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Abstract—This paper presents a sampling-based motion plan-
ning algorithm for real-time, propellant-optimized autonomous
spacecraft trajectory generation in near-circular orbits. Specif-
ically, this paper leverages recent algorithmic advances in the
field of robot motion planning to the problem of impulsively-
actuated, propellant-optimized rendezvous and proximity op-
erations under the Clohessy-Wiltshire-Hill (CWH) dynamics
model. The approach calls upon a modified version of the Fast
Marching Tree (FMT∗) algorithm to grow a set of feasible and
actively-safe trajectories over a deterministic, low-dispersion set
of sample points covering the free state space. Key features of
the proposed algorithm include: (i) theoretical guarantees of tra-
jectory safety and performance, (ii) real-time implementability,
and (iii) generality, in the sense that a large class of constraints
can be handled directly. As a result, the proposed algorithm
offers the potential for widespread application, ranging from
on-orbit satellite servicing to orbital debris removal and au-
tonomous inspection missions.
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1. INTRODUCTION
Real-time autonomy for spacecraft proximity operations near
circular orbits is an inherently challenging task, particularly
for onboard implementation where computational capabilities
are limited. Many effective real-time solutions have been
developed for the unconstrained case (e.g., state transition
matrix manipulation [1], glideslope methods [2], safety
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ellipses [3, 4], and others [5]). However, the difficulty
of real-time processing increases when there is a need to
operate near other objects and/or incorporate some notion
of propellant-optimality or control-effort minimization. In
such cases, care is needed to efficiently handle collision-
avoidance, plume impingement, sensor line-of-sight, and
other complex guidance constraints, which are often non-
convex and may depend on time and a mixture of state and
control variables. State-of-the-art techniques for collision-
free spacecraft proximity operations (both with and without
optimality guarantees) include artificial potential function
guidance [6, 7], convexification techniques [8], enforcing line-
of-sight or approach corridor constraints [9–11], maintaining
relative separation [12], satisfying Keep-Out-Zone (KOZ)
constraints using mixed-integer (MI) programming [13], and
kinodynamic motion planning algorithms [14–17]. Requiring
hard assurances of mission safety with respect to a wide
variety and number of potential failure modes [18] provides
an additional challenge.

The objective of this paper is to design an automated ap-
proach to actively-safe spacecraft trajectory optimization
for rendezvous and proximity operations near circular or-
bits, which we model using Clohessy-Wiltshire-Hill (CWH)
dynamics. Our approach is to leverage recent advances
from the field of sampling-based robot motion planning
[19]. Several decades of research have shown that sampling-
based planning algorithms (dubbed “planners” throughout this
paper) show promise for tightly-constrained, high-dimensional
optimal control problems such as the one considered in this
paper. Sampling-based motion planning essentially entails
the breakdown of a complex trajectory control problem
into a series of many relaxed, simpler Two-Point Boundary
Value Problems (2PBVPs, or “steering” problems) that are
subsequently evaluated a posteriori for constraint satisfaction
and efficiently strung together into a graph (i.e., a tree or
roadmap). In this way, complex constraints like obstacle
avoidance or plume impingement are decoupled from the
generation of subtrajectories (or graph “edges”) between
graph states (or “samples”), separating dynamic simulation
from constraint checking – a fact we exploit to achieve real-
time capability. Critically, this approach avoids the explicit
construction of the free state space, which is prohibitive in
complex planning problems. As a result, sampling-based
algorithms can address a large variety of constraints and
can provide significant computational benefits with respect
to traditional optimal control methods and mixed-integer
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programming [19]. Furthermore, through a property called
asymptotic optimality (AO), sampling-based algorithms can be
designed to provide guarantees of optimality in the limit that
the number of samples taken approaches infinity. This makes
sampling-based planners a strong choice for the problem of
spacecraft control.

Though the aforementioned works [14–17] on sampling-based
planning for spacecraft proximity operations have addressed
several components of the safety-constrained, optimal CWH
autonomous rendezvous problem, few have addressed the
aspect of real-time implementability in conjunction with
both a 2-norm propellant-cost metric and active trajectory
safety with respect to control failures. This paper seeks
to fill this gap. The paper’s central theme is a rigorous
proof of asymptotic optimality for a particular sampling-based
planner, namely a modified version of the Fast Marching Tree
(FMT∗) algorithm [20], under impulsive CWH spacecraft
dynamics with hard safety constraints. First, a description
of the problem scenario is provided in Section 2, along with
a formal definition of the 2-norm cost metric that we employ
as a proxy for propellant consumption. Next, we proceed in
Section 3 to our proposed approach employing the modified
FMT∗ algorithm. The section begins with presentation of a
conservative approximation to the propellant-cost reachability
set, which characterizes the set of states that are “nearby” to
a given initial state in terms of propellant use. These sets,
bounded by unions of ellipsoidal balls, are then used to show
that the modified FMT∗ algorithm maintains its (asymptotic)
optimality when applied to CWH dynamics under the 2-norm
cost function. From there, in Section 4, the paper presents two
techniques for improving motion planning solutions: (i) an
analytical technique that can be called both during planning
and post-processing to merge ∆v-vectors between any pair
of concatenated graph edges, and (ii) a continuous trajectory
smoothing algorithm, which can reduce the magnitude of ∆v-
vectors by relaxing the implicit constraint to pass through
sample points while still maintaining solution feasibility.

The combination of these tools into a unified framework
provides a flexible, general technique for near-circular orbit
spacecraft trajectory generation that automatically guarantees
bounds on run time and solution quality (propellant cost) while
handling a wide variety of (possibly non-convex) state, time,
and control constraints. The methodology is demonstrated in
Section 5 on a single-chaser, single-target scenario simulating
a near-field Low Earth Orbit (LEO) approach with hard
constraints on total maneuver duration, relative positioning
(including keep-out-zone and antenna interference constraints),
thruster plume impingement, individual and net ∆v-vector
magnitudes, and a two-fault thruster stuck-off failure tolerance.
The performances of FMT∗ and the trajectory smoothing
techniques are evaluated as a function of sample count and a
propellant cost threshold.

2. PROBLEM FORMULATION
We begin by defining the problem we wish to solve. We model
the near-field homing phase and approach for a spacecraft
seeking to maneuver near a target that is moving in a well-
defined, circular orbit (see Fig. 1(a)). Let the state space
X ⊂ Rd represent the d-dimensional region in the target’s
Local Vertical, Local Horizontal (LVLH) frame in which the
mission is defined, and define the obstacle region or Xobs
as the set of states within X that result in mission failure
(e.g., states colliding with the target or which lie outside of a
specified approach corridor, for example). We then also define

(Cross-track)
"Radial"

(In-track)

(NormalgtogOrbitalgPlane)
"Out-of-plane"

Attractor

ReferencegLine

Target

Chaser

(a) Schematic of CWH dynamics, which models relative guidance near a
single target in a circular orbit.

(b) A representative planning query between feasible states xinit and xgoal.

Figure 1. Illustration of the CWH planning scenario. Here nref is the
mean motion of the target spacecraft orbit, θ is its mean anomaly, t denotes
time, δr and δv are the chaser relative position and velocity, and (δx, δy, δz)
are the LVLH frame coordinates. The CWH frame rotates with the target at
rate nref as it orbits the gravitational attractor, µ. Planning takes place in the

LVLH frame state space X , in which a safe trajectory is sought between
states xinit and xgoal within the feasible (collision-free) subspace Xfree

around nearby obstacles Xobs.

the free space or Xfree as the complement of Xobs, i.e., states
in X which lie outside of obstacles. As illustrated in Fig. 1(b),
let xinit represent the chaser spacecraft’s initial state relative
to the target, and let xgoal ∈ Xgoal be a goal state (a new
position/velocity near which the chaser can initiate a docking
sequence, a survey maneuver, etc.) inside the goal region
Xgoal. Finally, define a state trajectory (or simply “trajectory”)
as a piecewise-continuous function of time x(t) : R → X ,
and let Σ represent the set of all state trajectories. Every
state trajectory is implicitly generated by a control trajectory
u(t) : R → U , where U is the set of controls, through the
system dynamics ẋ = f(x,u, t), where f is the system’s
state transition function. A state trajectory is called a feasible
solution to the planning problem (Xfree, tinit,xinit,xgoal) if:
(i) it satisfies the boundary conditions x(tinit) = xinit and
x(tfinal) = xgoal for some time tfinal > tinit, (ii) it is collision-
free; that is, x(τ) ∈ Xfree for all τ ∈ [tinit, tfinal], and (iii)
it obeys all other trajectory constraints, including the system
dynamics. The general motion planning problem can then be
defined as follows.

Definition 2.1 (Optimal Planning Problem) Given a planning
problem (Xfree, tinit,xinit,xgoal) and a cost functional J :
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Σ× U × R→ R≥0, find a feasible trajectory x∗(t) with asso-
ciated control trajectory u∗(t) and time span t∗ = [tinit, tfinal]
for tfinal ∈ [tinit, ∞) such that J(x∗(·),u∗(·), t∗) =
min{J(x(·),u(·), t) | x(t) and u(t) are feasible}. If no such
trajectory exists, report failure.

For our particular case, we employ a control-effort cost
functional J that considers only the control trajectory u(t)
and the final time tfinal, which we represent by the notation
J(u(t), tfinal). Tailoring Def. 2.1 to impulsively-actuated
propellant-optimal motion planning near circular orbits (where
here we assume propellant optimality is measured by the 2-
norm metric), the spacecraft motion planning problem we
wish to solve is formulated as:

Given: Initial state xinit(tinit),Goal region Xgoal,

Free space Xfree

minimize
u(t),tfinal

J(u(t), tfinal) =

∫ tfinal

tinit

‖u(t)‖2 dt =

N∑
i=1

‖∆vi‖2

subject to x(tinit) = xinit

x(tfinal) ∈ Xgoal

ẋ(t) = f(x(t),u(t), t)

x(t) ∈ Xfree for all t ∈ [tinit, tfinal]

g(x(t),u(t), t) ≤ 0

h(x(t),u(t), t) = 0
for all t ∈ [tinit, tfinal]

∃ safe xCAM(τ), τ > t for all x(t)
(1)

where tinit and tfinal are the initial and final times, xCAM(τ)
refers to an infinite-horizon Collision-Avoidance-Maneuver
(CAM), and we restrict our attention to impulsive control
laws u(t) =

∑N
i=1 ∆viδ(t− τi), where δ(·) denotes the

Dirac delta function, which represent a finite sequence of
instantaneous translational burns ∆vi fired at discrete times τi
(note that the number of burnsN is not fixed a priori). Though
one could consider the set of all possible control laws, it is both
theoretically and computationally simpler to optimize over the
finite-dimensional search space enabled by using ∆v-vectors;
furthermore, such control laws represent the most common
forms of propulsion systems used on-orbit, including high-
impulse cold-gas and liquid bi-propellant thrusters, and can at
least in theory approximate continuous control trajectories in
the limit that N →∞.

We now elaborate on the objective function and each constraint
in turn.

Cost Functional

A critical component of the spacecraft rendezvous problem is
the choice of the cost function. Consistent with the conclusions
of [21], we define our cost as the L1-norm of the `p-norm
of the control. The best choice for p ≥ 1 depends on the
propulsion system geometry, and on the frame within which
u(t) =

∑N
i=1 ∆viδ(t− τi) in J is resolved. Minimizing

propellant directly requires resolving ∆vi into the spacecraft
body-fixed frame; unfortunately, without relaxations, this
requires spacecraft attitude q to be included in our state x.
To avoid this, a standard used throughout the literature and
routinely in practical applications is to employ p = 2 so that
each ∆vi is as short as possible, and optimally allocate the
commanded ∆vi to thrusters later (online, once the attitude
is known). Though this moves propellant minimization to
a separate control allocation step (which we discuss in more

detail in the Other Trajectory Constraints subsection), it greatly
simplifies the problem in a practical way without neglecting
attitude. Because the cost of ∆v-allocation can only grow due
to the need to satisfy torque constraints or impulse bounds
(e.g., necessitating counter-opposing thrusters to achieve the
same net ∆v-vector), we are in effect minimizing the best-
case, unconstrained propellant use of the spacecraft. As we
will show in our numerical experiments, this does not detract
significantly from the technique; the coupling of J with p = 2
to the actual propellant use through the minimum control-
effort thruster ∆v allocation problem seems to promote low
propellant-cost solutions. Hence (in practice) J serves as
a good proxy to propellant use, with the added benefit of
independence from propulsion system geometry.

Boundary Conditions

Sampling-based motion planners generally assume a known
initial state xinit and time tinit from which planning begins
(e.g., the current state of the spacecraft), and define one or
more goal regions Xgoal to which guidance is sought. In
this paper, we assume the chaser targets only one goal state
xT

goal =
[
δrT

goal δv
T
goal

]
at a time (“exact convergence,”

Xgoal = {xgoal}), where δrgoal is the goal position and δvgoal
is the goal velocity. During numerical experiments, however,
we sometimes permit termination at any state whose position
and velocity lie within Euclidean balls B(δrgoal, εr) and
B(δvgoal, εv), respectively (“inexact convergence,” Xgoal =
B(rgoal, εr) × B(vgoal, εv)), where the notation B(r, ε) =
{x ∈ X | ‖r− x‖ ≤ ε} denotes a ball with center r and
radius ε.

System Dynamics

Because spacecraft proximity operations incorporate signif-
icant drift, spatially-dependent external forces, and changes
on fast timescales, any realistic solution must obey dynamic
constraints; we cannot assume straight-line trajectories. In this
paper, we employ the classical Clohessy-Wiltshire-Hill (CWH)
equations [22, 23] for impulsive linearized motion about a
circular reference orbit at radius rref about an inverse-square-
law gravitational attractor with parameter µ. This model
provides a first-order approximation to a chaser spacecraft’s
motion relative to a rotating target-centered coordinate system
(see Fig. 1). The linearized equations of motion for this
scenario as resolved in the Local Vertical, Local Horizontal
(LVLH) frame of the target are given by:

δẍ− 3n2
refδx− 2nrefδẏ =

Fx
m

(2a)

δÿ + 2nrefδẋ =
Fy
m

(2b)

δz̈ + n2
refδz =

Fz
m

(2c)

where nref =
√

µ
r3ref

is the orbital frequency (mean motion)

of the reference spacecraft orbit, m is the spacecraft mass,
F = [Fx, Fy, Fz] is some applied force, and (δx, δy, δz) and
(δẋ, δẏ, δż) represent the cross-track (“radial”), in-track, and
out-of-plane relative position and relative velocity, respec-
tively. The CWH model is quite common, and used often
for rendezvous and proximity operations in Low Earth Orbit
(LEO) and for leader-follower formation flight dynamics.

Defining the state x as [ δx, δy, δz, δẋ, δẏ, δż ]
T and the
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applied force-per-unit-mass u as 1
mF

T, the CWH equations
can be described by the linear time-invariant (LTI) system:

ẋ = f(x,u, t) = Ax + Bu (3)

where the dynamics matrix A and input matrix B are given
by:

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

3n2
ref 0 0 0 2nref 0

0 0 0 −2nref 0 0
0 0−n2

ref 0 0 0

 B =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

.
As for any LTI system, we can express the solution to Eq. (3)
for any time t ≥ t0 using superposition and the convolution
integral as x(t) = eA(t−t0)x(t0)+

∫ t
t0
eA(t−τ)Bu(τ) dτ. The

expression Φ(t, τ) , eA(t−τ) is called the state transition
matrix, which importantly provides an analytical mechanism
for computing state trajectories that we rely heavily upon in
simulations. Note, throughout this work, we shall sometimes
represent Φ(t, τ) as Φ for brevity when its arguments are
understood.

We now specialize the above to the case of N impulsive
velocity changes at times t0 ≤ τi ≤ tf , for i ∈ [1, . . . , N ],
in which case u(τ) =

∑N
i=1 ∆viδ(τ − τi), where δ(y) =

{1 where y = 0, or 0 otherwise} signifies the Dirac-delta dis-
tribution. Substituting for Φ and u(τ), this yields:

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B

(
N∑
i=1

∆viδ(τ − τi)

)
dτ

= Φ(t, t0)x(t0) +

N∑
i=1

∫ t

t0

Φ(t, τ)B∆viδ(τ − τi) dτ,

where on the second line we used the linearity of the integral
operator. By the sifting property of δ, denoting Nt as the
number of burns applied from t0 up to time t, we have for
all times t ≥ t0 the following expression for the impulsive
solution to Eq. (3):

x(t) = Φ(t, t0)x(t0) +

Nt∑
i=1

Φ(t, τi)B∆vi (5a)

= Φ(t, t0)x(t0) +

[Φ(t, τ1)B . . . Φ(t, τNt
)B]︸ ︷︷ ︸

,Φv(t,{τi}i)

 ∆v1
...

∆vNt


︸ ︷︷ ︸

,∆V

(5b)

= Φ(t, t0)x(t0) + Φv(t, {τi}i)∆V. (5c)

Throughout this paper, the notations ∆V for the stacked
∆v-vector and Φv(t, {τi}i) for the aggregated impulse state
transition matrix (or simply Φv for short, when the parameters
t and {τi}i are clear) implicitly imply only those burns i
occurring before time t.

Obstacle Avoidance

Obstacle avoidance is imposed by requiring the spacecraft
trajectory x(t) to stay within Xfree (or, equivalently, outside
of the obstacle region Xobs) – typically a difficult non-convex
constraint. For CWH proximity operations, Xobs might
include those states that result in a collision with a neighboring
object, all positions which lie outside of a given approach
corridor, all velocities violating a given relative guidance law,
etc. In our numerical experiments, we assume Xobs includes
an ellipsoidal Keep Out Zone (KOZ) enclosing the target
spacecraft centered at the origin and a conical nadir-pointing
region that approximates its antenna beam pattern – this both
enforces collision-avoidance and prevents the chaser from
interfering with the target’s communications.

Note that according to the definition of Xfree, this also requires
the solution x(t) to stay within the confines of X (CWH
system dynamics do not guarantee that state trajectories will
lie in X despite the fact that their endpoints do). Though not
strictly necessary in practice, if Xfree is defined to mark the
extent of reliable sensor readings or the boundary inside which
CWH equation linearity assumptions hold, then this can be a
useful constraint to enforce.

Other Trajectory Constraints

Many other types of constraints may be included to encode
additional restrictions on state and control trajectories, which
we represent here by a set of inequality constraints g and
equality constraints h (note that g and h denote vector
functions). To illustrate the flexibility of the sampling-based
planning approach, we encode the following into constraints
g (for brevity, we omit their exact representation, which is
straightforward based on vector geometry):

Tplan,min ≤ tfinal − tinit ≤ Tplan,max (6)
∆vi ∈ U(x(τi)) for all i = [1, . . . , N ] (7)⋃

k∈[1,...,K]

Pik(−∆v̂ik, βplume, Hplume) ∩ Starget = ∅
for all i = [1, . . . , N ]

(8)

Here 0 ≤ Tplan,min < Tplan,max represent minimum and
maximum motion plan durations, U(x(τi)) is the admissible
control set corresponding to state x(τi), Pik is the exhaust
plume emanating from thruster k of the chaser spacecraft
while executing burn ∆vi at time τi, and Starget is the target
spacecraft circumscribing sphere. We motivate each constraint
in turn.

Plan Duration Bounds—Plan duration bounds facilitate the
inclusion of rendezvous windows based on the epoch of the
chaser at xinit(tinit); such windows might be determined by
illumination requirements, grounds communication opportu-
nities, or mission timing restrictions, for example. Tplan,max
may also be used to ensure the errors incurred by our linearized
CWH model, which grow with time, do not exceed acceptable
tolerances.

Control Feasibility— Control set constraints are intended
to encapsulate limitations on control authority imposed by
propulsive actuators and their geometric distribution about the
spacecraft. For example, given the maximum burn magnitude
0 < ∆vmax, the constraint:

‖∆vi‖2 ≤ ∆vmax for all i = [1, . . . , N ] (9)
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might be used to represent an upper bound on the impulse
range achievable by a gimbaled thruster system that is able
to direct thrust freely in all directions. In our case, we use
U(x(τi)) to represent all commanded net ∆v-vectors that
(i) satisfy the constraint Eq. (9) above, and also (ii) can be
successfully allocated to thrusters along trajectory x(t) at
time τi according to a simple minimum-control effort thruster
allocation problem (a straightforward linear program (LP)
[24]). To keep the paper self-contained, we repeat the problem
here and in our notation. Let ∆vi|bf and Mi|bf be the desired
net ∆v and moment vectors at burn time τi, resolved in the
body-fixed frame according to attitude q(τi) (we henceforth
drop the bar, for brevity). Note the attitude q(τi) must either
be included in the state x(τi) or be derived from it, as is
assumed in this paper by imposing (along nominal trajectories)
a nadir-pointing attitude profile for the chaser spacecraft. Let
∆vik = ‖∆vik‖2 be the ∆v-magnitude allocated to thruster
k, which generates an impulse in direction ∆v̂ik at position
ρik from the spacecraft center-of-mass (both are constant
vectors if resolved in the body-fixed frame). Finally, to account
for the possibility of on or off thrusters, let ηik be equal to 1
if thruster k is available for burn i, or 0 otherwise. Then the
minimum-effort control allocation problem can be represented
as:

Given: On-off flags ηik, thruster positions ρik,
thruster axes ∆v̂ik, commanded ∆v-vector ∆vi,

and commanded moment vector Mi

minimize
∆vik

K∑
k=1

∆vik

subject to
K∑
k=1

∆v̂ik(ηik∆vik) = ∆vi

K∑
k=1

(ρik ×∆v̂ik)(ηik∆vik) = Mi

∆vmin,k ≤ ∆vik ≤ ∆vmax,k

(10)

where ∆vmin,k and ∆vmax,k represent minimum and maxi-
mum impulse limits on thruster k (due to actuator limitations,
minimum impulse bit, pulse-width constraints, or maximum
on-time restrictions, for example). Because ∆v is directly-
proportional to thrust through the Tsiokolvsky rocket equation,
the formulation above is directly analogous to minimum-
propellant consumption; as discussed in the Section 2 subsec-
tion, by using control trajectories that minimize commanded
∆v-vector lengths ‖∆vi‖, we can drive propellant use down-
wards as much as possible subject to our thrust bounds and
net torque constraints. In this work, we set Mi = 0 to enforce
torque-free burns and minimize the disturbance to our assumed
attitude trajectory q(t).

Note we do not consider a minimum norm constraint in Eq. (9)
for ∆vi. As previously discussed, ‖∆vi‖ is only a proxy for
the true propellant cost computed from the thrust allocation
problem (Eq. (10)). The value of the norm bound ∆vmax may
be computed from the thruster limits ∆vmin,k,∆vmax,k and
knowledge of the thruster configuration.

Plume Impingement—Impingement of thruster exhaust on
neighboring spacecraft can lead to dire consequences, includ-
ing destabilizing effects on attitude caused by exhaust gas
pressure, degradation of sensitive optical equipment and solar

Starget

βplume

∆vi
−∆vik∆v̂ik

Hplume

Figure 2. Illustration of exhaust plume impingement from thruster firings.
Given a commanded ∆vi, the spacecraft must successfully allocate the

impulse to thrusters while simultaneously avoiding impingement of
neighboring object(s).

arrays, and unexpected thermal loading [25]. To take this
into account, we generate representative exhaust plumes at the
locations of each thruster firing. For burn i occurring at time τi,
a right circular cone is generated with axis−∆v̂ik, half-angle
βplume, and height Hplume at each active thruster k (ηik = 1)
for which its allocated thrust ∆vi

∗
k is non-zero, as determined

by the solution to Eq. (10). Intersections are checked with the
target spacecraft circumscribing sphere, Starget, which is used
as a more efficiently-verified, conservative approximation to
the exact target geometry. For an illustration, see Fig. 2.

Other Constraints—Other constraints may easily be added.
Solar array shadowing, pointing constraints, approach corridor
constraints, etc., all fit within the framework, and may be
represented as additional inequality or equality constraints.
For additional examples, refer to [26].

Active Safety

An additional feature we include in our work is the concept
of active safety, in which we require the target spacecraft to
maintain a feasible Collision Avoidance Maneuver (CAM)
to a safe higher or lower circular orbit from every point
along its solution trajectory in the event that any mission-
threatening control degradations such as stuck-off thrusters
(as in Fig. 3) take place. We accomplish this by restricting our
solution to pass through only those states that have a safe CAM
available under all possible thruster failure configurations
(up to a given thruster fault tolerance), with only coasting
arcs (zero control effort trajectories) in between. This has
been treated thoroughly in a previous work [27], from which
the current paper derives. Because the design of our CAM
policy is independent of the arrival time at a particular state
and assuming our trajectory constraints are static (as can be
shown for our numerical experiments), the safety of these
states may be evaluated offline and cached — a fact we will
make extensive use of in the design of our planning algorithm.

3. PLANNING ALGORITHM AND
THEORETICAL CHARACTERIZATION

With the proximity operations scenario established, we are
now in position to describe our approach. As previously
described, the constraints that must be satisfied in Eq. (1)
are diverse, complex, and difficult to satisfy numerically. In
this section, we propose a guidance algorithm to solve this
problem, followed by a proof sketch of its optimality with
regard to the 2-norm propellant-cost metric J under impulsive
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(a) Thruster allocation without
stuck-off failures.

(b) The same allocation problem,
with both upper-right thrusters

“stuck off.”

Figure 3. Changes to torque-free control allocation in response to thruster
failures. As can be seen, for the same net ∆v vector (the large green arrow),
thruster configuration changes can have a profound impact on thruster ∆v
locations and magnitudes (blue arrows), and hence on plume impingement

satisfaction and thereby the safety of proposed ∆v trajectories.

CWH dynamics. As will be seen, the algorithm relies on
an understanding of: (i) the steering connections between
sampled points assuming no obstacles or other trajectory
constraints, and (ii) the nearest-neighbors or reachable states
from a given state. We hence start by characterizing these two
concepts, in the The Steering Problem and Reachability Sets
subsections, respectively. We then proceed to the algorithm
presentation in the Algorithm subsection, followed by its
theoretical characterization in the Theoretical Characterization
subsection.

The Steering Problem

In this section, we consider the unconstrained minimal
propellant 2-point boundary value problem (2PBVP) or
“steering problem” between an initial state x0 and a final
state xf within the CWH dynamics model. Solutions to
these steering problems provide the local building blocks
from which we construct solutions to the more complicated
problem formulation in Eq. (1). Steering solutions serve two
main purposes: (i) they represent a class of short-horizon
controlled trajectories that are filtered online for constraint
satisfaction and efficiently strung together into a state space-
spanning graph (i.e., a tree or roadmap), and (ii) the costs of
steering trajectories are used to inform the graph construction
process by identifying the unconstrained “nearest neighbors”
as edge candidates. Because these problems can be expressed
independently of the arrival time t0 (as will be shown), our
solution algorithm does not need to solve these problems
online; the solutions between every pair of samples can be
precomputed and stored prior to receiving a motion query.
Hence the 2PBVP presented here need not be solved quickly.
However, we mention techniques here for speed-ups due to
the reliance of our smoothing algorithm (Algorithm 2) on a
fast solution method.

Substituting our boundary conditions into Eq. (5), evaluating
at t = tf , and rearranging, we seek a stacked burn vector ∆V
such that:

Φv(tf , {τi}i)∆V = xf −Φ(tf , t0)x0, (11)

for some number N of burn times τi ∈ [t0, tf ]. Formulating
this as an optimal control problem that minimizes our 2-
norm cost functional (as a proxy for the actual propellant

consumption, as described in the Cost Functional subsection
of Section 2), we wish to solve:

Given: Initial state x0,final state xf , burn norm
bound ∆vmax, and duration bound Tmax

minimize
∆vi,τi,tf ,N

N∑
i=1

‖∆vi‖2

subject to Φv(tf , {τi}i)∆V = xf −Φ(tf , t0)x0.

0 ≤ tf − t0 ≤ Tmax

t0 ≤ τi ≤ tf for burns i
‖∆vi‖2 ≤ ∆vmax for burns i

(12)

Notice that this is a relaxed version of the original problem
presented as Eq. (1), with only its boundary conditions,
dynamic constraints, and control norm bound. As it stands,
due to the nonlinearity of the dynamics with respect to τi, tf
and N , Eq. (12) is non-convex and inherently difficult to solve.
However, we can make the problem tractable if we make a
few assumptions. Given that we plan to string many steering
trajectories together to form our overall solution, let us ensure
they represent the most primitive building blocks possible such
that their concatenation will adequately represent any arbitrary
trajectory. Set N = 2 (the smallest number of burns required
to transfer between any pair of arbitrary states, as it makes
Φv(tf , {τi}i) square) and select burn times τ1 = t0 and τ2 =
tf (which automatically satisfy our burn time bounds). This
leaves ∆v1 ∈ Rd/2 (an intercept burn applied just after x0 at
time t0), ∆v2 ∈ Rd/2 (a rendezvous burn applied just before
xf at time tf ), and tf as our only remaining decision variables.
If we conduct a search for t∗f ∈ [t0, t0 + Tmax], the relaxed-
2PBVP can now be solved iteratively as a relatively simple
bounded one-dimensional nonlinear minimization problem,
where at each iteration one computes:

∆V∗(tf) = Φ−1
v (tf , {t0, tf})(xf −Φ(tf , t0)x0), (13)

where the argument tf is shown for ∆V∗ to highlight its
dependence. By uniqueness of the matrix inverse (provided
Φ−1
v is non-singular, discussed below), we need only check

that the resulting impulses ∆v∗i (tf) satisfy the magnitude
bound to declare the solution to an iteration feasible. Notice
that because Φ and Φ−1

v depend only on the difference
between tf and t0, we can equivalently search over various
tf − t0 ∈ [0, Tmax] instead, using the expression:

∆V∗(tf − t0) = Φ−1
v (tf − t0, {0, tf − t0}) ·

(xf −Φ(tf − t0, 0)x0),
(14)

which reveals that our impulsive steering problem depends
only on the maneuver duration T = tf − t0 (provided xf and
x0 are given). This will be indispensable for precomputation,
as it allows steering trajectories to be generated and stored
offline. Regarding singularities, our steering solution ∆V∗ =
arg mintf (∆V∗(tf − t0)) requires that Φv be invertible, i.e.,
that (tf − τ1) − (tf − τ2) = tf − t0 avoids certain values
(such as zero and certain values longer than one period
[28], including orbital period multiples) which we achieve
by restricting Tmax to be shorter than one orbital period. To
handle tf− t0 = 0 exactly, note a solution to the 2PBVP exists
if and only if x0 and xf differ in velocity only; in such cases,
we take this velocity difference as ∆v∗2 (with ∆v∗1 = 0) to
be the solution.
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Reachability Sets

In keeping with Eq. (14), since ∆V∗ = arg minT (∆V∗(T ))
only depends on xf and x0, we henceforth refer to the cost of
a steering trajectory by the notation J(x0,xf). We then define
the forward reachability set from a given state x0 as follows:

Definition 3.1 (Forward Reachable Set) The forward reach-
able set R from state x0 is the set of all states xf that can
be reached from x0 with a cost J(x0,xf) at or below a given
cost threshold J̄ , i.e.,

R
(
x0, J̄

)
,
{
xf ∈ X

∣∣ J(x0,xf) ≤ J̄
}
. (15)

Recall from Eq. (14) in the The Steering Problem subsection
that the steering cost may be written as:

J(x0,xf) = ‖∆v1‖ + ‖∆v2‖
= ‖S1∆V‖ + ‖S2∆V‖

(16)

where S1 = [ Id/2×d/2 0d/2×d/2 ], S2 = [ 0d/2×d/2 Id/2×d/2 ],
and ∆V is given by:

∆V(x0,xf) ,

[
∆v1
∆v2

]
= Φ−1

v (tf , {t0, tf})(xf −Φ(tf , t0)x0).

(17)

The cost function J(x0,xf) is difficult to gain insight on
directly; however, as we shall see, we can work with its bounds
much more easily.

Lemma 3.2 (Fuel Burn Cost Bounds) For the cost function in
Eq. (16), we have the following upper and lower bounds:

‖∆V‖ ≤ J(x0,xf) ≤
√

2‖∆V‖. (18)

Proof: For the upper bound, note that by the Cauchy-
Schwarz inequality we have J = ‖∆v1‖ · 1 + ‖∆v2‖ ·

1 ≤
√
‖∆v1‖2 + ‖∆v2‖2 ·

√
12 + 12. That is, J ≤

√
2‖∆V‖. Similarly, for the lower bound, note that:

J =
√

(‖∆v1‖ + ‖∆v2‖)2 ≥
√
‖∆v1‖2 + ‖∆v2‖2 =

‖∆V‖.

Now, observe that:

‖∆V‖ =

√
(xf −Φ(tf , t0)x0)

T
G−1(xf −Φ(tf , t0)x0),

where G−1 = Φ−T
v Φ−1

v , i.e., the expression for an ellipsoid
E(xf) resolved in the LVLH frame with matrix G−1 and
center Φ(tf , t0)x0 (the state T = tf − t0 time units ahead
of x0 along its coasting arc). Combined with Lemma 3.2,
we see that for a fixed maneuver time T and propellant cost
threshold J̄ , the spacecraft at x0 can reach all states inside an
area under-approximated by an ellipsoid with matrix G−1

/
J̄2

and over-approximated by an ellipsoid of matrix
√

2G−1
/
J̄2 .

The forward reachable set for impulsive CWH dynamics under
the 2-norm metric is therefore bounded by the union over
all maneuver times of these under- and over-approximating
ellipsoidal sets, respectively. See Fig. 4 for visualization.

(a) The set of reachable positions
δrf within duration Tmax and

propellant cost ∆vmax.

(b) The set of reachable velocities
δvf within duration Tmax and

propellant cost ∆vmax.

Figure 4. Visualizing reachability sets (shaded blue) from initial state
x(t0) = [ δr(t0), δv(t0) ] given propellant cost threshold J̄ . For cost
measured as a sum of ∆v 2-norms, these are bounded by unions over

maneuver duration T ∈ [0, Tmax] of ellipsoidal balls in position-velocity
(phase) space centered about the spacecraft’s coasting arc. For the special
case of T = 0, the reachable set of states is a 3-dimensional velocity ball

embedded in R6 (with volume 0) corresponding to states with position
δrf = δr(t0) and velocity δvf ∈ B

(
δv(t0), J̄

)
.

Algorithm

As mentioned in Section 1, we apply a modified version of the
Fast Marching Tree (FMT∗) sampling-based planning algo-
rithm to solve the problem in Eq. (1). Sampling-based plan-
ning [14, 29] essentially breaks down a continuous trajectory
optimization problem into a series of relaxed, local steering
problems (as in The Steering Problem subsection) between
intermediate waypoints (called samples) before piecing them
together to form a global solution to the original problem.
This framework can yield significant computational benefits if:
(i) the relaxed subproblems are simple enough, and (ii) the a
posteriori evaluation of trajectory constraints is fast compared
to a single solution of the full-scale problem. Furthermore,
provided samples are sufficiently dense in the free state-space
Xfree and graph exploration is spatially symmetric, sampling-
based planners can closely approximate global optima without
fear of convergence to local minima. Though many candidate
planners could be used here, we rely on the asymptotically-
optimal (AO) FMT∗ algorithm for its efficiency (see [20]
for details on the advantages of FMT∗ over its state-of-the-
art counterparts) and its compatibility with deterministic (as
opposed to random) sampling sequences [30], which leads
to a number of algorithmic simplifications (including use of
offline knowledge).

The FMT∗ algorithm, tailored to our application, is presented
as Algorithm 1 (we shall henceforth refer to our modified ver-
sion of FMT∗ as simply FMT∗, for brevity). FMT∗ efficiently
expands a tree of feasible trajectories from an initial state
xinit to a goal state xgoal around nearby obstacles. It begins
by taking a set of samples distributed in the free state space
Xfree using the SAMPLEFREE routine, which restricts state
sampling to actively-safe, collision-free samples (which lie
outside of Xobs and have access to a safe Collision-Avoidance
Maneuver (CAM) as described in the Active Safety subsection
of Section 2). In our implementation, we assume samples are
taken using a particular deterministic, low-dispersion sequence
called the Halton sequence [31], though any deterministic, low-
dispersion sampling sequence may be used [30]. Selecting
xinit first for further expansion as the minimum cost-to-come
node z, the algorithm then proceeds to look at reachable
samples or “neighbors” (samples that can be reached with less
than a given propellant cost threshold J̄ , as described in the
previous subsection) and attempts connections (using STEER,
as described in The Steering Problem subsection) to those with
cheapest cost-to-come back to the tree. The cost threshold
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J̄ is a free parameter whose value can have a significant
effect on performance; see Theorem 3.5 for a theoretical
characterization and Section 5 for a representative numerical
trade study. Those trajectories satisfying the constraints of
Eq. (1), as determined by COLLISIONFREE, are saved. As
feasible connections are made, the algorithm relies on adding
and removing nodes (saved waypoint states) from three sets:
a set of unexplored samples Vunvisited not yet connected to
the tree, a frontier Vopen of nodes likely to make efficient
connections to unexplored neighbors, and an interior Vclosed
of nodes that are no longer useful for exploring the state space
X . Details on FMT∗ can be found in its original work [20].

To make FMT∗ amenable to a real-time implementation, we
consider an online-offline approach that relegates as much
computation as possible to a pre-processing phase. To be
specific, the sample set S (line 2), nearest-neighbor sets (used
in lines 5 and 6), and steering trajectory solutions (line 7) may
be entirely pre-processed, assuming the planning problem
satisfies the following conditions:

1. The state space X is known a priori, as is typical for most
LEO missions (a luxury we do not generally have for the
obstacle space Xobs, which must be identified online using
onboard sensors once the spacecraft arrives at X ),
2. Steering solutions are independent of sample arrival times
t0, as we showed in The Steering Problem subsection.

Here Item 1 allows samples to be precomputed, while Item 2
enables steering trajectories to be stored onboard or uplinked
from the ground up to the spacecraft, since their values remain
relevant regardless of the times at which the spacecraft actually
follows them during the mission. This leaves only collision-
checking, graph construction, and termination checks as parts
of the online phase, greatly improving the online run time and
leaving the more intensive work to offline resources where
running time is less important. This breakdown into online and
offline components (inspired by [32]) is a valuable technique
for imbuing kinodynamic motion planning problems with real-
time online solvability using fast batch-planners like FMT∗.

Theoretical Characterization

It remains to show that FMT∗ provides similar asymptotic
optimality and convergence rate guarantees under the 2-
norm propellant-cost metric and impulsive CWH dynamics
(which enter into Algorithm 1 under lines 6–7), as it does
for kinematic (straight-line path planning) problems [20].
For sampling-based algorithms, asymptotic optimality refers
to the property that as the number of samples n → ∞, the
cost of the trajectory (a.k.a. “path”) returned by the planner
approaches that of the optimal cost. Here a proof sketch is
presented showing asymptotic optimality for the planning
algorithm and problem setup used in this paper. Full details
may be found in [33]. We note that while CWH dynamics
are the primary focus of this work, the following proof
methodology extends to any general linear system controlled
by a finite sequence of impulsive actuations, whose fixed-
duration 2-impulse steering problem is uniquely determined
(e.g., a wide array of second-order control systems).

The proof proceeds analogously to [20] by showing that it is
always possible to construct an approximate path from points
in S that closely follows the optimal path. Similarly to [20],
we will make use here of a concept called the `2-dispersion of
a set of points, which upper bounds how far away a point in X
can be from its nearest point in S as measured by the `2-norm.

Algorithm 1 The Fast Marching Tree Algorithm (FMT∗).
Computes a minimal-cost trajectory from an initial state
x(t0) = xinit to a target state xgoal through a fixed number n
of samples S.

1: Add xinit to the root of the tree T , as a member of the
frontier set Vopen

2: Generate samples S ← SAMPLEFREE(X , n, t0) and add
them to the unexplored set Vunvisited

3: Set the minimum cost-to-come node in the frontier set as
z← xinit

4: while true
5: for each neighbor x of z in Vunvisited
6: Find the neighbor xmin in Vopen of cheapest

cost-to-go to x
7: Compute the trajectory between them as

[x(t),u(t), t]← STEER(xmin,x)
8: if COLLISIONFREE(x(t),u(t), t)
9: Add the trajectory from xmin to x to tree T
10: Remove all x from the unexplored set Vunvisited
11: Add any new connections x to the frontier Vopen
12: Remove z from the frontier Vopen and add it to Vclosed
13: if Vopen is empty
14: return Failure
15: Reassign z as the node in Vopen with smallest cost-to-

come from the root (xinit)
16: if z is in the goal region Xgoal
17: return Success, and the unique trajectory from

the root (xinit) to z

Definition 3.3 (`2-dispersion) For a finite, non-empty set S of
points in a d-dimensional compact Euclidean subspace X with
positive Lebesgue measure, its `2-dispersion D(S) is defined
as:

D(S) , sup
x∈X

min
s∈S
‖s− x‖

= sup{R > 0 | ∃x ∈ X with B(x, R) ∩ S = ∅},
(19)

where B(x, R) is a Euclidean ball with radius R centered at
state x.

In order to approximate a trajectory by points in S, we also
need a means for quantifying the obstacle-free space around
the trajectory.

Definition 3.4 (Strong δ-Clearance) A trajectory x(t) is said
to have strong δ-clearance if, for some δ > 0 and all t, the
Euclidean distance between x(t) and any point in Xobs is
greater than δ.

We are now in a position to show that the cost of the trajectory
returned by FMT∗ approaches that of an optimal trajectory
as the number of samples n → ∞. The proof proceeds in
two steps. First, we establish that there is a sequence of
waypoints in S that are placed closely along the optimal path
and approximately evenly-spaced in cost. Then we note that
the existence of these waypoints guarantees that FMT∗ finds a
path with a cost close to that of the optimal cost.

Theorem 3.5 (Asymptotic Performance of FMT∗) Let x∗(t)
be a feasible trajectory satisfying Eq. (1) with strong δ-
clearance and cost J∗. Let S∪{x0} be a set of n ∈ N samples
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from Xfree with dispersion D(S) ≤ γn−1/d . Finally, let Jn
denote the cost of the path returned by FMT∗ with n points in
S while using a cost threshold J̄(n) = ω

(
n−1/3d

)
and J̄ =

o(1). (That is, J̄(n) asymptotically dominates n−1/3d and is
asymptotically dominated by 1.) Then limn→∞ Jn ≤ J∗.

Proof Sketch: The basis of the argument is that small
endpoint pertubations in the 2-impulse 2PBVP bring about
correspondingly small deviations in the steering control. This
fact ensures that the particular placement of the points of
S is immaterial; only its low-dispersion property matters.
We consider states {xk} equally spaced along x∗(t) in cost
intervals of J̄(n)/2. We claim that we can find a sequence of
points {yk} ⊂ S ∪ {x0}, which may be thought of as small
perturbations on the {xk}, such that by concatenating steering
connections between the {yk} we construct a trajectory with
cost approaching J∗ and which stays within the obstacle-free
envelope afforded by the δ-clear property of x∗(t).

In contrast with previous perturbation results for linear systems
[34], the existence of zero-time trajectory segments brought
about by x∗(t) impulse controls prevents us from selecting
the {yk} as symmetric perturbations on the {xk}. Instead
of selecting each yk as a point within a ball centered at
xk, we consider a shifted center x̃k for each ball. In the
case that the trajectory segment from xk−1 to xk in x∗(t) is
contained within an instantaneous impulse burn, the position
of the shifted center x̃k incorporates the drift incurred over
the short (but nonzero) time required to correct for the
arbitary placement of yk within a perturbation ball of radius
proportional to J̄(n)3 (which exceeds the dispersion D(S) for
sufficiently large n). Bounds on the position shifts of the {x̃k},
as well as the resulting cost of steering from each yk−1 to yk,
may be established which ensure that the {yk} are clear of
obstacles, successively separated in cost by at most J̄(n), and
delineate a trajectory with cost approaching J∗ as n → ∞.
The existence of this sequence of waypoints {yk} for each
n as a candidate path for recovery by FMT∗ is sufficient to
establish that limn→∞ Jn ≤ J∗.

Remark 3.6 (Asymptotic Optimality of FMT∗) If the plan-
ning problem at hand admits an optimal solution that does not
itself have strong δ-clearance, but is arbitrarily approximable
both pointwise and in cost by trajectories with strong clearance
(see [35] for additional discussion on why such an assumption
is reasonable), then Theorem 3.5 implies the asymptotic
optimality of FMT∗.

4. TRAJECTORY SMOOTHING
Due to the discreteness caused by using a finite number
of samples, sampling-based solutions will necessarily be
approximations to true optima. In an effort to compensate
for this limitation, we offer in this section two techniques to
improve the quality of solutions returned by our planner from
the Algorithm subsection of Section 3. We first describe a
straightforward method for reducing the sum of ∆v-vector
magnitudes along concatenated sequences of edge trajectories
that can also be used to improve the search for propellant-
efficient trajectories in the feasible state space Xfree. We
then follow with a fast post-processing algorithm for further
reducing propellant cost after a solution has been reported.

The first technique removes unnecessary ∆v-vectors that occur
when joining sub-trajectories (edges) in the planning graph.
Consider merging two edges at a node with position δr(t)

(a) Smoothing during graph
construction (merges ∆v-vectors at

edge endpoints).

(b) Smoothing during
post-processing (see Algorithm 2).

Figure 5. Improving sampling-based solutions under minimal-propellant
impulsive dynamics. Figure 5(a) can be used to merge ∆v-vectors between
edge endpoints during and after graph construction, while Fig. 5(b) illustrates
the post-processing smoothing algorithm given in Algorithm 2 (the original
trajectory xn(t) is solid, the approximate unconstrained optimum x†(t) is

dash-dotted, and the resulting “smoothed” trajectory derived from their
combination is shown dashed).

and velocity δv(t) as in Fig. 5(a). A naive concatenation
would retain both ∆v2(t−) (the rendezvous burn added to the
incoming velocity v(t−)) and ∆v1(t) (the intercept burn used
to achieve the outgoing velocity v(t+)) individually within
the combined control trajectory. Yet, because these impulses
occur at the same time, a more realistic approach should merge
them into a single net ∆v-vector ∆vnet(t

−). By the triangle
inequality, we have that:∥∥∆vnet

(
t−
)∥∥ =

∥∥∆v2

(
t−
)

+ ∆v1(t)
∥∥

≤
∥∥∆v2

(
t−
)∥∥ + ‖∆v1(t)‖.

(20)

Hence, merging edges in this way guarantees ∆v savings
for solution trajectories under the 2-norm propellant metric.
Furthermore, incorporating net ∆v’s into the cost-to-come
during graph construction can make exploration of the search
space more efficient; the cost-to-come c(z) for a given node
z would then reflect the cost to rendezvous with z from
xinit through a series of intermediate intercepts rather than a
series of rendezvous maneuvers (as a trajectory designer might
normally expect). Note, on the other hand, that two edges as
in Fig. 5(a) that are merged in this fashion no longer achieve
velocity v(t); state x(t) is skipped altogether. This may
not be desirable in certain applications (e.g., for some active
safety policies) which rely on rendezvousing with intermediate
waypoints like x = [ r(t) v(t) ] exactly.

The second technique attempts to reduce solution cost by
adjusting the magnitudes of ∆v-vectors in the trajectory
returned by FMT∗, denoted by xn(t) with associated stacked
impulse vector ∆Vn. By relaxing FMT∗’s constraint to
pass through state samples, strong cost improvements may
be gained. The main idea is to deform our low-cost, feasible
solution xn(t) as much as possible towards the unconstrained
minimum-propellant solution x∗(t) between xinit and xgoal,
as determined by the 2-point Boundary Value Problem
(Eq. (12)) solution from Section 3 (in other words, use a
homotopic transformation from xn(t) to x∗(t)). However, a
naive attempt to solve Eq. (12) in its full generality would
be too time-consuming to be useful, and would threaten
the real-time capability of our approach. Assuming our
sampling-based trajectory is near-optimal (or at least, in
a low-cost solution homotopy), we can relax Eq. (12) by
keeping the number of burns N , end time tf := tfinal, and
burn times τi fixed from our planning solution, and solve for
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an approximate unconstrained minimum-propellant solution
∆V† with associated state trajectory x†(t) via:

minimize
∆vi

N∑
i=1

‖∆vi‖2

subject to Φv(tfinal, {τi}i)∆V = xgoal −Φ(tfinal, tinit)xinit

‖∆vi‖2 ≤ ∆vmax for all burns i
(21)

(see Section 2 for definitions). It can be shown that Eq. (21)
is a second-order cone program (SOCP), and hence quickly
solved using standard convex solvers. As the following proof
shows explicitly, we can safely deform the trajectory xn(t)
towards x†(t) without violating our dynamics and boundary
conditions if we use a convex combination of our two control
trajectories ∆Vn and ∆V†. This follows from the principle
of superposition, given that the CWH equations are Linear,
Time-Invariant (LTI), and the fact that both solutions already
satisfy the boundary conditions.

Theorem 4.1 (Dynamic Feasibility of CWH Smoothing)
Suppose xn(t) and x†(t) with respective control vectors ∆Vn

and ∆V† are two state trajectories which satisfy the impulsive
CWH steering problem Eq. (11) between states xinit and xgoal.
Then the trajectory x(t) generated by the convex combination
of ∆Vn and ∆V† is itself a convex combination of xn(t)
and x†(t), and hence also satisfies Eq. (11).

Proof: Let ∆V = α∆Vn + (1− α)∆V† for some
value α ∈ [0, 1]. From our dynamics equation,

x(t) = Φ(t, tinit)xinit + Φv(t, {τi}i)∆V

= [α+ (1− α)]Φ(t, tinit)xinit

+ Φv(t, {τi}i)
[
α∆Vn + (1− α)∆V†

]
= α[Φ(t, tinit)xinit + Φv(t, {τi}i)∆Vn]

+ (1− α)
[
Φ(t, tinit)x0 + Φv(t, {τi}i)∆V†

]
= αxn(t) + (1− α)x†(t)

which is a convex combination, as required. Substituting
t = tinit or t = tgoal, we see that x(t) satisfies the boundary
conditions given that xn(t) and x†(t) do. This completes the
proof.

We take advantage of this fact for trajectory-smoothing. Our
algorithm, reported as Algorithm 2 and illustrated in Fig. 5(b),
computes the approximate unconstrained minimum-propellant
solution x†(t) and returns it (if feasible) or otherwise conducts
a bisection line search on α, returning a convex combination
of our original planning solution xn(t) and x†(t) that comes
as close to x†(t) as possible without violating trajectory
constraints. Note because ∆Vn lies in the feasible set of
Eq. (21), the algorithm can only improve the final propellant
cost. By design, Algorithm 2 is geared towards reducing
our original solution propellant-cost as quickly as possible
while maintaining feasibility; the most expensive computa-
tional components are the calculation of ∆V† and collision-
checking (consistent with our sampling-based algorithm).
Fortunately, the number of collision-checks is limited by the
maximum number of iterations

⌈
log2

(
1

δαmin

)⌉
+ 1, given

Algorithm 2 “Trajectory smoothing” algorithm for impulsive
CWH dynamics. Given a trajectory xn(t), t ∈ [tinit, tgoal]
between initial and goal states xinit and xgoal satisfying Eq. (1)
with impulses ∆Vn applied at times {τi}i, returns another
feasible trajectory with reduced 2-norm propellant-cost.

1: Initialize the smoothed trajectory xsmooth(t) as xn(t),
with ∆Vsmooth = ∆Vn

2: Compute the unconstrained optimal control vector ∆V†

by solving Eq. (21)
3: Compute the unconstrained optimal state trajectory x†(t)

using Eq. (5) (See Section 2)
4: Initialize weight α and its lower and upper bounds as

α← 1, α` ← 0, αu ← 1
5: while true
6: x(t)← (1− α)xn(t) + αx†(t)

7: ∆V← (1− α)∆Vn + α∆V†

8: if COLLISIONFREE(x(t),∆V, t)
9: α` ← α
10: Save the smoothed trajectory xsmooth(t) as x(t)

and control ∆Vsmooth as ∆V
11: else
12: αu ← α
13: if αu − α` is less than tolerance δαmin ∈ (0, 1)
14: break
15: α← (α` + αu)/2

16: return smoothed trajectory xsmooth(t), with ∆Vsmooth

tolerance δαmin ∈ (0, 1). As an added bonus, for strictly
time-constrained applications that require a solution in a fixed
amount of time, the algorithm can be easily modified to return
the α`-weighted trajectory xsmooth(t) when time runs out, as
the feasibility of this trajectory is maintained as an algorithm
invariant.

5. NUMERICAL EXPERIMENTS
Consider the scenario shown in Fig. 7, here modeling the near-
field approach of a chaser spacecraft in close proximity2 to
a target moving in a circular LEO trajectory (as in Fig. 1).
We imagine the chaser, which starts in a circular orbit of
lower radius, must be repositioned through a sequence of
pre-specified CWH waypoints (e.g., required for equipment
checks, surveying, etc.) to a coplanar position located radially
above the target, arriving with zero relative velocity in
preparation for a final radial (“R-bar”) approach. Throughout
the maneuver, as described in detail in Section 2, the chaser
must avoid entering the elliptic target KOZ, enforce hard safety
constraints with regard to a two-fault tolerance to stuck-off
thruster failures, and otherwise avoid interfering with the
target. This includes avoiding the target’s nadir-pointing
communication lobes (represented by truncated half-cones),
and preventing exhaust plume impingement on its surfaces.
For context, we use the Landsat-7 spacecraft and orbit as a
reference [36, 3.2] (see Fig. 6).

If we take the waypoints in the guidance sequence one at a time
as individual goal points xgoal, we can solve the given scenario
as a series of motion planning problems (or “subplans”),

2Close proximity in this context implies that any higher-order terms of the
linearized relative dynamics are negligible, e.g., within a few percent of the
target orbit mean radius.
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(a) Landsat-7 schematic (Nadir (-δx
direction) points down, while the in-track

(+δy) direction points left).

(b) Landsat-7 orbit (Courtesy
of the Landsat-7 Handbook).

Figure 6. Target spacecraft geometry and orbital scenario used in
numerical experiments.
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Figure 7. Illustration of the motion planning query in the LVLH frame.
The spacecraft must track a series of guidance waypoints to the final goal

state, which is located radially above the client. Positional goal tolerances are
visualized as circles around each waypoint, which successively shrink in size.

calling FMT∗ from Section 3 once for each instance, linking
them together to form an overall solution to the problem. As
our steering controller from Section 3 is attitude-independent,
we use position-velocity states x ∈ Rd with d = 4, where x =

[ δx, δy, δẋ, δẏ ]
T. We omit the attitude q from the state during

planning by assuming the existence of an attitude policy (as
well as a stable attitude-trajectory-following controller) that
produces q(t) from the state trajectory x(t); for illustration
purposes, a simple nadir-pointing attitude profile is chosen to
represent a mission that requires constant communication with
the ground throughout the maneuver (note this is not enforced
along actively-safe escape trajectories, which for each failure
mode execute a simple “turn-burn-turn” policy that orients the
closest available thruster as quickly as possible in the direction
required to implement the necessary circularization burn– see
[27] for full details). Given the hyper-rectangular shape of
the state-space, we call upon the deterministic, low-dispersion
d-dimensional Halton sequence [31] to sample positions and
velocities. To improve sample densities, each subplan uses its
own sample space defined around only its respective initial and
goal waypoints, with some arbitrary threshold space added
around them. Additionally, extra samples ngoal are taken
inside each waypoint ball to facilitate convergence. For this
multi-plan problem, we define the solution cost as the sum of
individual subplan costs (if using trajectory smoothing, the
endpoints between two plans will be merged identically to two
edges within a plan, as described in Section 4).

Before we proceed to the results, we make note of a few

δx
 (

R
a

d
ia

l)
 [
m

]

δy (In−Track) [m]

(a) Chaser spacecraft

δx
 (

R
a

d
ia

l)
 [
m

]

δy (In−Track) [m]
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Figure 8. Schematics of the chaser and target, together with their
circumscribing spheres.

Table 1. List of parameters used during numerical experiments.

Chaser plume half-angle, βplume 10 ◦

Chaser plume height, Hplume 16 m
Chaser thruster fault tolerance, F 2
Cost threshold, J̄ 0.1–0.4 m/s
Dimension, d 4
Goal sample count, ngoal 0.04n
Goal position tolerance, εr 3–8 m
Goal velocity tolerance, εv 0.1–0.5 m/s
Max. thruster ∆v norm, ∆vmax,k ∞ m/s
Max. net ∆v norm, ∆vmax ∞ m/s
Max. plan duration, Tplan,max ∞ s
Min. plan duration, Tplan,min 0 s
Max. steering duration, Tmax 0.1 · (2π/nref )
Min. steering duration, Tmin 0 s
Sample count, n 50–400 per plan
Simulation timestep, ∆t 0.0005 · (2π/nref )
Smoothing tolerance, δαmin 0.01
Target antenna lobe height 75 m
Target antenna beamwidth 60 ◦

Target KOZ semi-axes [35 50 15] m

implementation details. First, for clarity we list the simulation
parameters used in Table 1. Second, all position-related
constraint-checking regard the chaser spacecraft as a point at
its center of mass, with all other obstacles artificially inflated
by the radius of its circumscribing sphere. Third and finally,
all trajectory collision-checking is implemented by point-
wise evaluation with a fixed time-step resolution ∆t, using
the analytic state transition equations Eq. (5) together with
steering solutions from the The Steering Problem subsection
of Section 3 to propagate graph edges; for speed, the line
segments between points are excluded. Except near very
sharp obstacle corners, this approximation is generally not
a problem in practice (obstacles can always be inflated further
to account for this). To improve performance, each obstacle
primitive (ellipsoid, right-circular cone, hypercube, etc.)
employs hierarchical collision-checking using hyper-spherical
and/or hyper-rectangular bounding volumes to quickly prune
points from consideration.

Motion Planning Solution

A representative solution to the posed planning scenario,
both with and without the trajectory smoothing algorithm
(Algorithm 2), is shown in Fig. 9. As shown, the planner
successfully finds safe trajectories within each subplan, which
are afterwards linked to form an overall solution. The state
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Figure 9. Representative planar motion planning solution using the FMT∗

algorithm (Algorithm 1) with n = 2000 (400 per subplan), J̄ = 0.3 m/s,
and relaxed waypoint convergence. The output from FMT∗ is shown in green,
while the trajectory combined with post-processing smoothing is shown in

blue. Explored trajectories found to be safe are shown in grey. Actively-safe
minimum-propellant abort trajectories are shown as purple dashed lines (one

for each burn ∆vi along the trajectory).

space of the first subplan shown at the bottom is essentially
obstacle-free, as the chaser at this point is too far away from
the target for plume impingement to come into play. This
means every edge connection attempted here is added; so the
first subplan illustrates well a discrete subset of the reachable
states around xinit and the unrestrained growth of FMT∗. As
the second subplan is reached, the effects of the Keep-Out-
Zone position constraints come in to play, and we see edges
begin to take more leftward loops. In subplans 3 and 4, plume
impingement begins to play a role. Finally, in subplan 5 at
the top, where it becomes very cheap to move between states
(as the spacecraft can simply coast to the right for free), we
see the initial state connecting to nearly every sample in the
subspace, resulting in a straight shot to the final goal. As is
evident, straight-line path planning would not approximate
these trajectories well, particularly near coasting arcs which
our dynamics allow the spacecraft to transfer to for free.

To understand the smoothing process, examine Fig. 10. Here
we see how the discrete trajectory sequence from our sampling-
based algorithm may be smoothly and continuously deformed
towards the unconstrained minimal-propellant trajectory (as
outlined in Section 4) until it meets trajectory constraints; if
these constraints happen to be inactive, then the exact minimal-
propellant trajectory is returned, as Fig. 10(a) shows. This
computational approach is generally quite fast, assuming a
well-implemented convex solver is used, as will be seen in the
results of the next subsection.

The 2-norm ∆v costs of the two reported trajectories in
this example come to 0.835 m/s (unsmoothed) and 0.811
m/s (smoothed). Compare this to 0.641 m/s, the cost of
the unconstrained direct solution that intercepts each of the
goal waypoints on its way to rendezvousing with xgoal (this
trajectory exits the state-space along the positive in-track
direction, a violation of our proposed mission; hence its cost
represents an under-approximation to the true optimal cost J∗
of the constrained problem). This suggests that our solutions

(a) Paths before and after
smoothing (n = 2000, J̄ = 0.2

m/s, exact waypoint convergence).

(b) Smoothing algorithm iterations
(n = 1500, J̄ = 0.3 m/s, inexact

waypoint convergence).

Figure 10. Visualizing trajectory smoothing (Algorithm 2) for the solution
shown in Fig. 9, zoomed in on the second plan. The original plan is shown in
green (towards the bottom-left), along with various iterates attempted while
converging to the smoothed trajectory shown in blue (in the center). Invalid
trajectories, including the lower propellant-cost trajectory used to guide the

process, are shown in orange (towards the right).

are quite close to the constrained optimum, and certainly on
the right order of magnitude. Particularly with the addition of
smoothing at lower sample counts, the approach appears to be
a viable one for spacecraft planning.

If we compare the 2-norm ∆v costs to the actual measured
propellant consumption given by the sum total of all allocated
thruster ∆v magnitudes, which equal 1.06 m/s (unsmoothed)
and 1.01 m/s (smoothed) respectively, we find increases of
27.0% and 24.5%; as expected, our 2-norm cost metric under-
approximates the true propellant cost. For point-masses
with isotropic control authority (e.g., a steerable or gimbaled
thruster that is able to point freely in any direction), our cost
metric would be exact. However, for our distributed attitude-
dependent propulsion system (see Fig. 8(a)), it is clearly a
reasonable proxy for allocated propellant use, returning values
on the same order of magnitude. Though we cannot make
a strong statement about our proximity to the propellant-
optimal solution without directly optimizing over thruster
∆v allocations, our solution clearly seems to promote low
propellant consumption.

Performance Evaluation

To evaluate the performance of our approach, an assessment
is necessary of solution quality as a function of planning
parameters, most importantly the number of samples n taken
and the reachability set cost threshold J̄ . As proven in the
Theoretical Characterization of Section 3, the solution cost
will eventually reduce to the optimal value as we increase
the sample size n. Additionally, one can increase the cost
threshold J̄ used for nearest-neighbor identification so that
more connections are explored. However, both come at the
expense of running time. To understand the effects of these
changes on quality, particularly at finite sample counts where
the asymptotic guarantees of FMT∗ do not necessarily imply
cost improvements, we measure the cost versus computation
time for the planar planning scenario parameterized over
several values of each n and J̄ .

Results are reported in Figs. 11–12. For a given sequence of
sample count/cost threshold pairs, we ran our algorithm in
each configuration and recorded the total cost of successful
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(a) Exact waypoint convergence (n = 2000).
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(b) Inexact waypoint convergence (n = 2000).

Figure 11. Algorithm performance for the given LEO proximity operations
scenario as a function of varying cost threshold (J̄ ∈ [0.2, 0.4]) with n held
constant (lowering J̄ at these n yields failure). Results are reported for both

(i) trajectories constrained to rendezvous exactly with pre-specified
waypoints and (ii) trajectories that can terminate anywhere in Xgoal (inside a

given position/velocity tolerance).

runs and their respective run times3 as measured by wall
clock time. Note that all samples were drawn and their
interconnecting steering problems were solved offline per our
discussion in Section 3. Only the online components of each
call constitute the run times reported, including running FMT∗
with collision-checking and graph construction, as these are
the only elements critical to the real-time implementability
of the approach; everything else may be computed offline on
ground computers where computation is less restricted, and
later uplinked to the spacecraft or stored onboard prior to
mission launch. See the Algorithm subsection of Section 3
for details. Samples were stored as a d× n array, while inter-
sample steering controls ∆v∗i and times τi were precomputed
as n × n arrays of d/2 × N and N × 1 array elements,
respectively. To reduce memory requirements, steering
trajectories x∗ and q were generated online through Eq. (5)
and our nadir-pointing assumption, though in principle they
could have easily been stored as well to save additional
computation time.

Figure 11 reports the effects on the solution cost of varying
the nearest-neighbor search threshold J̄ while keeping n fixed.

3All simulations were implemented in MATLAB 2012b and run on a
Windows-operated PC, clocked at 4.00 GHz and equipped with 32.0 GB
of RAM. CVXGEN and CVX [37], disciplined convex programming solvers,
were used to implement ∆v allocation and trajectory smoothing, respectively.

0.5 1 1.5 2 2.5 3 3.5 4

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4

Run Time [s]

S
o
l
u
t
i
o
n
 
C
o
s
t
 
[
m
/
s
]

 

 

No Smoothing
Smoothing

n increasing

n increasing

(a) Exact waypoint convergence (J̄ = 0.22 m/s).
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(b) Inexact waypoint convergence (J̄ = 0.3 m/s).

Figure 12. Algorithm performance for the given LEO proximity operations
scenario as a function of varying sample count (n ∈ [650, 2000]) with J̄

held constant (lowering n further at these J̄ yields failure). Results are
reported for trajectories both with and without exact waypoint convergence.

As described in the Reachability Sets subsection of Section 3,
J̄ determines the size of state reachability sets and hence
the number of candidate neighbors evaluated during graph
construction. Generally, this means an improvement in cost at
the expense of extra processing; though there are exceptions as
in Fig. 11(a) at J̄ ≈ 0.3 m/s. Likely this arises from a neighbor
that is found and connected to (at the expense of another, since
FMT∗ only adds one edge per nearest-neighborhood) which
leads to a particular graph change for which exact termination
at the goal waypoint is more expensive than usual. Indeed
we see that for the same sample distribution this does not
occur, as shown in the other case where inexact convergence
is permitted.

We can also vary the sample count n while holding J̄ constant.
From Figs. 11(a)–11(b), we select J̄ = 0.22 m/s and 0.3
m/s, respectively, for each of the two cases (the values which
suggest the best solution cost per unit of run time). Repeating
the simulation for varying sample count values, we obtain
Fig. 12. Note the general downward trend as run time
increases (corresponding to larger sample counts), indicating
the classic trade-off in sampling-based planning. However,
there is bumpiness. Similar to before, this is likely due to new
connections previously unavailable at lower sample counts
which cause a slightly different graph with an unlucky jump in
propellant cost. This reinforces the well-known need to tune
n and J̄ before applying sampling-based planners.
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As the figures show, the utility of trajectory smoothing is
clearly affected by the fidelity of the planning simulation. In
each, trajectory smoothing yields a much larger improvement
in cost at modest increases in computation time when we
require exact waypoint convergence. It provides little im-
provement, on the other hand, when we relax these waypoint
tolerances; FMT∗ (with goal region sampling) seems to return
trajectories with costs much closer to the optimum in such
cases, making the additional overhead of smoothing less
favorable. This conclusion is likely highly problem-dependent;
these tools must always be tuned to the particular application.

Note that the overall run times for each simulation are on
the order of 1-5 seconds, including smoothing. This clearly
indicates that FMT∗ can return high quality solutions in real-
time for spacecraft proximity operations. Though run on a
computer currently unavailable to spacecraft, we hope that our
examples serve as a reasonable proof-of-concept; we expect
that with a more efficient coding language and implementation,
our approach would be competitive on spacecraft hardware.

6. CONCLUSIONS
A technique has been presented for efficiently automating
minimum-propellant guidance during near-circular orbit prox-
imity operations, enabling the computation of near-optimal
collision-free trajectories in real time (on the order of 1-5
seconds for our numerical examples). The approach allows
our modified version of the FMT∗ sampling-based motion
planning algorithm to approximate the solution to the minimal-
propellant trajectory control problem Eq. (1) under impulsive
Clohessy-Wiltshire-Hill (CWH) dynamics. The method begins
by discretizing the feasible space of Eq. (1) through state
space sampling in the CWH Local-Vertical Local-Horizontal
(LVLH) frame. Next, state samples and their forward reach-
ability sets, which we have shown comprise sets bounded by
unions of ellipsoids taken over steering maneuver duration,
are precomputed offline and stored onboard the spacecraft
together with their pairwise steering solutions. Finally, the
FMT∗ algorithm (with built-in trajectory smoothing) is called
online to efficiently construct a tree of trajectories through the
feasible state space towards a goal region, returning a solution
that satisfies a broad range of trajectory constraints (e.g.,
plume impingement, control allocation feasibility, obstacle
avoidance, etc.) or else reporting failure. If desired, additional
post-processing using the techniques outlined in Section 4 are
employed to reduce solution propellant cost.

The key breakthrough of our solution for autonomous space-
craft guidance is its judicious distribution of computations;
in essence, only what must be computed onboard, such as
collision-checking and graph construction, is computed online
– everything else, including the most intensive computations,
are relegated to the ground where computational effort and run
time are less critical. Furthermore, only minimal information
(steering problem control trajectories, costs, and nearest-
neighbor sets) requires storage on the spacecraft. Though
we have illustrated through simulations the ability to tackle
a particular minimum-propellant LEO homing maneuver
problem, it should be noted that the methodology applies
equally well to other objectives, such as the minimum-time
problem, and can be generalized to other dynamic models
and environments. The approach is flexible enough to
handle non-convexity and mixed state-control-time constraints
without compromising real-time implementability, so long as
constraint function evaluation is relatively efficient. In short,
the proposed approach appears to be useful for automating the

mission planning process for spacecraft proximity operations,
enabling real-time computation of low cost trajectories.

In future work, the authors plan to demonstrate the proposed
approach in a number of other proximity operations scenarios,
including deep-space guidance, pinpoint asteroid descent, and
onboard a set of free-flying, air-bearing robots. However,
the proposed planning framework for impulsively-actuated
spacecraft offers several other interesting avenues for future
research. For example, though nothing in the methodology
forbids it outside of computational limitations, it would be
interesting to revisit the problem with attitude states included
in the planning process (instead of abstracted away, as we
have done here by assuming an attitude profile). This would
allow direct inclusion of attitude constraints into maneuver
planning (e.g., enforcing line-of-sight, keeping solar panels
oriented towards the Sun to stay power positive, maintaining a
communication link between the chaser antenna and ground,
etc.). Extensions to dynamic obstacles (such as debris or ma-
neuvering spacecraft, which are unfixed in the LVLH frame),
elliptical target orbits, higher-order gravitation, curvilinear
coordinates, or dynamics under relative orbital elements also
represent key research topics vital to extending the method’s
applicability to more general maneuvers. Finally, memory
and run time performance evaluations of our algorithms on
space-like hardware would be necessary in assessing their true
benefit to spacecraft planning in practice.
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tion of Non-Convex Optimal Control Problems for State
Constrained Linear Systems,” Automatica, vol. 50, no. 9,
pp. 2304–2311, 2014.

[9] L. Breger and J. P. How, “Safe Trajectories for Au-
tonomous Rendezvous of Spacecraft,” AIAA Journal of
Guidance, Control, and Dynamics, vol. 31, no. 5, pp.
1478–1489, 2008.

[10] R. Vazquez, F. Gavilan, and E. F. Camacho, “Trajec-
tory Planning for Spacecraft Rendezvous with On/Off
Thrusters,” in IFAC World Congress, vol. 18, no. 1,
Milano, Italy, Aug. 2011, pp. 8473–8478.

[11] P. Lu and X. Liu, “Autonomous Trajectory Planning
for Rendezvous and Proximity Operations by Conic
Optimization,” AIAA Journal of Guidance, Control, and
Dynamics, vol. 36, no. 2, pp. 375–389, Mar. 2013.

[12] Y.-Z. Luo, L.-B. Liang, H. Wang, and G.-J. Tang,
“Quantitative Performance for Spacecraft Rendezvous
Trajectory Safety,” AIAA Journal of Guidance, Control,
and Dynamics, vol. 34, no. 4, pp. 1264–1269, Jul. 2011.

[13] A. Richards, T. Schouwenaars, J. P. How, and E. Feron,
“Spacecraft Trajectory Planning With Avoidance Con-
straints Using Mixed-Integer Linear Programming,”
AIAA Journal of Guidance, Control, and Dynamics,
vol. 25, no. 4, pp. 755–765, 2002.

[14] S. M. LaValle and J. J. Kuffner, “Randomized Kino-
dynamic Planning,” International Journal of Robotics
Research, vol. 20, no. 5, pp. 378–400, 2001.

[15] E. Frazzoli, “Quasi-Random Algorithms for Real-Time
Spacecraft Motion Planning and Coordination,” Acta
Astronautica, vol. 53, no. 4–10, pp. 485–495, Aug. 2003.

[16] J. M. Phillips, L. E. Kavraki, and N. Bedrossian,
“Spacecraft Rendezvous and Docking with Real-Time,
Randomized Optimization,” in AIAA Conf. on Guidance,
Navigation and Control, Austin, TX, Aug. 2003, pp.
1–11.

[17] M. Kobilarov and S. Pellegrino, “Trajectory Planning for
CubeSat Short-Time-Scale Proximity Operations,” AIAA
Journal of Guidance, Control, and Dynamics, vol. 37,
no. 2, pp. 566–579, Mar. 2014. [Online]. Available:
http://arc.aiaa.org/doi/abs/10.2514/1.60289

[18] M. Haught and G. Duncan, “Modeling Common Cause
Failures of Thrusters on ISS Visiting Vehicles,” NASA,
Tech. Rep., Jan. 2014, available at http://ntrs.nasa.gov/
search.jsp?R=20140004797.

[19] S. Lavalle, Planning Algorithms. Cambridge University
Press, 2006.

[20] L. Janson, E. Schmerling, A. Clark, and M. Pavone,
“Fast Marching Tree: A Fast Marching Sampling-Based
Method for Optimal Motion Planning in Many Di-
mensions,” International Journal of Robotics Research,
vol. 34, no. 7, pp. 883–921, 2015.

[21] I. M. Ross, “How to Find Minimum-Fuel Controllers,”
in AIAA Conf. on Guidance, Navigation and Control,

Providence, RI, Aug. 2004, pp. 1–10. [Online]. Available:
http://arc.aiaa.org/doi/abs/10.2514/6.2004-5346

[22] W. H. Clohessy and R. S. Wiltshire, “Terminal Guidance
System for Satellite Rendezvous,” AIAA Journal of the
Aerospace Sciences, vol. 27, no. 9, pp. 653–658, Sep.
1960.

[23] G. W. Hill, “Researches in the Lunar Theory,” JSTOR
American Journal of Mathematics, vol. 1, no. 1, pp. 5–26,
1878.

[24] M. Bodson, “Evaluation of Optimization Methods for
Control Allocation,” AIAA Journal of Guidance, Control,
and Dynamics, vol. 25, no. 4, pp. 703–711, Jul. 2002.

[25] G. Dettleff, “Plume Flow and Plume Impingement in
Space Technology,” Progress in Aerospace Sciences,
vol. 28, no. 1, pp. 1–71, 1991.
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