 2
Cost threshold, �J 0.1–0.4 m∕s
Dimension, d 4 (planar), 6

(nonplanar)
Goal sample count, ngoal 0.04n
Goal position tolerance, ϵr 3–8 m
Goal velocity tolerance, ϵv 0.1–0.5 m∕s
Max. allocated thruster Δv magnitude, Δvmax;k ∞ m∕s
Max. commanded Δv-vector magnitude kΔvik,
Δvmax

∞ m∕s

Max. plan duration, Tplan;max ∞ s
Min. plan duration, Tplan;min 0 s
Max. steering maneuver duration, Tmax 0.1 · �2π∕nref�
Min. steering maneuver duration, Tmin 0 s
Sample count, n 50–400 per plan
Simulation time step, Δt 0.0005 · �2π∕nref�
Smoothing tolerance, δαmin 0.01
Target antenna lobe height 75 m
Target antenna beamwidth 60°
Target KOZ semi-axes, �ρδx; ρδy; ρδz� � 35 50 15 � m

a) Chaser spacecraft b) Target spacecraft

Fig. 11 Models of the chaser and target, together with their circumscribing spheres.

Fig. 12 Representative planar motion planning solution using the
FMT* algorithm (Algorithm 1) with n � 2000 (400 per subplan),
�J � 0.3 m∕s, and relaxed waypoint convergence (Soln, Solution; Traj,
Trajectory).
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Fig. 13a shows. This computational approach is generally quite fast,
assuming a well-implemented convex solver is used, as will be seen
in the results of the next subsection.
The net Δv costs of the two reported trajectories in this example

come to 0.835 (unsmoothed) and 0.811 m∕s (smoothed). Compare
this to 0.641 m∕s, the cost of the unconstrained direct solution that
intercepts each of the goal waypoints on its way to rendezvousingwith
xgoal (this trajectory exits the state space along the positive in-track
direction, a violation of our proposed mission; hence, its cost
represents an underapproximation to the true optimal cost J of the
constrained problem). This suggests that our solutions are quite close
to the constrained optimum, and certainly on the right order of
magnitude. Particularlywith the addition of smoothing at lower sample
counts, the approach appears to be a viable one for spacecraft planning.
If we compare the net Δv costs to the actual measured propellant

consumption given by the sum total of all allocated thruster Δv
magnitudes [which equal 1.06 (unsmoothed) and 1.01 m∕s
(smoothed)], we find increases of 27.0 and 24.5%; as expected, our
sum-of-2-norms propellant-cost metric underapproximates the true
propellant cost. For point masses with isotropic control authority
(e.g., a steerable or gimbaled thruster that is able to point freely in any
direction), our cost metric would be exact. Although inexact for our
distributed attitude-dependent propulsion system (see Fig. 11a), it is
clearly a reasonable proxy for allocated propellant use, returning
values on the same order of magnitude. Although we cannot make a
strong statement about our proximity to the propellant-optimal
solutionwithout directly optimizing over thrusterΔv allocations, our
solution clearly seems to promote low propellant consumption.

C. Nonplanar Motion Planning Solution

For the nonplanar case, representative smoothed and unsmoothed
FMT* solutions can be found in Fig. 14. Here, the spacecraft is
required to move out of plane to survey the target from above before
reaching the final goal position located radially above the target. The
first subplan involves a long reroute around the conical region
spanned by the target’s communication lobes. Because the chaser
begins in a coplanar circular orbit at xinit, most steering trajectories
require a fairly large cost to maneuver out of plane to the first
waypoint. Consequently, relatively few edges that both lie in the
reachable set of xinit and safely avoid the large conical obstacles are
added. As we progress to the second and third subplans, the
corresponding trees become denser (more steering trajectories are
both safe and within our cost threshold �J) as the state space becomes
more open. Compared with the planar case, the extra degree of
freedom associated with the out-of-plane dimension appears to allow
more edges ahead of the target in the in-track direction than before,
likely because now the exhaust plumes generated by the chaser are

well out of plane from the target spacecraft. Hence, the space-
craft smoothly and tightly curls around the ellipsoidal KOZ to
the goal.
The netΔv costs for this example come to 0.611 (unsmoothed) and

0.422 m∕s (smoothed). Counterintuitively, these costs are on the
same order of magnitude and slightly cheaper than the planar case;
the added freedom given by the out-of-plane dimension appears to
outweigh the high costs typically associated with inclination changes
and out-of-plane motion. These cost values correspond to total
thruster Δv allocation costs of 0.893 and 0.620 m∕s, respectively,
increases of 46 and 47% above their counterpart cost metric values.
Again, our cost metric appears to be a reasonable proxy for actual
propellant use.

D. Performance Evaluation

To evaluate the performance of our approach, an assessment of
solution quality is necessary as a function of planning parameters,
i.e., the number of samples n taken and the reachability set cost
threshold �J. As proven in Sec. IV.D, the solution cost will eventually
reduce to the optimal value as we increase the sample size n.
Alternatively, we can attempt to reduce the cost by increasing the cost
threshold �J used for nearest-neighbor identification so that more
connections are explored. Both, however, work at the expense of the
running time. To understand the effects of these changes on quality,
especially at finite sample counts for which the asymptotic
guarantees of FMT* do not necessarily imply cost improvements, we
measure the cost vs computation time for the planar planning
scenario parameterized over several values of n and �J.
Results are reported in Figs. 15 and 16. Here, we call FMT* once

each for a series of sample count/cost threshold pairs, plotting the
total cost of successful runs at their respective run times** as
measured by wall clock time (CVXGEN and CVX [46], disciplined
convex programming solvers, are used to implement Δv allocation
and trajectory smoothing, respectively). Note only the online
components of each FMT* call, i.e., graph search/construction,
constraint checking, and termination evaluations, constitute the run
times reported; everything else may either be stored onboard before
mission launch or otherwise computed offline on ground computers
and later uplinked to the spacecraft. See Sec. IV.C for details.
Samples are stored as a d × n array, while intersample steering
controlsΔvi and times τi are precomputed asn × n arrays ofd∕2 × N
and N × 1 array elements, respectively. Steering state and attitude

Fig. 13 Visualizing trajectory smoothing (Algorithm 2) for the solution shown in Fig. 12.

**All simulations are implemented in MATLAB® 2012b and run on a PC
operated byWindows 10, clocked at 4.00GHz, and equipped with 32.0 GB of
RAM.
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trajectories x�t� and q�t�, on the other hand, are generated online

through Eq. (4) and our nadir-pointing attitude policy, respectively.

This reduces memory requirements, though nothing precludes them

from being generated and stored offline as well, to save additional

computation time.

Figure 15 reports the effects on the solution cost from varying the

cost threshold �J while keeping n fixed. As described in Sec. IV.B,

increasing �J implies a larger reachability set size and hence increases

the number of candidate neighbors evaluated during graph construc-

tion. Generally, this gives a cost improvement at the expense of extra

processing, although there are exceptions, as in Fig. 15a at �J≈
0.3 m∕s. Likely, this arises from a single new neighbor (connected at

the expense of another, since FMT* only adds one edge per

neighborhood) that readjusts the entire graph subtree, ultimately

increasing the cost of exact termination at the goal. Indeed, we see

that this does not occur where inexact convergence is permitted,

given the same sample distribution.

We can also vary the sample count n while holding �J constant.

From Figs. 15a and 15b, we select �J � 0.22 and 0.3 m∕s,
respectively, for each of the two cases (the values that suggest the best

solution cost per unit of run time). Repeating the simulation for

varying sample count values, we obtain Fig. 16. Note the general

downward trend as the run time increases (corresponding to larger

sample counts), a classical tradeoff in sampling-based planning.

However, there is bumpiness. Similar to before, this is likely due to

new connections previously unavailable at lower sample counts that

Fig. 14 Representative nonplanarmotion planning solution using the FMT* algorithm (Algorithm1)withn � 900 (300 per subplan), �J � 0.4 m∕s, and
relaxed waypoint convergence.

a) Exact waypoint convergence (n = 2000) b) Inexact waypoint convergence (n = 2000)

Fig. 15 Algorithm performance for the given LEO proximity operations scenario as a function of varying cost threshold ( �J ∈ �0.2;0.4�) with n held
constant.

b) Inexact waypoint convergence (J = 0.3 m/s)a) Exact waypoint convergence (J = 0.22 m/s)
Fig. 16 Algorithm performance for the given LEO proximity operations scenario as a function of varying sample count (n ∈ �650;2000�) with �J held
constant.
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cause a slightly different graph with an unlucky jump in the
propellant cost.
As the figures show, the utility of trajectory smoothing is clearly

affected by the fidelity of the planning simulation. In each, trajectory
smoothing yields a much larger improvement in cost at modest
increases in computation time when we require exact waypoint
convergence. It provides little improvement, on the other hand, when
we relax these waypoint tolerances; FMT* (with goal region
sampling) seems to return trajectories with costs much closer to the
optimum in such cases, making the additional overhead of smoothing
less favorable. This conclusion is likely highly problem dependent;
these tools must always be tested and tuned to the particular
application.
Note that the overall run times for each simulation are on the order

of 1–5 s, including smoothing. This clearly indicates that FMT* can
return high-quality solutions in real time for spacecraft proximity
operations. Although run on a computer currently unavailable to
spacecraft, we hope that our examples serve as a reasonable proof of
concept; we expect that with a more efficient coding language and
implementation our approach would be competitive on spacecraft
hardware.

VII. Conclusions

A technique has been presented for automating minimum-
propellant guidance during near-circular orbit proximity operations,
enabling the computation of near-optimal collision-free trajectories
in real time (on the order of 1–5 s for our numerical examples). The
approach uses amodified version of the FMT*sampling-basedmotion
planning algorithm to approximate the solution to minimal-propellant
guidance under impulsiveClohessy–Wiltshire–Hill (CWH)dynamics.
Ourmethod begins by discretizing the feasible space of Eq. (1) through
state-space sampling in the CWH local-vertical local-horizontal
(LVLH) frame. Next, state samples and their cost reachability sets,
which we have shown comprise sets bounded by unions of ellipsoids
taken over the steering maneuver duration, are precomputed offline

and stored onboard the spacecraft together with all pairwise steering
solutions. Finally, FMT* is called online to efficiently construct a tree
of trajectories through the feasible state space toward a goal region,
returning a solution that satisfies a broad range of trajectory constraints
(e.g., plume impingement and obstacle avoidance, control allocation
feasibility, etc.) or else reporting failure. If desired, trajectory
smoothing using the techniques outlined in Sec. V can be employed to
reduce the solution propellant cost.
The key breakthrough of our solution for autonomous spacecraft

guidance is its judicious distribution of computations; in essence,
onlywhatmust be computed onboard, such as collision checking and
graph construction, is computed online; everything else, including
the most intensive computations, are relegated to the ground where
computational effort and execution time are less critical. Further-
more, only minimal information (steering problem control trajec-
tories, costs, and nearest-neighbor sets) requires storage onboard the
spacecraft. Although we have illustrated through simulations the
ability to tackle a particular minimum-propellant LEO homing
maneuver problem, it should be noted that the methodology applies
equally well to other objectives, such as the minimum-time problem,
and can be generalized to other dynamic models and environments.

The approach is flexible enough to handle nonconvexity and mixed
state–control–time constraints without compromising real-time
implementability, so long as constraint function evaluation is
relatively efficient. In short, the proposed approach appears to be
useful for automating the mission planning process for spacecraft
proximity operations, enabling real-time computation of low-cost
trajectories.
The proposed guidance framework for impulsively actuated

spacecraft offers several avenues for future research. For example,
though nothing in the methodology forbids it outside of computa-
tional limitations, it would be interesting to revisit the problem with
attitude states included in the state (instead of assuming an attitude
profile). This would allow attitude constraints into the planning
process (e.g., enforcing the line of sight, keeping solar panels
oriented towards the sun, maintaining a communication link with the
ground, etc.). Also of interest are other actively safe policies that relax
the need to circularize escape orbits (potentially costly in terms of
propellant use) or thatmesh better with trajectory smoothing, without
the need to add compensating impulses (see Sec. V). Extensions to
dynamic obstacles (such as debris or maneuvering spacecraft, which
are unfixed in the LVLH frame), elliptical target orbits, higher-order
gravitation, or dynamics under relative orbital elements also
represent key research areas useful for extending applicability to
more general maneuvers. Finally, memory and run time performance
evaluations of our algorithms on spacelike hardware are needed to
assess our method’s true practical benefit to spacecraft planning.

Appendix A: Optimal Circularization Under Impulsive
CWH Dynamics

As detailed in Sec. III.C.1, a vital component of our CAMpolicy is
the generation of one-burn minimal-propellant transfers to circular
orbits located radially above or below the target. Assuming we need
to abort from some state x�tfail� � xfail, the problem we wish to
solve in order to assure safety (per Definition 4 and as seen in Fig. 6)
is

Given∶ failure state xfail; andCAM uCAM�tfail ≤ t < T−
h � ≜ 0; uCAM�Th� ≜ Δvcirc�x�Th��

minimize
Th

Δv2circ�Th�

subject to xCAM�tfail� � xfail initial condition

xCAM�T�
h � ∈ X invariant invariant set termination

_xCAM�t� � f�xCAM�t�; 0; t�; for all tfail ≤ t ≤ Th system dynamics

xCAM�t� ∈= XKOZ; for all tfail ≤ t ≤ Th KOZcollision avoidance

Because of the analytical descriptions of state transitions, as given
by Eq. (4), it is a straightforward task to express the decision variable
Th, invariant set constraint, and objective function analytically in
terms of θ�t� � nref�t − tfail�, the polar angle of the target spacecraft.
The problem is therefore one dimensional in terms of θ. We can
reduce the invariant set termination constraint to an invariant set
positioning constraint if we ensure the spacecraft ends up at a position

inside X invariant and circularize the orbit, since x�θ�circ��
x�θ−circ��

h
0

Δvcirc�θcirc�
i
∈X invariant. Denote θcirc � nref�Th − tfail�

as the target anomaly at which we enforce circularization. Now,
suppose the failure state x�t� lies outside of theKOZ (otherwise, there
exists no safe CAM, and we conclude that xfail is unsafe). We can
define a new variable θmin � nref�t − tfail� and integrate the coasting
dynamics forward from time tfail until the chaser touches the
boundary of the KOZ (θmax � θ−collision) or until we have reached one
full orbit (θmax � θmin � 2π) such that, between these two bounds,
the CAM trajectory satisfies the dynamics and contains only the
coasting segment outside of the KOZ. Replacing the dynamics and
collision-avoidance constraints with the bounds on θ as a box
constraint, the problem becomes
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minimize
θcirc

Δv2circ�θcirc�

subject to θmin ≤ θcirc ≤ θmax theta bounds

δx2�θ−circ� ≥ ρ2δx invariant set positioning

Restricting our search range to θ ∈ �θmin; θmax�, this is a function
of one variable and one constraint. Solving by the method of
Lagrange multipliers, we seek to minimize the Lagrangian, L �
Δv2circ � λgcirc, where gcirc�θ� � ρ2δx − δx2�θ−circ�. There are two

cases to consider:
Case 1 is the inactive invariant set positioning constraint. We set

λ � 0 such thatL � Δv2circ. Candidate optimizers θmust satisfy
∇θL�θ� � 0. Taking the gradient of L,

∇θL� ∂Δv2circ
∂θ

�
�
3

4
�3nrefδxfail� 2δ _yfail�2 −

3

4
δ _x2fail �n2refδz

2
fail − δ_z2fail

�
sin 2θ

�
�
3

2
δ _xfail�3nrefδxfail� 2δ _yfail�− 2nrefδ_zfailδzfail

�
cos 2θ

and setting ∇θL�θ� � 0, we find that

tan 2θ� � −��3∕2�δ _xfail�3nrefδxfail�2δ _yfail�−2nrefδ_zfailδzfail�
�3∕4��3nrefδxfail�2δ _yfail�2− �3∕4�δ _x2fail�n2refδz

2
fail−δ_z2fail

Denote the set of candidate solutions that satisfy Case 1 by Θ1.
Case 2 is the active invariant set positioning constraint. Here, the

chaser attempts to circularize its orbit at the boundary of the
zero-thrust RIC shown in Fig. 5a. The positioning constraint is
active, and therefore gcirc�θ� � ρ2δx − δx2�θ−circ� � 0. This is
equivalent to finding where the coasting trajectory from
x�tfail� � xfail crosses δx�θ� � 	ρδx for θ ∈ �θmin; θmax�. This
can be achieved using standard root-finding algorithms. Denote
the set of candidate solutions that satisfy Case 2 by Θ2.

For the solution to theminimal-cost circularization burn, the global
optimizer θ either lies on the boundary of the box constraint, at an
unconstrained optimum (θ ∈ Θ1), or at the boundary of the zero-
thrust RIC (θ ∈ Θ2), all of which are economically obtained through
either numerical integration or a root-finding solver. Therefore, the
minimal-cost circularization burn time T�

h satisfies

θ� � nref�T�
h − tfail� � argmin

θ∈fθmin;θmaxg∪Θ�
1
∪Θ�

2

Δv2circ�θ�

If no solution exists (which can happen if and only if xfail starts
inside the KOZ), there is no safe circularization CAM, and we
therefore declare xfail unsafe. Otherwise, the CAM is saved for future
trajectory feasibility verification under all failure modes of interest
(see Sec. III.C.3). This forms the basis for our actively safe sampling
routine in Algorithm 1, as described in detail in Sec. IV.C.

Appendix B: Intermediate Results for FMT*
Optimality Proof

We report here two useful lemmas concerning bounds on the
trajectory costs between samples, which are used throughout the
asymptotic optimality proof for FMT* in Sec. IV. We begin with a
lemma bounding the sizes of the minimum and maximum eigen-

values ofG, useful for bounding reachable volumes from x0.We then
prove Lemma 2, which forms the basis of our asymptotic optimality
analysis for FMT*. Here, Φ�tf; t0� � eAT is the state transition
matrix, T � tf − t0 is the maneuver duration, and G is the N � 2
impulse Gramian matrix,

G�T� � ΦvΦ−1
v � � eATB B �� eATB B �T (B1)

where Φv�t; fτigi� is the aggregate Δv transition matrix corres-

ponding to burn times fτigi � ft0; tfg.
Lemma 3 (bounds on Gramian eigenvalues): Let Tmax be less

than one orbital period for the system dynamics of Sec. II.C, and let

G�T� be defined as in Eq. (B1). Then, there exist constants Mmin,

Mmax > 0 such that λminG�T� ≥ MminT
2 and λmaxG�T� ≤ Mmax

for all T ∈ �0; Tmax�.
Proof: We bound the maximum eigenvalue of G through

norm considerations, yielding λmax�G�T�� ≤ �keATkB� kBk�2 ≤
�ekAkTmax � 1�2, and takeMmax � �ekAkTmax � 1�2. As long as Tmax is

less than one orbital period, G�T� only approaches singularity near

T � 0 [38]. Explicitly Taylor expanding G�T� about T � 0 reveals

that λminG�T� � T2∕2�O�T3� for small T, and thus λminG�T� �
Ω�T2� for all T ∈ �0; Tmax�. □

Reiteration of Lemma 2 (steering with perturbed endpoints): For a

given steering trajectory x�t�with initial time t0 and final time tf, let
x0 ≔ x�t0�, xf ≔ x�tf�, T ≔ tf − t0, and J∶ � J�x0; xf�. Consider
now the perturbed steering trajectory ~x�t� between perturbed start and
end points ~x0 � x0 � δx0 and ~xf � xf � δxf and its corresponding
cost J� ~x0; ~xf�.
Case 1 (T � 0): There exists a perturbation center δxc (consisting

of only a position shift) with kδxck � O�J2� such that,

if kδxck ≤ ηJ3 and kδxf − δxfk ≤ ηJ3, then J� ~x0; ~xf� ≤
J�1� 4η�O�J��, and the spatial deviation of the perturbed
trajectory ~x�t� is O�J�.

Case 2 (T > 0): If kδx0k ≤ ηJ3 and kδxfk ≤ ηJ3, then

J� ~x0; ~xf� ≤ J�1�O�ηJ2T−1��, and the spatial deviation of the

perturbed trajectory ~x�t� from x�t� is O�J�.
Proof: For bounding the perturbed cost and J� ~x0; ~xf�, we consider

the two cases separately.
Case 1 (T � 0): Here, two-impulse steering degenerates to a single-

impulse Δv; that is, xf � x0 � BΔv with kΔvk � J. To aid in
the ensuing analysis, denote the position and velocity com-
ponents of states x � �rT; vT �T as r � �I; 0�x and v � �0; I�x.
Since T � 0, we have rf � r0 and vf � v0 � Δv. We pick the
perturbed steering duration ~T � J2 (which will provide an
upper bound on the optimal steering cost) and expand the
steering system [Eq. (4)] for small time ~T as

rf � δrf � r0 � δr0 � ~T�v0 � δv0 � fΔv1� �O� ~T2� (B2)

vf � δvf � v0 � δv0 � fΔv1 � fΔv2 � ~T�A21�r0 � δr0�
�A22�v0 � δv0 � fΔv1�� �O� ~T2� (B3)

where A21�
"
3n2ref 0 0

0 0 0

0 0 −n2ref

#
and A22�

"
0 2nref 0

−2nref 0 0

0 0 0

#
.

Solving Eq. (B2) for fΔv1 to first order, we find fΔv1�
~T−1�δrf−δr0�−v0−δv0�O� ~T�. By selecting δxc�� ~TvT0 0T �T
[note that kδxck � J2kv0k � O�J2�] and supposing that

kδx0k ≤ ηJ3 and kδxf − δxck ≤ ηJ3, we have that

kfΔv1k ≤ J−2�kδx0k � kδxf − δxck� � kδx0k �O�J2�
� 2ηJ �O�J2�

Now, solving Eq. (B3) for fΔv2 � Δv� �δvf − δv0� − fΔv1 �
O�J2� and taking norm of both sides,

kfΔv2k ≤ kΔvk � �kδx0k � kδxf − δxck� � 2ηJ �O�J2�
≤ J � 2ηJ �O�J2�

Therefore, the perturbed cost satisfies

J� ~x0; ~xf� ≤ kfΔv1k � kfΔv2k ≤ J�1� 4η�O�J��
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Case 2 (T > 0): We pick ~T � T to compute an upper bound on the
perturbed cost. Applying the explicit form of the steering
controlΔV [see Eq. (13)] along with the norm bound kΦ−1

v k �
λmin�G�−1∕2 ≤ M−1∕2

min T−1 from Lemma 3, we have

J� ~x0; ~xf� ≤ kΦ−1
v �tf; ft0; tfg�� ~xf −Φ�tf; t0� ~x0�k

≤ kΦ−1
v �xf −Φx0�k � kΦ−1

v δxfk � kΦ−1
v Φδx0k

≤ J �M−1∕2
min T−1kδxfk �M

−1∕2
min T−1ekAkTmaxkδx0k

≤ J�1�O�ηJ2T−1��

In both cases, the deviation of the perturbed steering trajectory
~x�t� from its closest point on the original trajectory is bounded
(quite conservatively) by the maximum propagation of the
difference in initial conditions; that is, the initial disturbance δx0
plus the difference in intercept burns fΔv1 − Δv1, over the
maximum maneuver duration Tmax. Thus,

k ~x�t� − x�t�k ≤ ekAkTmax�kδx0k � kfΔv1k � kΔv1k�
≤ ekAkTmax�ηJ3 � 2J � o�J�� � O�J�

where we have used kΔv1k ≤ J and kfΔv1k ≤ J� ~x0; ~xf� ≤
J � o�J� from our previous arguments. □
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