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Abstract

Autonomy has demonstrated success in many vehicle control problems, but has yet to show significant

breakthroughs for spacecraft guidance during proximity operations. In part due to a costly verification

and validation process as well as from limited access to formally-safe guidance algorithms, mission

planners have instead had to rely on maneuver plans with straightforward, easily-verified trajectories

and extensive human oversight. Unfortunately, this strategy often introduces propellant inefficiencies,

adds significant labor overhead, and limits missions to Earth proximity where two-way communication

times are short. This dissertation seeks to remedy these issues by developing a provably-safe and

propellant-efficient sampling-based motion planning framework for fully-autonomous spacecraft

proximity operations. The framework is designed for a wide range of hazardous guidance scenarios,

including autonomous orbital rendezvous and inspection, pinpoint small-body descent, and on-orbit

satellite servicing. Due to the dangers associated with operating near other objects, special care is

taken to enable real-time guidance as well as ensure the availability of safe abort trajectories so that

spacecraft can respond quickly and safely to control failures and sudden environmental changes.

In the first part of the dissertation, we motivate the need for sampling-based motion planning,

introducing two algorithms particularly well-suited to complex guidance problems with many con-

straints. The real-time performance of these planners are then evaluated in numerical experiments

and onboard a free-flying, air-bearing robot. In the second part of the dissertation, we develop

a framework for real-time, propellant-optimal spacecraft proximity operations, leveraging insights

from earlier experiments. Along the way, we introduce a strategy for guaranteeing abort safety,

devise fast tools for improving planning solutions, and maintain real-time guidance through a unique

online-offline approach that offloads many time-consuming computations to ground systems. To

illustrate our ideas, techniques are tailored to impulsively-actuated guidance near circular orbits.

Simulations demonstrate that the methodology can accommodate a wide variety of complex trajectory

constraints, including plume impingement and obstacle avoidance, thrust allocation, and a “stuck-off”

thruster fault-tolerance, all while returning low-cost solutions within seconds on modern hardware.

Through its generality, efficiency, and speed, the proposed approach offers the potential to enable

entirely new capabilities for next-generation space missions, while also increasing the frequency,

flexibility, and reliability of present-day operations in space.
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Chapter 1

Introduction

This thesis presents an algorithmic framework for the automated design of provably-safe, propellant-

optimized guidance trajectories for spacecraft that are maneuvering near other objects or vehicles—a

scenario generally termed spacecraft proximity operations. Such maneuvers arise frequently during

mission planning, whether there be two spacecraft that need to be docked together or an orbiter that

needs to make a soft precision landing onto the surface of an asteroid. The proposed framework relies

upon the field of sampling-based motion planning to efficiently construct a set of feasible, low-cost

trajectories through the vehicle’s constrained surroundings. The approach enables a spacecraft to

make quick decisions (that is, in “real-time”) about how and when to apply its actuators in order to

complete a point-to-point maneuver safely and with low propellant cost; in the event of control failures,

actuated abort maneuvers are made available from every point on the trajectory as safe escape routes

to prevent potential mission disasters. The framework is tailored to spacecraft guidance applications

involving many competing constraints and mission-jeopardizing hazards, including rendezvous and

docking, on-orbit satellite servicing, and small-body descent and landing.

As motivating examples, consider the scenarios illustrated in Fig. 1.1. In Fig. 1.1a, we see the

Russian Progress spacecraft on its automated final approach to the International Space Station.

Should thrusters fail during the final minutes of these docking maneuvers, the likelihood is high that

the incoming spacecraft will collide with the station, threatening the lives of astronauts onboard.

Enforcing safety constraints during operations of this kind can help maintain safety as long as possible

prior to final docking. Extrapolating to many nearby objects, one might imagine an even harder

scenario as illustrated in Fig. 1.1b in which we seek to maneuver safely and efficiently around a

collection of dynamic, uncooperative debris (possibly created by a kinetic impact on a nearby object,

or representing unexpected debris near a rubble-pile asteroid, for instance). Such a guidance feat

requires either exceptional relative state sensing so that debris motion can be predicted accurately

(improbable for most spacecraft applications), or otherwise necessitates a fast, high-frequency re-

planning scheme (though such dynamic environments are not explicitly handled in this thesis, we

1
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(a) A Progress M-21M spacecraft docking
to the International Space Station. Image
courtesy of NASA.

(b) Safe trajectory guidance within a heavily-
cluttered orbital debris field.

(c) Artistic rendition of autonomous planning
in proximity of outgassing water vapor plumes
near the surface of Enceladus.

Figure 1.1: Spacecraft proximity operations applications that would benefit from autonomous
relative guidance. The presence of nearby vehicles and objects adds several complex and sometimes
time-varying constraints, which, if violated, could jeopardize mission safety.

handle them implicitly through real-time guidance, enabling the latter). Finally, a radically-different

scenario is shown in Fig. 1.1c, depicting proximity operations about the Saturnian moon Enceladus—a

target scientifically prized for its abundance of sub-surface water and thus its potential for microbial

life. Occasionally, and unpredictably, the moon will emit massive plumes of this water as jets of vapor

emanating from its surface fissures. We might imagine two types of unique missions to Enceladus,

both requiring real-time guidance: (i) a geophysical surveying spacecraft that needs to avoid plumes

in order to safely collect its data without interference, or (ii) a sample-and-return mission requiring

redirection into the outgassing plumes in order to collect and store plume material. Such agile,

opportunistic science missions have never before been demonstrated in orbital applications.

The purpose of this chapter is to provide additional context for autonomous spacecraft guidance,

highlight its need as an enabling technology for next-generation space missions, and explain why it is

a challenging problem. Recent autonomous demonstration missions are discussed, followed by an

overview of future challenges and modern state-of-the-art techniques built to address some of them.

The chapter concludes with a precise discussion of the original contributions and organization of the

remainder of this thesis dissertation.
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Note, much of the material presented here is also documented in book chapter [1].

1.1 Background

Before we begin, it is helpful to clarify some terminology. Guidance is the process of real-time

planning of spacecraft state trajectories in both translational and rotational motion. This involves

computing desired sets of translational and rotational states and corresponding control forces and

torques as functions of time. Control, or more specifically feedback control, is responsible for keeping

spacecraft close to these trajectories, using real-time state updates provided by a navigation system to

inform control decisions in the presence of disturbances, measurement noise, and model uncertainties.

Together they are referred to as Guidance, Navigation, and Control (GN&C, or just G&C). In this

thesis, for the purposes of tractability, we will restrict our attention to guidance only; the challenging

trajectory-following and navigation problems will be kept outside of our scope. As will be motivated

in this chapter, the guidance problem alone is inherently difficult to solve and is by no means solved

even for straight-line path planning, let alone for systems with complex dynamics.

This section describes the technical details and challenges specific to relative guidance of au-

tonomous spacecraft as found in the three major areas of spacecraft proximity operations:

• Autonomous Rendezvous and Docking (AR&D) (Fig. 1.2a): Encompasses both the

far-field and near-field approach phases of rendezvous, though proximity operations are chiefly

concerned with the closing and final approach portions of the near-field phase. Applications

include on-orbit assembly, re-joining with deployed landers, and docking to allow material or

crew exchange between spacecraft.

• Autonomous Inspection and Servicing (AIS) (Fig. 1.2b): Includes survey maneuvers

used to visually inspect a target spacecraft’s exterior, as well as missions to repair, resupply,

and retrieve/harvest other spacecraft. These latter three operations, which inherently require

robotic manipulation of the target or some other form of inter-cooperative planning, are also

collectively referred to as on-orbit satellite servicing.

• Small-Body Proximity Operations (Fig. 1.2c): Constitutes motion near primitive solar

system bodies (also called “small bodies”), including moons, asteroids, comets, and their

like. In addition to their often complex shapes, small bodies are also characterized by their

uncertain dynamics due to imperfect measurements of their mass distribution, soil properties

(e.g ., albedos), and rotational states, as well as their unknown local environments, which may

be cluttered with natural satellites, dust, or debris.

Regardless of the particular application, the spacecraft proximity operations guidance problem can

be posed in its most general form as an optimal control problem, with dynamic equations describing

the motion of the spacecraft as well as time-varying constraints on its associated state and control
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Docking
Axis

Berthing/
Servicing Arm

(a) Autonomous Rendezvous and
Docking (AR&D)

Field of
View

(b) Autonomous Inspection and Ser-
vicing (AIS)

Asteroid
Axis of

Rotation

(c) Small-Body Proximity Op-
erations

Figure 1.2: Examples of spacecraft proximity operations. The solid blue curves represent artistic
renditions of spacecraft guidance trajectories.

trajectories. Before proceeding further, we first need to make precise a few of the concepts behind

optimal control and trajectory planning, namely states, controls, and certain topological spaces

called workspaces, state spaces, and control spaces. A state in broad terms is the complete set of

information required to mathematically model the future motion of a system; we represent a state

as a collection of generalized coordinates and system parameters stacked into a vector x ∈ Rd. For

example, states can encompass the positions, velocities, masses, or other physical properties of a

system and its subcomponents. A control is a set of mathematical variables that the trajectory

designer has direct influence over, through which a system can be driven from one state to another.

Control vectors u ∈ RNu , which can be viewed as inputs, model physical features like actuators,

thrust forces, torques, or other commands that can alter our system performance metric, called an

objective or cost functional J , which may be viewed as an output. Together, a state at some initial

time tinit (represented as x(tinit)) along with a control trajectory over time (u(t), where t ≥ tinit) are

entirely sufficient to simulate the future motion of any causal system through its ordinary differential

dynamics equation, ẋ(t) = f(x(t),u(t), t). Optimal control theory seeks to find the best-possible

such control trajectory, denoted by u∗(t), that minimizes our cost functional J(x(t),u(t), t) subject

to an array of constraints; if one can be found, the resulting state trajectory and cost are said to be

optimal, and denoted by x∗(t) and J∗, respectively.

Conceptually, this motion of our system, described by states x and influenced by controls u, can

be interpreted in two different ways. On the one hand, the most intuitive way to view our system is

as a physical vehicle moving through a 3-dimensional world (or 4-dimensional, if including time).

This world in which our vehicle actually lives, encompassing the spacecraft and any nearby objects

and physical barriers, is what we call the workspace. On the other hand, because we can parameterize

the motion of our vehicle fully in terms of its d-length state vector, we can alternatively view our
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(a) Workspace W representation (with physical
obstacles O1 and O2)

(b) State space X representation (with correspond-
ing infeasible states Xobs)

Figure 1.3: Comparing the workspace and state space representations of vehicle guidance. Here
a triangular robot translates (without rotating) from one position to another around two nearby
obstacles; if we define the robot’s state as the (x, y)-position of its upper-left corner, the corresponding
state space motion can be interpreted as shown on the right.

system as a particle moving within its d-dimensional state space, the vector space in which our states

reside. This concept, first conceived by Lagrange through his notion of generalized coordinates,

revolutionized the field of motion planning when it was first introduced by Lozano-Pérez [2]. Through

this pivotal idea, all guidance problems, with their infinite variation and complexity when represented

in the workspace, may be reduced to the universal problem of finding a feasible path for a moving

particle from one point to another within the state space. (Unfortunately it is not usually practical

to explicitly translate our problem from the workspace to the state space, as will be detailed later).

To gain a clearer picture of this concept, we provide in Fig. 1.3 a simple visual example of this

workspace/state-space equivalence for a planar triangular robot translating around two obstacles.

With this mathematical framework precisely-defined, we are now in position to express our generic

autonomous spacecraft guidance problem as follows:

Problem (Autonomous Spacecraft Guidance).

minimize
tf ,u(t)

J(x(t),u(t), t) = K(x(tf), tf) +

∫ tf

t0

`(x(t),u(t), t) dt

subject to x(t0) ∈ X0 Initial Condition

x(tf) ∈ Xf Final Condition

ẋ(t) = f(x(t),u(t), t) System Dynamics

u(t) ∈ U(t) Control Admissibility

x(t) ∈ X (t) for all t ∈ [t0, tf ] Trajectory Feasibility

(1.1)
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where x ∈ Rd is the state of the spacecraft, u ∈ RNu is the control input, t ∈ R is time, t0 is the

initial time, tf is some final time (implicitly assumed to satisfy tf > t0), and X0 and Xf are initial

and final state constraint sets. In the above representation, J : Rd+Nu+1 → R is the cost-functional

(which combines terminal and incremental additive cost functionals K and `), f : Rd+Nu+1 → Rd

defines the dynamics, and U : R → RNu and X : R → Rd are set-valued maps defining spacecraft

control and state trajectory constraints, respectively.

Equation (1.1) represents what is generically-called a Two-Point Boundary Value Problem

(2PBVP), in which we seek the best decision variable values (in this case an optimal end time

t∗f and control trajectory u∗(t)) so as to minimize some cost functional J of a function x(t) whose

endpoints must satisfy certain conditions. Unfortunately, due to the existence of system dynamics

and constraints, Eq. (1.1) cannot be solved analytically (except in very rare cases), and hence must

be tackled numerically [3, 4] via an optimization algorithm after implementing a suitable decision

variable discretization [5, 6]. As we will motivate in subsequent discussions, any algorithm hoping to

meet the challenges of solving Eq. (1.1) for fully-autonomous spacecraft guidance will need to meet

the following specifications:

• Real-time Implementability: Algorithms must be implemented and executed on standard

processors in a reasonable amount of time.

• Optimality: Given that feasible solutions exist, an optimal solution x∗(t) is desired which

minimizes (at least approximately) the cost function J .

• Verifiability: There must be design metrics that accurately describe the performance and

robustness of GN&C algorithms, with accompanying methods for verifying these metrics.

1.1.1 Need

Autonomous maneuvering, especially in proximity of artificial objects (e.g ., satellites, debris, etc.)

or solar system bodies, is expected to be a key enabler for many next-generation space missions.

Figure 1.4 shows a few of the more interesting examples among the many proposed mission concepts

that will require serious advancements in this area, including sample return missions (expected to

save greatly on mass and cost through extra-terrestrial orbital rendezvous) and satellite servicing

demonstrators (which, if successful, could greatly reduce the cost of access to space). These kinds of

applications are of great interest to NASA, DARPA, and the international space community at large.

Sadly, however, these missions are beyond the capability of current approaches. The standard

technique to spacecraft proximity operations maneuvering consists primarily of ad hoc planning,

in which trajectory designers manually choose a sequence of waypoints interconnected by coasting

arcs according to specific mission needs and to ensure collision safety following thrust failures [10].

Coasting arc interconnections are often determined using standard matrix inversion techniques [11],

Lambert targeting [12], or glideslope algorithms [13]. Waypoints are usually designed as “Go/No-Go”
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(a) Extra-terrestrial orbital ren-
dezvous (Mars sample return
[7]). Image courtesy of NASA
JPL.

(b) On-orbit satellite refueling
(NASA Robotic Refueling Mis-
sion [8]). Image courtesy of
NASA GSFC.

(c) On-orbit satellite repair and har-
vesting (DARPA Phoenix Mission
[9]). Image courtesy of DARPA.

Figure 1.4: Artistic concepts of next-generation space missions that are of interest to the greater
space community

points, which are holding positions at which the maneuvering spacecraft must remain until given

clearance from operators on the ground to proceed. The approach relies heavily on designer intuition

and experience, requiring the strategic positioning of waypoints and arcs in order to verify safety at

all points along the nominal trajectory (as well as under any possible perturbations).

Consider the common example of rendezvousing with the International Space Station (ISS), as

depicted in Fig. 1.5. Due to the locations of relative guidance antennas, spacecraft are typically

required to drift in from a lower coplanar orbit from the points S0 to S1. Next, a homing arc is

followed to bring the spacecraft to a waypoint S2 within spherical communication range along the

orbital path trailing behind the ISS. Once given permission to proceed, the spacecraft initiates a

closing arc (carefully designed to avoid a possible collision in the event of partial or full thrust failures),

which terminates at another holding point S3 before commencing a slow, steady progression along

a straight-line final translation maneuver along the ISS docking axis. Other types of straight-line

final approaches are also possible (e.g ., from radially below), but the example demonstrates the idea.

Regardless of the specific choice, these paths must be rigorously verified on the ground via thorough

simulations before any spacecraft is permitted to rendezvous.

Sequences such as these have been chosen through flight heritage because they work, and because

they have been performed safely. However, there can be strong disadvantages to this ad hoc approach.

First, straight-line trajectories (though easy to validate) are costly to follow, as they require continuous

use of propellant to counteract the fictitious forces that arise from operating in the target spacecraft’s

rotating frame. Other arcs proposed by trajectory designers, though feasible, may also generate

propellant inefficiencies due to the non-intuitive complexities of relative spacecraft motion. Second,

this design method often does not admit any flexibility; small changes to the mission require complete

guidance redesign. Third, one can imagine scenarios in which mission constraints are too complex

to solve through intuition, or in which ad hoc reasoning would lead to such great inefficiencies as

to render the solution prohibitively expensive. Fourth, the method is entirely reliant on intuition,
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SphericalfComm
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Figure 1.5: Example of ad hoc guidance, the state-of-the-art approach for most spacecraft missions.
For rendezvous with the International Space Station (ISS), sequences of maneuvers are pieced
together to meet mission requirements, according to trajectory designer experience and intuition.
The approaching vehicle must avoid the station’s approach ellipsoid (AE) and Keep-Out-Sphere
(KOS) at various maneuver phases, proceeding from the points S0, S1, etc. (representing “Go/No-Go”
points) if and only if given clearance by ground station operators.

ground infrastructure, and humans in the loop—all limitations that can be prone to error, drive up

costs, and reduce access to space. Clearly, an alternative, more principled approach is needed to

enable next-generation space missions in Earth orbit and beyond.

Advancements in autonomy have long been cited as the potential solution to many of these issues.

NASA, for example, has repeatedly identified autonomous systems as an enabling technology over

its history [14], beginning as far back as the Gemini program in the 1960’s [15] and continuing up

through the last decade with its previous Vision for Space Exploration [16] and its recent technological

roadmaps for the future [17, 18]. One reason cited is that improved autonomy can transition space

missions away from current ground-in-the-loop (geocentric) architectures towards self-sustainable

and independent systems, a key requirement for improved extraterrestrial exploration [19] and

for overcoming the many difficulties of interplanetary travel [20]. For example, to achieve orbital

rendezvous or servicing about other planets or small bodies—feats that have to-date only been

accomplished in Earth and lunar orbit—guidance decisions must be made entirely autonomously due

to the large signal transmission delays to and from Earth, which can be as great as 26 minutes or more

for missions near Mars and beyond (making such mission concepts as Fig. 1.4a next-to-impossible

without onboard guidance and decision-making). Another reason is that autonomy has the potential

to increase mission frequency, robustness, and reliability—particularly valuable for Autonomous

Rendezvous and Docking (AR&D) and Autonomous Inspection and Servicing (AIS) operations about
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the Earth [21, 22]. As space access improves through commercialization, the increased scheduling

conflicts and labor overhead associated with ground-in-the-loop spacecraft guidance are expected to

become prohibitively expensive, with the likelihood of human error heightened as well. Thankfully,

provably-safe spacecraft autonomy can help circumvent these issues, as well as allow entirely new

types of missions and improve the commercial and scientific return from space [23].

1.1.2 Recent Demonstration Missions

Despite its potential, autonomy within spacecraft guidance, navigation, and control has thus far

been heavily restricted, with trajectory designers often opting for ground-in-the-loop architectures

for maneuver planning and corrections whenever possible. This is often motivated by a predilection

towards flight-proven heritage techniques, a need to reduce the costs of an expensive verification

and validation process, and a lack of general guidance tools with built-in safety guarantees. Several

attempts have been made, however, to introduce reliable autonomy into space applications (since as

far back as the Space Race in the 1960’s), especially in areas where ground-in-the-loop guidance has

not been feasible. A few notable historical firsts include:

• 1st Autonomous Rendezvous and Docking: The successful mechanical docking of Kosmos

186 and 188 in Low Earth Orbit (USSR, 1967) [10, Ch. 1.1]

• 1st Asteroid Soft Landing: NEAR Shoemaker’s descent onto Asteroid Eros (NASA, 2001)

[24, 25]

• 1st Asteroid Sampling: Several touch-and-go maneuvers by the Hayabusa spacecraft onto

Asteroid Itokawa (JAXA, 2005) [26, 27]

• 1st Comet Soft Landing: The descent and (intended) anchoring of the Rosetta mission’s

Philae lander onto Comet 67-P/Churyumov-Gerasimenko (ESA, 2014) [28, 29]

Other prominent examples of automated orbital operations include the undocking and re-docking

of Orihime and Hikoboshi during JAXA’s ETS-VII mission [30, 31], an autonomous inspection

maneuver by AFRL’s XSS-10 micro-satellite [32], the autonomous rendezvous, capture, berthing and

Orbital Replacement Unit (ORU) transfer between DARPA’s Orbital Express ASTRO and NEXTSat

spacecraft [33], NASA’s DART autonomous rendezvous demonstrator [34], and the highly-automated

formation flying experiments of ESA’s PRISMA spacecraft [35, 36]. Additional notable examples

of autonomous small-body proximity operations include Russia’s Phobos 1 and 2 [37] and NASA’s

Deep Space 1 [38] spacecraft. Finally, an early, successful example of autonomy applied to agile,

opportunistic science is the NASA EO-1 spacecraft and its Continuous Activity Scheduling Planning

Execution and Replanning (CASPER) system.

In spite of numerous successes, many of the missions mentioned above involved non-trivial

guidance and control mishaps that resulted in significant mission degradation, and in some cases
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Table 1.1: Compilation of guidance and control limitations and failures from several recent autonomous
demonstration missions

Limited
Autonomy

Deep Space 1, EO-1 (no collision avoidance)
Orbital Express, PRISMA, XSS-10 (pre-planned or uplinked maneuvers)

Significant
Hardware
Failures

Deep Space 1 (star tracker failure)
Hayabusa (multiple momentum wheel/RCS thruster losses)
Phobos 2 (onboard computer failure)

Guidance/
Logic
Errors

DART (missed guidance waypoint/navigation failure, collided with target)
Deep Space 1 (anomalies in 1st experiment plan execution and support code)
Hayabusa (bad descent logic/unexplained hovering/operator errors)
Orbital Express (ranging software algorithm error)

Attitude
Control
Errors

ETS-VII (attitude thruster misfires)
Orbital Express (optical sensor mishaps)
PRISMA (occasional navigation error discontinuities)

catastrophic failure (see Table 1.1). The DART spacecraft, for instance, overshot one of its guidance

waypoints and its collision-avoidance system failed following a navigation failure at just 200 m from its

rendezvous target, the MULBCOM satellite. DART subsequently began using much more propellant

than expected and initiated a series of maneuvers for departure and retirement, but eventually

collided with MULBCOM at 1.5 m/s after depleting its propellant tanks [39]. The Phobos 2 mission

also failed catastrophically after suffering an onboard computer failure which resulted in the loss

of its two deployed landers, a mobile “hopper” and a stationary platform, above the Mars moon

Phobos [37]. Finally, the Hayabusa mission was rife with guidance, logic, and hardware issues [40],

though the mission was eventually salvaged after making clever adjustments. Several soft landing

attempts failed due to: (i) anomalous optical navigation signals, and (ii) poor descent logic (for

example, during one sampling attempt, Hayabusa experienced an unexplained 30 minute hover,

then skipped its scheduled sampling sequence altogether when it entered a safe descent mode after

detecting an obstacle too late for an abort and ascend). Worse still, its MINERVA minilander was

lost due to operator error, when a command was sent to release the hopper during an ascent that

Hayabusa had initiated autonomously to regulate its altitude [41]. To make matters more difficult,

two momentum wheels malfunctioned [42] and several Reaction Control System (RCS) thrusters

failed due to propellant leaks and frozen fuel lines, causing a complete loss of communication for

seven weeks and a significant power outage from the resultant tumbling [40].

Unfortunately, these kinds of anomalies are not at all unique to these particular missions; one

study found that 32% of 156 on-orbit spacecraft failures from 1980–2005 could be contributed to the

Attitude and Orbital Control (AOCS) subsystem (though primarily from hardware failures) [43]. In

addition, a number of GN&C-related anomalies have occurred during autonomous Space Shuttle

operations [44] and other autonomous demonstrations. This points to the need for maturation in
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autonomous spacecraft guidance, navigation, and control, suggesting that presently this field—even

in static environments with well-understood dynamics—is still in its technological infancy [18, 45]. In

particular, this highlights that any proposed autonomous guidance solution must be deterministically

self-certifying and fault-tolerant in order to be realistically viable, or else guarantees cannot be made

of mission safety. Had abort trajectories been available following the aforementioned onboard logic

and hardware failures, for example, mission catastrophes like the DART spacecraft collision might

have been easily avoided. This will be a key feature of the guidance solution proposed in this thesis.

1.1.3 Challenges

For autonomous maneuvering near space objects (cooperative or otherwise), the general guidance

objective is to compute a state trajectory that safely brings the spacecraft as close as needed to its

target object (including during docking maneuvers), while consuming as little propellant as possible

(or at least, within its available budget) and simultaneously avoiding any nearby hazards. In general,

this introduces many difficult, non-convex trajectory constraints into the optimal control problem

given by 1.1 [46], which we represent implicitly through the time-varying sets of feasible controls U(t)

and admissible states X (t). To illustrate why this is can be challenging, we provide a detailed list of

specific examples in the paragraphs below.

Constraining Sensor Field-of-View For relative guidance purposes, it is often necessary to keep

one or more target spacecraft, primitive bodies, or references (stars, planetary horizons, etc.) within

the field-of-view (FOV) of onboard sensors. Assuming a radially-symmetric sensor bore/baffle, this

can be represented mathematically as:

n̂ · r− rT

‖r− rT‖
≥ cos(α), (1.2)

where n̂ is the unit vector describing the sensor boresight, r is the position vector of the spacecraft,

rT is the position vector of the target, and α is the cone half-angle defining the FOV. See Fig. 1.6a

for an illustration. This constraint couples the attitude and translational dynamics through n̂, which

is determined by the orientation of the spacecraft, making it a highly non-linear (and therefore very

challenging) constraint to satisfy. To see this explicitly, if the position vectors are resolved in a

rotating reference frame, e.g ., the Local-Vertical-Local-Horizontal (LVLH), and n̂ is resolved in a

spacecraft body-fixed frame, then the left-hand side of Eq. (1.2) above can be re-expressed as:

(r− rT)

‖r− rT‖
· (C(q)n̂) ≥ cos(α),

where q represents the attitude state of the spacecraft, and C(q) is the directional cosine matrix

that takes a vector in the spacecraft body reference frame to the LVLH frame.
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Avoiding Plume Impingement Impingement of thruster exhaust plumes on neighboring space-

craft poses a serious threat that can jeopardize sensitive optical devices and solar arrays, impart

large disturbance forces and torques, and disrupt thermal blankets and coatings [47, 48]. Prevention

requires restricting the thrusters that are currently oriented towards neighboring vehicle(s) from

firing while the spacecraft is within a prescribed relative distance. Unfortunately, this imposes a loss

in directional control authority and necessitates special guidance when in close proximity such that

thrusters never direct exhaust towards (i.e., apply thrust impulses directed away from) the target.

This constraint exists for primitive bodies as well due to scientific contamination concerns, especially

during sample return missions.

Represented mathematically, plume impingement constraints can be stated as, for thrusters

k = [1, . . . ,K]:

uk = 0 when

‖rk − rT‖ ≤ Rplume +RT

(rk−r)
‖rk−r‖ ·

(
C(q)̂tk

)
≥ cos(βplume) for all r ∈ ST,

where K is the number of thrusters, uk is the k-th thruster force command, t̂k is the unit vector for

the k-th thruster nozzle direction in the spacecraft body-fixed frame (the negative of the thruster

force direction), βplume is the plume cone angle, Rplume is the maximum effective plume radius (i.e.,

the plume is hazardous to the target if any part of its body lies inside this radius), RT is the radius

of the circumscribing sphere of the target, and ST represents all points on the surface of the target.

As Fig. 1.6b attempts to illustrate, this is an extremely difficult constraint to embed in spacecraft

guidance. Making sure exhaust plumes cannot hit the target requires checking for exhaust plume cone

intersections with a detailed (or otherwise conservative) model of the target spacecraft body—for all

but the simplest geometric representations, this is an expensive operation.

Handling Thruster Limitations (Impulse Bit Bounds) Due to propellant energy storage

limitations and nozzle design constraints, all thrusters have a finite upper bound on the amount of

force that they can provide. However, there is also a minimum nonzero force (called a minimum

impulse bit) due to physical constraints from valving and chemical reaction times that imposes a

lower bound on deliverable thrust; this means that arbitrarily small forces cannot be applied by

thrusters (unless we fire them in opposition, although uncertainties in allocated thrust can make

this imprecise). These bounds limit the control precision that can be achieved, which can be critical

during docking and other proximity operations.

When using force commands for thrusters k = [1, . . . ,K], these constraints can be expressed as:

uk ∈ {{0} ∪ [uk,min, uk,max]},

where uk,min > 0 and uk,max > uk,min are minimum and maximum thrust magnitudes. Note the
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O

(a) Field-of-view pointing constraint (b) Exhaust plume impingement

(c) Thruster control feasibility (2-norm
bounds, e.g ., for gimbaled thrusters)

(d) Collision/obstacle avoidance

Figure 1.6: Illustrations of various spacecraft proximity operations guidance constraints and hazards

discontinuity in the interval of permissible thrust values. The only way to handle this constraint

directly using mathematical programming is to introduce binary variables ηk ∈ {0, 1} and continuous

variables Tk, and rewrite our constraints in the form:

uk = ηkTk where

ηk ∈ {0, 1}uk,min ≤ Tk ≤ uk,max

Unfortunately, the introduction of an additional K binary variables means we must resort to mixed-

integer programming techniques, which suffer computationally when there are more than just a

handful of binary constraints (especially with a non-linear optimal control problem like Eq. (1.1)).

Even if we were to ignore the zero-value, the positively-valued lower bound uk,min can make the

problem non-convex (e.g ., when using gimbaled thrusters [49], as can be seen in Fig. 1.6c). For

practical onboard applications, in absence of the sophisticated techniques presented in this dissertation,

convex relaxations typically become necessary in such cases [50].

Avoiding Collisions Nothing can be more catastrophic to a spacecraft mission than a collision,

which can damage or destroy participating vehicles and often marks an immediate mission failure.
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For AR&D and AIS, a collision avoidance constraint can be described abstractly as follows:

C(q)(r− rT) /∈ O

where δr = r − rT is the position vector of the spacecraft relative to a nearby obstacle (such as

another spacecraft or a piece of debris), and O (an “obstacle” region) represents a set of relative

positions in the obstacle body-fixed frame that lead to collisions. Note again the coupling between

spacecraft translation and attitude caused by C(q), which is required to bring the vector δr into the

obstacle’s frame of reference. Refer to Fig. 1.6d for visualization.

The simplest choice for the set O for any given spacecraft-obstacle pair is a collision-avoidance

ball O = {δr | ‖δr‖ ≤ R}, where R is some prescribed value large enough to take into account the

unusual geometries of the spacecraft and obstacle. Unfortunately, “Keep Out Zone” ellipsoids are

typically necessary in order to accommodate unequal dynamic uncertainties in different coordinate

directions or to better approximate an elongated obstacle shape. For proximity operations around

primitive bodies, this region O may need to be even more complicated due to the irregular and often

ill-defined shapes of small bodies. Regardless of the particular choice for O, avoidance constraints

in spacecraft proximity operations are almost always non-convex, disallowing the use of convex

programming to solve Eq. (1.1) unless the problem is transformed or approximated in some way.

Providing Required Thruster Silence Times When thrusters fire, large errors are introduced

into state estimation due to process noise generated by sharp vehicle accelerations. As a result, it

is not uncommon to require a prescribed period of thruster silence after each thruster firing (also

called a “burn”) to allow state estimator(s) to filter this noise and re-converge to a prescribed level of

accuracy. One approach to imposing prescribed thruster silence is to force zero controls over preset

time intervals during a maneuver, i.e., for all thrusters k = [1, . . . ,K], we require:

uk(t) = 0 when t ∈
⋃

j=[1,...,Ns]

Tj , (1.3)

where Tj for j = [1, . . . , Ns] form a disjoint set of zero-thrust time intervals.

Limiting Propellant Use Every spacecraft mission is constrained by a finite supply of propellant

that must be transported with the vehicle and its payload. The high cost of access to space currently

inhibits the ability to refuel or resupply spacecraft, which effectively isolates them and imposes a

mission lifetime synonymous with remaining propellant. This strict resource constraint also has a

strong effect on mission capability. For example, AIS missions seek to maximize total inspection time,

which corresponds directly to maximizing propellant efficiency. Likewise for small body operations,

efficient propellant use implies not only longer observation times but also more opportunities for

surface contact. This makes conserving propellant an absolute necessity during guidance.
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Guaranteeing Safety Due to the high risks and economic costs associated with space missions, it

goes without saying that safety is paramount during proximity operations, for both the maneuvering

vehicle as well as all of its neighbors. Safety guarantees are typically partitioned into two categories:

passive safety, in which zero-thrust coasting arcs emanating from points along the nominal guidance

trajectory are certified as safe, or active safety, in which safe actuated abort sequences called

Collision Avoidance Maneuvers (CAMs) are made available at any time [10, Ch. 4.4]. In either

case, hard (deterministic) safety constraints are required to guarantee viable escape options in the

event of thruster allocation errors (due to misfirings, “stuck-on” or “stuck-off” propellant valves,

canted nozzles, etc.), unexpected environmental changes and disturbances, or even complete system

shutdown. Often in practice this is achieved through ad-hoc open-loop trajectory design (guided by

significant technical expertise; see Section 1.1.1 and Fig. 1.5 for details). However, an automated

approach, potentially using optimal control techniques [45], positively-invariant sets [51, 53, 140],

motion planning with safe samples [54], or some combination of all three [55], is needed in order to

achieve truly autonomous guidance.

Handling Uncertainties Everything from imperfect orbit determination, unmodeled dynamics,

and orbital perturbations to sensor drift, control inaccuracies, and signal time delays can introduce

uncertainties into relative state knowledge and control implementation accuracy. For example, orbit

determination errors make it very difficult to determine the initial set X0, in particular. Additional

examples include mistimed or inaccurate thruster firings, aerodynamic drag perturbations in low

Earth orbits, solar radiation pressure effects, and LIDAR or camera measurement noise. Over time,

these uncertainties can induce sudden, unexpected violations in any of the aforementioned mission

constraints. Hence it is extremely important to embed in autonomous guidance and control algorithms

the capability to handle any expected uncertainty directly (i.e., address all “known unknowns”).

Unfortunately, though this is admittedly one of the most important factors in spacecraft control, it

must be noted that we restrict ourselves in this dissertation to guidance without explicit disturbance

modeling. By developing a real-time guidance algorithm for the undisturbed case, we expect that

a certain level of robustness to disturbances can be imparted to the system by simply repeatedly

refreshing guidance plans using a sufficiently-long horizon time and any new navigation information

collected. Luckily, relative state accuracy typically improves as relative separation decreases (as

additional sensors come into range, or as sensor signal-to-noise ratios improve); hence we expect that

our results are likely to be viable on real systems, provided we restrict our attention to proximity

operations (with relative separations on the order of a few hundreds of meters or less).

As can be seen, there are numerous potential sources for non-linearity and non-convexity in the

autonomous spacecraft guidance problem, including collision avoidance, control feasibility, plume

impingement, and sensor pointing constraints. Furthermore, coupling between translational and

attitude dynamics, caused by the need to resolve vectors in and out of the spacecraft body-fixed
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frame, requires including both translational and attitude states within the state transition function

f of the system dynamics in 1.1. This complicates the problem further still, due to the inherent

nonlinearities in the rigid-body attitude dynamic equations,

M = Iω̇ + ω × (Iω) (1.4a)

q̇ = Q(q)ω (1.4b)

as seen from the cross-product term of Euler’s equations and the matrix product of Q(q) with ω

(here M is the net external moment vector, I is the spacecraft inertia tensor, ω is the spacecraft

angular velocity, q is an attitude representation vector (e.g ., a quaternion/Gibbs/Rodriguez vector,

exponential coordinates, etc.), and Q(q) is some matrix representation of q-dependent terms). These

equations lead to nonlinear equality constraints, and hence non-convex constraints, in the resulting

numerical parameter optimization problem after discretization of 1.1. They also increase the number

of variables required in our state vector x, which can slow down computations and increase memory

requirements.

To illustrate the difficulty this poses, if we could instead somehow express 1.1 as a convex

optimization problem, then we would gain three immediate advantages: (i) global-optimality could

be guaranteed [56, 57], (ii) a whole host of efficient tools, including Interior Point Methods (IPMs),

would become available, and (iii) runtime execution speeds could be improved by 2-3 orders of

magnitude [58]. This clearly motivates the use of real-time convex optimization for relative guidance

whenever possible, either in the ideal case through lossless convexification (as in [59], for example) or

through reasonable convex approximations, particularly for complex, difficult, or hazardous problems

like proximity operations where the important need is a reasonably-good feasible solution obeying all

mission constraints. Unfortunately, convexification approaches for spacecraft proximity operations

are often unsuitable due to the errors incurred through constraint relaxation caused by the particular

mathematical forms of their constraints. Hence new tools are needed. It is in this context precisely

that sampling-based motion planning algorithms (as will be highlighted in Section 1.1.4 and discussed

further in Chapter 2) have the potential to shine. In the next subsection, we introduce sampling-based

planning and several other current state-of-the-art techniques that have been tailored specifically to

handling problems with constraints of the kinds detailed here.

1.1.4 State-of-the-Art Approaches

Current state-of-the-art techniques for autonomous spacecraft proximity operations guidance include

Apollo guidance (particularly phase-plane logic, glideslope, and sliding-mode controllers), Model

Predictive Control (MPC) [60–64], and Artificial Potential Functions (APFs) [65–67]. Unfortunately,

such techniques, while valuable in static uncluttered settings, appear to fall short in scenarios where

optimization (e.g ., propellant minimization), logical modes (e.g ., safety modes), and time-varying
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constraints (such as neighboring objects) become key features of the problem setup. In these cases,

robotic motion planning techniques, though currently unproven in spaceflight, could serve as a

valuable alternative [55, 68]. To provide a better contextual foundation for the guidance methodology

proposed by this dissertation, brief synopses on each these methods are presented below.

Apollo Guidance

Guidance techniques developed during NASA’s Apollo Program form the basis for many of the

standardized approaches to modern spacecraft guidance, still in use today some fifty years later. The

techniques invented, now considered part of classical control, formed one of the earliest successful

deployments of spacecraft autonomy. For example, the COLOSSUS Program, developed by MIT,

called upon three specialized Digital AutoPilot (DAP) systems to stabilize and control the Apollo

Command Service Module (CSM) as part of its Primary Guidance Navigation and Control System

(PGNCS) [69]. Block-diagram schematics of the Apollo CSM control logic can be seen in Fig. 1.7. To

provide context for our subsequent discussions of more sophisticated guidance techniques, we begin

with a brief description of the designs of each of these Digital AutoPilot systems:

• Orbital Re-entry Digital Autopilot (ENTRY DAP): Assumed control of the Command

Module (CM) after separation from the Service Module (SM) and handled all Command

Module flight maneuvers beginning with reorientation into Entry attitude up until drogue

chute deployment. The autopilot called pairs of thrusters distributed along the rim of the base

of the Command Module, as well as an additional pair near the tip for pitch-down control.

The first phase of operation marked exoatmospheric mode, using various combinations of rate

damping, attitude-hold, and attitude-control depending on the pitch angle value. Phase-plane

logic controllers1 (attitude rate versus attitude error) with biased deadzones drove the system

to desired error tolerances. Once drag rose above 0.05g, atmospheric mode was initiated. In

this regime, roll control was maintained using a complex phase plane incorporating a straight

control line, maximum velocity boundaries, and constant-acceleration switching lines, while

yaw and pitch reverted to rate-damping using a yaw rate versus roll rate phase plane logic and

a simple relay with deadband, respectively. The purpose of ENTRY DAP was to maintain

the component of lift in the trajectory plane needed to target a desired landing site given the

vehicle’s current position and velocity.

• Reaction-Control System Digital Autopilot (RCS DAP): Responsible for controlling

the attitude and attitude rates of the Command Service Module during coasting flight, both

with and without the Lunar Module (LM) stage attached. The Digital AutoPilot employed

1Phase-plane controllers are typically used to determine stabilizing on-off control inputs for one degree-of-freedom
differential systems by defining a coordinate plane of two state variables (typically a state error and its corresponding
state rate error) and a set of switching curves with accompanying “deadband,” “hysteresis,” etc. in such a way as to
partition the space into disjoint control regions that drive the system to within certain limits of the coordinate plane
origin. Figure 1.7 shows a schematic of the phase-planes used by the Apollo missions.
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(a) Apollo PGNCS RCS Automatic Control Logic, used by Reaction Control System thrusters to
control CSM attitude. Here θd represents the reference attitude angle, θe the attitude error, β an
attitude bias, ω the attitude rate, and ω̂ the attitude rate estimate.

(b) Apollo PGNCS Phase Plane Logic. For double-integrator models, this design can be shown
to drive the rate and attitude errors plotted on the x- and y- axes to the box-like area near the
origin. The logic works by breaking the plane into disjoint zones, inside of which the spacecraft is
pre-programmed to torque positively or negatively (solid white areas) or coast (shaded region);
horizontal lines represent zero-acceleration trajectories or “coasting arcs,” while parabolas represent
lines of constant acceleration.

Figure 1.7: Illustrations of one of the earliest successful spacecraft autonomous control systems,
designed for the NASA Apollo Command Service Module (CSM). Images courtesy of [69].
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four clusters, called quads, of four Reaction-Control System (RCS) thrusters each for pitch,

yaw, and roll control, using a separate phase-plane logic controller for each rotational mode

with nonlinear switching lines, a central deadband, and built-in hysteresis. The timing and

firing commands of individual thrusters were issued by a thruster-selection logic responsible

for resolving Digital AutoPilot rotation commands with translation commands and executing

them as economically as possible according to the distribution of functional thrusters available.

A second-order angular-rate Kalman filter was used to compute estimates of angular velocity

by taking a weighted sum of: (i) extrapolated values of previous estimates, and (ii) derivations

from gimbal angle measurements.

• Thrust-Vector-Control Digital Autopilot (TVC DAP): Controlled the Command Ser-

vice Module during powered flight, both with and without the Lunar Module attached. Pitch

and yaw were adjusted by actuating the gimbal servos of the main engine, while a separate

autopilot called TVC ROLL DAP controlled the Command Service Module attitude and rate

about the roll axis during powered flight via the Reaction-Control System thruster quads. TVC

DAP fed estimates of attitude rate and angle errors to pitch and yaw compensation filters, with

various combinations of attenuation and phase stabilization depending on the configuration of

the Command Service Module due to the changes in overall center-of-mass position, bending

modes, and fuel slosh instabilities. TVC ROLL DAP used an adaptation to the phase-plane

switching logic of RCS DAP in free flight, modified with ideal parabolic switching curves for

roll axis attitude-hold within a small tolerance. A number of digital logical constraints were

additionally implemented in order to conserve fuel and minimize the risk of thruster failures.

As can be inferred, significant application-specific tuning is required to achieve safe and reliable

performance with phase-plane controllers and other elements of digital logic guidance systems.

This makes these design approaches relatively inflexible to modifications in mission constraints

and spacecraft properties, with every change requiring extensive testing and re-evaluation of the

entire control system. Furthermore, these Apollo guidance controllers are tailored specifically to

minimum-time (maximum-effort) cost objectives (called “bang-bang” control); heuristics for adjusting

deadbands between phase-plane switching curves can encourage lower propellant use but inherently

they will always be suboptimal. Though these techniques were highly successful back in the 1960’s,

many of the computational constraints placed on systems back then have been lifted with the advent

of improved computer processing technology. As a result, we can now safely call on more sophisticated

alternatives to minimize propellant and accommodate trajectory constraints in a more direct manner.

Model Predictive Control

Model predictive control (MPC) is a feedback law based on the repeated solution of an optimal

control problem (as in Eq. (1.1)) that uses an assumed dynamics model f and the current state
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of the spacecraft as its initial condition. This problem is solved to yield a finite-horizon control

trajectory that optimizes the predicted state response over the duration of a prescribed planning

period or time horizon. Once solved, however, only the initial control segment is actually applied,

after which the problem is reinitialized and the process repeats until convergence to the goal. This

characteristic renewal procedure over a repeatedly updated horizon is what gives MPC its other

common names: receding horizon or moving horizon optimal control. This scheme allows the design

of feedback controllers on the basis of nearly any open-loop optimal control approach, improving

its robustness and imparting it the ability to handle disturbances and mitigate error growth. Even

without prior disturbance modeling, one can demonstrate under appropriate assumptions that MPC

can lead to closed-loop stability and state convergence to the target [70]. Other advantages of

MPC include the ability to handle pointwise-in-time state and control constraints, the capability to

withstand time delays, and reconfiguration in the presence of degradations and failure modes [71,

140]. As the robustness properties of MPC are contingent on fast resolvability, open-loop controllers

for vehicle guidance are generally restricted to convex optimization routines. In relatively simple

cases, Mixed-Integer Linear Programs (MILPs), solvers specialized for linear programs containing

discrete (integral) decision variables, may also be used with MPC to accommodate simple logical

constraints like mode switching and collision-avoidance [45, 46].

Artificial Potential Fields

The artificial potential field (APF) method [65–67] transforms the guidance problem into particle

motion within a potential field. Attractive potentials are used for goal regions, while repulsive

potentials are used for obstacles; the potential field experienced while occupying a particular state

is then represented by the sum of individual terms. A gradient ascent/descent routine is often

called to trace a feasible path from an initial state, which, when tuned appropriately, will safely

circumnavigate neighboring obstacles and converge to a goal (see Fig. 1.8). Alternatively, an optimal

control problem may be formed to plan a path that minimizes the path integral along the gradient

force field (analogous to the principle of least action in physical systems). The approach benefits

greatly from the ability to react in real-time to environmental changes through adjustments to

individual potential functions. Some difficulty lies in tweaking potentials such that the spacecraft

behaves as desired (i.e., ensuring sufficient margin from obstacles, rapid convergence, etc.). However,

the main drawback of APFs is their well-known susceptibility to converge to local minima, which

cannot be avoided without additional heuristic techniques. This tendency can be mitigated by

attempting random walks out of local wells, or instead relying on a global optimization routine

for open-loop control, with an artificial potential function method called for closed-loop feedback

(i.e., trajectory-following, bubble methods [72], or real-time path modification [73], for instance).

Though APFs could conceivably work well with pure state constraints like collision-avoidance and

sensor field-of-view constraints, it is not clear how such methods can reasonably accommodate



1.1. BACKGROUND 21

(a) Creating a state-space repre-
sentation (see also Fig. 1.3)

(b) Generating a potential field
(low potentials are associated with
goals, while high potentials repre-
sent obstacles)

(c) Obtaining a guidance solution
by following potential field gradi-
ents

Figure 1.8: Visualizing the Artificial Potential Field guidance process. The guidance problem is
explicitly mapped to the state space, over which potential fields are added to encourage motion
towards goals and away from infeasible state regions. Images courtesy of CMU.

mixed state-control-time constraints like plume impingement avoidance or logical constraints like

active abort safety with respect to control failures unless time and controls are incorporated into an

augmented “state” space. However, due to the extremely high dimensionality introduced by such

augmentation, APFs appear less suitable for spacecraft proximity operations.

Motion Planning Algorithms

Motion planning constitutes a class of algorithms used to generate sequences of decisions, called plans,

that safely guide robots from given initial states to a set of target states called goals. The framework

is sufficiently general that it applies equally well to spacecraft and rovers as it does traditional robots;

fortunately, many algorithmic tools are now available due to its long and rich history within the

field of robotics [74]. Motion planning techniques can be broadly classified into two categories: exact

(combinatorial) algorithms and approximate (sampling-based) algorithms (the latter of which we

describe in great detail in Chapter 2).

Exact approaches develop a strategy based on an explicit representation of the unsafe region of the

state space, which allows them to guarantee a solution if one exists (see Fig. 1.3 for a comparison of an

implicit representation, e.g ., O1 ∪ O2, and its corresponding explicit representation, Xobs, generated

by mapping the locus of unsafe vehicle configurations in the workspace W into the state space X ).

Techniques typically involve the formation of roadmaps, which are topological graphs that efficiently

capture the connectivity of points in the admissible (“free”) state space. Representative examples

include cellular decomposition, planning between Voronoi cell centroids, and maximum-clearance

roadmaps based on free-space skeletons [75–77].
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Unfortunately, due to the computational complexity of generating explicit representations of

obstacle regions in the state space (to be discussed in more detail in Section 2.3.1), exact algorithms are

often limited to problems of low-dimensionality, polygonally-shaped obstacles, and static environments.

Sampling-based algorithms, on the other hand, forgo explicit construction of the unsafe state space

and instead explore pathways via sampling procedures combined with graph search, with safety

verified by a “black-box” collision-detection routine. On the one hand, this yields computational

advantages (see Chapter 2) and also decouples guidance from problem geometry; on the other, it

leads to the unfortunate drawback that weaker notions of correctness and completeness must be

tolerated—existence of solutions can no longer be guaranteed in finite time without drawing an

infinite set of samples. Prominent examples of sampling-based algorithms include Probabilistic

Roadmaps (PRM) [78], the family of Rapidly-Exploring Random Tree (RRT) algorithms [68, 79],

and the Fast Marching Trees (FMT∗) algorithm [80] together with its kinodynamic versions [81, 82].

Sampling-based motion planning algorithms such as these have been shown under mild conditions to

quickly and uniformly explore the feasible solution spaces of constrained guidance problems. Some of

them (e.g ., RRT∗ [79] and FMT∗ [80]) have the added benefit of asymptotic optimality ; that is, they

guarantee convergence to an optimal cost solution as the number of samples taken goes to infinity.

See Chapter 2 for more details.

Numerous studies have already been conducted assessing the feasibility of sampling-based planning

algorithms for realistic spacecraft proximity operation scenarios [54, 55, 68, 83, 84]. Though not

yet flown on spacecraft hardware, their efficacy has already been proven in real-world systems

with challenging dynamics, namely for the onboard guidance of urban vehicles during the 2007

DARPA Urban Challenge. Several winning entrants to the 60 mile autonomous urban driving race

used motion planning as their primary guidance logic, including CMU’s winning Boss car with

Anytime-D∗, Stanford’s 2nd-place Junior car with hybrid A∗, and MIT’s 4th-place Talos car with

Rapidly-exploring Random Trees (RRTs) [85–89]. The ability of these algorithms to handle such

diverse constraints while providing robustness certificates in real-time applications appears promising

for autonomous spacecraft control. As a result, we focus exclusively on sampling-based planning

techniques throughout the remainder of this dissertation.

1.2 Thesis Contributions

This thesis develops a motion planning framework for fully-autonomous spacecraft proximity opera-

tions guidance that has the following major characteristics: (i) convergence towards a propellant-

minimal solution, (ii) ability to handle a wide variety of typical proximity operations constraints,

(iii) real-time implementability, and (iv) deterministic certificates that can guarantee infinite-horizon

mission safety with respect to losses in control authority. Many standard techniques are available that

can handle one or two these specifications at a time; however, few exist that can address all of them
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simultaneously. By extending the Fast Marching Trees (FMT∗) sampling-based motion planning algo-

rithm [80] (as well as its novel bi-directional variant) to propellant minimization metrics—integrating

several ideas from convex optimization, orbital mechanics, and nonlinear control—we develop a

general, flexible framework that is able to tackle a wide range of spacecraft proximity operations

problems. Particularly novel features of the solution presented in this thesis include:

• The first bi-directional sampling-based algorithm (dubbed the Bi-directional Fast Marching

Trees algorithm, or BFMT∗ [90]) proven to achieve asymptotic optimality with an upper bound

on its convergence rate

• The ability to handle thruster plume-impingement avoidance constraints and a propellant-

minimization cost function expressed as a sum of velocity impulse magnitudes

• Active abort safety guarantees with respect to “stuck-off” thruster failures

• The allowance of non-trivial spacecraft geometries (no point-mass model or thruster configura-

tion assumptions are imposed)

• Fast dynamically-constrained trajectory smoothing (which can be applied to any impulsively-

actuated system with Linear Time Invariant dynamics)

Though our approach is developed within the context of near-circular orbit operations, we emphasize

that the techniques of this dissertation apply equally-well to other impulsively-actuated proximity

operations scenarios. Furthermore, we expect many of the other proposed sampling-based planning

concepts, particularly those for vehicle safety and trajectory smoothing, can be easily extended to

other dynamical systems as well.

1.3 Thesis Organization

The thesis dissertation is divided into a preliminary section and two thesis parts. The exposition

begins in Chapter 2 with a broad overview of sampling-based planning, defining terminology used

throughout the thesis and introducing the factors that both render sampling-based planning useful for

trajectory optimization and which also require careful consideration when adapting it to spacecraft

guidance. The first thesis part, which includes Chapters 3–4, introduces and rigorously evaluates

the two sampling-based planning algorithms, FMT∗ [80] and BFMT∗ [90], that will ultimately

form the foundation of our solution method. Experiments in simulation and onboard a free-flying

robotic testbed illustrate their ability to solve optimal path planning problems in real-time across

a number of state spaces. The second thesis part, which includes Chapters 5–8, describes the

techniques used to adapt these algorithms to the guidance of dynamically-constrained spacecraft

during proximity operations, leveraging the insights developed in the first part of the dissertation.

Numerical experiments demonstrate the cost and run-time performance of the approach on a realistic
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near-circular orbit rendezvous scenario [55, 91, 92]. For further details, we refer the interested reader

to the individual chapter summaries included below.

Chapter 2: Sampling-Based Motion Planning Before presenting any research, we start

by introducing a number of key concepts behind sampling-based motion planning, including the

complexity of and assumptions behind motion planning, the basics of state space sampling and

exploration, and the important factors to consider when adapting sampling-based approaches,

originally developed for path planning without differential constraints, to spacecraft guidance.

Chapter 3: Real-Time Sampling-Based Path Planning This chapter introduces the Fast

Marching Trees (FMT∗) and Bi-directional Fast Marching Trees (BFMT∗) algorithms for solving

the shortest-path motion planning problem, a canonical scenario useful for both visualizing motion

planning algorithms as well as benchmarking them with respect to state-of-the-art methods. The

chapter’s principal contribution is an in-depth presentation of and proof of asymptotic-optimality for

the BFMT∗ algorithm, ostensibly the first bi-directional sampling-based path planning algorithm

with proven asymptotically-optimal performance. BFMT∗, a lazy, continuous-space analogue to

two-source dynamic programming, extends the FMT∗ algorithm (originally developed by Janson et

al. [80]) to bi-directional search while preserving its key properties, namely its asymptotic optimality

(through convergence in probability) and its upper-bounded convergence rate. In addition to extensive

proofs, we also note some useful extensions that can be made to handle more general cost functionals,

which we make use of in later chapters of the thesis.

Chapter 4: Benchmarking Experiments and Testbed Demonstrations This chapter serves

to motivate why the FMT∗ and BFMT∗ algorithms are necessary and useful tools, demonstrating

their ability to outperform other state-of-the-art methods in certain high-dimensional topological

spaces much like those encountered during spacecraft guidance. Results from several numerical

experiments are presented, drawn from: (i) an open-source planning library designed to provide

fair algorithmic comparisons within a unified testing framework, and (ii) hardware demonstrations

performed on a set of air-bearing, free-flying spacecraft simulators. The experiments illustrate that

FMT∗ and BFMT∗ perform in practice at least as fast as their state-of-the-art asymptotically-

optimal counterparts, and sometimes significantly faster (particularly in high-dimensional, more

tightly-constrained environments).

Chapter 5: Problem Formulation The thesis transitions here from shortest-path motion

planning to our original problem of real-time, fully-autonomous guidance for provably-safe, propellant-

efficient spacecraft proximity operations. This chapter presents a thorough mathematical description

of the problem formulation—a specialization of the generic problem presented as Eq. (1.1). Details

and motivation are provided on the models employed to represent our propellant-usage cost functional,
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system dynamics, and proximity operations trajectory constraints, using near-circular orbit proximity

operations as a reference example in preparation for our later numerical studies (though again we

reiterate that our proposed solution framework applies much more generally).

Chapter 6: Vehicle Safety Of paramount importance to any proximity operations mission is

the ability to deterministically ensure the safe execution of guidance trajectories. To that end, we

present in this chapter a technique for embedding fault-tolerant safety constraints into sampling-based

planning for impulsively-actuated systems. The approach certifies trajectory safety by ensuring a

safe actuated abort maneuver is available at every point along the returned guidance solution, with

guarantees on abort control sequence admissibility under all “stuck-off” control failures up to a

desired fault tolerance. Abort trajectories are designed to terminate at safe, stable regions in the free

state space at which they can remain for all time; this allows for infinite-horizon safety and improves

the chances of mission recoverability.

Chapter 7: Real-Time Sampling-Based Spacecraft Proximity Operations This chapter

describes our algorithmic approach for autonomous spacecraft proximity operations using the sampling-

based method, combining several adaptations to the path planning algorithms of Chapter 3 together

with the modeling of Chapter 5 and the active-safety guarantees of Chapter 6 into one cohesive

framework. Computations are carefully divided into offline and online phases such that the online

phase, the critical component for imparting situationally-aware onboard autonomy, can be run in

real-time under reasonable memory requirements. Putting these components together, the approach

represents one of the first proximity operations guidance frameworks for impulsively-actuated, non-

point-mass spacecraft that simultaneously provides provably-safe solutions with respect to control

failures, promotes low-propellant usage, and enables real-time implementability. Though tailored to

near-circular orbit proximity operations, the methodology is easily generalized to other scenarios.

Additional fast trajectory smoothing techniques with built-in execution time upper bounds are

provided to give the mission trajectory designer additional tools for rapidly improving the quality of

returned planning solutions.

Chapter 8: Numerical Experiments The proposed framework of Chapter 7 is tested in this

chapter against a realistic near-circular orbit near-field rendezvous case study derived from a real-

world mission scenario. Both planar and non-planar single-chaser/single-target maneuvers are studied,

for which we present representative motion planning solutions (illustrating together the trajectories

explored, the abort trajectories computed, and ultimately the solutions selected to solve the problem).

Attempts are made to compare solution costs to lower-bounds and to evaluate the built-in active-

safety and asymptotically-optimal properties of our guidance approach. Extensive trade studies

are performed illustrating the balance between solution quality and execution time as a function

of algorithm sample count n and a neighborhood sizing parameter J̄ , demonstrating the typical
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trade-offs that mission planners can take advantage of when tailoring our guidance framework to

specific real-world missions. In the end, we show that for the numerical case study considered here

our approach yields low propellant-cost solutions using only a few thousand samples, returning a

feasible, provably-safe guidance trajectory in on the order of seconds.

Chapter 9: Conclusions We conclude with a high-level summary of our proposed planning

approach, in addition to a brief synopsis of the key points made throughout the thesis. The chapter

continues with a thorough discussion of future research avenues that can bring sampling-based

planning closer to implementation on real-world space missions, and finally closes with a vision for

the future of this technology in next-generation spacecraft mission planning.

Appendix A: The Clohessy-Wiltshire-Hill Equations To keep the thesis self-contained, we

provide in this appendix a detailed derivation of the Clohessy-Wiltshire-Hill dynamics model (its

system dynamics equations along with their corresponding solution equations), in support of our

problem formulation presented in Chapter 5.

Appendix B: Optimal Circularization Under Impulsive CWH Dynamics A key compo-

nent of our approach to providing active safety under control failures in Chapter 6 is the ability

to derive abort trajectories to safe, stable regions of the state space. For near-circular orbit prox-

imity operations, one of the simplest approaches a spacecraft might take following a failure is to

abort to circular orbits located sufficiently-far from any nearby orbital objects. This appendix

details an analytical, propellant-optimal, one-burn solution to designing such maneuvers under the

Clohessy-Wiltshire-Hill dynamics model.

Appendix C: Intermediate Results for the FMT∗ Optimality Proof The final appendix

includes an enumeration of several lemmas and proofs used throughout the asymptotic optimality

proof for our modified FMT∗ solution algorithm presented in Chapter 7. We list them in an appendix

to clarify the exposition in the body of the dissertation.



Chapter 2

Sampling-Based Motion Planning

Before proceeding with the main body of the thesis, we briefly introduce a number of concepts

related to standard sampling-based planning. The purpose of this chapter is to give the flavor of the

methods, techniques, and issues behind sampling-based planners, in order to provide greater context

for the research reported later on in this dissertation. We begin in Section 2.1 with a broad overview

of the sampling-based approach and its potential advantages. We then follow with a list of major

assumptions in Section 2.2 and a brief discussion of algorithm preliminaries in Section 2.3, before

proceeding to sampling methods and exploration concepts in Section 2.4. We close in Section 2.5

with highlights of key considerations related to adapting sampling-based planning algorithms for

real-time spacecraft control.

Note the majority of the material in this chapter is based on the seminal work of LaValle [74], to

which we refer the interested reader for more details.

2.1 Overview

Sampling-based motion planning is an algorithmic process that essentially breaks down a complex

continuous trajectory control problem like that of Eq. (1.1) into a series of relaxed, simpler Two-Point

Boundary Value Problems (2PBVPs), which are evaluated a posteriori for constraint satisfaction

and efficiently strung together into a graph (i.e., a tree or roadmap). In this way, satisfaction of

complex constraints, such as obstacle or plume impingement avoidance, is decoupled from trajectory

generation (dynamic simulation), which can in many cases yield computational advantages. A

simplified illustration of the process can be seen in Fig. 2.1, which uses a mock asteroid rendezvous

mission for reference.

Suppose we want to maneuver the spacecraft shown in Fig. 2.1 to a relative position near the

asteroid, while keeping power-positive by aligning solar arrays as much as possible with the sun

vector and simultaneously avoiding plume impingement and collisions with the neighboring spacecraft

27
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To Sun

Initial Condition

Goal Region

(a) Maneuvering from an initial condition to a goal region by
passing through intermediate waypoints called samples. Many
subtrajectories (not shown) between samples may be explored
in order to discover the sequence used to generate x(t).

(b) Equivalent planning problem as rep-
resented in the state space. Planning
must be confined to the vehicle’s dy-
namic manifold while avoiding inadmis-
sible state regions.

Figure 2.1: Illustrations of sampling-based motion planning in both the workspace W and its
corresponding state space X . Here the vehicle must plan a trajectory that avoids the nearby
spacecraft and asteroid while keeping solar arrays oriented towards the sun. Due to the constraints,
discovering a low-cost, feasible trajectory x(t) near the optimal solution x∗(t) in one shot is difficult;
sampling-based planning pieces many local connections together in the hopes of finding solutions
more quickly.

and asteroid surface. Calling a nonlinear trajectory optimization solver to solve this problem entails

attempting the maneuver directly between our initial state xinit all the way to the goal region

Xgoal—a feat that is likely to cause many failed search iterations due to the number and scope of our

trajectory constraints (depending on the relative sizes of the feasible set and the full state space).

From our contrived scenario, for example, it would be hard to determine that a loop around our

neighboring spacecraft would be the most efficient path that satisfies our constraints while also

syncing the vehicle’s arrival position and velocity with the movement of the asteroid. Conceivably it

could take a long time for the solver to discover this type of solution, unless the trajectory designer

knew in advance how to best initialize it such that the nearest local minimum coincided with the

global optimum. Though possible, assuming such intuition exists for finding a feasible solution (let

alone an optimal one) is not very realistic for highly-constrained problems of type typically found in

spacecraft proximity operations.

Sampling-based planning, on the other hand, constructs a series of intermediate solutions and

strings them together to solve (approximately) the original full-scale problem. The main idea is to

discretize the planning space, in this case the admissible state space Xfree, by taking a collection

of well-distributed sample points, and build a graph that explores where the vehicle can travel

safely. Once connection(s) have been established between our initial state xinit and some sample

point xgoal within our goal region Xgoal, we simply take the best (lowest-cost) one available as our
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guidance plan. By distributing sample points carefully, connecting only those samples that are

local to each other, and saving only those subtrajectories (or graph “edges”) between them that

satisfy our constraints, the robot can eventually construct a sequence of feasible paths that terminate

within the goal region. Though we started with one 2PBVP for our guidance problem and now we

solve many of them, we gain an advantage by considering only local connections—most of these

connections will likely be feasible given that we start and end at two neighboring feasible sample

points. As a result, we can relax the 2PBVP (or “steering”) problem that we use to interconnect

sample points, ignoring our trajectory constraints and keeping only our dynamic constraints and

boundary conditions. Our original trajectory constraints can then simply be checked after the fact

(called a posteriori evaluation). This is the key behind sampling-based planning, and it yields two

significant advantages:

• A posteriori evaluation: The most difficult-to-handle trajectory constraints can be relaxed

from the subtrajectory 2PBVP and can simply be checked a posteriori.

• Non-explicit free-space representation: The problem constraints no longer need to be

mapped from the workspace W to the state space domain X (that is, we need not represent

Xobs explicitly), a computationally-prohibitive task for many complex planning problems (see

Fig. 1.3 for a simple illustration of the process).

As a result, sampling-based algorithms can address a large variety of constraints while providing

significant computational benefits with respect to traditional optimal control methods and mixed-

integer programming. Furthermore, through a property called asymptotic optimality (AO), sampling-

based algorithms can be designed to provide guarantees of optimality in the limit that the number of

samples taken approaches infinity. Several decades of research in the robotics community [74] have

already shown that sampling-based planning algorithms (dubbed “planners” throughout this thesis)

show especially strong promise for tightly-constrained, high-dimensional optimal control problems,

such as those encountered for spacecraft proximity operations. This makes sampling-based planners

a strong choice for the focus of our work.

2.2 Assumptions

Suppose we wish to employ a sampling-based algorithm to solve Eq. (1.1), which we model as a motion

planning problem represented by the tuple (Xfree,xinit,Xgoal). Before we can call a sampling-based

planner, we must make note of a few key assumptions:

• Workspace/State Space Invariance: The workspace W and its corresponding state space

X are assumed to remain static in our dynamical reference frame of interest (this does not imply

that the free space Xfree is necessarily static, however). Problems for which this assumption is

not reasonable typically define W and X by over-approximations or by static representations
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derived from information available at the current time tinit, refreshing planning problems over

time as necessary.

• State Space Coverage: The state space X is assumed to encapsulate all information relevant

to the problem. This means that X must be large enough to include our initial state, goal

region, relevant obstacles, and any intermediate maneuvers that might be required to reach the

goal. Though seemingly obvious, when dealing with the relative and/or nonlinear trajectories

of spacecraft and the vast array of perturbations they might experience, special care must be

taken when deciding how large to make X so that maneuvers stay within its confines (where

our problem is defined).

• Boundary Condition Feasibility: The initial state xinit and goal region Xgoal lie entirely

inside Xfree. If this is not the case, modifications to xinit or Xgoal must be made (otherwise

the planner must simply report failure and exit). This can be particularly troublesome in

practice for systems with high degrees of state uncertainty, requiring appropriate smoothing

and decision logic so that vehicle guidance remains unimpeded when boundary conditions lie

near inadmissible state regions.

2.3 Algorithmic Concepts

With our assumptions established, we are now in position to describe the complexity of the motion

planning problem, some basic limitations of the sampling-based approach, and a key property we use

to guarantee a certain measure of solution quality.

2.3.1 Complexity

The first important consideration is the complexity of motion planning [74, Ch. 6.5]. Essentially, the

question we can ask ourselves is: how much time or space, using the most efficient algorithm possible,

does it take to solve all possible instances of a motion planning problem? Assuming a standard

Turing machine model1 and restricting our attention to the simpler case of path planning (that is,

Eq. (1.1), but without system dynamics and assuming only time- and control-independent constraints),

the answer turns out to be PSPACE-complete, implying it is both PSPACE and PSPACE-hard

(which implies NP-hard) [93, 94]. Put into less technical terms, given a problem involving N bits of

information, motion planning requires no more than a polynomial amount of time (O
(
Nk
)

for some

integer k) to be reduced to and from a form that requires a polynomial amount of storage space to

solve. The polynomial-space complexity refers to its PSPACE designation, while its polynomial-time

reducability to PSPACE refers to its so-called PSPACE-hardness. These two attributes together

1The planning algorithm (considered a finite-state machine that writes bits to an unbounded binary string “tape”)
must determine whether a path exists (i.e., accepts, with binary output TRUE) or not (i.e., rejects, with binary
output FALSE) for a given a problem instance (written as a binary string to an input “tape” fed to the algorithm).
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Motion Planning

(even without differential
constraints)

Considered
intractable

Considered
feasible

Figure 2.2: Representing algorithmic complexity class relationships with the complexity of path
planning (motion planning without differential constraints)

are referred to as PSPACE-completeness. The NP-hardness implication refers to the fact that

PSPACE-hard algorithms take polynomial-time to be verified on a non-deterministic Turing machine

(effectively a machine that makes perfect choices while solving a problem instance).

Within the greater scope of algorithm complexity theory (see Fig. 2.2 for visual context among the

various complexity classes), PSPACE-complete problems fall somewhere in between polynomial-time

problems (O
(
Nk
)

for some integer k, designated P), considered feasible, and exponential-time and

-space problems (O
(
2N

k)
for some integer k, designated EXPTIME and EXPSPACE, respectively),

considered intractable. It is not known yet whether they fall more towards feasibility or intractability,

though the search has been on for decades for an efficient (polynomial-time) algorithm capable of

solving these problems, so far to no avail. However, PSPACE-complete (NP-hard) problems are by

general consensus considered very difficult to solve, at least through current computational techniques,

because they can be verified in polynomial-time but only if the algorithm makes perfect choices along

the way to finding a solution, which is impossible in practice without prior knowledge.

Hence, in short, motion planning is challenging, even for the simplest case in which we ignore

system dynamics and remove time- and control-constraints entirely. This consequently puts a

fundamental limitation on the performance of any sampling-based algorithm we might construct to

solve a given instance of the optimal autonomous guidance problem presented as Eq. (1.1).

2.3.2 Completeness

Though sampling-based planners offer many benefits over other state-of-the-art methods, they do

not come without limitations. Chief among them is that the notion of completeness, the ability to

guarantee the return of a valid solution within a finite time if one exists or otherwise report failure, is
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not possible for sampling-based algorithms. The issue stems from the fact that we are approximating

a continuous planning space, Xfree, by a set of discrete sample points, S. It is mathematically

impossible for a sampling-based algorithm to rule out the existence of some feasible trajectory x(t)

unless it first finds all feasible connections to every possible admissible state; because Xfree contains

an uncountably-infinite number of points, this requires taking the number of sample points n in S to

infinity—a feat that is impossible in practice.

As a result, we settle for weaker notions of completeness, namely resolution completeness (when

using deterministic sampling methods) and probabilistic completeness (when using randomized ones)

[74, Ch. 5]. For more on sampling methods, see Section 2.4. A deterministic sampling-based algorithm

that draws samples using a deterministic sampling sequence is said to be resolution-complete if it

always returns a feasible solution in finite time provided one exists (it is not complete, however,

because it may still run forever if one does not exist). It turns out that this will always be true so

long as the algorithm both samples densely (in which case we can simply draw more samples to

improve the effective graph resolution) and uses complete graph construction and search algorithms.

Alternatively, a non-deterministic, also called probabilistic, sampling-based algorithm is said to be

probabilistically complete if the probability of failing to return a solution, if one exists, decays to

zero as the number of samples approaches infinity [95]. In other words, the probability of finding an

existing solution converges to one as we draw more samples.

These two definitions of completeness prove to be much more theoretically appropriate for sampling-

based planning. Furthermore, for most practical problems, calling a resolution- or probabilistically-

complete sampling-based algorithm is sufficient for finding a valid solution, if one exists, so long

as enough samples are taken and enough running time is allowed. It is important to keep in mind

though that these algorithms always admit the chance of running forever (unless they are terminated

early), as infeasible planning problems can never be verified in finite time by any sampling-based

approach.

2.3.3 Asymptotic Optimality

Similar to the issue arising with completeness, sampling-based algorithms are required to sample an

infinite number n of sample points in order to guarantee an optimal trajectory x∗(t). This limitation

lies in the fact that the probability of sampling (either deterministically or randomly) from a set of

measure zero is precisely zero; a 1-dimensional curve x∗(t) has no “volume” to sample from within a

space X of dimension d > 1 (we neglect d = 1, in which case the planning problem is trivially solved).

If n is sufficiently large, we can expect to find a sequence of samples within the neighborhood of

x∗(t) but almost surely offset from it (off the trajectory itself); as a result, the trajectory obtained

by connecting these samples together must necessarily yield a cost Jn greater than or equal to the

optimal cost J∗, by definition of an optimal trajectory.

Though an infinite number of samples may be required, we can at least try to ensure that our
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Sample Count

Solution
Cost

Figure 2.3: Examples of solution cost Jn convergence to the global optimum J∗ for asymptotically-
optimal planners as the number of samples n increases. Note asymptotic optimality does not
guarantee monotonicity, only steady-state convergence.

planner converges to an optimal cost in the limit as n increases. This is captured by the following

definition.

Definition 1 (Asymptotic Optimality). Consider Eq. (1.1) with corresponding optimal cost J∗. Let

Jn denote the cost of a trajectory returned by using n samples. A sampling-based algorithm is said

to be asymptotically optimal if:

lim
n→∞

Jn = J∗ (Deterministic Sampling) (2.1a)

P

[
lim sup
n→∞

Jn = J∗
]

= 1 (Random Sampling) (2.1b)

For an illustration of asymptotic optimality, refer to Fig. 2.3. Note that establishing this property

will be critical to any approach we propose for autonomous guidance.

2.4 Sampling and Exploration

By the very nature of their name, sampling-based algorithms are highly-dependent on the particular

sampling sequence used for state space exploration. In this section, we provide a brief background

on sampling sequences and exploration methods, defining a number of key properties and metrics

used to characterize the quality of sampling sequences and introducing a few of the more standard

sampling and exploration techniques.

Note we distinguish between sample sequences and sample sets ; a sample set S is a set of distinct

vectors {xi}ni=1 (also called points, samples, or nodes, once incorporated into a graph) whose elements

are drawn from a state space X , while a sample sequence refers to an ordering in which a particular

sample set is generated (i.e., an ordering of the indices i = 1, 2, . . . , n).
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2.4.1 Sampling Properties and Metrics

We first examine three key properties, which will appear repeatedly throughout this thesis, that

measure the quality of sampling sets and sequences.

Denseness

The first property, denseness, is one of the most fundamental for any valid sampling method [74, Ch.

5.2.1].

Definition 2 (Denseness). Let A and B be any two subsets of a topological space (a set combined

with a functional notion of neighborhoods). The set A is said to be dense in B if its closure cl(A) = B.

A sampling sequence is said to be dense if its underlying set is dense.

In colloquial terms, this means that the elements of A come arbitrarily-close to the elements of B.

For a sampling-based algorithm to be complete (in terms of probabilistic or resolution completeness;

see Section 2.3.2), its sampling method must produce a dense sequence in Xfree, or else there will

exist portions of the free state space that are not covered by samples in the limit that n→∞.

Dispersion

The second property, dispersion, generalizes the notion of grid resolution to sample sets in continuous

planning spaces [74, Ch. 5.2.3]. More specifically, it provides a measure of the spacing of discrete

points within a metric space, a specific form of topological space for which the notion of distance

between elements is defined through a so-called metric function ρ [96].

Definition 3 (Dispersion). The dispersion of a finite set S of sample points in metric space (X , ρ)

is:

D(S) = sup
x∈X

min
s∈S

ρ(x, s) (2.2)

In other words, the dispersion is the largest possible distance from points in X to their nearest

neighbors in S; i.e., the radius of the largest possible empty ball we can fit in X without enclosing any

elements of S (see Fig. 2.4a). As samples become more uniformly-distributed, this empty ball gets

smaller (the dispersion decreases, i.e., our “resolution” improves). This allows for finer exploration

of trajectories in Xfree, which tends to yield higher quality solutions.

Discrepancy

One problem with dispersion is that it does not penalize alignments of points; for example, grids, which

use a lattice of aligned, regularly-spaced samples that yield the minimum-possible dispersion, can give

very high-quality solutions when they happen to align with narrow corridors in Xfree, or no solution

at all otherwise. An alternative sampling metric that attempts to avoid this alignment-sensitivity

problem is called sampling discrepancy [97], [74, Ch. 5.2.4].
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(a) Sampling dispersion (`2-
dispersion), the radius of the
largest empty normed-ball

(b) Sampling discrepancy, related to
the number of points that fall into
subsets R in X

Figure 2.4: Visualizing two standard measures of the denseness and uniformity of sampling sets

Definition 4 (Discrepancy). Let X be a measure space, and define a range spaceR as some collection

of subsets of X . The discrepancy of a sample set S of n points with respect to R is defined as:

DN (S,R) = sup
R∈R

∣∣∣∣ |S ∩R|n
− µ(R)

µ(X )

∣∣∣∣ (2.3)

where µ(·) denotes the Lebesgue-measure [96].

The idea here is to measure, given some region R ∈ X , how closely the fraction of samples that

fall into R, |S ∩R|/n , comes to the actual volume fraction of R, µ(R)/µ(X ) (see Fig. 2.4b). It is

desirable to keep these two fractions as close as possible to one another over all possible R ∈ R, so

that from a volumetric sense our samples are as evenly interspersed as possible. Just as for dispersion,

a lower discrepancy implies a better “resolution.”

Note dispersion, a metric-based property, and discrepancy, a measure-based property, are closely

related to one another. For example, consider the unit hypercube, X = [0, 1]
d
, together with the

`∞-metric function for ρ. If we take R to be the set of all axis-aligned rectangular subsets of X ,

then we have that D(S) ≤ (DN (S,R))
1
d . Hence low-discrepancy implies low-dispersion (but not

necessarily vice versa). In this thesis, we focus primarily on low-discrepancy sampling sequences.

2.4.2 Sampling Methods

Sampling methods can be classified into two broad categories: deterministic sampling and pseudo-

random sampling [74, Ch. 5.2]. The underlying sample sets produced by a handful of the more common

sampling methods, both deterministic and pseudo-random, can be seen in Fig. 2.5. Deterministic

methods use a repeatable algorithmic procedure to determine a sampling sequence, while pseudo-

random sampling produces a sequence through repeated drawings from a probability distribution (i.e.,
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(b) Deterministic (Halton [99])
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(c) Deterministic (Hammersley [100]) 0 0.2 0.4 0.6 0.8 1
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(d) Pseudo-random (Mersenne Twister [101])

Figure 2.5: Comparison of various sampling sequences used to discretize hyper-rectangular state
spaces. All cases display exactly n = 225 sample points. Though sampling of 2D rectangles is shown,
the techniques generalize to hyper-rectangles with an arbitrary number of dimensions; these often
form the basis for sampling from other more complex topological spaces as well.

samples are realizations of the distribution’s underlying random variable). Both techniques are widely-

used, each sporting its own set of advantages and disadvantages. For instance, deterministic sampling

offers more reliable performance than randomized sampling due to its deterministic nature, which can

be important for some applications. Their sequences can also offer provably-better dispersion and/or

discrepancy by their very construction [74, Chs. 5.2.3–5.2.4]. Randomized sampling, on the other

hand, can make no guarantees that its sample sets will be well-spaced. One can easily show, however,

that random sampling almost surely yields dense sample sets (with probability one) [74, Ch. 5.2.1],

and often randomized methods run much faster and are much more straightforward to implement

than deterministic techniques (this is especially true for spaces X more topologically-complex than

mere hyper-rectangles or hyper-spheres).

For guidance and control verification and validation purposes, particularly regarding spacecraft

mission planning, it is often imperative to ensure that guidance algorithms yield predictable, repro-

ducible results—otherwise, there can be little certainty that an approach will work safely on-orbit.
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Hence we restrict our attention primarily to deterministic methods. Throughout this thesis, unless

otherwise specified, we make use of the deterministic, low-discrepancy Halton sequence [99] due to

its widespread use and provably-good coverage of hyper-rectangular state spaces X .

2.4.3 Exploration Methods

Sampling-based exploration can be very roughly divided into two basic types: tree-based search and

roadmap-based search. In this subsection, we briefly describe each and weigh their relative benefits

for autonomous guidance.

Tree-Based Search

Given a motion planning problem (Xfree, xinit ∈ Xfree, Xgoal ⊆ Xfree), tree-based search involves

constructing a set of search trees that expand outwards into unexplored territory in the free state

space Xfree until a feasible trajectory is found connecting xinit to some xgoal ∈ Xgoal. Tree-based

planning (illustrated in Figs. 2.6a–2.6c) typically proceeds as follows:

1. Initialization: Plant the “roots” to a number of trees, either one at xinit (called “unidirectional”

search), one each at xinit and xgoal (called “bi-directional” search), or several at more than two

states (called “multidirectional” search).

2. Expansion step: Select a tree and one of its corresponding graph nodes for expansion.

3. Local planning step: Make connection(s) to neighboring unexplored samples. Unexplored

samples(s) are either precomputed during initialization (so-called “batch” planners), or new

ones are added (so-called “incremental” planners).

4. Termination step: Check the tree(s) for a solution. If the appropriate trees have interleaved

together, solution(s) may be obtained. Select the cheapest one and exit, if desired, or continue

if extra time is permitted for finding a better solution.

5. Loop: Repeat steps 2-4 (possibly with a different tree).

Well-known examples of tree-based algorithms include the Rapidly-Exploring Random Trees

(RRT, RRT∗) [68, 79], Expansive Space Trees (EST) [102], and Fast Marching Trees (FMT∗) [80]

algorithms.

The most difficult aspect of designing any tree-based exploration algorithm is in the local planning

step. Most algorithms use state space sampling (S ⊂ X ), in which case local planning must be

able to solve a local two-point boundary value problem (2PBVP) to connect stored tree nodes to

unexplored sample states. However, especially for systems with complicated dynamic constraints,

it may be more useful to use control space sampling (S ⊂ U) instead. Here new nodes are added

to the tree by applying a sample control trajectory from a given node and integrating our system
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dynamics forwards (or backwards) in time. This is very easy to compute, and ensures tree edges are

dynamically-feasible; however, in general, it is not clear how control trajectories should be selected

to ensure adequate and rapid coverage of Xfree—tree branching may be much more extensive than in

state-sampled planning (for reference, compare Figs. 2.6a and 2.6c), and growth could more or less

take the form of a random walk if controls are not sampled properly. Additionally, if problems are too

tightly-constrained, it may be too difficult to pass through narrow corridors and/or determine how

to make rapid progress to the goal. Overall, the appropriate choice of local planning implementation

is entirely problem-dependent; as we will see for the problem considered in this thesis, we find that

state space sampling is most appropriate.

The choice of whether to use multiple trees depends on the nature of the problem. Because trees

face an expected exponential number of nodes as a function of search depth (distance from the root),

it can be advantageous to include additional tree roots; where to best initialize these trees, however,

is a highly non-trivial problem. In some cases, extra trees can explore samples that otherwise need

not have been included (see the bottom-right tree in Fig. 2.6b, for example). Similar choices must be

weighed between incremental and batch sampling during the local planning step as well. As we will

argue later in this thesis, batch sampling can be computationally advantageous when dealing with

such complex dynamical systems as spacecraft.

Roadmap-Based Search

Tree-based algorithms are particularly well-suited to solving single-query problems (as is typical for

maneuvering robots), in which a single initial-state/goal-state pair is given (i.e., Xgoal = {xgoal}).
This is in contrast to roadmap algorithms, such as Probabilistic Roadmaps (PRM, PRM∗) [78, 103],

which invest substantial time constructing a full roadmap of the free state space Xfree, also known

as a connectivity graph, so that future planning queries (which may involve boundary conditions

xinit and Xgoal very different from the current query) can be answered efficiently. Roadmap planning

(illustrated in Fig. 2.6d) generally proceeds as follows:

1. Precomputation phase: Precompute a sample set and build a connectivity graph between

all neighboring pairs of samples (using a local planning step similar to tree-based planners).

2. Query phase: Given a particular xinit and xgoal pair, incorporate them into the connectivity

graph using the local planner. Run a standard weighted graph search algorithm (depth-first

search, breadth-first search, Dijkstra’s algorithm, A∗, D∗, etc.) to determine the cheapest

trajectory between them.

3. Loop: Repeat the previous step with new (xinit,xgoal) pairs, as needed.

The connectivity graph produced by roadmap planners gives them a key advantage over tree-based

exploration. Tree data structures inherently depend on their roots; if these roots change, particularly
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(a) Tree-Based Planning (Unidirectional) (b) Tree-Based Planning (Multidirectional)

(c) Tree-Based Planning (Control Sampling) (d) Roadmap Planning

Figure 2.6: Comparison of various exploration methods commonly used by sampling-based planners

for systems with dynamic constraints, very little can be done to reuse previously-computed state

space information. Roadmap planners need only recompute new local connections to the roadmap

and run a new query to solve the perturbed problem. The drawback of roadmap planners is naturally

in their exhaustive exploration of the state space, which can be wasteful if all one cares about is

solving a single planning query. As most spacecraft typically move in time-varying environments,

free space connectivity is not as useful beyond the current planning horizon (or even beyond the

current time step). As a result, roadmap information is expected to quickly become irrelevant and

obsolete, making such planners likely much less useful than tree-based planners for our particular

guidance problem.

2.5 Adaptations for Spacecraft Proximity Operations

Despite their numerous potential benefits to spacecraft guidance, sampling-based planners cannot be

applied to propellant-efficient proximity operations without modification. Several extensions must be

made in order to accommodate a minimum-propellant cost functional, spacecraft system dynamics,

and proximity operations mission constraints. The purpose of this section is to briefly present the

difficulty of this task, which we address progressively throughout the remainder of this thesis.
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Extensions Required First and foremost, the sampling-based framework must be tailored to the

spacecraft guidance problem, to be detailed in Chapter 5. Necessary extensions must be made to

each of the following areas:

• Cost Functional: Sampling-based planners were originally conceived to solve the shortest-path

motion planning problem (to be presented in Chapter 3), a straight-line path planning problem

which corresponds to using an arc-length (Euclidean distance) cost functional. The framework

will need to be adapted to propellant-minimization. Establishing asymptotic optimality under

such a cost metric will be the most challenging aspect.

• Steering: As described in the Chapter 2 introduction and Section 2.4.3, a technique is needed

to connect two state space samples x0 and xf together with a dynamically-feasible trajectory.

For path planning, a simple straight-line is drawn. For spacecraft, however, a more complex two-

point boundary value problem (2PBVP) must be solved. Such problems can be computationally

expensive to solve online, particularly if we plan to build an entire graph that potentially

involves thousands of such connections.

• Neighborhoods: A key component of the local planning step discussed in Section 2.4.3 is

establishing connections to local unexplored sample states. Given a point x0 and an unexplored

set of samples Vunvisited, we must be able to efficiently identify all neighbors to x0. A redefinition

of the concept of neighborhoods will be necessary in terms of our cost-to-go function (propellant

use) from x0.

• Constraint Satisfaction: The “collision detection” module as used in traditional planners

must be extended to include all trajectory constraints, including all control constraints and any

mixed state-time-control constraints.

Enabling Real-Time Implementation Another extremely important consideration is the frame-

work’s real-time implementability. To better handle uncertain state information and account for

the vast array of model uncertainties and control disturbances possible during spacecraft proximity

operations, we must be able to produce solutions within on the order of seconds, though the faster

the better, so that guidance trajectories may be repeatedly updated as state estimates improve and

new environmental information (like the relative positions of nearby spacecraft) is obtained. To that

end, the framework will likely require:

• Efficient Exploration: A fast, asymptotically-optimal, single-query planning algorithm (see

Section 2.4.3) is needed to determine guidance trajectories in real-time (on the order of seconds

or less, to account for fast attitude state dynamics).

• Trajectory Smoothing: It is often desirable to improve sampling-based planning trajectories

in post-processing, if extra time allows. Trajectory smoothing algorithms improve solution
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quality by locally adjusting a given feasible planning solution (often by perturbing intermediate

trajectory waypoints located at graph nodes). An efficient, generalized technique for dynamically-

constrained systems would be useful for reducing the propellant-cost of spacecraft planning

trajectories.

• Coding Optimizations: Strict onboard memory limitations and run-time constraints demand

a clean and efficient coding implementation for any spacecraft guidance approach. As a result,

any techniques developed to improve planning run-time (such as caching) must not be to the

significant detriment of memory usage, and vice versa. Clever heuristics may be needed to ensure

execution times are met, such as moving computations offline, applying real-time planning [104]

and neighborhood detection [105], and minimizing unnecessary constraint-checking through

lazy search.



Part I

Real-Time Algorithms for Optimal

Motion Planning
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Conventionally, the term motion planning refers to the computation of paths that guide systems

from an initial state to a set of goal states around nearby obstacles, while possibly optimizing a path

length objective. Many algorithmic tools have been developed for such motion planning problems

due to their rich and extensive history in the field of robotics (we refer the interested reader to [74]

and references therein). In this part of the thesis, we examine one such set of tools that can be

used to solve this special class of problems. Though different from our original spacecraft guidance

problem, these path planning problems represent canonical scenarios for visualizing the planning

process and for comparing algorithmic techniques. As will be seen, the insights developed here will

serve as useful stepping stones towards achieving fully-autonomous spacecraft guidance.

Among the plethora of motion planning tools available to-date, sampling-based algorithms are

arguably among the most prevalent. Notable examples include the Probabilistic Roadmap (PRM)

algorithm [78], the Expansive Space Trees (EST) algorithm [102, 106], and the Rapidly-Exploring

Random Tree (RRT) algorithm [68]. These planners and their many variants are well-known for

finding feasible paths very quickly, especially in cluttered, high-dimensional spaces. Ever since

their initial development, however, there has been interest in improving the “quality” of returned

solutions; research efforts subsequently led to asymptotically-optimal (AO) versions of RRT and

PRM, named RRT∗ and PRM∗, respectively, whereby the cost of their solution paths converge almost

surely to the global optimum as the number of samples approaches infinity [103, 107]. Many other

asymptotically-optimal planners have since followed, including BIT∗ [108] and RRT# [109], to name

a few. More recently, a conceptually-different asymptotically-optimal, sampling-based motion planner

has been introduced, called the Fast Marching Trees (FMT∗) algorithm [80]. Numerical experiments

have suggested that FMT∗ converges to an optimal solution faster than PRM∗ and RRT∗, especially

in very high-dimensional state spaces and in scenarios where collision-checking is expensive.

Though solution quality is of great importance in many problems, it is often improved at the

expense of computational execution time. For instance, though asymptotically-optimal algorithms

guarantee eventual convergence to optimal solutions, they may require increasingly-large numbers of

samples before any significant cost improvements are realized. Luckily, it has long been known that

incorporating bi-directional search (attempting connections both from the initial state towards the

goal, as well as from the goal back towards the initial state) into planning algorithms can dramatically

increase their convergence rate, prompting some authors [75] to advocate bi-directionality for

accelerating essentially any (single-query) motion planning problem. This idea was first rigorously

studied in [110] and later investigated, for example, in [111, 112]. Early algorithms include [75,

110–112], which collectively belong to the family of non-sampling-based approaches and are more or

less closely related to bi-directional implementations of Dijkstra’s algorithm [113].

More recently, and not surprisingly in light of these performance gains, bi-directional search

has been merged with the sampling-based approach, with RRT-Connect and the Single-query Bi-

directional Lazy collision-checking planner (SBL) representing the most notable examples [114,
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115]. Though these bi-directional versions of RRT and PRM are probabilistically-complete, they

unfortunately lack optimality guarantees. The next logical step in the quest for fast planning

algorithms, therefore, is the design of sampling-based algorithms that are both bi-directional and

asymptotically-optimal. To the best of our knowledge, the only available results in this context are

[116] and the unpublished work [117], both of which discuss bi-directional implementations of RRT∗.

Neither work, however, provides a mathematically-rigorous proof of asymptotic optimality starting

from first principles.

Objective Accordingly, the first objective of this thesis part is to propose and rigorously analyze

such a bi-directional and asymptotically-optimal sampling-based algorithm, with the goal of providing

an additional tool for real-time motion planning. For this, we propose a novel bi-directional version of

the FMT∗ algorithm, which we choose due to its demonstrated potential relative to other state-of-the-

art methods. Consequently, the second objective of this thesis part is to highlight experiments, both

from numerical simulations and onboard a robotic test platform, that investigate the computational

performance of these algorithms. Though development and testing are conducted within the context

of shortest-path motion planning (without differential constraints), we develop a number of key

insights that will help extend these algorithms to dynamically-constrained vehicle planning. This

will later be tailored in Part II to the specific case of spacecraft proximity operations.

Organization The thesis part is divided into two chapters, one per objective. Chapter 3 introduces

FMT∗ and our proposed bi-directional version, followed by a rigorous theoretical characterization of

its asymptotic optimality and convergence rate properties. Chapter 4 follows with path planning

simulations comparing these algorithms in several diverse planning environments to two other state-

of-the-art asymptotically-optimal sampling-based algorithms, RRT∗ and PRM∗. The chapter also

illustrates how to implement these kinds of path planning algorithms for real-time autonomous

guidance, evaluating FMT∗ onboard a free-flying robotic testbed designed to emulate planar, “deep-

space” (zero-gravity) spacecraft proximity operations. Special emphasis is placed on the practical

benefits and disadvantages of these planners, the limitations of using naive path planning guidance

for spacecraft applications, and the factors that will need to be addressed in Part II.

Note, for the interested reader, the work presented in this part of the dissertation may also be

found in conference paper [90] and its corresponding extended version [118].



Chapter 3

Real-Time Sampling-Based Path

Planning

This chapter introduces the Fast Marching Tree (FMT∗) and Bi-directional Fast Marching Tree

(BFMT∗) algorithms.1 These algorithms are designed to solve challenging motion planning problems

in real-time and with proven guarantees on solution quality and run-time performance. FMT∗,

originally proposed by Janson et al. [80], is essentially a “lazy” sampling-based planner analogous to a

forward dynamic programming recursion over a set of well-distributed samples in the free state space.

Because FMT∗ has been shown to work well on high-dimensional problems with many constraints, it

appears to be a promising choice for spacecraft guidance. However, as a unidirectional tree-based

algorithm similar to breadth-first search, FMT∗ faces an expected exponentially-increasing number

of iterations as a function of search depth; for certain motion planning problem geometries, this

may be inefficient. In an effort to provide an alternative search technique while preserving the many

other desirable properties of FMT∗, we propose in this chapter a novel bi-directional version of

the algorithm called Bi-directional Fast Marching Trees (BFMT∗), which at its core resembles a

continuous (non-discrete) version of two-source dynamic programming. To the best of our knowledge,

BFMT∗, an original contribution of this thesis, is the first tree-based sampling-based planner that

provably combines asymptotic optimality with bi-directional search (see Fig. 3.1).

The chapter opens in Section 3.1 with a detailed presentation of the shortest-path motion

planning problem (a.k.a., the optimal “path planning” problem). We then formally introduce FMT∗

and BFMT∗ in Section 3.2, first providing high-level descriptions of each before presenting their

pseudocode representations and corresponding implementation details. We follow in Section 3.3 with

a rigorous proof of asymptotic optimality for BFMT∗ (derived from concepts initially developed in

[80]), along with a characterization of its convergence rate. Note that though the convergence rate of

1The asterisk ∗, pronounced “star”, is intended to represent asymptotic optimality much like for the RRT∗ and
PRM∗ algorithms.
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Figure 3.1: Contributions of the BFMT∗ algorithm in comparison to other state-of-the-art planners.
To the best of our knowledge, BFMT∗ represents the first sampling-based planner proven to combine
asymptotically-optimality with bi-directional search.

FMT∗ in [80] is proven only for obstacle-free state spaces, we generalize that result here to allow for

the presence of obstacles. Finally, we close the chapter in Section 3.4 with a few concluding remarks.

Importantly, though the proof presented in this chapter is given with respect to probabilistic

(pseudo-random) sampling, recent results demonstrating the optimality of FMT∗ with respect to

deterministic sample sequences yield automatic extensions of deterministic asymptotic optimality to

BFMT∗ as well [119]. These deterministic versions of FMT∗ and BFMT∗ will turn out to be critical

features of our spacecraft guidance methodology later on in the dissertation.

3.1 The Path Planning Problem

We start by precisely defining the path planning problem, a simplified version of the generalized

motion planning problem (Eq. (1.1)) that attempts to find the shortest feasible path between two

points in state space X (a topological space, also called a configuration space2 within the path

planning community). Path planning effectively neglects control and time constraints, as well as

system dynamics; one can view path planning as a purely state-constrained guidance problem for

systems with the infinite control authority to change direction instantaneously. We examine path

planning in this chapter as a useful precursor to our original vehicle guidance problem, as the principles

developed here will ultimately form the foundation of our spacecraft guidance solution—as a result,

we will need a real-time path planning algorithm if we have any hope of guiding vehicles in real-time.

Note that the path planning problem itself is not trivial, however, due to its PSPACE-complete

(NP-hard) algorithmic complexity, as described in Section 2.3.1.

To begin, let X be a d-dimensional state space, and let Xobs ⊂ X be its associated obstacle

2We use the term “state” instead of “configuration” in this chapter to maintain consistency with the rest of this
dissertation, though the term “configuration” traditionally refers to generalized positions and excludes velocities, mass,
etc., unlike states which can encompass anything. The differences in practice are purely semantic, however.
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Figure 3.2: Visualizing the path planning problem. Sampling-based algorithms attempt to find
waypoint states xi between states xinit and xgoal through which straight-line paths may be connected
to approximate an optimal shortest path σ∗ around infeasible or “obstacle” regions Xobs in the state
space X .

region, such that X \ Xobs is an open set (we consider ∂X ⊂ Xobs). Denote the obstacle-free space

as Xfree = cl(X \ Xobs), where cl(·) denotes the closure of a set. A path planning problem, denoted

by a triplet (Xfree,xinit,xgoal), seeks to maneuver from an initial state xinit to a goal state xgoal

through Xfree. Let a continuous function of bounded variation σ : [0, 1] → X , called a path, be

collision-free if σ(s) ∈ Xfree for all s ∈ [0, 1]. A path is called a feasible solution to the planning

problem (Xfree,xinit,xgoal) if it is collision-free, σ(0) = xinit, and σ(1) = xgoal. Let Σ be the set of all

paths. A cost function for the planning problem (Xfree,xinit,xgoal) is a function J : Σ→ R≥0 from Σ

to the nonnegative real numbers; in this chapter, we consider the cost function J(σ) to be the arc

length of σ with respect to the Euclidean metric in X (the extension to general cost functions will be

briefly discussed in Section 3.3.3).

With these definitions in mind, we can finally introduce the optimal path planning problem

through the following definition.

Definition 5 (Optimal Path Planning Problem). Given a path planning problem (Xfree,xinit,xgoal)

and an arc length function J : Σ→ R≥0, find a feasible path σ∗ such that J(σ∗) = min{J(σ) | σ is feasible}.
If no such path exists, report failure.

A depiction of the optimal path planning problem may be found in Fig. 3.2. With sampling-based

planning, our goal will be to return an approximate path σn through n state space samples xi ∈ Xfree

whose cost comes as close as possible to that of σ∗.

3.2 Fast Marching Trees

In this section, we introduce two algorithms designed to efficiently approximate solutions for the

shortest-path motion planning problem, as represented by Definition 5—the Fast Marching Trees
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(FMT∗) algorithm and its novel bi-directional variant, the Bi-Directional Fast Marching Trees

(BFMT∗) algorithm. For reference, the pseudocode representations of each are given as Algorithms 1

and 4, respectively. To begin, we start with high-level descriptions of FMT∗ and BFMT∗ in

Sections 3.2.1 and 3.2.2. We then follow in Sections 3.2.3 and 3.2.4 with additional details, describing

the key features of each algorithm and their implementations.

3.2.1 The FMT∗ Algorithm – High-Level Description

The FMT∗ algorithm, introduced in [80], is a unidirectional algorithm that essentially performs a

forward dynamic programming recursion over a set of sampled points and correspondingly generates

a tree of paths that grow steadily outward in cost-to-come space. The recursion performed by FMT∗

is characterized by three key features:

1. It is tailored to disk-connected graphs, where two samples are considered neighbors (hence

connectable) if their distance is below a given bound, referred to as the connection radius.

2. It performs graph construction and graph search concurrently.

3. For the evaluation of the immediate cost in the dynamic programming recursion, one “lazily”

ignores the presence of obstacles, and whenever a locally-optimal connection to a new sample

(assuming no obstacles) intersects an obstacle, that sample is simply skipped and left for later

(as opposed to looking for other locally-optimal connections within the neighborhood).

This last feature, which makes the algorithm “lazy,” may result in suboptimal connections. Fortunately,

a central property of FMT∗ is that the cases where a suboptimal connection is made become vanishingly

rare as the number of samples n goes to infinity, which helps maintain the algorithm’s asymptotic

optimality. This manifests itself into a key computational advantage—by restricting collision detection

to only locally-optimal connections, FMT∗ (as opposed to, e.g ., PRM∗ [103]) avoids a large number

of costly collision-checks, at the price of a vanishingly small “degree” of suboptimality. For proofs

and details on the other advantages of FMT∗, we refer the interested reader to [80].

3.2.2 The BFMT∗ Algorithm – High-Level Description

At its core, BFMT∗ implements a bi-directional version of the FMT∗ algorithm by simultaneously

propagating two wavefronts through the free state space (henceforth, the leaves of an expanding tree

will be referred to as the tree wavefront). With the possible exception of propagation direction, each

wavefront of BFMT∗ expands identically to that of FMT∗. BFMT∗, therefore, performs a two-source

dynamic programming recursion over a set of sampled points, and correspondingly generates a pair

of search trees: one in cost-to-come space from the initial state (called the forward tree) and another

in cost-to-go space from a goal state (called the backward tree). Illustrations of BFMT∗ exploration

for various path planning problem instances can be seen in Fig. 3.3.
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(a) 0% Coverage (b) 25% Coverage (c) 50% Coverage

Figure 3.3: Visualizing BFMT∗ exploration for varying amounts of obstacle coverage. The BFMT∗

algorithm generates a pair of search trees: one in cost-to-come space from the initial state (blue) and
another in cost-to-go space from the goal state (purple). The resulting solution path is given in green.

(a) Uncluttered search volumes for uni-
directional and bi-directional search.
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(b) Comparison of uncluttered search volume
ratios as a function of state space dimension, d.

Figure 3.4: Illustrating the geometric advantages of bi-directional search for straight-line path
planning in relatively uncluttered state spaces.

The dynamic programming recursion performed by BFMT∗ is characterized by the same lazy

feature of FMT∗ (see Section 3.2.1). However, the time it takes to run BFMT∗ on a given number of

samples can be substantially smaller than for FMT∗. Indeed, for uncluttered state spaces, the search

trees grow hyperspherically, and BFMT∗ only has to expand about half as far (in both trees) as

FMT∗ in order to return a solution. This is made clear in Fig. 3.3a, in which FMT∗ would have to

expand the forward tree (shown in blue) twice as far to connect to the goal point in the upper-right

corner. Since runtime scales approximately with edge number, which scales as the linear distance

covered by the tree raised to the dimension of the state space, we may expect in loosely cluttered

state spaces an approximate speed-up of a factor 2d−1 over FMT∗ in d-dimensional space (the −1 in

the exponent is because BFMT∗ has to expand 2 trees, so it loses one factor of 2 advantage). This

makes BFMT∗ an attractive alternative for some problems. See Fig. 3.4 for visualization.
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3.2.3 The FMT∗ Algorithm – Detailed Description

To understand the FMT∗ algorithm, some background notation must first be introduced. Let S be a

set of points sampled independently and identically from the uniform distribution on Xfree, to which

xinit and xgoal are added. (The extension to non-uniform sampling distributions is addressed in

Section 3.3.3). Let tree T be the quadruple (V, E ,Vunvisited,Vopen), where V is the set of tree nodes,

E is the set of tree edges, and Vunvisited and Vopen are mutually exclusive sets containing the unvisited

samples in S and the wavefront nodes in V, respectively. To be precise, the unvisited set Vunvisited

stores all samples in the sample set S that have not yet been considered for addition to the tree of

paths, while the wavefront set Vopen (also called the “frontier”) tracks in sorted order (by cost from

the root) only those nodes which have already been added to the tree that are near enough to tree

leaves to actually form better connections.

With this notation, the FMT∗ algorithm can be represented in pseudocode as Algorithm 1. Before

describing FMT∗ in detail, we list briefly the basic planning functions employed by the algorithm:

• SampleFree(n): returns a set of n ∈ N points sampled independently and identically from

the uniform distribution on Xfree.

• Path(z, T ): returns the unique path in tree T from its root to node z.

• Cost(x̃x): returns the cost of the straight-line path between states x̃ and x.

• Cost(x, T ): returns the cost of the unique path in tree T from its root to its node x.

• CollisionFree(x, y): returns true if the straight-line path between states x and y is collision-

free (i.e., feasible), or else returns false otherwise.

• Near(S, z, r): returns the subset of samples S within a ball of radius r centered at sample z

(i.e., the set {x ∈ S | ‖x− z‖ < r}).

• Terminate(): represents an external termination criterion (i.e., time-out, maximum number

of samples, etc.) which can be used to force early termination (or prevent infinite run-time for

infeasible problems).

We are now in position to describe the FMT∗ algorithm. We begin on line 1 with forming a sample

set S of free-space states by drawing n samples uniformly from Xfree. A tree T is then initialized

on line 2 with xinit at its root using the Initialize subfunction at the bottom of Algorithm 1.

Once complete, tree expansion begins on line 5 using Expand as shown in Algorithm 2, starting

from node z initially set to xinit. Note that, in what follows, z will consistently represent the node

selected for expansion. The Expand procedure requires the specification of a connection radius

parameter, rn, whose selection will be discussed in Section 3.3. Expand implements the “lazy”

dynamic programming recursion described (at a high level) in Section 3.2.1, making locally-optimal
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Algorithm 1 The Fast Marching Tree (FMT∗) Algorithm

Require: Query (xinit,Xgoal), Search radius rn, Sample count n
1: S ← {xinit} ∪ SampleFree(n)
2: T ← Initialize(S, xinit)
3: z← xinit, σ

∗ ← ∅
4: while σ∗ = ∅
5: T ← Expand(T , z, rn)
6: if Terminate() then return Failure
7: else if Vopen = ∅ then T ← Insert(T , rn)
8: z←arg minx̃∈Vopen

{Cost(x̃, T )}
9: if z ∈ Xgoal

10: σ∗ ← Path(z, T )

11: return σ∗

1: function Initialize(S, x0)
2: V ← ∅, E ← ∅, Vunvisited ← S, Vopen ← ∅
3: return T ← AddNode((V, E ,Vunvisited,Vopen),x0)

1: function AddNode(T ,x)
2: V ← V ∪ {x} . Add x to tree
3: E ← E ∪ {(xmin,x)} . Add edge to tree
4: Vunvisited ← Vunvisited\{x} . Mark x as visited
5: Vopen ← Vopen ∪ {x} . Add x to wavefront/frontier
6: return T ← (V, E ,Vunvisited,Vopen)

collision-free connections from unvisited samples x near z (those in set Vunvisited within search radius

rn of z) to wavefront/frontier nodes x̃ near each x (those in set Vopen within search radius rn of

x). See Figs. 3.5a–3.5b for visualization. Only the best locally-optimal connection is considered

per unvisited sample x; if this connection is infeasible, x is dropped from consideration during the

current iteration even if there are other frontier nodes nearby it could possibly connect to. This “lazy”

expansion in the execution of its dynamic programming recursion is the key feature of FMT∗ that

allows such fast free state space exploration—as discussed in [80] this comes at no loss of (asymptotic)

optimality (and likewise for BFMT∗, as we will see in Section 3.3). The reason this does not present

a significant cost detriment is because these ignored x sample states will often be connected to the

tree frontier via alternative locally-optimal connections during future iterations of the algorithm.

Once any feasible collision-free connections have been identified, they and their corresponding sample

state endpoints are then added to T as new edges and frontier nodes, respectively, and z is dropped

from the list of frontier nodes.

After expansion, the algorithm calls Terminate to check for early termination before proceeding

further. If the algorithm has not terminated, it checks whether the frontier Vopen of tree T is

empty (line 7). If this is the case, the Insert function shown in Algorithm 3 samples a new state

s uniformly from Xfree and tries to connect it to a nearest neighbor in the companion tree within

radius rn. This way, the expanding tree is ensured to have at least one state in its frontier available

for expansion on subsequent iterations (the alternative would be to report failure). This mimics
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Algorithm 2 Fast Marching Tree Expansion Step

1: function Expand(T , z, rn)
2: Vopen,new ← ∅
3: Znear ← Near(Vunvisited, z, rn)
4: for x ∈ Znear

5: Xnear ← Near(Vopen,x, rn)
6: xmin ← arg min

x̃∈Xnear

{Cost(x̃, T )+Cost(x̃x)}

7: if CollisionFree(xmin,x)
8: (V, E ,Vunvisited,Vopen,new)← AddNode((V, E ,Vunvisited,Vopen,new),x)

9: Vopen ← (Vopen ∪ Vopen,new)\{z} . Add new nodes and drop z from the wavefront
10: return T ← (V, E ,Vunvisited,Vopen)

Algorithm 3 Insertion of New Samples

1: function Insert(T , rn)
2: while Vopen = ∅ and not Terminate()
3: s← SampleFree(1)
4: Vnear ← Near(V, s, rn)
5: while Vnear 6= ∅
6: xmin ← arg min

x∈Vnear

{Cost(x, T )+Cost(xs)}

7: if CollisionFree(xmin, s)
8: T ← AddNode(T , s)
9: break

10: else then Vnear ← Vnear \ {xmin}
11: return T ← (V, E ,Vunvisited,Vopen)

anytime behavior, and by forcing samples to lie close to tree nodes we effectively “reopen” closed

nodes for expansion again. Uniform re-sampling may require many attempts before finding a state s

that can be successfully connected to Vopen, though we found that the impact of this on running

time was negligible while running our path planning studies of Chapter 4. Still, a more effective

strategy might bias re-sampling towards areas requiring expansion (e.g ., bottlenecks, traps) rather

than uniformly within tree coverage.

The algorithm then proceeds on line 8 with the selection of the next node for expansion. As

Insert ensures that T has at least one node in its frontier Vopen, a node is always available for

subsequent expansion as the next z. After selection, the entire process is iterated until we happen

to select a node z that lies in the goal region Xgoal; at this point, we have discovered the first

shortest-path connection from the root xinit that happens to end in Xgoal at z. By Bellman’s principle

of optimality, the path traced from z back to the root is therefore the optimal path σ∗ to Xgoal

through our particular distribution of discrete samples, S. For a graphical illustration, see Fig. 3.5d.
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= Unexplored
= Frontier
= Interior

(a) Identifying unvisited samples x near z

= Unexplored
= Frontier
= Interior

(b) Identifying frontier nodes x̃ near one of
the unvisited samples x

= Unexplored
= Frontier
= Interior

(c) Lazily connecting from xmin to x (no
edges added if infeasible)

= Unexplored
= Frontier
= Interior

(d) The successful terminating condition
that yields solution σ∗

Figure 3.5: Various stages of the FMT∗ algorithm as it concurrently constructs a graph and explores
feasible paths through Xfree

3.2.4 The BFMT∗ Algorithm – Detailed Description

The BFMT∗ algorithm, represented in Algorithm 4, iterates similarly to FMT∗, using unexplored

and frontier sets in exactly the same manner as FMT∗. However, in this case BFMT∗ “grows” two

trees, referred to as T = (V, E ,Vunvisited,Vopen) and T ′ = (V ′, E ′,V ′unvisited,V ′open), from two different

locations: one from the initial state xinit and another from a goal state xgoal. Initially, T is the tree

rooted at xinit, while T ′ is the tree rooted at xgoal (note, however, that the trees are exchanged

during the execution of BFMT∗, so T in Algorithm 4 is not always the tree that contains xinit).

To accommodate these variations, we introduce two new planning primitives to complement the

list introduced in Section 3.2.3:

• Swap(T , T ′): swaps the two trees T and T ′.

• Companion(T ): returns the companion tree T ′ to T (or vice versa).

We now describe the BFMT∗ algorithm in detail. As for FMT∗, we first draw a set of samples

S comprising n states in Xfree. Instead of one tree, however, we then initialize two trees using the

Initialize subfunction at the bottom of Algorithm 1, with a forward tree rooted at xinit and a

reverse tree rooted at xgoal. Once complete, state space exploration begins with the forward tree T ,

setting xinit as the next node for expansion z. Here a slightly-modified form of the Expand procedure,
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Algorithm 4 The Bi-directional Fast Marching Tree (BFMT∗) Algorithm

Require: Query (xinit,xgoal), Search radius rn, Sample count n
1: S ← {xinit,xgoal} ∪ SampleFree(n)
2: T ← Initialize(S, xinit)
3: T ′ ← Initialize(S, xgoal)
4: z← xinit, xmeet ← ∅, σ ← ∅
5: while σ = ∅
6: {xmeet, T } ← Expand(T , z, rn, xmeet)
7: if xmeet 6= ∅
8: σ ← Path(xmeet, T ) ∪ Path(xmeet, T ′)
9: break

10: else if Terminate() then return Failure
11: else if V ′open = ∅ then T ′ ← Insert(T ′, rn)
12: z←arg min

x̃∈V′open

{Cost(x̃, T ′)}

13: Swap(T , T ′)
14: return σ

Algorithm 5 Bi-directional Fast Marching Tree Expansion Step (Identical to Algorithm 2, except
for modified function input and output signatures and the new lines 9–10)

1: function Expand(T , z, rn, xmeet)
2: Vopen,new ← ∅
3: Znear ← Near(Vunvisited, z, rn)
4: for x ∈ Znear

5: Xnear ← Near(Vopen,x, rn)
6: xmin ← arg min

x̃∈Xnear

{Cost(x̃, T )+Cost(x̃x)}

7: if CollisionFree(xmin,x)
8: (V, E ,Vunvisited,Vopen,new)← AddNode((V, E ,Vunvisited,Vopen,new),x)
9: if {x ∈ V ′ and Cost(x, T ) + Cost(x, T ′) < Cost(xmeet, T ) + Cost(xmeet, T ′)}

10: xmeet←x . Save x as best connection

11: Vopen ← (Vopen ∪ Vopen,new)\{z} . Add new nodes and drop z from the wavefront
12: return {xmeet, T ← (V, E ,Vunvisited,Vopen)}

presented in Algorithm 5, is used to conduct the same lazy dynamic programming recursion as in

FMT∗. As before, Expand adds any collision-free edges and newly-connected nodes to T and drops

z from its list of frontier nodes Vopen. Now, however, we must add some bookkeeping through an

additional variable, xmeet, to keep track of the lowest total-cost connection candidate that joins our

two search trees together.

After expansion, the algorithm checks whether a feasible path is found on line 7 by checking

whether xmeet has been assigned. If unsuccessful so far, Terminate (which reports failure upon

early termination) is checked before proceeding. If the algorithm has not terminated, BFMT∗ then

prepares for a new iteration by calling Insert (shown in Algorithm 3) on its companion tree T ′ in

the event that its corresponding frontier V ′open is empty (line 11). The algorithm then proceeds on

lines 12–13 with the selection of the next node (and corresponding tree) for expansion. As shown,
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BFMT∗ “swaps” the forward and backward trees on each iteration, so that each may be expanded in

turn. As Insert ensures the companion tree T ′ always has at least one node in its frontier V ′open, a

node is always available for subsequent expansion as the next z. After selection, the entire process is

iterated. This alternating graph search and exploration process repeats until the first connection

point xmeet is established between the two trees, in which case the corresponding paths in T and T ′

are traced and joined together to yield solution σ.

Algorithm Variations

As for any bi-directional planner, the correctness and computational efficiency of BFMT∗ hinge

upon two key aspects: (i) how computation is interleaved among the two trees (in other words,

which wavefront/frontier at each step should be chosen for expansion), and (ii) when the algorithm

should terminate. For instance, as an alternative tree expansion strategy (i.e., item (i)), one could

replace lines 12–13 with the “balanced trees” condition which enforces more of a balanced search,

maintaining equal costs from the root within each wavefront such that the two wavefronts propagate

and meet roughly equidistantly in cost-to-go from their roots:

12: z1 ← arg min
x∈Vopen

{Cost(x, T )}

13: z2 ← arg min
x̃∈V′open

{Cost(x̃, T ′)}

14: (z, T )← arg min
(z1,T ),(z2,T ′)

{Cost(zi, Ti)}

15: T ′ = Companion(T )

Similarly, as an alternative to the “first path” termination criterion (i.e., item (ii)), one might replace

line 7 with the “best path” criterion:

7: z ∈
(
V ′ \ V ′open

)
Currently, line 7 returns the first available path discovered, at the moment that the two wavefronts

touch at xmeet (which is not, in general, the lowest cost path). This alternative “best path” condition,

on the other hand, returns the exact optimal path from xinit to xgoal through the given set S of n

samples. This change terminates BFMT∗ when the two wavefronts have propagated sufficiently far

through each other such that no better solution can be discovered. Intuitively-speaking, this occurs

at the first moment where the two trees have both selected, at the current iteration or previously,

the same sample as the minimum cost node z from their respective roots.

Though seemingly promising ideas, no appreciable differences in performance were found using

the above criteria in combination or otherwise; hence we report only the simplest version of our

planner as Algorithm 4.
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Anytime Behavior

Because FMT∗ and BFMT∗ continually re-sample new points upon failure using the Insert routine

(Algorithm 3), each algorithm achieves a pseudo-anytime behavior (analogously to MPLB of [120]).

Here they are “anytime” in the sense that samples are repeatedly added to the state space and

connected to the tree until time runs out, with previous computations carefully reused; they are

unlike “anytime” algorithms, on the other hand, in the sense that the first solution found is

returned immediately (and not continually improved). However, due to the property that suboptimal

connections vanish almost surely as the initial number of samples n → ∞, this should not be a

significant drawback for practical applications.

Note, by replacing Insert on line 11 with “return Failure”, we recover a more straightforward,

non-anytime bi-directional version of the original FMT∗ algorithm. It is advantageous, however, to

keep the Insert routine, as it dramatically increases the success rate of the algorithm for difficult

motion planning problems.

3.3 Theoretical Characterization of BFMT∗

In this section, we prove the asymptotic optimality of BFMT∗, and provide an upper bound on its

convergence rate. We start from a result called probabilistic exhaustivity, which essentially states

that any path in Xfree may be “traced” arbitrarily well by connecting points from a sufficiently-large

pseudo-random sample set covering Xfree. We then prove BFMT∗’s asymptotic optimality by showing

that it returns solutions with costs no greater than that of any tracing path. The claim is proven

assuming BFMT∗ acts without the Insert procedure (Algorithm 3), in place of which “Failure” is

reported instead. The proof for the full algorithm then follows immediately by a fortiori argument.

3.3.1 Mathematical Preliminaries

Before proceeding with our analysis, we first need to introduce a number of concepts that will appear

recurrently throughout the proof.

Path Clearance Here we introduce some definitions concerning the clearance of a path, i.e.,

its “distance” from Xobs [80]. For a given δ > 0, the δ-interior of Xfree is defined as the set of all

points that are at least a distance δ away from any point in Xobs. A collision-free path σ is said

to have strong δ-clearance if it lies entirely inside the δ-interior of Xfree. This means σ is always

some minimum distance δ > 0 from being infeasible. As a less-stringent condition, a collision-free

path σ is said to have weak δ-clearance if there exists a homotopy ψ : [0, 1]→ Σ, with ψ(0) = σ and

ψ(1) = σ′ for some strong δ-clear path σ′, such that ψ(α) has strong δα-clearance for some δα > 0,

for all α ∈ (0, 1]. In other words, weak δ-clear paths σ must have a strong δ-clear paths σ′ nearby (in

the same “homotopy class”) that can be continuously deformed into σ. All strong δ-clear paths have
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(a) A robustly-feasible path planning problem, with:
(i) a path σn with strong-δn clearance, and (ii) an
optimal path σ∗ with weak-δn clearance.

(b) An (ε, r)-tracing of a path σ. Probabilistic
exhaustivity guarantees that we can always find a
closely-tracing path y among samples S as n→∞,
almost surely.

Figure 3.6: Illustrations of various path planning concepts

weak δ-clearance; however, weak δ-clearance also encompasses paths that touch obstacle boundaries

but do not pass between two touching obstacles. See Fig. 3.6a for visualization.

Robust Feasibility A path planning problem with optimal solution σ∗ and associated cost J∗ is

called δ-robustly feasible if: (i) σ∗ has weak δ-clearance and (ii) there exists a sequence of feasible

paths {σn}∞n=1, with σn(0) = xinit, σn(1) = xgoal, and σn(s) 6= xgoal for all s ∈ (0, 1), such that

limn→∞ J(σn) = J∗ and such that σn has δn-clearance for some strictly positive sequence δn → 0,

with δn ≤ δ for all n ∈ N. In other words, δ-robustly-feasible problems admit arbitrarily-close δn-clear

path approximations to optimal path solutions, where δn ≤ δ can be reduced to zero.

Probabilistic Exhaustivity Let σ : [0, 1]→ X be a path. Given a set of samples (referred to as

waypoints) {ym}
M
m=1 ⊂ X , we associate a path y : [0, 1]→ X that sequentially connects the nodes

y1, . . . ,yM with line segments. We consider the waypoints {ym} to (ε, r)-trace the path σ if: (i)∥∥ym − ym+1

∥∥ ≤ r for all m, (ii) the cost of y is bounded as J(y) ≤ (1 + ε)J(σ), and (iii) the distance

from any point of y to σ is no more than r, i.e., mins∈[0, 1]‖y(t)− σ(s)‖ ≤ r for all t ∈ [0, 1]. In

the context of sampling-based motion planning, we may expect to find closely-tracing {ym} as a

subset of the sample set S, provided the sample size is large and assuming a dense sampling sequence.

This notion is formalized below (Theorem 6), proven as Theorem IV.5 in [81] for the general case of

driftless control-affine control systems, a special case of which is path planning without differential

constraints (as addressed in this chapter).

Theorem 6 (Probabilistic Exhaustivity). Define path planning problem (Xfree,xinit,xgoal) and let

σ : [0, 1]→ Xfree be a feasible path. Denote the volume of the d-dimensional Euclidean unit ball by ζd.
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Finally, let S = {xinit,xgoal} ∪ SampleFree(n), ε > 0, and for fixed n consider the event An that

there exist waypoints {ym}
M
m=1 ⊂ S, with y1 = xinit and yM = xgoal, which (ε, rn)-trace σ, where:

rn = 4 (1 + η)
1
d

(
1

d

) 1
d
(
µ(Xfree)

ζd

) 1
d
(

log n

n

) 1
d

(3.1)

for a steering parameter η ≥ 0. Then, as n→∞, the probability that An does not occur (denoted by

its complement Acn) is asymptotically bounded as P[Acn] = O
(
n−

η
d log−

1
d n
)

.

3.3.2 Asymptotic Optimality Proof

We are now in a position to prove the asymptotic optimality of BFMT∗, which represents the main

result of this section. In the interest of clarity, we provide a brief sketch of the proof first before delving

into mathematical formalisms. Assume a δ-robustly feasible path planning problem with optimal

path σ∗ of cost J∗ (the δ-robustly feasible property ensures that we may approach J∗ arbitrarily well

by approximant paths with strong δ-clearance). Consider running BFMT∗ to completion to solve

this problem, using a set of n samples to generate one cost-to-come tree Ti and one cost-to-go tree

Tg rooted at xinit and xgoal, respectively. If we can show that BFMT∗ returns a path whose cost

approaches the cost of any one of these δ-feasible approximant paths σ arbitrary well (with high

probability in the limit as n → ∞), then asymptotic convergence to J∗ follows immediately. The

proof of this “path-tracing” property begins by considering a regime of n sufficiently large so that the

connection radius rn is “small” with respect to both the obstacle clearance δ and the approximant

path cost J(σ). For large sample counts, the existence of waypoints {ym} within the sample set

which trace σ (when connected together to form path y) occurs with increasingly high probability as

n increases (by our assumption of a dense sampling sequence). By choosing rn small with respect

to δ, we ensure that these waypoints will represent a feasible sequence of connections for BFMT∗;

moreover, it may be shown that BFMT∗, like FMT∗, will recover a path with cost no worse than

J(y)—up to an additional additive factor of rn which arises when the two trees Ti and Tg meet,

motivating the second choice of rn small with respect to J(σ). As J(y) is, by definition, close to

J(σ) (which itself is close to J∗), it follows that BFMT∗ returns a solution that is close to J∗ with

high probability as n→∞. This completes the proof.

The formal presentation of these ideas follow in the remainder of this section. We start with an

important lemma, which relates the cost of the path returned by BFMT∗ to that of any feasible

path. Note the proof addresses the case of running the BFMT∗ algorithm in the form presented

as Algorithm 4 (that is, with the “first path” termination criterion and the “alternating trees”

exploration strategy). It should be emphasized, however, that the results apply to any expansion

criterion (that is, the two mentioned in this chapter and otherwise), as well as the “best path”

termination criterion (see Section 3.2.4). The latter follows by a fortiori argument; the “best path”

termination criterion returns a path at least as good as the “first path” termination criterion because
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it returns the best path among a number of choices, one of which is the path produced by the “first

path” criterion. See Remark 10 following this proof for further discussion.

Lemma 7 (Bi-directional FMT∗ Cost Comparison). Let σ : [0, 1] → Xfree be a feasible path with

strong δ-clearance. Consider running BFMT∗ to completion with n samples and a connection radius

rn given by Eq. (3.1) with η ≥ 0. Let Jn denote the cost of the path returned by BFMT∗. Then for

fixed ε > 0:

P[Jn > (1 + ε)J(σ)] = O
(
n−

η
d log−

1
d n
)
.

Proof. First of all, if xinit = xgoal, then BFMT∗ immediately terminates with Jn = 0, trivially

satisfying the claim. Thus we assume that xinit 6= xgoal. Consider n sufficiently large so that

rn ≤ min
{
δ/2 , ε‖xinit − xgoal‖

/
2
}

. Apply Theorem 6 to produce, with probability at least 1 −
O
(
n−

η
d log−

1
d n
)

, a sequence of waypoints {ym}Mm=1 ⊂ S, with y1 = xinit and yM = xgoal, which

(ε/2 , rn)-trace σ. We claim that in the event that if such {ym} exists, the BFMT∗ algorithm returns

a path with cost upper bounded as Jn ≤ J(y) + rn ≤ (1 + ε/2)J(σ) + (ε/2)J(σ) = (1 + ε)J(σ). The

desired result follows directly.

To prove the claim, assume the existence of an (ε/2 , rn)-tracing {ym} of σ. Let B(x, r) represent

a ball of radius r centered at a sample x. Note that our upper bound on rn implies that B(ym, rn)

intersects no obstacles. This follows from our choice of rn and the distance bound

inf
s∈Xobs

‖ym − s‖ ≥ inf
s∈Xobs

‖σm − s‖ − ‖ym − σm‖

≥ 2rn − rn ≥ rn.

where σm is the closest point of σ to ym. This fact, along with
∥∥ym − ym+1

∥∥ ≤ rn for all m, implies

that when a connection is attempted for ym, both ym−1 and ym+1 will be in the search radius and no

obstacles will lie within that search radius. Running BFMT∗ to completion generates one cost-to-come

tree Ti = (Vi, Ei,Vopen,i,Vunvisited,i) and one cost-to-go tree Tg = (Vg, Eg,Vopen,g,Vunvisited,g) rooted

at xinit and xgoal, respectively (the subscripts i and g are used to identify the root of a tree without

ambiguity). The above discussion ensures that the trees will meet and the algorithm will return a

feasible path when it terminates—the path outlined by the waypoints {ym} disallows the possibility

of failure.

For each sample point x ∈ S, let Ji(x) := Cost(x, Ti) denote the cost-to-come of x from xinit in

Ti, and let Jg(x) := Cost(x, Tg) denote the cost-to-go from x to xgoal in Tg. If x is not contained

in a tree Tk, where k = {i, g}, we set Jk(x) =∞. When the algorithm terminates, we know there

exists a sample point xmeet ∈ Vi ∩ Vg where the two trees meet; indeed we select the particular

meeting point xmeet = arg minx∈Vi∩Vg Ji(x) +Jg(x). Then Jn = Ji(xmeet) +Jg(xmeet). We now note

a lemma bounding the costs-to-come of the waypoints {ym}, the proof of which may be found as an

inductive hypothesis (Eq. 5) in Theorem VI.1 of [81].
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Lemma 8. Let m ∈ {1, . . . ,M}. If Ji(ym) < ∞, then Ji(ym) ≤
∑m−1
k=1

∥∥yk − yk+1

∥∥. Otherwise

if ym /∈ Vi, then Ji(xmeet) ≤
∑m−1
k=1

∥∥yk − yk+1

∥∥. Similarly if Jg(ym) < ∞, then Jg(ym) ≤∑M−1
k=m

∥∥yk − yk+1

∥∥; otherwise Jg(xmeet) ≤
∑M−1
k=m

∥∥yk − yk+1

∥∥.

To bound the performance Jn of BFMT∗, there are two cases to consider. Note in either case we

find that Jn ≤ J(y) + rn, thus completing the proof.

Case 1: There exists some ym ∈ Vi ∩ Vg.
In this case, Jn = Ji(xmeet) + Jg(xmeet) ≤ Ji(ym) + Jg(ym) < ∞ by our choice of xmeet. Then

applying Lemma 8 we see that Jn ≤ Ji(ym) + Jg(ym) ≤
∑M−1
k=1

∥∥yk − yk+1

∥∥ = J(y).

Case 2: There are no ym ∈ Vi ∩ Vg.
Consider m̃ = max{m | Ji(ym) <∞}. Then ym̃ ∈ Vi and ym̃ cannot have been the minimum-

cost element of Vopen,i at any point during algorithm execution, or else we would have connected

ym̃+1 ∈ Vi. Let z denote the minimum-cost element of Vopen,i when xmeet was added to Vi. We have

the bound:

Ji(xmeet) ≤ Ji(z) + rn ≤ Ji(ym̃) + rn

≤
m−1∑
k=1

∥∥yk − yk+1

∥∥ + rn. (3.2)

By our assumption for this case, ym̃ /∈ Vg. Then by Lemma 8 we know that Jg(xmeet) ≤∑M−1
k=m

∥∥yk − yk+1

∥∥. Combining with the previous inequality yields Jn = Ji(xmeet) + Jg(xmeet) ≤∑M−1
k=1

∥∥yk − yk+1

∥∥ + rn = J(y) + rn.

Remark 9 (Tightened Bound for Connection Radius). As discussed in [81], for the sake of clarity, the

constant term 4 in the expression for rn is greater than is necessary for Theorem 6 to hold. A more

careful argument along the lines of the original FMT∗ AO proof [80] would suffice to show that a

factor of 2 satisfies the theorem as well.

Remark 10 (Alternative Termination Criteria). If we analyze the “best path” criterion discussed in

Section 3.2.4 instead of the “first path” criterion used in Algorithm 4 (i.e., if BFMT∗ continues until

an element in Vi ∩ Vg in the interior of the companion tree is selected as the minimum cost element

z of Vopen,i or Vopen,g), then the rn term may be omitted from inequality of Eq. (3.2). In that case

we need only consider n sufficiently large so that rn ≤ δ/2 , and the proof holds for the “best path”

termination condition as well.

We are now ready to show that BFMT∗ is asymptotically-optimal. The proof essentially follows

as a corollary to Lemma 7. Assuming a δ-robustly feasible path planning problem with optimal path

σ∗ of cost J∗, there exist feasible approximant paths with strong δ-clearance whose costs approximate

J∗ arbitrarily well. By Lemma 7, the solution cost returned by BFMT∗ in turn closely approximates
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(with high probability as n→∞) the cost of any of these approximants; asymptotic convergence to

J∗ then follows. The next theorem shows this formally.

Theorem 11 (BFMT∗ Asymptotic Optimality). Assume a δ-robustly feasible path planning problem

as defined in Section 3.3.1 with optimal path σ∗ of cost J∗. Then BFMT∗ converges in probability to

σ∗ as the number of samples n→∞. Specifically, for any ε > 0,

lim
n→∞

P[Jn > (1 + ε)J∗] = 0

Proof. By our δ-robustly feasible assumption, we can find a strong δ-clearance feasible path σ :

[0, 1] → Xfree that approximates σ∗ with cost J(σ) < (1 + ε/3)J∗ (i.e., less than factor ε/3 from

J∗), for any ε > 0. By Lemma 7, we can choose n sufficiently large such that BFMT∗ returns an ε/3

cost approximation to the approximant:

P
[
Jn > (1 + ε/3)

2
J∗
]
< P[Jn > (1 + ε/3)J(σ)]

= O
(
n−

η
d log−

1
d n
)

To approach the optimal path, let the number of samples n→∞. It follows that, for any η ≥ 0:

lim
n→∞

P
[
Jn > (1 + ε/3)

2
J∗
]
< lim
n→∞

O
(
n−

η
d log−

1
d n
)

= 0

Now we relate this to the original claim. First, suppose that ε ≤ 3. From (1 + ε/3)
2 ≤ 1 + ε, the

event {Jn > (1 + ε)J∗} is a subset of the event
{
Jn > (1 + ε/3)

2
J∗
}

, hence:

lim
n→∞

P[Jn > (1 + ε)J∗] ≤ lim
n→∞

P
[
Jn > (1 + ε/3)

2
J∗
]

= 0.

Because the probability is monotone-decreasing in ε as ε increases, the statement holds for all ε > 3

as well (to see this, apply Lemma 7 again for m sufficiently large to handle ε = 3; then by similar

argument as above P[Jm > (1 + ε)J∗] < P[Jm > (1 + 3)J∗] = O
(
m−

η
d log−

1
d m

)
and take the limit

as m → ∞). Hence limn→∞ P[Jn > (1 + ε)J∗] = 0 holds for arbitrary ε, and we see that BFMT∗

converges in probability to the optimal path cost, as claimed.

Remark 12 (Convergence Rate). Note that we can also translate the convergence rate from Lemma 7

to the setup of Theorem 11, which does not require strong δ-clearance. For any ε > 0, the optimal

path can be approximated by a strong-δ-clear path with cost less than (1 + ε)J(σ) and we can focus

on approximating that path to high-enough precision to still approximate the optimal path to within

factor (1 + ε). Since the convergence rate in Lemma 7 only contains ε in the rate’s constant, the

big-O convergence rate remains the same. This generalizes the convergence rate result in [80], which

only applied to a specific obstacle-free state space, initial state, and goal region.
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3.3.3 Sampling and Cost Generalizations

It is worth mentioning that the asymptotic optimality (AO) properties of BFMT∗ are not limited to

uniform sampling and arc-length cost functions. For example, if one has prior information about areas

that the optimal path is unlikely to pass through, it may be advantageous to consider a non-uniform

sampling strategy that downsamples these regions. As long as the sampling density is lower-bounded

by a positive number over the state space, BFMT∗ can be slightly altered (by merely increasing

rn by a constant factor) to ensure it stays AO. The argument is analogous to that made in [80],

and essentially proceeds by making the search radius wide enough to balance out the detrimental

effect of the lower sampling density (in some areas). An additional common concern is when the

cost is not arc-length, but some other metric or line integral cost. In either case, BFMT∗ need only

consider cost balls instead of Euclidean balls when making connections. Details on adjusting the

algorithm and why the AO proof still holds can be derived from [80]. The argument basically shows

that the triangle inequality either holds exactly (for metric costs) or approximately, and that this

approximation goes away in the limit as n→∞.

3.4 Conclusion

In this chapter, we have introduced the Fast Marching Trees (FMT∗) and Bi-directional Fast

Marching Trees (BFMT∗) algorithms for solving shortest-path motion planning problems with

arc-length cost functionals. In particular, we presented the first proof of asymptotic optimality for

a bi-directional sampling-based planner, the BFMT∗ algorithm, and showed that it preserves the

convergence rate bounds and exploration properties of its unidirectional variant. Several modified

versions of BFMT∗ were analyzed, and generalizations to more complex motion planning problems

were discussed. Interesting avenues for future research include the use of adaptive sampling near

narrow passages, sample biasing in Insert (Algorithm 3) towards failed wavefronts, and extensions

of FMT∗ and BFMT∗ to dynamic environments through lazy re-evaluation (leveraging their tree-like

path structures) in a way that reuses previous results as much as possible.

In the next chapter, we examine how well these algorithms perform in comparison to their

state-of-the-art counterparts, and demonstrate how well they operate in practice onboard a free-flying

proximity operations testbed.



Chapter 4

Benchmarking Experiments and

Testbed Demonstrations

Though an asymptotically-optimal (AO) sampling-based algorithm may guarantee convergence to

an optimal-cost path as the number of samples taken increases (as n→∞), in practice optimality

is not possible to achieve using sampling-based planners due to constraints on memory and other

computational resources. This limits any implementation to a finite number of samples, and therefore

a suboptimal motion planning solution. Fortunately, for most problems, it matters little that an exact

optimal solution be found, but rather that a feasible path be found quickly and with sufficiently-low

cost (such a solution will henceforth be described as “near-optimal”). Often a trade-off exists,

however, between solution path cost and computational speed, as using more samples n tends to

produce cheaper paths1 at the expense of additional processing and overhead. In this chapter,

we examine this classical trade-off for the Fast Marching Tree (FMT∗ and BFMT∗) algorithms as

applied to a suite of path planning experiments, both simulated and onboard a free-flying robotic

testbed. The purposes of these tests are threefold: (i) to illustrate the practical ability of FMT∗ and

BFMT∗ to solve standardized planning problems, (ii) to benchmark their performance against other

state-of-the-art planning algorithms, and (iii) to develop insights into how such algorithms can be

used for real-time spacecraft guidance.

4.1 Open Motion Planning Library (OMPL) Experiments

In this section, we provide numerical path-planning experiments that compare the performances of

FMT∗ and BFMT∗ with other sampling-based, asymptotically-optimal planning algorithms (namely,

1This tendency for producing cheaper paths as n increases becomes a guarantee for AO algorithms when using
dense sampling sequences at sufficiently large sample counts – though when this occurs exactly is highly problem- and
sequence-dependent.
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RRT∗ and PRM∗)2. Because of its introduction in this thesis, special attention is given to the relative

capabilities of BFMT∗, in particular. To test these algorithms, we aim to observe the quality of the

solutions returned by each algorithm as a function of execution time when given the same planning

workspace and query. Recall that here simulations neglect dynamic constraints and use arc-length

as the solution cost. As a basis for quality comparison between incremental or “anytime” planners

(such as RRT∗) and non-incremental planners (such as BFMT∗, which generate solutions via sample

batches), we vary the total number of samples drawn by the planners during the planning process

(which in essence serves as a proxy to execution time); note that sample count n has a different

connotation depending on the planner that will not necessarily be the number of nodes stored in the

constructed solution graph—for RRT∗ (with one sample drawn per iteration), this is the number

of iterations, while for FMT∗, PRM∗, and BFMT∗, this is the number of free space samples taken

during initialization.

4.1.1 Simulation Setup

To generate simulation data for a given experiment, we query the planning algorithms once each for

a series of sample counts, recording the cost of each solution returned, the planner execution time3,

and whether the planner succeeded or not, then repeat this entire process over 50 trials. To ensure a

fair comparison, each planning algorithm is tested using the Open Motion Planning Library (OMPL)

v1.0.0 [121], which provides high-quality C++ implementations of many state-of-the-art planners

and a common framework for executing motion plans. In this way, we ensure that all algorithms

employ the exact same primitive routines (e.g ., nearest-neighbor search, collision-checking, data

handling, etc.), and thus measure their performances fairly. Regarding implementation specifics,

BFMT∗, FMT∗, and PRM∗ each use a steering parameter η = 0 for the nearest-neighbor radius

rn of Eq. (3.1) (from Lemma 7) in order to satisfy the theoretical bounds provided in Theorem 6

and [103]. For RRT∗, we use the default OMPL settings; namely, a 5% goal bias and a steering

parameter η equal to 20% of the maximum extent of the state space (except for the α-puzzle, to be

introduced below, in which case a value of 1.1 was found to work much better). For all algorithms,

early termination (e.g ., the Terminate routine of FMT∗ and BFMT∗) is suppressed by employing a

1000 second time limit, well above each planner’s worst-case execution time.

Before proceeding, we emphasize that each individual marker shown on the subsequent plots of

this section represents a single simulation at a fixed sample count. The points on the curves, however,

represent the mean cost/time of successful algorithm runs only for a particular sample count, with

2State-of-the-art bi-directional sampling-based algorithms (namely, RRT-Connect and SBL) were initially also
included. However, they were omitted due to high average costs (∼2-4x larger), which occluded the details of the other
planners.

3Code for all experiments was written in C++. Corresponding programs were compiled and run on a Linux-operated
PC, clocked at 2.4 GHz and equipped with 7.5 GB of RAM.
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(a) SE(2) bug trap (b) SE(2) maze (c) SE(3) α-puzzle

Figure 4.1: Depictions of the OMPL rigid-body planning problems

error bars corresponding to one standard deviation of the 50 run sample mean.4 Sample counts vary

from about 200 to 2000 points for 2D problems, from 1000 to 30000 points for 3D problems, and

from 500 to 4000 points for the hypercube examples.

4.1.2 Benchmarking Results and Discussion

Here we present benchmarking results (average solution cost versus average execution times and

success rates) comparing FMT∗ and BFMT∗ to other state-of-the-art sampling-based planners. Three

benchmarking test scenarios are considered: (i) a 2D “bug trap” and (ii) a 2D “maze” problem for a

convex polyhedral robot in the SE(2) state space, as well as (iii) a challenging 3D problem called the

“α-puzzle,” in which we seek to untangle two loops of metal (non-convex) in the SE(3) state space. All

problems are drawn directly from OMPL’s bank of tests and are illustrated in Fig. 4.1. In each case,

collision checks rely on OMPL’s built-in collision-checking library, the Fast Collision Library (FCL).

Additionally, to tease out the performance of BFMT∗ relative to FMT∗ in high-dimensional spaces,

we also study a point mass robot moving in cluttered unit hypercubes of 5 and 10 dimensions.5

Figure 4.2 shows the results for each BFMT∗, FMT∗, RRT∗, and PRM∗. Performance here is

measured by execution time on the x-axis and solution cost on the y-axis—high quality data points

are therefore located in the lower-left corner (low-cost solutions that are obtained quickly). The

plots reveal that both FMT∗ and BFMT∗ for the most part outperform RRT∗ as well as PRM∗.

In particular, BFMT∗ and FMT∗ achieve higher success rates6 (always a flat 100% for the cases

studied) in shorter time. To extract further information, we need to examine each test in detail.

In the Bug Trap and Maze problems, BFMT∗ notably generates the same cost-time curve as

FMT∗ (meaning they return solutions of very similar cost for a given sample count), but with data

4Standard deviation of the mean indicates where we expect with one-σ confidence the distribution mean to lie

based on the 50-run sample mean, and is related to the standard deviation of the distribution by σµ = σ
/√

50 .
5We populate the space to 50% obstacle coverage with randomly-sized, axis-oriented hyper-rectangles. xinit is set

to the center at [0.5, . . . , 0.5], with the goal xgoal at the ones-vector (i.e., [1, . . . , 1]).
6Note we achieve even better success rates than in the original FMT∗ paper [80] due to the introduction of

resampling from the Insert algorithm.
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(b) A maze in SE(2)-space
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(c) The SE(3) “alpha” puzzle

Figure 4.2: Simulation results for the three OMPL test scenarios
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Figure 4.3: FMT∗ and BFMT∗ results for 5D and 10D cluttered hypercubes (50% coverage; all
success rates were 100%)
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points shifted to the left (indicating they were obtained in shorter execution time). Though not

shown due to slow running times for PRM∗ (whose results had to be truncated to clarify detail),

all planners appear to tend towards similar low-cost solutions as more execution time is allocated.

However, BFMT∗ and FMT∗ seem to converge to an optimum much faster, particularly for the

Maze problem (on the order of 1.5 and 2.0 seconds respectively, compared to 3–4 seconds for RRT∗

and 5–7 seconds for PRM∗). This contrast becomes even more evident for the α-puzzle. Here we

see an unusual spread of solutions—one in a band at around 500 cost and another at around 275.

These indicate the presence of two solution types, or homotopy classes: one corresponding to the

true α-puzzle solution, and another less-efficient path. This appears to have yielded a “bump” in the

BFMT∗ cost-curve, where increasing the sample count momentarily gives an increased average cost.

We believe this is a result of how BFMT∗ trees interconnect; at this count, by unlucky circumstance,

the longer homotopy seems to be found first more often than usual. But as proved in Section 3.3, the

behavior disappears as n→∞. Note RRT∗ seems to avoid this issue through goal biasing. Despite

the difficult problem structure, BFMT∗ finds the cheaper homotopy faster than other planners, with

many more of its data points clustered in the lower-left corner, generally at lower costs and times

than RRT∗ and of equal quality but faster times than FMT∗.

These results suggest that BFMT∗ tends to an optimal cost at least as fast as the other planners,

and sometimes much faster. To shed light on the relative performance of FMT∗ and BFMT∗ further,

we compare them in higher dimensions. Results for the 5D and 10D hypercube are shown in Fig. 4.3

(success rates were again at 100%, and were thus omitted). Here BFMT∗ substantially outperforms

FMT∗, particularly as dimension increases, with convergence in roughly 0.5 and 1.4 seconds (5D),

and 5 and 20 seconds (10D) on average. This suggests that reachable volumes play a significant role

in their execution time. The relatively-small volume of reachable states around the goal at the corner

implies that the reverse tree of BFMT∗ expands its wavefront through many fewer states than the

forward tree of FMT∗ (which in fact needlessly expands towards the zero-vector); tree interconnection

in the bi-directional case prevents its forward tree from growing too large compared to unidirectional

search. This is pronounced exponentially as the dimension increases. In trap or maze-like scenarios,

however, bi-directionality does not seem to change significantly the number of states explored by the

marching trees, leading to comparable performance for the SE(2) bug-trap and maze. Note we expect

a greater contrast in execution times in favor of BFMT∗ as the cost of collision-checking increases,

such as with many non-convex obstacles or in time-varying environments.

4.2 Stanford Free-Flyer Demonstrations

Though simulations can help assess relative capabilities, the ultimate test for any planning algorithm

is its performance while operating on real, application-specific hardware. In this section, we describe

path planning experiments performed on a physical testbed representative of a planar spacecraft
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operating in deep-space (in the absence of gravity). These demonstrations are designed to support

sampling-based planning as a proof-of-concept for real-time guidance during autonomous on-orbit

servicing. To begin, we describe in detail the experimental setup and justify its design as a

representative simulator of deep-space spacecraft proximity operations. We then proceed to provide

selective illustrative results of the testbed’s planning performance, drawn from several cumulative

hours of successful testing operation. Note that throughout the remainder of this chapter, we employ

only the unidirectional Fast Marching Trees (FMT∗) algorithm to keep the presentation simple,

though arguably the Bi-directional Fast Marching Trees (BFMT∗) algorithm could be applied here

(to great effect) just as easily.

4.2.1 Experimental Setup

To study whether path planning algorithms can be realistically applied to spacecraft proximity

operations guidance, it is first necessary to develop a suitable testing environment. To that end, we

employ a set of three air-bearing, free-flying robots from the Stanford Space Robotics Facility. As

shown in Fig. 4.4a, air bearings are thin films of pressurized air that provide a contact-free, very low

friction, load-bearing interface between two surfaces. In this case, the robots generate air bearings

between their lower base plates (polished flat aluminum disks) and a large, very flat granite table

(see Fig. 4.5). Each air bearing is maintained by air that is drawn from onboard pressurized air tanks

and then forced through laser-cut holes in the base plate bottom. The resulting system, if the robot

is moving slowly enough to neglect air resistance, provides unrestricted lateral and yawing motions,

which emulate zero-gravity conditions within the plane of the table. Such air-bearing simulators have

been used for decades as affordable and relatively-cheap algorithmic testing platforms [122], which

closely mimic 3-DOF “deep-space” spacecraft dynamics (undamped second-order dynamics with 2

translational degrees-of-freedom for planar translation plus one rotational degree-of-freedom about

the plane normal; see Fig. 4.4b). It is interesting to note that this particular test facility at Stanford

is the precursor to the more advanced facility shown in [123, 124]. For other representative examples

of the utility of air-bearing simulators in spacecraft control experiments, see also [67, 125, 126].

In the paragraphs below, we highlight the key guidance and control features of the test facility

and sketch out how hardware demonstrations are performed. We begin with a description of the

localization system installed within the Stanford Space Robotics Facility, followed by details on the

free-flyer robotic platform and their associated control software. In what follows, we restrict our

focus to demonstrating how such previously-mentioned sampling-based path planning algorithms can

be embedded into a real-time guidance and control architecture.

Localization

Localization is the process by which a robot determines its own position as well as those of any

other objects and obstacles present nearby. To enable localization for the spacecraft free-flyers
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Table

Pressurized Air

Base Plate

Air Cushion

Laser-Cut Nozzle

(a) Schematic of an air bearing (Cross-sectional Side View)

Rotational
Degree-of-Freedom

Translational
Degree-of-Freedom

Translational
Degree-of-Freedom

(b) Degrees-of-Freedom enabled by an
air bearing (Top View)

Figure 4.4: Conceptualizing an air-bearing simulator

Figure 4.5: The Stanford Space Robotics Laboratory testbed, including early (refurbished) versions
of the air-bearing, free-flying robots. The granite table shown is 9 x 12 ft in size, with a flatness
better than one micron.

and decouple its complications (beyond the scope of our work) from that of guidance, we relied on

a relatively-simple and highly-accurate technique called motion capture. Motion capture systems

cross-correlate images taken by multiple infrared cameras with overlapping fields-of-view to identify

in real-time the positions of special markers called retroreflectors. Specialized algorithms are used to

quickly isolate and identify common infrared reflections between camera images, from which positions

can be calculated by triangulation, assuming camera coordinates remain fixed. By associating

uniquely-patterned clusters of markers with objects, the motion capture system is able to estimate

and broadcast to high accuracy the positions and orientations of all robots and obstacles within

the testing environment, which in this case is the large granite table. This information can then

be used, if needed, to obtain estimates of velocity and angular rates through appropriate filtering

techniques. Though a somewhat crude comparison, one can think of motion capture here as simulating

relative-GPS for our spacecraft free-flyers.
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Figure 4.6: Visualizing the motion capture process for identifying the positions and orientations of
test objects. The three clusters of white dots represent three groups of retro-reflectors, one for each
free-flying robot. Green lines indicate the line-of-sight measurements used for triangulation that have
been derived from images taken by the motion tracking cameras, illustrated here by blue pyramids.

(a) An Optitrack S250e
camera mounted above a
table corner.

(b) Three additional cam-
eras mounted directly
above the table centerline.

Figure 4.7: Motion capture system cameras installed within the Stanford Space Robotics Facility. A
total of six cameras provide full coverage of the granite table.

The motion capture system used in the Stanford Space Robotics Facility consists of six OptiTrack

S250e cameras mounted to the ceiling at several strategic vantage points, together with a centralized

workstation, modem, and router for the processing and broadcasting of position and orientation

data. For visualization, see Figs. 4.6 and 4.7). Though such a system is admittedly not available in

any realistic spacecraft application,7 it should be emphasized that the focus of this work is on the

guidance aspect; testbed demonstrations are included primarily as a proof-of-concept, and hence we

isolate localization from our guidance approach.

7One could achieve a more realistic testing simulation by emulating sensing uncertainty through artificial degradation
of motion capture estimates.
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(a) Free-flyer robots on the granite table. Note the rightmost
robot is shown with a simple pneumatic docking mechanism,
while the leftmost robot is shown without a momentum wheel
and onboard avionics. Two of the three passive mini free-
flyers can also be seen near the lower left and right corners.

Momentum
Wheel

Retroreflective
Markers

Thruster
Array

CompressedBAirBTanks
forBHovering/Thrust

DockingBArm

SmoothBBase
forBAirBCushion

FillBValve,
HoverBValve,

Pressure
Gauges

SlotBforBOnboard
Laptop

DriverBBoard

MylarBCover

(b) Free-flyer equipment breakdown. Note here
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Figure 4.8: Images of the free-flyer robots used for proximity operations demonstrations

Free-Flying Air-Bearing Robots

The three free-flying robots can be seen in Fig. 4.8. To simulate typical spacecraft actuation (within

the plane of the table), each robot is outfitted with a set of eight coplanar, horizontally-oriented

cold-gas thrusters for translation and a large horizontal momentum wheel for attitude control. To

store thruster propellant as well as provide air pressure for their air bearings, each is also equipped

with a set of three compressed-air tanks. The robots are controlled by onboard Linux-operated laptop

computers, used to process localization data, plan safe paths, and issue path-following commands.

Once computed, these control commands are sent from the computer over a serial connection to

an MBED microcontroller, which then issues corresponding actuator commands through a custom-

designed driver board to the thruster array and momentum wheel motor speed controller. Thruster

solenoid valves are then opened or closed and the momentum wheel is spun-up or braked accordingly.8

Motions for each robot are captured and broadcast by the localization system via a set of retroreflective

markers or “dots” arranged in unique patterns on their top plates.

In addition to the primary free-flyer robots, a set of three mini free-flyers, designed without any

actuators, are included in testbed demonstrations (see Fig. 4.8a). These smaller, passive air-bearing

discs serve as additional obstacles for the primary free-flyers during proximity operations experiments.

Due to their light weight, it is enough to use battery-powered air pumps to ensure their smooth

levitation on the table. Like their larger counterparts, retroreflective dots are attached to their

surfaces to enable their detection using the motion capture system.

8The hardware design reported here for the free-flying robots was determined largely during previous work at the
Stanford Space Robotics Facility that dates as far back as the 1980’s; the avionics and control architecture, however,
were completely refurbished during the production of this thesis.
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Figure 4.9: Architecture of the free-flying spacecraft testbed. Here x̃k(t) represents the measured
state trajectories of all objects k, x(t) is the actual robot state trajectory, ∆vi are the impulse
vectors produced by each thruster i, and M is the applied momentum wheel moment vector.

Table 4.1: List of major hardware components, testing conditions, and other specifications for the
free-flyer, air-bearing simulators

Base Diameter 0.49 m
Height 0.52 m
Mass (Momentum Wheel) 7.7 kg
Mass (Total) 32.4 kg
Microcontroller mBED NXP LPC1768
Momentum Wheel Controller Pololu Simple Motor Controller 18v15
Momentum Wheel Motor BaneBots RS395 Brushed DC Motor
Onboard OS Ubuntu Linux 13.04
Onboard Processor Lenovo IdeaPad Y410p (8 GB RAM, 2.40 GHz clock speed)
Operating Pressures 500–700 PSI (Tanks), 80–100 PSI (Thrusters)
Power 3x Turnigy 4000 mAh 3S 20C Lithium-Polymer batteries
Propellant Source 3x Compressed Air Tanks (3000 PSI max)

Put together with the localization system, the overall architecture of our 3-DOF spacecraft

proximity operations testbed can be seen in Fig. 4.9. More-detailed specifications on the air-bearing

spacecraft simulator test beds are additionally listed in Table 4.1.

Planning

With the hardware established, we can now discuss how we embed a path planning algorithm, such

as FMT∗, into the guidance and control process for our spacecraft proximity operations simulator.

The overall control system design, implemented entirely onboard the robot, can be seen in Fig. 4.10.

Three asynchronous, independent threads are run simultaneously to manage various parts of the

control process: a planning and estimation thread, a control thread, and finally an actuation thread.



4.2. STANFORD FREE-FLYER DEMONSTRATIONS 73

forBall
objects

O120BHzp

DualBEKF

Planning
Module

LB-MPC
Controller

Planning/EstimationBThread
O1BHzp

ControlBThread
O1BHzp

ActuationBThread
O20BHzp

Thrust
Allocator

ThrustB
Command

Moment
Allocator

Moment
Command

OnboardBLaptop

Figure 4.10: Architecture of the free-flyer on-board control system

Each of these is discussed below, in addition to a closer view of the planning thread guidance logic.

Planning and Estimation Thread Given localization measurements x̃k(t) for all objects k

including the robot j itself, the planning thread repeatedly updates the robot’s estimate of its current

table position and heading x̂ =
[
x̂, ŷ, θ̂

]
using a full-state estimator, from which it develops a motion

plan consisting of waypoints {ym}
N
m=1. In this case, we select a Dual Extended Kalman Filter (Dual

EKF)—essentially two EKFs run together to jointly estimate system parameters as well as system

states [127]—to provide smooth updates to the current robot state xinit := x̂j(t) at time tinit := t, as

well as the robot’s estimated system mass m̂, rotational moment of inertia Îz, and a table friction

parameter b̂. These parameters update the linearized double-integrator dynamics model assumed

by the Dual EKF and control thread (see below) in response to system changes over time caused

by propellant expenditure, table surface irregularities, propulsive losses, etc. During the planning

period between updates, the robot assumes all objects in its environment are “static,” despite the

fact that some may be moving. Provided plans are refreshed sufficiently-quickly (requiring a real-time

planning algorithm), the robot can still respond and react to environmental changes well enough

without any need for a predictive model of other agent’s or obstacle’s behavior; when admissible to a

particular guidance problem, this receding-horizon type of planning approach is a simple, generalized

way of handling time-varying obstacles using standard path planning algorithms (which often assume

a static environment). For our slow-moving, low-thrust robots, a replanning period of 1 second was

found to work well for the guidance scenarios we studied; more sophisticated methods for handling

moving obstacles were deemed unnecessary.

Control Thread The control thread determines the desired net force and torque commands that

efficiently drive the robot towards the discrete guidance trajectories {ym}
N
m=1 provided by the

planning thread. In our implementation, we employed a Learning-Based Model Predictive Control

(LB-MPC) algorithm as our trajectory-following controller [128]. This particular framework relies on
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a predictive dynamics model for our system (here taken to be a simple double integrator), solves

a control-effort two-point boundary-value minimization problem to determine a suitable control

law, implements only the first step, and finally re-evaluates the problem after a given time interval.

The “learning-based” part of the framework updates the predictive model over time—useful for

accounting for uncertainties in our mass estimate m̂, actuator uncertainties like unexpected thrust

reductions caused by diminishing propellant pressurization and pressure waves in thruster tubing,

and unmodeled system dynamics effects like momentum wheel friction.

Actuation Thread Once desired net force/moment commands have been given, the actuation

thread parses them to individualized actuators, determining the appropriate times for thruster firings

and the times and speeds at which to rotate the momentum wheel. For our particular approach,

these forces and moments are first translated to the robot body-fixed frame before being broken into

pulse widths (expressed in multiples of 0.05 s, the actuation loop time step), whose durations for any

given pair of axis-aligned thrusters are determined by body-fixed thrust magnitudes. To improve

control authority, thruster allocations are always conducted in pairs (axis-aligned pairs, in the case of

translation, or counter-opposing offset pairs, in the case of rotational maneuvers). Once determined,

these commands are then relayed to the driver board microcontroller to be passed on to actuators.

Guidance Logic The planning module used to generate motion plans merits special detail, for

which we provide a schematic in Fig. 4.11. The first step involves generating an appropriate planning

query (Xfree,xinit,xgoal), for which we rely on the environmental measurements provided by our

localization system. For automated rendezvous and docking, for example, our goal is to reach some

position vector ρ relative to a target robot T . In this case, we take xgoal to be:

xgoal = x̃T(tinit) + ρ

Additionally, we need a mathematical representation of our workspace W (namely its obstacles Ok)

in order to evaluate whether states x ∈ X are collision-free (i.e., an implicit model for Xfree). For

this, we generate obstacles from robot circumscribing circles with centers at current object positions

(xk(tinit), yk(tinit)) and with radii rk, as determined by our robot geometries (plus additional buffer

room specified by the trajectory designer). Modeling the robotic free-flyer j by its own circumscribing

circle with center (x, y) and radius rj , state collisions can be evaluated by the simple check:

∥∥∥∥∥
[
x

y

]
−

[
xk(tinit)

yk(tinit)

]∥∥∥∥∥
2

< (rj + rk)
2

for any k 6= j

This example using circles demonstrates the general idea of workspace obstacle generation, though

certain problems involving more complicated robot geometries may be represented better by more
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Figure 4.11: Architecture of the free-flyer guidance logic

complex or even hierarchical geometric primitives instead. See Chapter 5 for other examples. Now,

recall from Definition 5 that a correct planning algorithm will report failure when no solution exists.

One common such case occurs when either of the boundary conditions xinit or xgoal lie in Xobs. This

is particularly common for free-flying robots and other spacecraft-like systems due to the presence of

drift (undamped momentum) and (often) significant state measurement uncertainty—state estimates

can often drift very slightly into obstacle regions, particularly when operating near obstacle boundaries.

The logic diagram shown in Fig. 4.11 illustrates the way in which we accommodate these edge cases.

First, if xinit is found to be infeasible, an immediate avoidance boost is applied in the opposite

direction of the target by setting our next desired path waypoint y1 to a point on the outside of

the infeasible region on the line passing through (xinit, yinit) and (xk(tinit), yk(tinit)). For general

spacecraft control, more sophisticated abort maneuvers would be needed (see Chapter 6), though

this seemed to suffice for our purposes here. If xinit is safe but xgoal is found to be in violation, a

similar projection technique of xgoal is used to find a safe goal point near our true objective. Once

determined, motion planning is allowed to proceed and a sequence of waypoints {ym}
N
m=1 is generated

for our trajectory-following controller.

When the motion planner in Fig. 4.11 is called, we run an Open Motion Planning Library

(OMPL) [121] implementation of the FMT∗ algorithm, analogously to the numerical experiments

of Section 4.1. Details on the FMT∗ algorithm, represented by pseudocode as Algorithm 1, may

be found in Section 3.2.1. For our simulated spacecraft proximity operations testbed, we find that

FMT∗, in addition to producing low-cost paths, runs quickly enough to fit easily within our 1 Hz

planning thread. FMT∗ execution times were often well below a second while using thousands of

sample points—a benchmark that works well onboard our free-flyer robots.

4.2.2 Illustrative Results

With the setup described, we are now in position to present results from tests run on our air-bearing

simulator. As any hardware implementation requires making application-specific design choices,

which we touched on previously, the focus of this subsection is primarily on qualitative outcomes
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(a) t = 0.0 s (b) t = 1.0 s (c) t = 2.0 s

(d) t = 3.0 s (e) t = 4.0 s (f) t = 5.0 s

Figure 4.12: Illustration of the real-time replanning capability of the free-flyer robots. Observe how
the bottom-left free-flyer’s guidance plan (shown in black) and corresponding search tree (shown in
yellow) adapt over time to the obstacle moving from the bottom-center upwards.

rather than quantitative data, which do not necessarily transfer from one application to another.

It is hoped that the presentation here will convince the reader that the FMT∗ and BFMT∗ path

planning algorithms can be used successfully for real-time robotic vehicle control when planning in

tightly-constrained (and especially in slowly-changing) workspace environments.

Real-Time Capability

Let us first examine how well our guidance and control framework can handle time-varying obstacles.

Figure 4.12 presents the search tree and resulting planning solution over time for a free-flyer in

response to the motion of a mini free-flyer that is translating and rotating across the granite table

surface. With a 1 Hz replanning rate, we see how the free-flyer adjusts its waypoint sequence

according to the situation observed at the start of each planning interval. This changes the initial

plan from passing in front of the mini free-flyer to one that lags behind it. One could do even better

by attempting to predict the future of the mini free-flying “debris,” such that no attempts would be

made to build momentum along a path that may soon lead to a collision and instead saving time

and propellant by immediately moving along the lower path; however, this complicates our solution

and could lead to devastating results in situations where movement predictions are inaccurate. We

found our more straightforward approach to work sufficiently-well for our demonstration purposes
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(a) Initial plan (t = 0.0 s) (b) Goal invalidation (t = 1.3 s)

(c) Goal convergence (t = 35.8 s) (d) Final “docking” (t = 43.9 s)

Figure 4.13: Representative autonomous rendezvous and docking simulation with a time-varying
obstacle. The chaser (yellow circle, initially lower-left) must plan around the mini free-flyers (small
red circles) on its way to the target (lower-right, large red circle). The chaser’s guidance plan is
plotted in black (with goal state highlighted green) behind which trails its ground trace shown in
blue. Safe explored paths found by FMT∗ are shown in teal.

given the fast replanning capability of FMT∗ and the low speeds of our spacecraft simulators.

Autonomous Rendezvous and Docking

From hours of cumulative operation, we present here two representative autonomous rendezvous and

docking trials. The first is given in Fig. 4.13, which shows a series of testbed snapshots inlaid with

the robot’s corresponding motion plan and graphical representation of the workspace. The chaser

robot begins in the lower-left corner of the table and seeks to maneuver to a point 1 m away from

the target robot, seen in the lower-right corner, while aligning with its docking axis. This requires

the chaser to implement a near-180◦ slew to orient its docking “arm” (represented by a straight rod)

in the direction of the target’s docking “port” (the slot between the two vertical blue wires seen in

Fig. 4.13c). Along the way, the chaser must replan around a mini free-flyer that is dragged across its

path by a string, temporarily invalidating our goal state. To complete the rendezvous maneuver,

the robot initiates a straight-line “final approach” towards the target, abandoning any planning and

obstacle avoidance and relying only at this point on its trajectory-following controller (note that no
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actual physical docking is performed).

As shown, the robot successfully completes its mission, moving (according to the ground trace

from Fig. 4.13d) in more-or-less two straight line path segments from the initial state to the goal, and

from the goal to docking. This quite closely traces the initial plan shown in Fig. 4.13a, suggesting

that straight-line path planning can be a reasonable choice for approximating “deep-space” spacecraft

motions, particularly for low-momentum systems like the one we study here. If you look closely,

however, one can see a slight overshoot of the planning goal point just before final approach, caused

by a lack of dynamic prediction in the guidance algorithm, which in fact takes quite a long time to

correct. Path planning effectively assumes that infinite control authority exists, allowing the robot to

change course instantaneously (ignoring momentum). This reveals that dynamic constraints will need

to be explicitly accounted for in Part II of the thesis when developing our actual spacecraft planning

framework, especially in scenarios where gravitational and inertial effects become more significant.

In addition, we see that despite the sudden environmental changes, the vehicle successfully ignores

the mini free-flyer and converges smoothly to its goal point and final docking configuration. If the

obstacle had actually been on a collision-course, however, the outcome would not have been so

favorable; the low translational control authority (low thrust-to-weight ratio) of our free-flyer limits

its obstacle avoidance abilities. This suggests that though real-time replanning capability is useful

and necessary, it is not sufficient for ensuring future safety with respect to time-varying obstacles.

In such scenarios, these kinds of dangerous situations must either be handled by using predictive

modeling of obstacles or otherwise avoided entirely through appropriate mission safety constraints (a

topic we will address in Chapter 6 for the case of control failures). So long as obstacles and targets

are slowly-moving, the onboard architecture proposed in Fig. 4.10 appears to work quite well.

We provide the results from a second autonomous rendezvous and docking trial in Fig. 4.14. This

time all mini free-flyers are held in static positions, and we focus entirely on the generated motion

plans. Note the circular arc taken around the first obstacle, and the reductions in search tree size as

the chaser approaches its rendezvous point. Again, due to the neglect of system dynamics, there is a

slight overshoot of the goal point (which takes around 10-15 seconds to resolve as the chaser tries to

reverse its linear momentum). This also causes deviations from the initial plan, though again the

straight-line trajectories are followed quite closely.

All in all, it appears that our proposed control system works well using the FMT∗ motion planner,

though it would be in our best interest to account for our system dynamics and vehicle safety

directly during the guidance process. As will be seen, this will be accomplished, and more, in Part II

after making appropriate modifications to the subroutines of FMT∗ (Algorithm 1) and BFMT∗

(Algorithm 4). To see more about the free-flying robots and to observe these autonomous guidance

demonstrations in full detail, please refer to the supplementary videos that have been included with

the electronic copy of this dissertation.
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(a) t = 0.0 s (b) t = 9.0 s (c) t = 18.0 s

(d) t = 27.0 s (e) t = 36.0 s (f) t = 60.1 s

Figure 4.14: Another representative autonomous docking simulation within a purely-static obstacle
field. The chaser (yellow circle, initially lower-left) must plan around the mini free-flyers (small red
circles) on its way to the target (lower-right, large red circle). The chaser’s guidance plan is plotted
in black (with goal state highlighted green) behind which trails its ground trace shown in blue. Safe
explored paths found by FMT∗ are shown in teal.

4.3 Conclusion

In this chapter, we evaluated the cost and run-time performance of the FMT∗ and BFMT∗ algorithms

in a variety of motion planning settings. Numerical experiments in Rd, SE(2), and SE(3) revealed

that FMT∗ and BFMT∗ both tend to an optimal solution at least as fast as their state-of-the-art

counterparts, and in some cases significantly faster. Experiments on a 3-DOF free-flying robotic

testbed with FMT∗ showed that these algorithms can be used successfully on a simplified planar

spacecraft proximity operations scenario, demonstrating onboard real-time capability at a 1 Hz

planning rate.

According to our experience from numerical experiments, it seems the choice of whether to use

FMT∗ and BFMT∗ for a particular guidance problem depends largely on workspace structure. In

cases where the state space is relatively unconstrained, bi-directionality can yield significant run-time

improvements. On the other hand, when goal regions have only limited entrance access (e.g ., through

a narrow passage) but provide a large volume of exploration opportunities for the reverse tree,

bi-directionality can be a hindrance; using only a forward tree in such cases skips the exploration of

many unnecessary states. Both algorithms are hence useful tools for different, application-specific

situations. From this point onwards in the thesis, to simplify the exposition and abstract away from

any application-specific details, we will call solely upon the FMT∗ algorithm, with the assumed

understanding that results could generally be extended to BFMT∗ as well.

Finally, though testbed demonstrations were successful, it is important to note their limited scope;



80 CHAPTER 4. BENCHMARKING EXPERIMENTS AND TESTBED DEMONSTRATIONS

due to the very low thrust-to-weight ratios of our robots and the presence of table friction, dynamic

motions were very slow (maneuvers took on the order of a minute over the space of a few meters)

and drift effects were slight. In this limited setting, straight-line paths closely approximated state

trajectories, enabling the naive use of path planning for vehicle guidance. However, this approach

generally falls short during true spacecraft proximity operations, where drift effects dominate and

trajectories deviate far from straight lines. In Part II of the thesis, we will modify our motion

planning algorithms to directly account for the differential constraints present in real spacecraft

missions, as well as a host of other complex trajectory constraints unique to spacecraft proximity

operations.
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With the insights developed from motion planning without differential constraints in the previous

part of this dissertation, we turn our attention now to the more difficult problem of motion planning

for spacecraft proximity operations (see Chapter 1), with a specific emphasis on real-time guidance

for maneuvering near circular orbits. Real-time autonomous guidance for spacecraft is an inherently

challenging task, particularly for onboard implementations where computational capabilities are

limited. Many effective real-time solutions have been developed for the unconstrained problem,

without any explicit trajectory constraints (e.g ., state transition matrix manipulation [11], Lambert

targeting [12], glideslope methods [13], safety ellipses [51, 129], and others [130, 131]). However,

the difficulty of real-time processing increases when there is a need to actively avoid nearby objects

and/or incorporate some notion of propellant-optimality or control-effort minimization. In such

cases, care is needed to efficiently handle collision-avoidance, plume impingement, sensor line-of-

sight, and other complex guidance constraints, which are often non-convex and may depend on

time and a mixture of state and control variables. State-of-the-art techniques for collision-free

spacecraft proximity operations (both with and without optimality guarantees) include artificial

potential function guidance [132, 133], nonlinear trajectory optimization with [50, 59] or without

[134] convexification techniques, enforcing line-of-sight or approach corridor constraints [45, 135–137],

maintaining relative separation [138], satisfying Keep-Out Zone (KOZ) constraints using mixed-integer

(MI) programming [46], and sampling-based motion planning algorithms [54, 68, 84, 126].

Requiring hard assurances of mission safety with respect to a wide variety and number of potential

failure modes [139] provides an additional challenge. Often the concept of passive safety (safety

certifications on zero-control-effort failure trajectories) over a finite horizon is employed to account

for the possibility of control failures; unfortunately, this strategy has the potential to neglect many

mission-saving opportunities and fails to certify safety for all time. A less-conservative alternative

that more readily adapts to infinite horizons, as we will see, is to use active safety in the form of

positively-invariant set constraints. Positively-invariant sets are regions of the state space, such as

equilibrium points and periodic trajectories, in which the vehicle remains for all future times, once

entered. For instance, [45] enforces infinite-horizon active safety for a spacecraft by requiring each

terminal state to lie on a collision-free orbit of equal period to the target. [54] achieves a similar

effect by only planning between waypoints that lie on circular orbits (a more restrictive constraint).

Likewise, [53] requires that an autonomous spacecraft maintain access to at least one safe forced

equilibrium point nearby. Finally, [140] devises the Safe and Robust Model Predictive Control (MPC)

algorithm, which employs invariant feedback tubes about a nominal trajectory (which guarantee

resolvability) together with positively-invariant sets (taken about reference safety states) designed to

be available at all times over the planning horizon.

Objective Though the aforementioned works [54, 68, 84, 126] on sampling-based planning for space-

craft proximity operations have addressed several components of the safety-constrained, propellant-

optimal autonomous rendezvous problem, few if any have addressed simultaneously the aspect of
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real-time implementability in conjunction with both a 2-norm propellant-cost metric and active

trajectory safety with respect to control failures. The objective of the remainder of this thesis is to

fill this gap, with specific emphasis on the case of near-circular orbit proximity operations, which

we model using Clohessy-Wiltshire-Hill (CWH) dynamics. Our approach leverages sampling-based

motion planning algorithms [141], specifically those described in Chapter 3, to efficiently solve a

nonlinear propellant minimization problem with many non-convex, mixed state-time-control con-

straints and logical safety constraints. By relaxing the online guidance problem to a graph search

problem between precomputed samples, and both (i) avoiding the explicit construction of the free

state space and (ii) relegating the most computationally-difficult tasks to an offline precomputation

phase, we can show that sampling-based planning algorithms—specifically asymptotically-optimal,

batch sampling algorithms like FMT∗ and BFMT∗—can be effective for real-time, actively-safe,

propellant-efficient autonomous guidance during spacecraft proximity operations.

Organization This part’s central pillar is a rigorous proof of asymptotic optimality for a particular

sampling-based planner, namely a modified version of the Fast Marching Tree (FMT∗) algorithm9

[80], under impulsive CWH spacecraft dynamics with hard safety constraints. First, a description of

the problem scenario is provided in Chapter 5, along with a formal definition of the sum-of-2-norms

cost metric that we employ as a proxy for propellant consumption. Chapter 6 then follows with a

thorough discussion of chaser/target vehicle safety, defining precisely how abort trajectories may

be designed under CWH dynamics to deterministically avoid for all future times an ellipsoidal

region about the CWH frame origin under a prescribed set of control failures. Next, we proceed

in Chapter 7 to our proposed approach employing the modified FMT∗ algorithm. The chapter

begins with the presentation of a conservative approximation to the propellant-cost reachability

set, which characterizes the set of states that are “nearby” to a given initial state in terms of

propellant use. These sets, bounded by unions of ellipsoidal balls, are then used to show that the

modified FMT∗ algorithm maintains its (asymptotic) optimality when applied to CWH dynamics

under our propellant-cost metric. From there, the chapter presents two techniques for improving

motion planning solutions: (i) an analytical technique that can be called both during planning

and post-processing to merge ∆v-vectors between any pair of concatenated graph edges, and (ii) a

continuous trajectory smoothing algorithm, which can reduce the magnitude of ∆v-vectors by relaxing

the implicit constraint to pass through sample points while still maintaining solution feasibility.

The combination of these tools into a unified framework provides a flexible, general technique for

near-circular orbit spacecraft trajectory generation that automatically guarantees bounds on run time

and solution quality (propellant cost) while handling a wide variety of (possibly non-convex) state,

time, and control constraints. The methodology is demonstrated in Chapter 8 on a single-chaser,

9Due to BFMT∗’s comparable performance with FMT∗ in path planning simulations from Chapter 4, attention is
focused in this part of the dissertation on FMT∗ in order to keep the presentation simple, though results are expected
to extend easily to BFMT∗ due to its close relationship to FMT∗ as described in Section 3.2.2.
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single-target scenario simulating a near-field Low Earth Orbit (LEO) approach with hard constraints

on total maneuver duration, relative positioning (including Keep Out Zone and antenna interference

constraints), thruster plume impingement avoidance, individual and net ∆v-vector magnitudes, and a

two-fault thruster stuck-off failure tolerance. For the scenario posed, numerical trades are conducted

studying the relative effects of the sample count n and a cost threshold parameter J̄ on the solution

cost and run time for FMT∗, both with and without trajectory smoothing.

Note this part of the dissertation is also documented in the journal paper [92], as well as its

associated conference papers [55] and [91].



Chapter 5

Problem Formulation

We begin our discussion on motion planning for spacecraft proximity operations by defining in this

chapter the precise mathematical representation of the problem we wish to solve. For the remainder

of this thesis, we model our problem as the near-field approach of a chaser spacecraft seeking to

maneuver towards a single target moving in a well-defined, circular orbit (see Fig. 5.1a).

5.1 The Spacecraft Motion Planning Problem

Define our state space X ⊂ Rd as a d-dimensional region in the target’s Local Vertical, Local

Horizontal (LVLH) frame, and let the obstacle region or Xobs be the set of states within X that result

in immediate mission failure (e.g ., states outside of a specified approach corridor or which collide

with the target, for example). Let the free space or Xfree be the complement of Xobs. As illustrated

in Fig. 5.1b, let xinit represent the chaser’s initial state relative to the target, and let xgoal ∈ Xgoal

be a goal state inside the goal region Xgoal. Finally, define a state trajectory (or simply “trajectory”)

as a piecewise-continuous function of time x(t) : R → X , and let Σ represent the set of all state

trajectories. Every state trajectory is implicitly generated by a control trajectory u(t) : R → U ,

where U is the set of controls, through the system dynamics ẋ = f(x,u, t), where f is the system’s

state transition function. A state trajectory is called a feasible solution to the planning problem

(Xfree, tinit,xinit,xgoal) if: (i) it satisfies the boundary conditions x(tinit) = xinit and x(tfinal) = xgoal

for some time tfinal > tinit, (ii) it is collision-free; that is, x(t) ∈ Xfree for all t ∈ [tinit, tfinal], and

(iii) it obeys all other trajectory constraints, including the system dynamics. The optimal motion

planning problem can then be defined as follows:

Definition 13 (Optimal Planning Problem). Given a planning problem (Xfree, tinit,xinit,xgoal) and

a cost functional J : Σ × U × R → R≥0, find a feasible trajectory x∗(t) with associated control

trajectory u∗(t) and time span t = [tinit, tfinal] for tfinal ∈ [tinit, ∞) such that J(x∗(·),u∗(·), t) =
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(a) Schematic of CWH dynamics, which models relative
guidance near a single target in a circular orbit.

(b) A representative motion planning query be-
tween feasible states xinit and xgoal.

Figure 5.1: Illustration of the CWH planning scenario. Here nref is the mean motion of the target
spacecraft orbit, θ is its mean anomaly, t denotes time, and δr and δv are the chaser relative position
and velocity. The CWH (LVLH) frame (δx, δy, δz) rotates with the target at rate nref as it orbits
the gravitational attractor, µ. Planning takes place in state space X , in which a safe trajectory is
sought between states xinit and xgoal within the feasible subspace Xfree around obstacle region Xobs.

min{J(x(·),u(·), t) | x(t) and u(t) are feasible}. If no such trajectory exists, report failure.

Note this is much more general than the path planning problem (Definition 5) introduced in

Chapter 3. For our work, we employ a control-effort cost functional J that considers only the control

trajectory u(t) and the final time tfinal, which we represent by the notation J(u(t), tfinal). Now,

tailoring Definition 13 to impulsively-actuated propellant-optimal motion planning near circular

orbits (where here we assume propellant optimality is measured by a sum-of-2-norms metric), the

specific spacecraft motion planning problem we wish to solve is formulated as:

Given: Initial state xinit(tinit),Goal region Xgoal,Free space Xfree

minimize
u(t),tfinal

J(u(t), tfinal) =

∫ tfinal

tinit

‖u(t)‖2 dt =

N∑
i=1

‖∆vi‖2

subject to x(tinit) = xinit Initial Condition

x(tfinal) ∈ Xgoal Terminal Condition

ẋ(t) = f(x(t),u(t), t) System Dynamics

x(t) ∈ Xfree for all t ∈ [tinit, tfinal] Obstacle Avoidance

g(x(t),u(t), t) ≤ 0

h(x(t),u(t), t) = 0
for all t ∈ [tinit, tfinal] Other Constraints

∃ safe xCAM(τ), τ > t for all x(t) Active Safety

(5.1)
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where tinit and tfinal are the initial and final times and xCAM(τ) refers to an infinite-horizon Collision-

Avoidance-Maneuver (CAM). Note, in Eq. (5.1) above, we restrict our attention to impulsive control

laws u(t) =
∑N
i=1 ∆viδ(t− τi), where δ(·) denotes the Dirac delta function, which model finite

sequences of instantaneous translational burns ∆vi fired at discrete times τi (note that the number of

burns N is not fixed a priori). Though possible to consider all control laws, it is both theoretically- and

computationally-simpler to optimize over a finite-dimensional search space of ∆v-vectors; furthermore,

these represent the most common forms of propulsion systems used on-orbit, including high-impulse

cold-gas and liquid bi-propellant thrusters, and they can (at least in theory) approximate continuous

control trajectories in the limit that N →∞.

We now elaborate on the objective function and each constraint in turn.

5.1.1 Cost Functional

A critical component of the spacecraft rendezvous problem is the choice of cost functional. Consistent

with [49], we define our cost as the L1-norm of the `p-norm of the control. The best choice for p ≥ 1

depends on the propulsion system geometry, and on the frame within which u(t) =
∑N
i=1 ∆viδ(t− τi)

in J is resolved. Unfortunately, minimizing propellant exactly involves resolving vectors ∆vi into

the spacecraft body-fixed frame, requiring spacecraft attitude q to be included in our state x. To

avoid this, a standard used throughout the literature and routinely in practical applications is to

employ p = 2 so that each ∆vi is as short as possible, allocating the commanded ∆vi to thrusters in

a separate control allocation step (conducted later, once the attitude is known; see Section 5.1.5 for

more detail). Though this moves propellant minimization online, it greatly simplifies the guidance

problem in a practical way without neglecting attitude. Because the cost of ∆v-allocation can only

grow from the need to satisfy torque constraints or impulse bounds (e.g ., necessitating counter-

opposing thrusters to achieve the same net ∆v-vector), we are in effect minimizing the best-case,

unconstrained propellant use of the spacecraft. As we will show in our numerical experiments,

however, this does not detract significantly from the technique; the coupling of J with p = 2 to the

actual propellant use through the minimum control-effort thruster ∆v allocation problem seems to

promote low propellant-cost solutions. Hence (in practice) J serves as a good proxy to propellant

use, with the added benefit of independence from propulsion system geometry.

5.1.2 Boundary Conditions

Planning is assumed to begin at a known initial state xinit and time tinit and end at a single

goal state xT
goal =

[
δrT

goal δv
T
goal

]
(“exact convergence,” Xgoal = {xgoal}), where δrgoal is the goal

position and δvgoal is the goal velocity. During numerical experiments, however, we sometimes

permit termination at any state whose position and velocity lie within Euclidean balls B(δrgoal, εr)

and B(δvgoal, εv), respectively (“inexact convergence,” Xgoal = B(rgoal, εr)× B(vgoal, εv)), where the

notation B(r, ε) = {x ∈ X | ‖r− x‖ ≤ ε} denotes a ball with center r and radius ε.
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5.1.3 System Dynamics

Because spacecraft proximity operations incorporate significant drift, spatially-dependent external

forces, and changes on fast timescales, any realistic solution must obey dynamic constraints; we

cannot in general assume straight-line trajectories (see the discussion in Section 4.2.2). In this thesis,

we employ the classical Clohessy-Wiltshire-Hill (CWH) equations [142, 143] for impulsive linearized

motion about a circular reference orbit at radius rref about an inverse-square-law gravitational

attractor with parameter µ. This model provides a first-order approximation to a chaser spacecraft’s

motion relative to a rotating target-centered coordinate system (see Fig. 5.1). As can be shown from

Eq. (A.8) in Appendix A, the linearized equations of motion for this scenario as resolved in the Local

Vertical, Local Horizontal (LVLH) frame of the target are given by:

δẍ− 3n2
refδx− 2nrefδẏ =

Fδx
m

(5.2a)

δÿ + 2nrefδẋ =
Fδy
m

(5.2b)

δz̈ + n2
refδz =

Fδz
m

(5.2c)

where nref =
√

µ
r3ref

is the orbital frequency (mean motion) of the reference spacecraft orbit, m

is the spacecraft mass, F = [Fδx, Fδy, Fδz]
T

is some applied force, and (δx, δy, δz) and (δẋ, δẏ, δż)

represent the cross-track (“radial”), in-track, and out-of-plane relative position and velocity vectors,

respectively. The CWH model is used often, especially for short-duration rendezvous and proximity

operations in Low Earth Orbit (LEO) and for leader-follower formation flight dynamics.

Defining the state x as [ δx, δy, δz, δẋ, δẏ, δż ]
T

and the control u as the applied force-per-unit-mass
1
mF, the CWH equations can be described by the linear time-invariant (LTI) system:

ẋ = f(x,u, t) = Ax + Bu (5.3)

where the dynamics matrix A and input matrix B are given by:

A =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2
ref 0 0 0 2nref 0

0 0 0 −2nref 0 0

0 0 −n2
ref 0 0 0


B =



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


.

See Appendix A.1 for a detailed derivation.

As for any LTI system (with matrices A and B of constant coefficients), there exists a unique

solution to Eq. (5.3) given initial condition x(t0) and integrable input u(t) that can be expressed
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Figure 5.2: Representation of an impulsive state trajectory and its underlying control law. x(t0) and
x(tf) represent the initial and final states, ∆vi a velocity impulse (or “burn”) applied at time τi,
and x(t) the resultant state trajectory simulated over time interval t ∈ [t0, tf ].

using superposition and the convolution integral as x(t) = eA(t−t0)x(t0) +
∫ t
t0
eA(t−τ)Bu(τ) dτ for

any time t ≥ t0. The expression Φ(t, τ) , eA(t−τ), called the state transition matrix, provides

an important analytical mechanism for computing state trajectories that we rely heavily upon in

simulations. Note, throughout this work, we shall sometimes represent Φ(t, τ) as Φ for brevity when

its arguments are understood.

We now specialize the above to the case of N impulsive velocity changes at times t0 ≤ τi ≤
tf for i ∈ [1, . . . , N ] (see Fig. 5.2), in which case u(τ) =

∑N
i=1 ∆viδ(τ − τi), where δ(y) =

{1 where y = 0, or 0 otherwise} signifies the Dirac-delta distribution. Substituting for Φ and u(τ),

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B

(
N∑
i=1

∆viδ(τ − τi)

)
dτ

= Φ(t, t0)x(t0) +

N∑
i=1

∫ t

t0

Φ(t, τ)B∆viδ(τ − τi) dτ,

where on the second line we used the linearity of the integral operator. By the sifting property of δ,

denoting Nt as the number of burns applied from t0 up to time t, we have for all times t ≥ t0 the

following expression for the impulsive solution to Eq. (5.3):

x(t) = Φ(t, t0)x(t0) +

Nt∑
i=1

Φ(t, τi)B∆vi (5.4a)

= Φ(t, t0)x(t0) +
[

Φ(t, τ1)B . . . Φ(t, τNt)B
]

︸ ︷︷ ︸
,Φv(t,{τi}i)


∆v1

...

∆vNt


︸ ︷︷ ︸

,∆V

(5.4b)

= Φ(t, t0)x(t0) + Φv(t, {τi}i)∆V. (5.4c)

For a more explicit representation of this solution, refer to Appendix A.2. Throughout this thesis, the
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notations ∆V for the stacked ∆v-vector and Φv(t, {τi}i) for the aggregated impulse state transition

matrix (or simply Φv for short, when the parameters t and {τi}i are clear) implicitly imply only

those burns i occurring before time t.

5.1.4 Obstacle Avoidance

Obstacle avoidance is imposed by requiring that the spacecraft trajectory x(t) stay within Xfree (or,

equivalently, outside of Xobs)—typically a difficult non-convex constraint (see Fig. 5.1b). For CWH

proximity operations, Xobs might include positions in collision with a nearby object, position/velocity

pairs which lie outside of a given approach corridor, etc. In our numerical experiments, to prevent

the chaser from interfering with the target, we assume Xobs comprises an ellipsoidal Keep-Out Zone

(KOZ) centered at the origin and a conical nadir-pointing region that approximates the target’s

antenna beam pattern.

Note, according to the definition of Xfree, this also requires x(t) to stay within the confines of X
(CWH dynamics do not guarantee that state trajectories will lie inside X despite the fact that their

endpoints do). Though not always necessary in practice, if X marks the extent of reliable sensor

readings or the boundary inside which linearity assumptions hold, then this can be useful to enforce.

5.1.5 Other Trajectory Constraints

Many other types of constraints may be included to encode additional restrictions on state and control

trajectories, which we represent here by a set of inequality constraints g and equality constraints

h (observe that g and h denote vector functions). To illustrate the flexibility of sampling-based

planning, we encode the following into constraints g (for brevity, we omit their exact representation,

which is a straightforward exercise in vector geometry):

Tplan,min ≤ tfinal − tinit ≤ Tplan,max Plan Duration Bounds

∆vi ∈ U(x(τi)) for all i = [1, . . . , N ] Control Feasibility⋃
k∈[1,...,K]

Pik(−∆v̂ik, βplume, Hplume) ∩ Starget = ∅ for all i = [1, . . . , N ] Plume Impingement

Here 0 ≤ Tplan,min < Tplan,max represent minimum and maximum motion plan durations, U(x(τi)) is

the admissible control set corresponding to state x(τi), Pik is the exhaust plume emanating from

thruster k of the chaser spacecraft while executing burn ∆vi at time τi, and Starget is the target

spacecraft circumscribing sphere. We motivate each constraint in turn.

Plan Duration Bounds Plan duration bounds facilitate the inclusion of rendezvous windows

based on the epoch of the chaser at xinit(tinit); such windows might be determined by illumination

requirements, grounds communication opportunities, or mission timing restrictions, for example.
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Tplan,max may also be used to ensure the errors incurred by our linearized CWH model, which grow

with time, do not exceed acceptable tolerances.

Control Feasibility Control set constraints are intended to encapsulate limitations on control

authority imposed by propulsive actuators and their geometric distribution about the spacecraft. For

example, given the maximum burn magnitude 0 < ∆vmax, the constraint:

‖∆vi‖2 ≤ ∆vmax for all i = [1, . . . , N ] (5.5)

might represent an upper bound on the achievable impulses of a gimbaled thruster system that is

free to direct thrust in all directions. In our case, we use U(x(τi)) to represent all commanded net

∆v-vectors that: (i) satisfy Eq. (5.5) above, and also (ii) can be successfully allocated to thrusters

along trajectory x(t) at time τi according to a simple minimum-control effort thruster allocation

problem (a straightforward linear program (LP) [144]). To keep the dissertation self-contained,

we repeat the problem here and in our own notation. Let ∆vi|bf and Mi|bf be the desired net ∆v

and moment vectors at burn time τi, resolved in the body-fixed frame according to attitude q(τi)

(we henceforth drop the bar, for clarity). Note the attitude q(τi) must either be included in the

state x(τi) or be derived from it, as we assume here by imposing (along nominal trajectories) a

nadir-pointing attitude profile for the chaser spacecraft. Let ∆vik = ‖∆vik‖2 be the ∆v-magnitude

allocated to thruster k, which generates an impulse in direction ∆v̂ik at position ρik from the

spacecraft center-of-mass (both are constant vectors if resolved in the body-fixed frame). Finally, to

account for the possibility of on or off thrusters, let ηik be equal to 1 if thruster k is available for

burn i, or 0 otherwise. Then the minimum-effort control allocation problem can be represented as:

Given: On-off flags ηik, thruster positions ρik, thruster axes ∆v̂ik,

commanded ∆v-vector ∆vi, and commanded moment vector Mi

minimize
∆vik

K∑
k=1

∆vik

subject to

K∑
k=1

∆v̂ik(ηik∆vik) = ∆vi Net ∆v-Vector Allocation

K∑
k=1

(ρik ×∆v̂ik)(ηik∆vik) = Mi Net Moment Allocation

∆vmin,k ≤ ∆vik ≤ ∆vmax,k Thruster ∆v Bounds

(5.6)

where ∆vmin,k and ∆vmax,k represent minimum and maximum impulse limits on thruster k (due to

actuator limitations, minimum impulse bits, pulse-width constraints, or maximum on-time restrictions,

for example). Because ∆v is directly-proportional to thrust through the Tsiolkovsky rocket equation,
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Starget

βplume

∆vi
−∆vik∆v̂ik

Hplume

Figure 5.3: Illustration of exhaust plume impingement from thruster firings. Given commanded
∆vi, the spacecraft must successfully allocate the impulse to thrusters while simultaneously avoiding
impingement of neighboring object(s).

the formulation above is directly analogous to minimum-propellant consumption; as discussed in

Section 5.1.1, by using control trajectories that minimize commanded ∆v-vector lengths ‖∆vi‖, we

can drive propellant use downwards as much as possible subject to our thrust bounds and net torque

constraints. In this work, we set Mi = 0 to enforce torque-free burns and minimize disturbances to

our assumed attitude trajectory q(t).

The value of the norm bound ∆vmax may be computed from the thruster limits ∆vmin,k,∆vmax,k

and knowledge of the thruster configuration. Note that we do not consider a minimum-norm constraint

in Eq. (5.5) for ∆vi, as it is not necessary and would only complicate future proofs (to be seen). As

discussed in Section 5.1.1, ‖∆vi‖ is only a proxy for the true propellant cost computed from the

thrust allocation problem (Eq. (5.6)). Thruster allocation accounts for any propulsive limitations,

firing opposing thrusters simultaneously, if necessary, to achieve a given net ∆vi vector.

Plume Impingement As described in Section 1.1.3, impingement of thruster exhaust onto neigh-

boring spacecraft can lead to dire consequences [47, 48]. To account for this during guidance, we first

generate representative exhaust plumes at the locations of each thruster firing. For burn i occurring

at time τi, a right circular cone with axis −∆v̂ik, half-angle βplume, and height Hplume is projected

from each active thruster k (ηik = 1) whose allocated thrust ∆vi
∗
k is non-zero, as determined from

Eq. (5.6). Intersections are then checked with the target spacecraft circumscribing sphere, Starget,

which is used as a simple conservative approximation to the exact target geometry. For an illustration

of the process, refer to Fig. 5.3.

Other Constraints Other constraints may easily be added, provided we augment our state vector

x accordingly with the spacecraft attitude q, mass m, arrival time t, etc. Solar array shadowing,

pointing constraints, and so forth all fit within the framework, and may be represented as additional
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(a) Thruster allocation without
stuck-off failures.

(b) The same allocation problem, with
both upper-right thrusters “stuck off.”

Figure 5.4: Changes to torque-free control allocation in response to thruster failures. As can be
seen, for the same net ∆v vector (the large green arrow), thruster configuration changes can have
a profound impact on thruster ∆v locations and magnitudes (blue arrows), and hence on plume
impingement satisfaction and thereby the safety of proposed ∆v trajectories.

inequality or equality constraints. For more, we refer the interested reader to Section 1.1.3.

5.1.6 Active Safety

An additional feature we include in our work is the concept of active safety, in which we require the

target spacecraft to maintain a feasible Collision Avoidance Maneuver (CAM) to a safe higher or lower

circular orbit from every point along its solution trajectory in the event that any mission-threatening

control degradations take place, such as stuck-off thrusters (as in Fig. 5.4). Addressing this will be

the main subject of Chapter 6.

5.2 Conclusion

As can be seen, the propellant-optimal spacecraft motion planning problem is significantly more

complicated than that of path planning, combining a mixture of non-convex avoidance constraints

with control constraints, mixed state-controls-time constraints, and even logical safety constraints.

The purpose of this chapter was to introduce the flavor of these difficulties for the specific case

of CWH guidance, while simultaneously providing details on the constraints imposed during the

numerical experiments of Chapter 8. For additional discussion on other types of proximity operations

constraints, please see Section 1.1.3.



Chapter 6

Vehicle Safety

In this chapter, we devise a general strategy for handling the active safety constraints introduced

in Eq. (5.1) and Section 5.1.6, which we use to guarantee solution safety under potential control

failures. Specifically, we examine how to ensure that safe abort trajectories are always available to

the spacecraft up to a given number of thruster “stuck-off” failures, without compromising real-time

guidance. As will be motivated, the idea behind our approach is to couple positively-invariant set

safety constraints (introduced in Section 6.1) with escape trajectory generation (described generally

in Section 6.2 and specifically for CWH dynamics in Section 6.3), and embed them into the sampling

routines of deterministic sampling-based motion planners. We prioritize active safety measures in

this chapter (which allow actuated Collision Avoidance Maneuvers or CAMs) over passive safety

guarantees (which shut off all thrusters and restrict the system to zero control) in order to broaden

the search space for abort trajectories. Due to the propellant-limited nature of many spacecraft

proximity operations missions, emphasis is placed on finding minimum-∆v escape maneuvers in

order to improve mission reattempt opportunities. In many ways, we emulate the rendezvous design

process taken by Barbee et al. [145], but numerically optimize abort propellant consumption and

remove much of its reliance on user intuition by automating the satisfaction of safety constraints.

Consistent with the notions proposed by Schouwenaars et al. [146], Fehse [10, Ch. 4.1.2], and

Fraichard [147], our general definition for vehicle safety is taken to be the following:

Definition 14 (Vehicle Safety). A vehicle state is safe if and only if there exists, under the worst-

possible environment and failure conditions, a collision-free, dynamically-feasible trajectory satisfying

the constraints that navigates the vehicle to a set of states in which it can remain indefinitely.

Note indefinitely (or sufficiently-long for all practical purposes under the accuracy of the dynamics

model) is a critical component of the definition. Trajectories without infinite-horizon safety guarantees

can ultimately violate constraints [45], thereby posing a risk that can defeat the purpose of using a

hard constraint in the first place. For this reason, we impose safety constraints over an infinite-horizon

94
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(or, as we will show using invariant sets, an effectively infinite horizon).

Consider the scenario described in Chapter 5 for a spacecraft with nominal state trajectory

x(t) ∈ X and control trajectory u(t) ∈ U(x(t)) evolving over time t in time span T = [tinit, ∞). Let

Tfail ⊆ T represent the subset of potential failure times we wish to certify (for instance, a set of

prescribed burn times {τi}, the final approach phase Tapproach, or the entire maneuver span T ). When

a failure occurs, control authority is lost through a reduction in actuator functionality, negatively

impacting system controllability. Let Ufail(x) ⊂ U(x) represent the new control set, where we assume

that 0 ∈ Ufail for all x (i.e., we assume that no actuation is always a feasible control option). Mission

safety is commonly imposed in two different ways [10, Ch. 4.4]:

• Passive Safety : For all tfail ∈ Tfail, ensure that xCAM(t) satisfies Definition 14 with uCAM(t) = 0

for all t ≥ tfail. For spacecraft, this means its coasting arc from the point of failure must be

safe for all future time (though practically this is imposed only over a finite horizon).

• Active Safety : For all tfail ∈ Tfail and failure modes Ufail, design actuated collision avoidance

maneuvers xCAM(t) to satisfy Definition 14 with uCAM(t) ∈ Ufail for all t ≥ tfail, where uCAM(t)

is not necessarily restricted to 0.

See Fig. 6.1a for an illustration. In much of the literature, only passive safety is considered

out of a need for tractability (to avoid verification over a combinatorial explosion of failure mode

possibilities), and in order to capture the common failure mode in which control authority is lost

completely. Though considerably simpler to implement, this approach potentially neglects many

mission-saving control policies. Our goal will be to provide active safety guarantees without hindering

significantly the online planning and execution of vehicle guidance trajectories.

6.1 Active Safety using Positively-Invariant Sets

Instead of evaluating trajectory safety for all future times t ≥ tfail, it is more practical to consider

finite-time solutions starting at x(tfail) that terminate at a point inside a safe positively-invariant set

Xinvariant. If the abort maneuver is safe and the invariant set is safe for all time, then safety of the

spacecraft is assured.

Definition 15 (Positively Invariant Set). A set Xinvariant is positively invariant with respect to

the autonomous system ẋCAM = f(xCAM) if and only if xCAM(tfail) ∈ Xinvariant implies xCAM(t) ∈
Xinvariant for all t ≥ tfail.

Refer to Fig. 6.1b for visualization. Note the definition of a positively-invariant set assumes an

autonomous system (a system that is uncontrolled, i.e., left to propagate on its own without external

interference). To extend this definition to controlled systems with dynamics ẋ = f(x,u), we simply

let u be determined by a state-and-time-dependent control policy u = Π(x(t), t). Naturally, this
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Passive Abort

Active Abort

Failure

(a) Comparing passive abort safety and active abort safety
following the occurrence of a failure

(b) A positively-invariant set, within which
state trajectories remain confined once entered

Figure 6.1: Illustrations of various vehicle safety concepts. Passive abort ensures the finite-time
coasting trajectory from the point of failure is safe, while active safety reduces conservatism by allowing
actuated escape maneuvers away from danger. Actively-safe maneuvers can enable infinite-horizon
safety in a finite time by terminating at a safe and stable positively-invariant set.

extension includes unforced trajectories (u = 0), constant-force trajectories (u = constant), and

purely time-dependent (“open-loop”) control trajectories (u(t)).

Under this generalization, there are many known instances of positively-invariant sets within

spacecraft dynamics (see also the accompanying Fig. 6.2):

• Equilibrium points, xeq

(Xinvariant = {x ∈ X | x = xeq})

Examples include the origins of many linearized dynamical frames of reference (since most

linearizations are taken about stable equilibrium points, including Clohessy-Wiltshire-Hill

dynamics—see Appendix A.1), Lagrange points (under Restricted 3-Body Problem dynamics),

and hover points (dynamics-independent, though this often requires a non-zero, time-varying

control trajectory).

• Periodic solutions, of period Tp ∈ R++(
Xinvariant =

{⋃
τ∈[t, t+Tp] x(τ) ∈ X

∣∣∣ x(t+ Tp) = x(t)
})

Unforced examples include elliptic orbits (under Restricted 2-Body Problem dynamics), and

Lagrangian (planar) and Halo (3D) orbits (under Restricted 3-Body Problem dynamics).

• Regions of bounded relative mechanical energy, designated as E , with bounds Emin, Emax

(Xinvariant = {x ∈ X | Emin ≤ E(x) ≤ Emax})

These are essentially the intersections of sublevel and superlevel sets of relative mechanical

energy, taken from the system dynamics’ frame of reference. Examples of relative mechanical

energy include the total (inertial) mechanical energy for the Restricted 2-Body problem, or the
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(a) Equilibrium points (forced, or
otherwise)

(b) Orbits (periodic solutions of
the dynamics)

(c) Regions of bounded relative
mechanical energy (e.g ., between
Jacobi constant contours)

Figure 6.2: Examples of positively-invariant sets in spacecraft dynamics. These illustrate a few of
the types of state-space regions that may be used for terminating active safety maneuvers.

Jacobi constant for the Restricted 3-Body problem. Note that the constants Emin and Emax must

be small and large enough, respectively, to account for the minimum- and maximum-possible

relative mechanical energies of the spacecraft under control policy u = Π(x(t), t) from all states

in the region—this ensures our system can never escape from the set.

Of course, other examples are possible; this list is far from exhaustive. Furthermore, besides sets

which satisfy the strict definition of positive invariance, there may also be many dynamic solutions

that are approximately positively-invariant. For instance, quasi-periodic solutions are commonplace

in spacecraft dynamics (e.g ., Lissajous orbits under the n-body problem) [148, 149]; their state

trajectories are not strictly periodic but are functions of multiple frequencies and so behave like

periodic solutions that precess or oscillate over time. The regions traced out by such trajectories,

when bounded (e.g ., space-filling curves), may also be useful as positively-invariant sets.

Utilizing these invariant regions to terminate active abort trajectories, we obtain the following

definition for finite-time verification of trajectory safety:

Definition 16 (Finite-Time Trajectory Safety Verification). For all tfail ∈ Tfail and for all Ufail(x(tfail)) ⊂
U(x(tfail)), there exists {u(t), t ≥ tfail} ∈ Ufail(x(tfail)) and Th > tfail such that x(t) is feasible for all

tfail ≤ t ≤ Th and x(Th) ∈ Xinvariant ⊆ Xfree,

where Th is some finite safety horizon time. Though in principle any safe positively-invariant set

Xinvariant is acceptable, not just any will do in practice; in real-world scenarios, unstable trajectories

caused by model uncertainties could cause state divergence towards configurations whose safety has

not been verified. Hence care must be taken to use only stable positively-invariant sets. One way to

determine and assess the stability of these positively-invariant sets is the well-known LaSalle Invariant

Set Theorem [150]. Other tools for deriving and studying the properties of positively-invariant
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sets include Poincaré maps [151, Ch. 7.3], Floquet theory [152], the Theory of Oscillations, and

Kolmogorov-Arnold-Moser (KAM) theory [148].

Combining Definition 16 with our constraints in Eq. (5.1) from Chapter 5, spacecraft trajectory

safety after a failure at x(tfail) = xfail can be expressed in its full generality as the following

optimization problem in decision variables Th ∈ [tfail, ∞), xCAM(t), and uCAM(t), for t ∈ [tfail, Th]:

Given: Failure state xfail(tfail), failure control set Ufail(xfail), the free space Xfree,

a safe, stable invariant set Xinvariant, and a fixed number of impulses N

minimize
uCAM(t)∈Ufail(xfail),

Th,xCAM(t)

J(xCAM(t),uCAM(t), t) =

∫ Th

tfail

‖uCAM(t)‖2 dt =

N∑
i=1

‖∆vCAM,i‖2

subject to ẋCAM(t) = f(xCAM(t),uCAM(t), t) System Dynamics

xCAM(tfail) = xfail Initial Condition

xCAM(Th) ∈ Xinvariant Safe Termination

xCAM(t) ∈ Xfree for all t ∈ [tfail, Th] Obstacle Avoidance

g(xCAM,uCAM, t) ≤ 0

h(xCAM,uCAM, t) = 0
for all t ∈ [tfail, Th] Other Constraints

(6.1)

This is identical to Eq. (5.1), except that now under failure mode Ufail(xfail) we abandon the attempt

to terminate at a goal state in Xgoal and instead replace it with a constraint to terminate at a safe,

stable positively-invariant set Xinvariant. We additionally neglect any timing constraints encoded in g

as we are no longer concerned with our original rendezvous. Typically any feasible solution is sought

following a failure, in which case one may use J = 1. However, to enhance the possibility of mission

recovery, we assume the same minimum-propellant cost functional as before, but with the exception

that here, as we will motivate, we use a single-burn strategy with N = 1.

6.2 Fault-Tolerant Safety Strategy

The difficulty of solving the finite-time trajectory safety problem lies in the fact that a feasible

solution must be found for all possible failure times (typically assumed to be any time during the

mission) as well as for all possible failures. To illustrate, for an F -fault tolerant spacecraft with

K control components (thrusters, momentum wheels, CMGs, etc.) that we each model as either

“operational” or “failed,” this yields a total of Nfail =
F∑
f=0

(
K
f

)
=

F∑
f=0

K!
(K−f)!f ! possible optimization

problems that must be solved for every time tfail along the nominal trajectory.1 By any standard, this

1Each spacecraft configuration under f possible failures of K control components can be modeled as choosing f
components out of K for failure, which we sum up to tolerance F .
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is intractable, and hence explains why so often passive safety guarantees are selected (requiring only

one control configuration check instead of Nfail, since we prescribe uCAM = 0, which must lie in Ufail

given our assumption. This is analogous to setting f = K with F , K). One idea for simplifying the

problem while still satisfying safety (the constraints of Eq. (6.1)) consists of the following strategy:

Definition 17 (Fault-Tolerant Active Safety Strategy). As a conservative solution to the optimization

problem in Eq. (6.1), it is sufficient (but not necessary) to implement the following procedure:

1. From each x(tfail), prescribe a Collision-Avoidance Maneuver (CAM) policy ΠCAM that gives a

horizon time Th and escape control sequence uCAM = ΠCAM(x(tfail)) designed to automatically

satisfy uCAM(τ) ⊂ U for all tfail ≤ τ ≤ Th and x(Th) ∈ Xinvariant.

2. For each failure mode Ufail(x(tfail)) ⊂ U(x(tfail)) up to tolerance F , determine if the control law

is feasible; that is, see if uCAM = ΠCAM(x(tfail)) ⊂ Ufail for the particular failure in question.

This effectively removes decision variables uCAM from Eq. (6.1), allowing simple numerical inte-

gration for the satisfaction of the dynamic constraints and a straightforward a posteriori verification

of the other trajectory constraints (inclusion in Xfree, and satisfaction of constraints g and h). This

checks if the prescribed CAM, guaranteed to provide a safe escape route, can actually be accomplished

in the given failure situation. The approach is conservative due to the fact that the control law is

imposed and not derived; however, the advantage is a greatly simplified optimal control problem

with difficult-to-handle constraints relegated to a posteriori checks—exactly identical to the way that

steering trajectories are derived and verified during the planning process of sampling-based planning

algorithms. Note that formal definitions of safety require that this be satisfied for all possible failure

modes of the spacecraft; we do not avoid the combinatorial explosion of Nfail. However, each instance

of problem Eq. (6.1) is greatly simplified, and with F typically at most 3, the problem remains

tractable. The difficult part, then, lies in computing ΠCAM, but this can easily be generated offline.

Hence, the strategy should work well for vehicles with difficult, non-convex objective functions and

constraints, as is precisely the case for CWH proximity operations.

Note, it is always possible to reduce this approach to the more conservative definition of “passive

safety” that has traditionally been seen in the literature by choosing some finite horizon Th and

setting uCAM = ΠCAM(x(tfail)) = 0 for all potential failure times tfail ∈ Tfail.

6.3 Safety in CWH Dynamics

We now specialize these ideas to proximity operations under impulsive CWH dynamics. Because

many missions require stringent avoidance (prior to final approach and docking phase, for example),

it is quite common for a “Keep-Out Zone” (KOZ) XKOZ, typically ellipsoidal in shape, to be defined

about the target in the CWH frame. See the Approach Ellipsoid (AE) and Keep-Out Sphere (KOS)

of Fig. 1.5 for rendezvous with the International Space Station—an example of using two hierarchical
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KOZs for different stages of the rendezvous process. Throughout its approach, the chaser must certify

that it will not enter this KOZ under any circumstance up to a specified thruster fault tolerance

F , where here faults imply zero-output (“stuck-off”) thruster failures.. To impose active safety as

described in Section 6.2, we must prescribe an escape policy ΠCAM for each point in the trajectory

and every possible failure mode, and then check for control allocation feasibility. The design of ΠCAM

depends primarily on the safe, stable positively-invariant set Xinvariant, from which the escape horizon

time Th and escape maneuver u(t) can be derived. We derive here a number of examples for unforced

CWH dynamics, from which we will form our CAM policy. This exercise also serves to demonstrate

how safe invariant sets can be determined for the special case of systems with analytically-expressible

dynamics (including all LTI systems).

In-Plane Examples (x = [δx, δy, δẋ, δẏ]
T
)

• At rest on the in-track axis, including the origin(
Xinvariant =

{
x ∈ R4

∣∣ δx0 = δẋ0 = δẏ0 = 0
})

Proof of Invariance. Substitute x(t0) ∈ Xinvariant into the CWH state transition equations

Eq. (A.14). This gives δx = δẋ = δẏ = 0 and δy = δy0; therefore x(t > t0) = x(t0) ∈
Xinvariant.

• Planar, circularized orbits(
Xinvariant =

{
x ∈ R4

∣∣ δẋ0 = 0, δẏ0 = − 3
2nrefδx0

})
Proof of Invariance. Substitute x(t0) ∈ Xinvariant into the CWH state transition equations

Eq. (A.14). This gives δx = δx0, δy = δy0 − 3
2θδx0 = δy0 + δẏ0(t− t0), δẋ = 0, and

δẏ = − 3
2nrefδx0 = δẏ0; therefore, x(t > t0) = x(t0) + δẏ0(t− t0)δ̂y ∈ Xinvariant.

Corollary 18 (Planar Circularization). We can show that these initial conditions represent

a circular orbit by converting to polar coordinates; note that the LVLH frame rotates with

the polar frame, and that r(t) = (rref + δx(t))δ̂x = (rref + δx0)δ̂x. Now v(t) = d
dt (r(t)) =

d
dt (rref + δx(t))δ̂x +nref δ̂z× r(t) = δẋ(t)δ̂x +nref(rref + δx(t))δ̂y. Observing that δ̂x = r̂ and

δ̂y = θ̂, we obtain r(t) = rref + δx0 and ṙ(t) = δẋ(t) = 0, which is the equation for a circle.

Hence we obtain the well-known result that the initial conditions x0 =
[
δx0, δy0, 0,− 3

2nrefδx0

]
represent a circular orbit. It follows then that to circularize any planar trajectory at some state

x = [δx, δy, δẋ, δẏ]
T

, we must apply the impulse vector:

∆vcirc =

[
−δẋ

− 3
2nrefδx− δẏ

]
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Out-of-Plane Examples (x = [δz, δż]
T
)

• Unforced out-of-plane motion(
Xinvariant =

{
x ∈ R2

∣∣∣ (nrefδz0)
2

+ δż2
0 = constant

})
Proof of Invariance. Choose any out-of-plane states δz and δż and let their initial specific

kinetic energy E0 ≥ 0 be equal to (nrefδz0)
2

+ δż2
0 , E0. Substituting into their respective

CWH state transition equations Eq. (A.14), we obtain:

E = (nrefδz)
2

+ δż2

= n2
ref

[
cos2 θδz2

0 +
���

���
���2

nref
cos θ sin θδz0δż +

1

n2
ref

sin2 θδż2
0

]
+
[
n2

ref sin2 θδz2
0 −(((((

((((2nref sin θ cos θδz0δż + cos2 θδż2
0

]
= n2

ref

(
cos2 θ + sin2 θ

)
δz2

0 +
(
sin2 θ + cos2 θ

)
δż2

0

= n2
refδz

2
0 + δż2 = E0

Therefore (nrefδz)
2

+ δż2 is an integral of out-of-plane motion. Its level sets therefore form

invariant sets.

Remark 19. This reiterates the well-known fact that out-of-plane CWH dynamics act as an

undamped harmonic oscillator with a “spring constant” equal to the target spacecraft mean

anomaly nref . However, it is not often presented in this way.

Remark 20. As E0 → 0, we approach the planar case δz = δż = 0, a degenerate out-of-plane

invariant set.

Full-State Examples (x = [δx, δy, δẋ, δẏ, δz, δż]
T
)

• The product space of in-plane and out-of-plane invariant sets

(Xinvariant = Xinvariant,in ×Xinvariant,out)

Proof of Invariance. Let [δx0, δy0, δẋ0, δẏ0]
T ∈ Xinvariant,in and [δz0, δż0]

T ∈ Xinvariant,out. Then

x(t0) ∈ Xinvariant,in × Xinvariant,out. Substituting into the CWH state transition equations

Eq. (A.14), the in-plane components δx0, δy0, δẋ0, and δẏ0 evolve independently of the out-of-

plane components δz0 and δż0, and vice versa, due to the decoupled nature of the transition

equations. Hence each group of components remains in its respective invariant set; the in-plane

components of x(t > t0) remain in Xinvariant,in and the out-of-plane components of x(t > t0)

remain in Xinvariant,out. Thus, x(t > t0) ∈ Xinvariant, as required.

Remark 21. The proof reveals that any combination of in-plane and out-of-plane invariant sets

for CWH dynamics yields a full-state invariant set. Hence any in-plane invariant set (including
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R-bar

V-bar

(a) In-plane invariant sets (at rest on the
in-track axis, and circular orbits shown as
horizontal lines)

(b) Out-of-plane invariant sets (any unforced
motion, i.e., undamped oscillations)

Figure 6.3: Examples of invariant sets under CWH dynamics. Full-state invariant sets can be made
by combining (taking the product space of) these invariant set subspaces.

all examples presented above) extends to a full-state invariant set when considering out-of-plane

motion as well, so long as the out-of-plane motion is unforced. In other words, any motions

that are unforced out-of-plane and which project onto a planar invariant set, such as a circular

orbit or an unmoving point on the in-track axis, are full-state invariant.

Illustrations of these invariant sets can be seen in Fig. 6.3. Note a more general, numerical method

that uses Hamiltonians to identify invariant sets in CWH dynamics may be found in [153]. Once

determined, controllers such as [154] can be used to enforce invariant manifold tracking. Throughout

our implementation, due to imperfections in the CWH dynamics model, we implicitly assume that

such a controller is available during the execution of a CAM.

6.3.1 CAM Policy

We now have all the tools we need to formulate an active abort policy for spacecraft maneuvering

under CWH dynamics. Recall from Definition 16 that for mission safety following a failure we

are required to find a terminal state in an invariant set Xinvariant entirely contained within the

free state space Xfree. As will be motivated, we choose for Xinvariant the set of circularized orbits

whose planar projections lie outside of the radial band spanned by the KOZ. This is a subset of

the product space of planar, circular orbits and unforced out-of-plane motion, and hence it is an

invariant set (see Remark 21). Furthermore, because it lies outside of the KOZ, we can safely assume

that Xinvariant ⊂ Xfree (this can be verified or otherwise accounted for later on orbit, once other

constraints defining Xfree are known with certainty).

Now, the reasons we choose this particular set for abort termination are three-fold: circular orbits

are (i) stable (assuming Keplerian motion, which is reasonable even under perturbations because

the chaser and target are perturbed together and it is their relative state differences that matter),
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KOZ
(Keep-Out Zone)

R-bar

V-bar

(a) Safe circularization burn zones Xinvariant for planar
CWH dynamics. Any circularization attempts inside
the zero-thrust Region of Inevitable Collision (Xric) will
result in eventual penetration of the client KOZ, as
indicated by the velocity arrows.

Circularization RIC

KOZTarget

Chaser

(b) Inertial view of the circularization RIC. Its
complement shows the positions in Xinvariant

used for safe abort maneuver targeting.

Figure 6.4: Visualizing the safe and unsafe circularization regions used by the CAM safety policy

(ii) accessible (given the proximity of the chaser to the target’s circular orbit), and (iii) passively

safe (once reached, provided there is no intersection with the KOZ). As shown in Fig. 6.4, the

set of orbital radii spanning the KOZ are excluded in order to prevent an eventual collision with

the KOZ ellipsoid, either in the short-term or after nearly one full synodic period. In the event

of an unrecoverable failure or an abort scenario taking longer than one synodic period to resolve,

circularization within this region would jeopardize the target—a violation of Definition 14. Such a

region is called a zero-thrust “Region of Inevitable Collision (RIC),” which we denote as Xric, as

without additional intervention a collision with the KOZ is imminent and certain.

To summarize this mathematically,

XKOZ =
{

x
∣∣∣ xTEx ≥ 1, where E = diag

(
ρ−2
δx , ρ

−2
δy , ρ

−2
δz , 0, 0, 0

)
, with ρi representing (6.2)

the ellipsoidal KOZ semi-axis in the i-th LVLH frame axis direction.}

Xric =

{
x

∣∣∣∣ |δx| < ρδx, δẋ = 0, δẏ = −3

2
nrefδx

}
⊃ XKOZ (6.3)

Xinvariant =

{
x

∣∣∣∣ |δx| ≥ ρδx, δẋ = 0, δẏ = −3

2
nrefδx

}
= X c

ric (6.4)

In short, our CAM policy to safely escape from a state x at which the spacecraft arrives (possibly

under failures) at time tfail, as visualized in Fig. 6.5, consists of the following:

1. Coast from x(tfail) to some new Th > tfail such that xCAM(T−h ) lies at a position in Xinvariant.
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Coasting
Arc

Circularized Orbit

Figure 6.5: Examples of safe abort CAMs xCAM following failures. The chaser coasts until firing a
single circularization burn ∆vcirc at horizon time Th, a maneuver which is most propellant-efficient
either at apogee or at the boundary of the circularization RIC (see Appendix B for details).

2. Circularize the (in-plane) orbit at xCAM(Th) such that xCAM(T+
h ) ∈ Xinvariant.

3. Coast along the new orbit (horizontal drift along the in-track axis in the CWH relative frame)

in Xinvariant until allowed to continue the mission (e.g ., after approval from ground operators).

6.3.2 Optimal CAM Circularization

In the event of a thruster failure at state x(tfail) that requires an emergency CAM, the time Th > tfail

at which to attempt a circularization maneuver becomes a degree of freedom. As we intend to

maximize the recovery chances of the chaser after a failure, we choose Th so as to minimize the cost

of the circularization burn ∆vcirc, whose magnitude we denote as ∆vcirc. Details on this problem,

which can be solved analytically, may be found in Appendix B.

6.3.3 CAM Policy Feasibility

Once the circularization time Th is determined, feasibility of the escape trajectory under every

possible failure configuration at x(tfail) must be assessed in order to declare a particular CAM as

actively-safe. To show this, the constraints of Eq. (6.1) must be evaluated under every combination

of “stuck-off” thrusters (up to fault tolerance F ), with the exception of KOZ avoidance as this is

embedded into the CAM design process. How quickly this may be done depends on how many of

these constraints may be considered “static” (unchanging, i.e., independent of tfail, in the LVLH

frame of reference) or time-varying (otherwise).

Fortunately, most practical mission constraints are static (i.e., imposed in advance by mission

planners), allowing CAM trajectory feasibility verification to be moved offline. For example, consid-

ering our particular constraints in Section 5.1.5, if we can assume that the target remains enclosed

within its KOZ near the origin and that it maintains a fixed attitude profile in the LVLH frame, then
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obstacle and antenna lobe avoidance constraints become time-invariant (independent of the arrival

time tfail). If we further assume the attitude q(t) of the chaser is specified as a function of x(t), then

control allocation feasibility and plume impingement constraints become verifiable offline as well.

Better still, because of their time-independence, we need only evaluate the safety of arriving at each

failure state xfail once; this means the active safety of a particular state x can be cached—a highly

useful property for reducing online computation.

Some constraints, on the other hand, cannot be defined a priori. These must be evaluated online,

once the time tfail and current environment are known. Due to the combinatorial explosion of thruster

failure combinations, these constraints must either be very few or very simple to evaluate, or should

otherwise be conservatively-approximated by equivalent static constraints. Alternatively, in lieu of

this possibility, we may cache active safety evaluations with respect to any static constraints, per

the discussion above, and leave the time-varying constraints for evaluation later once a nominal

guidance plan has been completely determined. This “lazy-evaluation” approach saves significant

computational effort during state space exploration, and simply requires continued planning whenever

the nominal guidance plan is not cleared as actively-safe.

These are just a few useful strategies for testing active safety while maintaining real-time online

guidance. As we will see in the next chapter, caching CAM trajectory evaluation with respect to

static constraints, in particular, will be key to our solution approach.

6.4 Conclusion

As described, guaranteeing active safety in the face of sudden losses of control authority is a

computationally-difficult task for vehicle guidance, due to a combinatorial explosion in the number

of abort trajectories that must be determined over a continuum of failure states along our nominal

guidance solution. In this chapter, we provided a sufficient method for handling this problem which

prescribes an abort maneuver policy and checks in an a posteriori fashion whether given abort

maneuvers are feasible under all failures of interest. To ensure infinite-horizon safety, these abort

maneuvers must be terminated at positively-invariant sets, of which several were derived for the case

of CWH dynamics. The proposed technique allows trajectory designer intuition to be embedded into

the abort process, greatly reducing computational overhead without compromising vehicle autonomy.

Furthermore, when mission constraints allow, the approach enables the active safety of potential

failure states to be mostly precomputed—a fact we will exploit heavily in the design of our planning

algorithm, as discussed in the next chapter.



Chapter 7

Real-Time Sampling-Based

Spacecraft Proximity Operations

With the proximity operations scenario established, we are now in position to describe our approach.

As previously described, the constraints that must be satisfied in Eq. (5.1) are diverse, complex, and

difficult to satisfy numerically. In this chapter, we propose a guidance algorithm to solve this problem,

followed by a detailed proof of its optimality with regard to the sum-of-2-norms propellant-cost

metric J under impulsive CWH dynamics. As will be seen, the proof relies on an understanding

of: (i) the steering connections between sampled points assuming no obstacles or other trajectory

constraints, and (ii) the nearest-neighbors or reachable states from a given state. We hence start

by characterizing these two concepts, in Sections 7.1 and 7.2 respectively. We then proceed to the

algorithm presentation (Section 7.3) and its theoretical characterization (Section 7.4), before closing

with a description of two smoothing techniques for rapidly reducing the costs of sampling-based

solution trajectories for systems with impulsive actuation (Section 7.5).

7.1 State Interconnections: The Steering Problem

For sample-to-sample interconnections, we consider the unconstrained minimal-propellant 2-point

boundary value problem (2PBVP) or “steering problem” between an initial state x0 and a final state

xf within the CWH dynamics model. Solutions to these steering problems provide the local building

blocks from which we construct solutions to the more complicated problem formulation in Eq. (5.1).

Steering solutions serve two main purposes: (i) they represent a class of short-horizon controlled

trajectories that are filtered online for constraint satisfaction and efficiently strung together into a

state space spanning graph (i.e., a tree or roadmap), and (ii) the costs of steering trajectories are

used to inform the graph construction process by identifying the unconstrained “nearest neighbors”

106
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as edge candidates. Because these problems can be expressed independently of the arrival time t0 (as

will be shown), our solution algorithm does not need to solve these problems online; the solutions

between every pair of samples can be precomputed and stored prior to receiving a motion query.

Hence the 2PBVP presented here need not be solved quickly. However, we mention techniques for

speed-ups due to the reliance of our smoothing algorithm (Algorithm 7) on a fast solution method.

Substituting our boundary conditions into Eq. (5.4), evaluating at t = tf , and rearranging, we

seek a stacked burn vector ∆V such that:

Φv(tf , {τi}i)∆V = xf −Φ(tf , t0)x0, (7.1)

for some number N of burn times τi ∈ [t0, tf ]. Formulating this as an optimal control problem that

minimizes our sum-of-2-norms cost functional (as a proxy for the actual propellant consumption, as

described in Section 5.1.1), we wish to solve:

Given: Initial state x0,final state xf ,burn magnitude bound ∆vmax,

and maneuver duration bound Tmax

minimize
∆vi,τi,tf ,N

N∑
i=1

‖∆vi‖2

subject to Φv(tf , {τi}i)∆V = xf −Φ(tf , t0)x0 Dynamics/Boundary Conditions

0 ≤ tf − t0 ≤ Tmax Maneuver Duration Bounds

t0 ≤ τi ≤ tf for burns i Burn Time Bounds

‖∆vi‖2 ≤ ∆vmax for burns i Burn Magnitude Bounds

(7.2)

Notice that this is a relaxed version of the original problem presented as Eq. (5.1), with only its

boundary conditions, dynamic constraints, and control norm bound. As it stands, due to the

nonlinearity of the dynamics with respect to τi, tf and N , Eq. (7.2) is non-convex and inherently

difficult to solve. However, we can make the problem tractable if we make a few assumptions.

Given that we plan to string many steering trajectories together to form our overall solution, let us

ensure they represent the most primitive building blocks possible such that their concatenation will

adequately represent any arbitrary trajectory. Set N = 2 (the smallest number of burns required to

transfer between any pair of arbitrary states, as it makes Φv(tf , {τi}i) square) and select burn times

τ1 = t0 and τ2 = tf (which automatically satisfy our burn time bounds). This leaves ∆v1 ∈ Rd/2 (an

intercept burn applied just after x0 at time t0), ∆v2 ∈ Rd/2 (a rendezvous burn applied just before

xf at time tf), and tf as our only remaining decision variables. The result is the scenario shown

in Fig. 7.1. If we conduct a search for t∗f ∈ [t0, t0 + Tmax], the relaxed-2PBVP can now be solved

iteratively as a relatively simple bounded one-dimensional nonlinear minimization problem, where at

each iteration one computes:



108 CHAPTER 7. REAL-TIME SAMPLING-BASED SPACECRAFT PROX-OPS

Figure 7.1: Visualizing state-to-state steering under impulsive CWH dynamics. The steering problem
is solved as a one-dimensional nonlinear minimization problem for the optimal final burn time t∗f (or
equivalently, the optimal maneuver duration T ∗ = t∗f − tinit).

∆V(tf) = Φ−1
v (tf , {t0, tf})(xf −Φ(tf , t0)x0),

where the argument tf is shown for ∆V to highlight its dependence. By uniqueness of the matrix

inverse (provided Φ−1
v is non-singular, discussed below), we need only check that the resulting

impulses ∆vi(tf) satisfy the magnitude bound to declare the solution to an iteration feasible. Notice

that because Φ and Φ−1
v depend only on the difference between tf and t0, we can equivalently search

over maneuver durations T = tf − t0 ∈ [0, Tmax] instead, solving the following relaxation of Eq. (7.2):

Given: Initial state x0,final state xf ,burn magnitude bound ∆vmax,

and maneuver duration bound Tmax <
2π

nref

minimize
T∈[0, Tmax]

2∑
i=1

‖∆vi‖2

subject to ∆V = Φ−1
v (T, {0, T})(xf −Φ(T, 0)x0) Dynamics/Boundary Conditions

‖∆vi‖2 ≤ ∆vmax for burns i Burn Magnitude Bounds

(7.3)

This dependence on the maneuver duration T only (and not on the time t0 at which we arrive at x0)

turns out to be indispensable for precomputation, as it allows steering trajectories to be generated

and stored offline. Observe, however, that our steering solution ∆V∗ requires Φv to be invertible,

i.e., that (tf − τ1) − (tf − τ2) = tf − t0 = T avoids singular values (including zero, orbital period

multiples, and other values longer than one period [155])—we ensure this by enforcing Tmax to be

shorter than one period. To handle the remaining case of T = 0, note a solution exists if and only

if x0 and xf differ in velocity only; in such instances, we take the solution to be ∆v∗2 set as this

velocity difference (with ∆v∗1 = 0).
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(a) Using a cost reachability set (general
motion planning)

(b) Using a search radius (path planning)

Figure 7.2: Generalizing neighborhoods to optimal motion planning problems through cost reachability
sets. Instead of using a search radius, neighbors to x0 are defined as all states xf whose steering cost
from x0 to xf lies below the predefined threshold J̄ .

7.2 Neighborhoods: Cost Reachability Sets

Armed with a steering solution, we can now extend the path planning notion of state neighborhoods

to general motion planning problems. For this, we consider the states near another state not in terms

of Euclidean distance, but instead in terms of the cost-to-go. This idea is captured naturally by

so-called cost reachability sets. In keeping with our steering solution Eq. (7.3), since ∆V∗ depends

only on the trajectory endpoints xf and x0, we henceforth refer to the cost of a steering trajectory by

the notation J(x0,xf). We then define the forward reachability set from a given state x0 as follows:

Definition 22 (Forward Reachable Set). The forward reachable set R from state x0 is the set of all

states xf that can be reached from x0 with a cost J(x0,xf) below a given cost threshold J̄ , i.e.,

R
(
x0, J̄

)
,
{
xf ∈ X

∣∣ J(x0,xf) < J̄
}
.

See Fig. 7.2 for visualization. Recall from Eq. (7.3) in Section 7.1 that the steering cost may be

written as:

J(x0,xf) = ‖∆v1‖ + ‖∆v2‖ = ‖S1∆V‖ + ‖S2∆V‖ (7.4)

where S1 = [ Id/2×d/2,0d/2×d/2 ], S2 = [ 0d/2×d/2, Id/2×d/2 ], and ∆V is given by:

∆V(x0,xf) =

[
∆v1

∆v2

]
= Φ−1

v (tf , {t0, tf})(xf −Φ(tf , t0)x0).

The cost function J(x0,xf) is difficult to gain insight on directly; however, as we shall see, we can
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(a) The set of reachable positions δrf within
duration Tmax and propellant cost J̄ .

(b) The set of reachable velocities δvf within dura-
tion Tmax and propellant cost J̄ .

Figure 7.3: Bounds on reachability sets from initial state x(t0) = [δr(t0), δv(t0)] under propellant
cost threshold J̄ . For cost measured as a sum of ∆v 2-norms, these are bounded by unions of
ellipsoidal balls in position-velocity (phase) space over the set of all permissible maneuver durations
T ∈ [0, Tmax]. For the special case of T = 0, the reachable set of states is a 3-dimensional velocity
ball embedded in R6 (with volume 0) corresponding to states with position δrf = δr(t0) and velocity
δvf ∈ B(δv(t0),∆vmax).

work with its bounds much more easily.

Lemma 23 (Fuel Burn Cost Bounds). For the cost function in Eq. (7.4), we have the following

upper and lower bounds:

‖∆V‖ ≤ J(x0,xf) ≤
√

2‖∆V‖.

Proof. For the proof, see Appendix C.

Now, observe that ‖∆V‖ =

√
(xf −Φ(tf , t0)x0)

T
G−1(xf −Φ(tf , t0)x0), where G−1 = Φ−T

v Φ−1
v .

This is the expression for an ellipsoid E(xf) resolved in the LVLH frame with matrix G−1 and center

Φ(tf , t0)x0 (the state T = tf − t0 time units ahead of x0 along its coasting arc). Combined with

Lemma 23, we see that for a fixed maneuver time T and propellant cost threshold J̄ , the spacecraft at

x0 can reach all states inside an area under-approximated by an ellipsoid with matrix G−1
/
J̄2 and

over-approximated by an ellipsoid of matrix
√

2G−1
/
J̄2 . The forward reachable set for impulsive

CWH dynamics under our propellant-cost metric is therefore bounded by the union over all maneuver

times of these under- and over-approximating ellipsoidal sets, respectively. To better visualize this,

see Fig. 7.3 for a geometric interpretation.

7.3 Motion Planning: The Modified FMT∗ Algorithm

We now have all the tools we need to adapt sampling-based motion planning algorithms to optimal

vehicle guidance under impulsive CWH dynamics, as represented by Eq. (5.1). Recall from Chapter 2
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that sampling-based planning [68, 74, 77] essentially breaks down a continuous trajectory optimization

problem into a series of relaxed, local steering problems (as in Section 7.1) between intermediate

waypoints (called samples) before piecing them together to form a global solution to the original

problem. This framework can yield significant computational benefits if: (i) the relaxed subproblems

are simple enough, and (ii) the a posteriori evaluation of trajectory constraints is fast compared

to a single solution of the full-scale problem. Furthermore, provided samples are sufficiently dense

in the free state-space Xfree and graph exploration is spatially-symmetric, sampling-based planners

can closely approximate global optima without fear of convergence to local minima. Though many

candidate planners could be used here, we rely on the asymptotically-optimal (AO) Fast Marching

Trees (FMT∗) and Bi-directional Fast Marching Trees (BFMT∗) algorithms, originally presented in

Section 3.2. These algorithms are chosen for their proven efficiency as well as their compatibility with

deterministic batch sampling [119], a key benefit that leads to a number of algorithmic simplifications

(including use of offline knowledge). Note, however, that because differences between both algorithms

are mainly workspace-specific (see Chapter 4), we modify and implement only the FMT∗ algorithm

in order to simplify the following exposition. Analogous modifications may be made to BFMT∗ as

well, due to its straightforward inheritance from FMT∗.

The FMT∗ algorithm, adapted from Algorithm 1 and tailored to our application, is reiterated

here as Algorithm 6 (we shall henceforth refer to our modified version of FMT∗ as simply FMT∗, for

brevity). Like its path planning variant, our modified FMT∗ efficiently expands a tree of feasible

trajectories from an initial state xinit to a goal state xgoal around nearby obstacles; unlike in path

planning, “obstacles” now represent infeasible state regions that do not necessarily arise from physical

obstacles in the workspace.

The algorithm begins by taking a set of samples distributed in the free state space Xfree using

the SampleFree routine, which restricts state sampling to actively-safe feasible states (which lie

outside of Xobs and have access to a safe Collision Avoidance Maneuver (CAM) as described in

Section 6.3). In our implementation, we assume samples are taken using the Halton sequence [99],

though any deterministic, low-discrepancy sampling sequence may be used [119] (see Section 2.4.2).

Selecting xinit first for further expansion as the minimum cost-to-come node z, the algorithm then

proceeds to look at reachable unvisited samples or “neighbors” (samples that can be reached with

less than a given propellant cost threshold J̄ , as described in the previous section), and attempts to

connect those with the cheapest cost-to-come back to the tree (using Steer). The cost threshold

J̄ is a free parameter whose value can have a significant effect on performance; see Theorem 28

for a theoretical characterization and Chapter 8 for a representative numerical trade study. Those

trajectories satisfying the constraints of Eq. (5.1), as determined by CollisionFree, are saved. As

feasible connections are made, the algorithm relies on adding and removing nodes (saved waypoint

states) from three sets: a set of unexplored samples Vunvisited not yet connected to the tree, a frontier

Vopen of nodes likely to make efficient connections to unexplored neighbors, and an interior Vclosed of
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Algorithm 6 The Fast Marching Tree Algorithm (FMT∗). Computes a minimal-cost trajectory
from an initial state x(t0) = xinit to a target state xgoal through a fixed number n of samples S.

1: Add xinit to the root of the tree T , as a member of the frontier set Vopen

2: Generate samples S ← SampleFree(X , n, t0) and add them to the unexplored set Vunvisited

3: Set the minimum cost-to-come node in the frontier set as z← xinit

4: while true
5: for each neighbor x of z in Vunvisited

6: Find the neighbor xmin in Vopen of cheapest cost-to-go to x
7: Compute the trajectory between them as [x(t),u(t), t]← Steer(xmin,x) (Section 7.1)
8: if CollisionFree(x(t),u(t), t)
9: Add the trajectory from xmin to x to tree T

10: Remove all x from the unexplored set Vunvisited

11: Add any new connections x to the frontier Vopen

12: Remove z from the frontier Vopen and add it to Vclosed

13: if Vopen is empty
14: return Failure
15: Reassign z as the node in Vopen with smallest cost-to-come from the root (xinit)
16: if z is in the goal region Xgoal

17: return Success, and the unique trajectory from the root (xinit) to z

nodes that are no longer useful for exploring the state space X . More details on FMT∗ and BFMT∗

can be found in their original works [80, 90] and in Sections 3.2.1–3.2.4.

To make FMT∗ and its variants amenable to a real-time implementation, we consider an online-

offline approach that relegates as much computation as possible to a pre-processing phase. To be

specific, we precompute the sample set S (line 2), nearest-neighbor sets (used in lines 5 and 6), and

steering trajectory solutions (line 7), provided the planning problem satisfies the following conditions:

1. the state space X is known a priori (typical for most missions; note we do not impose this on

the obstacle space Xobs ⊂ X , which must generally be identified online using onboard sensors),

2. steering solutions are independent of sample arrival times t0, as we show in Section 7.1.

Here Item 1 allows samples to be precomputed, while Item 2 enables steering trajectories to be

stored onboard or uplinked from the ground up to the spacecraft, since their values remain relevant

regardless of the times at which the spacecraft actually follows them during the mission. Once online,

any samples invalidated from new or changing obstacle regions can simply be pruned from S before

initiating the planning algorithm, or otherwise left to be omitted from consideration during collision

checks. This leaves only collision-checking, graph construction and search, and termination checks as

parts of the online phase, greatly improving the online run time and leaving the more intensive work

to offline resources where running time is less important. This breakdown into online and offline

components (inspired by [156]) is a valuable technique for imbuing kinodynamic motion planning
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problems with real-time online solvability using fast batch-planners like FMT∗.

7.4 Theoretical Characterization of FMT∗

It remains to show that FMT∗ provides similar asymptotic optimality guarantees under the sum-of-

2-norms propellant-cost metric and impulsive CWH dynamics (which enter into Algorithm 6 under

lines 6–7), as has already been shown for kinematic (straight-line path planning) problems [80]. As a

reminder to the reader, asymptotic optimality refers to the property that as the number of samples

n→∞, the cost of the trajectory (a.k.a. “path”) returned by the planner approaches that of the

optimal cost (see Section 2.3.3). Here a proof is presented showing asymptotic optimality for the

planning algorithm and problem setup used in this thesis. We note that while CWH dynamics are

the primary focus of this work, the following proof methodology extends to any general linear system

controlled by a finite sequence of impulsive actuations, whose fixed-duration 2-impulse steering

problem is uniquely determined (e.g ., a wide array of second-order control systems).

The proof proceeds analogously to that in [80] and Section 3.3 by showing that it is always

possible to construct an approximate path using points in S that closely follows the optimal path.

Similarly to [80], we will make use here of the `2-dispersion of a set of points (a specialization of

Eq. (2.2)), which upper bounds how far away a point in X can be from its nearest point in S as

measured by the `2-norm (see Fig. 2.4a).

Definition 24 (`2-dispersion). For a finite, non-empty set S of points in a d-dimensional compact

Euclidean subspace X with positive Lebesgue measure, its `2-dispersion D(S) is defined as:

D(S) , sup
x∈X

min
s∈S
‖s− x‖

= sup{R > 0 | ∃x ∈ X with B(x, R) ∩ S = ∅},

where B(x, R) is a Euclidean ball with radius R centered at state x.

We also require a means for quantifying the deviation that small endpoint pertubations can

bring about in the 2-impulse steering control. This result is necessary to ensure that the particular

placement of the points of S is immaterial; only its low-dispersion property matters.

Lemma 25 (Steering with Perturbed Endpoints). For a given steering trajectory x(t) with initial

time t0 and final time tf , let x0 := x(t0), xf := x(tf), T := tf − t0, and J := J(x0,xf). Consider

now the perturbed steering trajectory x̃(t) between perturbed start and end points x̃0 = x0 + δx0 and

x̃f = xf + δxf , and its corresponding cost J(x̃0, x̃f).

Case 1: T = 0. There exists a perturbation center δxc (consisting of only a position shift) with

‖δxc‖ = O
(
J2
)

such that if ‖δx0‖ ≤ ηJ3 and ‖δxf − δxc‖ ≤ ηJ3, then J(x̃0, x̃f) ≤ J(1 + 4η + O(J))

and the spatial deviation of the perturbed trajectory x̃(t) from x(t) is O(J).
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Case 2: T > 0. If ‖δx0‖ ≤ ηJ3 and ‖δxf‖ ≤ ηJ3, then J(x̃0, x̃f) ≤ J
(
1 + O

(
ηJ2T−1

))
and the

spatial deviation of the perturbed trajectory x̃(t) from x(t) is O(J).

Proof. For the proof, see Appendix C.

We are now in a position to prove that the cost of the trajectory returned by FMT∗ approaches

that of an optimal trajectory as the number of samples n→∞. The proof proceeds in two steps.

First, we establish that there is a sequence of waypoints in S that are placed closely along the optimal

path and approximately evenly-spaced in cost. Then we show that the existence of these waypoints

guarantees that FMT∗ finds a path with a cost close to that of the optimal cost. The theorem and

proof combine elements from Theorem 1 in [80] and Theorem IV.6 from [82].

Definition 26 (Strong δ-Clearance). A trajectory x(t) is said to have strong δ-clearance if, for some

δ > 0 and all t, the Euclidean distance between x(t) and any point in Xobs is greater than δ.

Theorem 27 (Existence of Waypoints near an Optimal Path). Let x∗(t) be a feasible trajectory for

the motion planning problem Eq. (5.1) with strong δ-clearance, let u∗(t) =
∑N
i=1 ∆v∗i · δ(t− τ∗i ) be

its associated control trajectory, and let J∗ be its cost. Furthermore, let S ∪ {xinit} be a set of n ∈ N
points from Xfree with dispersion D(S) ≤ γn−1/d . Let ε > 0, and choose J̄ = 4

(
γn−1/d

/
ε
) 1/3

.

Then, provided that n is sufficiently large, there exists a sequence of points {yk}
K
k=0, yk ∈ S such

that J(yk,yk+1) ≤ J̄ , the cost of the path y(t) made by joining all of the steering trajectories between

yk and yk+1 is
∑K−1
k=0 J(yk,yk+1) ≤ (1 + ε)J∗, and y(t) is itself strong (δ/2)-clear.

Proof. We first note that if J∗ = 0 then we can pick y0 = x∗(t0) and y1 = x∗(tf) as the only

points in {yk} and the result is trivial. Thus assume that J∗ > 0. Construct a sequence of times

{tk}Kk=0 and corresponding points x∗k = x∗(tk) spaced along x∗(t) in cost intervals of J̄
/

2 . We

admit a slight abuse of notation here in that x∗(τ∗i ) may represent a state with any velocity along

the length of the impulse ∆v∗i ; to be precise, pick x∗0 = xinit, t0 = 0, and for k = 1, 2, . . . define

jk = min
{
j
∣∣∣ ∑j

i=1‖∆v∗i ‖ > k J̄2

}
and select tk and x∗k as:

tk = τ∗jk

x∗k = lim
t→t−k

x∗(t) +

(
k
J̄

2
−
jk−1∑
i=1

‖∆v∗i ‖

)
B

∆v∗i
‖∆v∗i ‖

.

Let K = dJ∗e
/(
J̄
/

2
)

and set tK = tf , x∗K = x∗(tf). Since the trajectory x∗(t) to be approximated is

fixed, for sufficiently small J̄ (equivalently, sufficiently large n) we may ensure that the control applied

between each x∗k and x∗k+1 occurs only at the endpoints. In particular this may be accomplished

by choosing n large enough so that J̄ < mini ‖∆v∗i ‖. In the limit J̄ → 0, the vast majority of the

2-impulse steering connections between successive x∗k will be zero-time maneuvers (arranged along

the length of each burn ∆v∗i ) with only N positive-time maneuvers spanning the regions of x∗(t)
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between burns. By considering this regime of n, we note that applying 2-impulse steering between

successive x∗k (which otherwise may only approximate the performance of a more complex control

scheme) requires cost no greater than that of x∗ itself along that step, i.e., J̄
/

2 .

We now inductively define a sequence of points {x̂∗k}
K
k=0 by x̂∗0 = x∗0 and for each k > 0: (i) if

tk = tk−1, pick x̂∗k = x∗k + δxc,k + (x̂∗k−1 − x∗k−1), where δxc,k comes from Lemma 25 for zero-time

approximate steering between x∗k−1 and x∗k subject to perturbations of size εJ3; (ii) otherwise if

tk > tk−1, pick x̂∗k = x∗k + (x̂∗k−1 − x∗k−1). The reason for defining these x̂∗k is that the process of

approximating each ∆v∗i by a sequence of small burns necessarily incurs some short-term position

drift. Since δxc,k = O
(
J̄2
)

for each k, and since K = O
(
J̄−1

)
, the maximum accumulated difference

satisfies maxk‖x̂∗k − x∗k‖ = O
(
J̄
)
.

For each k consider the Euclidean ball centered at x̂∗k with radius γn−
1
d , i.e., let Bk :=

B
(
x̂∗k, γn

− 1
d

)
. By Definition 24 and our restriction on S, each Bk contains at least one point

from S. Hence for every Bk we can pick a waypoint yk such that yk ∈ Bk ∩ S. Then ‖yk − x̂∗k‖ ≤
γn−

1
d = ε(J̄/2)3

/
8 for all k, and thus by Lemma 25 (with η = ε/8) we have that:

J(yk,yk+1) ≤ J̄

2

(
1 +

ε

2
+ O

(
J̄
))
≤ J̄

2
(1 + ε)

for sufficiently large n. In applying Lemma 25 to Case (ii) for k such that tk+1 > tk, we note

that the T−1 term is mitigated by the fact that there are only a finite number of burn times τ∗i

along x∗(t). Thus, for each such k, tk+1 − tk ≥ minj(tj+1 − tj) > 0, so in every case we have

J(yk,yk+1) ≤ ( J̄
/

2)(1 + ε). That is, each steering segment connecting yk to yk+1 approximates the

cost of the corresponding x∗k to x∗k+1 segment of x∗(t) up to a multiplicative factor of ε, and thus:

K−1∑
k=0

J(yk,yk+1) ≤ (1 + ε)J∗.

Finally, to establish that y(t), the trajectory formed by steering through the yk’s in succession, has

sufficient obstacle clearance, we note that its distance from x∗(t) is bounded by maxk‖x̂∗k − x∗k‖ =

O
(
J̄
)

plus the deviation bound from Definition 24, again O
(
J̄
)
. For sufficiently large n, the total

distance, O
(
J̄
)
, will be bounded by δ/2 , and thus y(t) will have strong (δ/2)-clearance.

We now prove that FMT∗ is asymptotically optimal in the number of points n, provided the

conditions required in Theorem 27 hold; note the proof is heavily based on Theorem VI.1 from [81].

Theorem 28 (Asymptotic Performance of FMT∗). Let x∗(t) be a feasible trajectory satisfying

Eq. (5.1) with strong δ-clearance and cost J∗. Let S ∪ {x0} be a set of n ∈ N samples from Xfree with

dispersion D(S) ≤ γn−1/d . Finally, let Jn denote the cost of the path returned by FMT∗ with n points

in S while using a cost threshold J̄(n) = ω
(
n−1/3d

)
and J̄ = o(1). (That is, J̄(n) asymptotically

dominates n−1/3d and is asymptotically dominated by 1.) Then limn→∞ Jn ≤ J∗.
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Proof. Let ε > 0. Pick n sufficiently large so that δ/2 ≥ J̄ ≥ 4
(
γn−1/d

/
ε
) 1/3

such that Theorem 27

holds. That is, there exists a sequence of waypoints {yk}
K
k=0 approximating x∗(t) such that the

trajectory y(t) created by sequentially steering through the yk is strong δ/2-clear, whose connection

costs satisfy J(yk,yk+1) ≤ J̄ , and whose total cost satisfies
∑K−1
k=0 J(yk,yk+1) ≤ (1 + ε)J∗. We show

that FMT∗ recovers a path with cost at least as good as y(t); that is, we show that limn→∞ Jn ≤ J∗.

Consider running FMT∗ to completion, and for each yk, let c(yk) denote the cost-to-come of yk

in the generated graph (with value ∞ if yk is not connected). We show by induction that:

min(c(ym), Jn) ≤
m−1∑
k=0

J(yk,yk+1) (7.5)

for all m ∈ [1, . . . ,K]. For the base case m = 1, we note by the initialization of FMT∗ on

line 1 of Algorithm 6 that xinit is in Vopen; therefore, by the design of FMT∗ (per lines 5–9),

every possible feasible connection is made between the first waypoint y0 = xinit and its neighbors.

Since J(y0,y1) ≤ J̄ and the edge (y0,y1) is collision-free, it is also in the FMT∗ graph. Then

c(y1) = J(y0,y1). Now assuming that Eq. (7.5) holds for m − 1, one of the following statements

holds:

1. Jn ≤
∑m−2
k=0 J(yk,yk+1)

2. c(ym−1) ≤
∑m−2
k=0 J(yk,yk+1) and FMT∗ ends before considering ym.

3. c(ym−1) ≤
∑m−2
k=0 J(yk,yk+1) and ym−1 ∈ Vopen when ym is first considered

4. c(ym−1) ≤
∑m−2
k=0 J(yk,yk+1) and ym−1 /∈ Vopen when ym is first considered.

We now show for each case that our inductive hypothesis holds.

Case 1: Jn ≤
∑m−2
k=0 J(yk,yk+1) ≤

∑m−1
k=0 J(yk,yk+1).

Case 2: Since at every step FMT∗ considers the node that is the endpoint of the path with the

lowest cost, if FMT∗ ends before considering ym, we have Jn ≤ c(ym) ≤ c(ym−1) + J(ym−1,ym) ≤∑m−1
k=0 J(yk,yk+1).

Case 3: Since the neighborhood of ym is collision-free by the clearance property of y, and since ym−1

is a possible parent candidate for connection, ym will be added to the FMT∗ tree as soon as it is

considered with c(ym) ≤ c(ym−1) + J(ym−1,ym) ≤
∑m−1
k=0 J(yk,yk+1).

Case 4: When ym is considered, it means there is a node z ∈ Vopen (with minimum cost-to-come

through the FMT∗ tree) and ym ∈ R(z, J̄). Then c(ym) ≤ c(z) + J(z,ym). Since c(ym−1) < ∞,

ym−1 must be added to the tree by the time FMT∗ terminates. Consider the path from xinit to

ym−1 in the final FMT∗ tree, and let w be the last vertex along this path, which is in Vopen at the
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time when ym is considered. If ym ∈ R(w, J̄), i.e., w is a parent candidate for connection, then:

c(ym) ≤ c(w) + J(w,ym)

≤ c(w) + J(w,ym−1) + J(ym−1,ym)

≤ c(ym−1) + J(ym−1,ym)

≤
m−1∑
k=0

J(yk,yk+1).

Otherwise if ym /∈ R(w, J̄), then J(w,ym) > J̄ and:

c(ym) ≤ c(z) + J(z,ym)

≤ c(w) + J̄

≤ c(w) + J(w,ym)

≤ c(w) + J(w,ym−1) + J(ym−1,ym)

≤ c(ym−1) + J(ym−1,ym)

≤
m−1∑
k=0

J(yk,yk+1).

where we used the fact that w is on the path of ym−1 to establish c(w) + J(w,ym−1) ≤ c(ym−1).

Thus, by induction, Eq. (7.5) holds for all m. Taking m = K, we finally have that Jn ≤ c(yK) ≤∑K−1
k=0 J(yk,yk+1) ≤ (1 + ε)J∗, as desired.

Remark 29 (Asymptotic Optimality of FMT∗). If the planning problem at hand admits an optimal

solution that does not itself have strong δ-clearance, but is arbitrarily approximable both pointwise

and in cost by trajectories with strong clearance (see [81] for additional discussion on why such an

assumption is reasonable), then Theorem 28 implies the asymptotic optimality of FMT∗.

7.5 Trajectory Smoothing

Due to the discreteness caused by using a finite number of samples, sampling-based solutions will

necessarily be approximations to true optima. In an effort to compensate for this limitation, we

offer in this section two techniques to improve the quality of solutions returned by our planner

from Section 7.3. We first describe a straightforward method for reducing the sum of ∆v-vector

magnitudes along concatenated sequences of edge trajectories that can also be used to improve the

search for propellant-efficient trajectories in the feasible state space Xfree. We then follow with a fast

post-processing algorithm for further reducing propellant cost after a solution has been reported.

The first technique removes unnecessary ∆v-vectors that occur when joining sub-trajectories
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(edges) in the planning graph. Consider merging two edges at a node with position δr(t) and velocity

δv(t) as in Fig. 7.4a. A naive concatenation would retain both ∆v2(t−) (the rendezvous burn added

to the incoming velocity v(t−)) and ∆v1(t) (the intercept burn used to achieve the outgoing velocity

v(t+)) individually within the combined control trajectory. Yet, because these impulses occur at the

same time, a more realistic approach should merge them into a single net ∆v-vector ∆vnet(t
−). By

the triangle inequality, we have that:

∥∥∆vnet

(
t−
)∥∥ =

∥∥∆v2

(
t−
)

+ ∆v1(t)
∥∥ ≤ ∥∥∆v2

(
t−
)∥∥ + ‖∆v1(t)‖.

Hence, merging edges in this way guarantees ∆v-savings for solution trajectories under our propellant-

cost metric. Furthermore, incorporating net ∆v’s into the cost-to-come during graph construction

can make exploration of the search space more efficient; the cost-to-come c(z) for a given node z

would then reflect the cost to rendezvous with z from xinit through a series of intermediate intercepts

rather than a series of rendezvous maneuvers (as a trajectory designer might normally expect). Note,

on the other hand, that these new net ∆v-vectors may be larger than either individual burn, which

may violate control constraints; control feasibility tests (allocation feasibility to thrusters, plume

impingement, etc.) must thus be reevaluated for each new impulse. Furthermore, observe that the

velocity v(t) is no longer achieved at edge endpoints when two edges as in Fig. 7.4a are merged

in this fashion; the state x(t) is skipped altogether. This can be problematic for our active safety

policy from Section 6.3 for states along the incoming edge. This is because our actively-safe abort

maneuver relies on rendezvousing with the endpoint x = [ δr(t), δv(t) ] exactly before executing

its one-burn circularization maneuver. To compensate for this, care must be taken to ensure that

the burn ∆v2(t−) that is eliminated during merging is appropriately appended to the front of the

escape control trajectory and verified for all possible failure configurations. Hence we see the price of

smoothing in this way is: (i) re-evaluating control-dependent constraints at edge endpoints before

accepting smoothing, and (ii) our original one-burn policy now requires an extra burn, which may

not be desirable in some applications.

The second technique attempts to reduce solution cost by adjusting the magnitudes of ∆v-vectors

in the trajectory returned by FMT∗ (denoted by xn(t) with associated stacked impulse vector ∆Vn).

By relaxing FMT∗’s constraint to pass through state samples, strong cost improvements may be

gained. The main idea is to deform our low-cost, feasible solution xn(t) as much as possible towards

the unconstrained minimum-propellant solution x∗(t) between xinit and xgoal, as determined by

the 2-point Boundary Value Problem (Eq. (7.2)) solution from Section 7.1 (in other words, use a

homotopic transformation from xn(t) to x∗(t)). However, a naive attempt to solve Eq. (7.2) in its

full generality would be too time-consuming to be useful, and would threaten the real-time capability

of our approach. Assuming our sampling-based trajectory is near-optimal (or at least, in a low-cost

solution homotopy), we can relax Eq. (7.2) by keeping the number of burns N , end time tf := tfinal,

and burn times τi fixed from our planning solution, and solve for an approximate unconstrained
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(a) Smoothing during graph construction
(merges ∆v-vectors at edge endpoints).

(b) Smoothing during post-processing (see
Algorithm 7).

Figure 7.4: Improving sampling-based solutions under minimal-propellant impulsive dynamics.
Figure 7.4a can be used to merge ∆v-vectors between edge endpoints during and after graph
construction, while Fig. 7.4b illustrates the post-processing smoothing algorithm given in Algorithm 7
(the original trajectory xn(t) is solid, the approximate unconstrained optimum x†(t) is dash-dotted,
and the resulting “smoothed” trajectory derived from their combination is shown dashed).

minimum-propellant solution ∆V† with associated state trajectory x†(t) via:

minimize
∆vi

N∑
i=1

‖∆vi‖2

subject to Φv(tfinal, {τi}i)∆V = xgoal −Φ(tfinal, tinit)xinit Dynamics/Boundary Conditions

‖∆vi‖2 ≤ ∆vmax for all burns i Burn Magnitude Bounds

(7.6)

(see Section 5.1.3 for definitions). It can be shown that Eq. (7.6) is a second-order cone program

(SOCP), and hence quickly solved using standard convex solvers. As the following theorem shows

explicitly, we can safely deform the trajectory xn(t) towards x†(t) without violating our dynamics

and boundary conditions if we use a convex combination of our two control trajectories ∆Vn and

∆V†. This follows from the principle of superposition, given that the CWH equations are Linear

Time-Invariant (LTI), and the fact that both solutions already satisfy the boundary conditions.

Theorem 30 (Dynamic Feasibility of CWH Trajectory Smoothing). Suppose xn(t) and x†(t) with

respective control vectors ∆Vn and ∆V† are two state trajectories which satisfy the impulsive CWH

steering problem Eq. (7.1) between states xinit and xgoal. Then the trajectory x(t) generated by the

convex combination of ∆Vn and ∆V† is itself a convex combination of xn(t) and x†(t), and hence

also satisfies Eq. (7.1).
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Algorithm 7 “Trajectory smoothing” algorithm for impulsive CWH dynamics. Given a trajectory
xn(t), t ∈ [tinit, tgoal] between initial and goal states xinit and xgoal satisfying Eq. (5.1) with impulses
∆Vn applied at times {τi}i, returns another feasible trajectory with reduced propellant-cost.

1: Initialize the smoothed trajectory xsmooth(t) as xn(t), with ∆Vsmooth = ∆Vn

2: Compute the unconstrained optimal control vector ∆V† by solving Eq. (7.6)
3: Compute the unconstrained optimal state trajectory x†(t) using Eq. (5.4) (Section 5.1.3)
4: Initialize weight α and its lower and upper bounds as α← 1, α` ← 0, αu ← 1
5: while true
6: x(t)← (1− α)xn(t) + αx†(t)
7: ∆V← (1− α)∆Vn + α∆V†

8: if CollisionFree(x(t),∆V, t)
9: α` ← α

10: Save the smoothed trajectory xsmooth(t) as x(t) and control ∆Vsmooth as ∆V
11: else
12: αu ← α

13: if αu − α` is less than tolerance δαmin ∈ (0, 1)
14: break
15: α← (α` + αu)/2

16: return the smoothed trajectory xsmooth(t), with ∆Vsmooth

Proof. Let ∆V = α∆Vn + (1− α)∆V† for some value α ∈ [0, 1]. From our dynamics equation,

x(t) = Φ(t, tinit)xinit + Φv(t, {τi}i)∆V

= [α+ (1− α)]Φ(t, tinit)xinit + Φv(t, {τi}i)
[
α∆Vn + (1− α)∆V†

]
= α[Φ(t, tinit)xinit + Φv(t, {τi}i)∆Vn] + (1− α)

[
Φ(t, tinit)x0 + Φv(t, {τi}i)∆V†

]
= αxn(t) + (1− α)x†(t)

which is a convex combination, as required. Substituting t = tinit or t = tgoal, we see that x(t)

satisfies the boundary conditions given that xn(t) and x†(t) do. This completes the proof.

We take advantage of this fact for trajectory smoothing. Our algorithm, reported as Algorithm 7

and illustrated in Fig. 7.4b, computes the approximate unconstrained minimum-propellant solution

x†(t) and returns it (if feasible) or otherwise conducts a bisection line search on α, returning a convex

combination of our original planning solution xn(t) and x†(t) that comes as close to x†(t) as possible

without violating trajectory constraints. Note because ∆Vn lies in the feasible set of Eq. (7.6), the

algorithm can only improve the final propellant cost. By design, Algorithm 7 is geared towards

reducing our original solution propellant-cost as quickly as possible while maintaining feasibility;

the most expensive computational components are the calculation of ∆V† and collision-checking

(consistent with our sampling-based algorithm). Fortunately, the number of collision-checks is limited
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by the maximum number of iterations
⌈
log2

(
1

δαmin

)⌉
+ 1, given tolerance δαmin ∈ (0, 1). As an

added bonus, for strictly time-constrained applications that require a solution in a fixed amount of

time, the algorithm can be easily modified to return the α`-weighted trajectory xsmooth(t) when time

runs out, as the feasibility of this trajectory is maintained as an algorithm invariant.

7.6 Conclusion

In this chapter, a solution methodology has been presented which enables the FMT∗ sampling-based

motion planning algorithm (or BFMT∗, by extension) to be used for provably-safe propellant-

optimized spacecraft guidance. The approach is divided into two parts: (i) an offline phase, which

is used to precompute a set of actively-safe samples along with their associated interconnecting

steering trajectories and nearest neighbors (i.e., reachability sets), and (ii) an online phase, which

calls FMT∗ to search for a low propellant-cost solution between an initial state and a goal region.

Time permitting, a fast homotopic trajectory smoothing technique based on bisection may also be

used in post-processing to further improve solution quality.

The framework presented solves Eq. (5.1) in the limit as n → ∞, assuming a low-dispersion

sampling sequence, and holds for any impulsively-actuated, Linear Time-Invariant (LTI) system that is

steered by endpoint-impulse maneuvering under the sum-of-2-norms propellant-cost metric (including

impulsive Clohessy-Wiltshire-Hill dynamics). The result is a general, flexible framework that can

accommodate a multitude of trajectory constraints, without compromising real-time implementability

(particularly in cases where most constraints are static and known ahead of time). In the next

chapter, we test the performance of our framework on a realistic near-field rendezvous scenario.



Chapter 8

Numerical Experiments

In this chapter, we present a detailed numerical case study demonstrating the capabilities of our

sampling-based motion planning approach for near-circular orbit spacecraft proximity operations.

The chapter revolves around Section 8.1, which provides quantitative results for a realistic guidance

problem encountered frequently during Low Earth Orbit (LEO) operations. Trade-offs are considered

between solution cost and execution time as the number of samples n and reachability set cost

threshold J̄ are varied. These studies also serve to illustrate how autonomous mission design and

planning can be conducted using the tools provided in Chapter 7. The chapter closes in Section 8.2

with a brief summary of our solution framework, its overall performance results, and interesting

avenues for future research.

8.1 Near-Circular Orbit Rendezvous Simulations

To begin, consider the two scenarios shown in Fig. 8.2 modeling both planar and non-planar near-field

approaches of a chaser spacecraft in close proximity 1 to a target moving on a circular LEO trajectory

(as in Fig. 5.1). We imagine the chaser, which starts in a circular orbit of lower radius, must be

repositioned through a sequence of pre-specified CWH waypoints (e.g ., required for equipment checks,

surveying, etc.) to a coplanar position located radially above the target, arriving with zero relative

velocity in preparation for a final radial (“R-bar”) approach. Throughout the maneuver, as described

in detail in Chapter 5, the chaser must avoid entering the elliptic target KOZ, enforce hard safety

constraints with regard to a two-fault tolerance to stuck-off thruster failures, and otherwise avoid

interfering with the target. This includes avoiding the target’s nadir-pointing communication lobes

(represented by truncated half-cones), and preventing exhaust plume impingement on its surfaces.

For context, we use the Landsat-7 spacecraft and orbit as a reference [157, Sec. 3.2] (see Fig. 8.1).

1Close proximity in this context implies that any higher-order terms of the linearized relative dynamics are negligible,
e.g., within a few percent of the target orbit mean radius.

122
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(a) Landsat-7 schematic (Nadir (-δx direction) points down,
while the in-track (+δy) direction points left)

(b) Landsat-7 orbit (Courtesy of
the Landsat-7 Handbook)

Figure 8.1: Target spacecraft geometry and orbital scenario used in numerical experiments
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Figure 8.2: Illustrations of the planar and 3D motion plan queries in the LVLH frame. The chaser
must track a series of guidance waypoints to the goal state, located radially above the target.
Positional tolerances are visualized as circles around each waypoint, which successively shrink in size.
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Figure 8.3: Models of the chaser and target, together with their circumscribing spheres

http://landsathandbook.gsfc.nasa.gov/orbit_coverage/
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8.1.1 Simulation Setup

Before proceeding to results, we first outline some key features of our setup. Taking the prescribed

query waypoints one at a time as individual goal points xgoal, we solve the given scenario as a series

of motion planning problems (or “subplans”) linked together into an overall solution, calling FMT∗

from Section 7.3 once for each subplan. For this multi-plan problem, we take the solution cost to be

the sum of individual subplan costs (when using trajectory smoothing, the endpoints between two

plans are merged identically to two edges within a plan, as described in Section 7.5).

As our steering controller from Section 7.1 is attitude-independent, states x ∈ Rd are either

xT = [ δx, δy, δẋ, δẏ ] with d = 4 (planar case) or xT = [ δx, δy, δz, δẋ, δẏ, δż ] with d = 6 (non-planar

case). This omission of the attitude q from the state is achieved by employing an attitude policy

(assuming a stabilizing attitude controller), which produces q(t) from the state trajectory x(t). For

illustration purposes, a simple nadir-pointing attitude profile is chosen during nominal guidance,

representing a mission requiring constant communication with the ground; for actively-safe abort,

we assume a simple “turn-burn-turn” policy, which orients the closest-available thruster under each

failure mode as quickly as possible into the direction required for circularization (see Section 6.3).

Given the hyper-rectangular shape of the state-space, we call upon the deterministic, low-dispersion

d-dimensional Halton sequence [99] to sample positions and velocities. To improve sampling densities,

each subplan uses its own sample space defined around its respective initial and goal waypoints, with

some arbitrary threshold space added around them. Additionally, extra samples ngoal are taken

inside each waypoint ball to facilitate convergence.

Finally, we make note of three additional implementation details. First, for clarity, we list all

relevant simulation parameters in Table 8.1. Second, all position-related constraint-checks regard

the chaser spacecraft as a point at its center of mass, with all other obstacles artificially inflated

by the radius of its circumscribing sphere. Third and finally, all trajectory constraint-checking

is implemented by point-wise evaluation with a fixed time-step resolution ∆t, using the analytic

state transition equations Eq. (A.14) together with steering solutions from Section 7.1 to propagate

graph edges; for speed, the line segments between points are excluded. Except near very sharp

obstacle corners, this approximation is generally not a problem in practice (obstacles can always

be inflated further to account for this). To improve performance, each obstacle primitive (ellipsoid,

right-circular cone, hypercube, etc.) employs hierarchical collision-checking using hyper-spherical

and/or hyper-rectangular bounding volumes to quickly prune points from consideration.

8.1.2 Planar Motion Planning Solution

A representative solution to the posed planning scenario, both with and without the trajectory

smoothing algorithm (Algorithm 7), is shown in Fig. 8.4. As shown, the planner successfully finds

safe trajectories within each subplan, which are afterwards linked to form an overall solution. The

state space of the first subplan shown at the bottom is essentially unconstrained, as the chaser at
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Table 8.1: List of parameters used during near-circular orbit rendezvous simulations

Chaser plume half-angle, βplume 10 ◦

Chaser plume height, Hplume 16 m
Chaser thruster fault tolerance, F 2
Cost threshold, J̄ 0.1–0.4 m/s
Dimension, d 4 (planar), 6 (non-planar)
Goal sample count, ngoal 0.04n
Goal position tolerance, εr 3–8 m
Goal velocity tolerance, εv 0.1–0.5 m/s
Max. allocated thruster ∆v magnitude, ∆vmax,k ∞ m/s
Max. commanded ∆v-vector magnitude ‖∆vi‖, ∆vmax ∞ m/s
Max. plan duration, Tplan,max ∞ s
Min. plan duration, Tplan,min 0 s
Max. steering maneuver duration, Tmax 0.1 · (2π/nref )
Min. steering maneuver duration, Tmin 0 s
Sample count, n 50–400 per plan
Simulation timestep, ∆t 0.0005 · (2π/nref )
Smoothing tolerance, δαmin 0.01
Target antenna lobe height 75 m
Target antenna beamwidth 60 ◦

Target KOZ semi-axes, [ρδx, ρδy, ρδz]
[
35 50 15

]
m

this point is too far away from the target for plume impingement to come into play. This means

every edge connection attempted here is added, so the first subplan illustrates well a discrete subset

of the reachable states around xinit and the unrestrained growth of FMT∗. As the second subplan is

reached, the effects of the Keep-Out Zone position constraints come in to play, and we see edges begin

to take more leftward loops. In subplans 3 and 4, plume impingement begins to play a role. Finally,

in subplan 5 at the top, where it becomes very cheap to move between states (as the spacecraft can

simply coast to the right for free), we see the initial state connecting to nearly every sample in the

subspace, resulting in a straight shot to the final goal. As is evident, straight-line path planning

would not approximate these trajectories well—particularly near coasting arcs, along which our

dynamics allow the spacecraft to transfer for free.

To understand the smoothing process, examine Fig. 8.5. Here we see how the discrete trajectory

sequence from our sampling-based algorithm may be smoothly and continuously deformed towards

the unconstrained minimal-propellant trajectory until it meets trajectory constraints (as outlined in

Section 7.5); if these constraints happen to be inactive, then the exact minimal-propellant trajectory

is returned, as Fig. 8.5a shows. This computational approach is generally quite fast, assuming a

well-implemented convex solver is used, as will be seen in the results of the next subsection.

The net ∆v costs of the two reported trajectories in this example come to 0.835 m/s (unsmoothed)

and 0.811 m/s (smoothed). Compare this to 0.641 m/s, the cost of the unconstrained direct solution

that intercepts each of the goal waypoints on its way to rendezvousing with xgoal (this trajectory
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Figure 8.4: Representative planar motion planning solution using the FMT∗ algorithm (Algorithm 6)
with n = 2000 (400 per subplan), J̄ = 0.3 m/s, and relaxed waypoint convergence. The output from
FMT∗ is shown in green, while the trajectory combined with post-processing smoothing is shown in
blue. Explored trajectories found to be safe are shown in grey. Actively-safe, minimum-propellant
abort trajectories are shown as purple dashed lines (one for each burn ∆vi along the trajectory).

(a) Paths before and after smooth-
ing (n = 2000, J̄ = 0.2 m/s, exact
waypoint convergence).

(b) Smoothing algorithm iterations
(n = 1500, J̄ = 0.3 m/s, inexact
waypoint convergence).

Figure 8.5: Visualizing trajectory smoothing (Algorithm 7) for the solution shown in Fig. 8.4, zoomed
in on the second plan. The original plan is shown in green (towards the bottom-left), along with
various iterates attempted while converging to the smoothed trajectory shown in blue (in the center).
Invalid trajectories, including the lower propellant-cost trajectory used to guide the process, are
shown in orange (towards the right).
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exits the state-space along the positive in-track direction, a violation of our proposed mission; hence

its cost represents an under-approximation to the true optimal cost J∗ of the constrained problem).

This suggests that our solutions are quite close to the constrained optimum, and certainly on the

right order of magnitude. Particularly with the addition of smoothing at lower sample counts, the

approach appears to be a viable one for spacecraft planning.

If we compare the net ∆v costs to the actual measured propellant consumption given by the sum

total of all allocated thruster ∆v magnitudes (which equal 1.06 m/s (unsmoothed) and 1.01 m/s

(smoothed), respectively), we find increases of 27.0% and 24.5%—as expected, our sum-of-2-norms

propellant-cost metric under-approximates the true propellant cost. For point-masses with isotropic

control authority (e.g ., a steerable or gimbaled thruster that is able to point freely in any direction),

our cost metric would be exact. Though inexact for our distributed attitude-dependent propulsion

system (see Fig. 8.3a), it is clearly a reasonable proxy for allocated propellant use, returning values

on the same order of magnitude. Though we cannot make a strong statement about our proximity to

the propellant-optimal solution without directly optimizing over thruster ∆v allocations, our solution

clearly seems to promote low propellant consumption.

8.1.3 Non-Planar Motion Planning Solution

For the non-planar case, representative smoothed and unsmoothed FMT∗ solutions can be found in

Fig. 8.6. Here the spacecraft is required to move out-of-plane to survey the target from above before

reaching the final goal position located radially above the target. The first subplan involves a long

re-route around the conical region spanned by the target’s communication lobes. Because the chaser

begins in a coplanar circular orbit at xinit, most steering trajectories require a fairly large cost to

maneuver out-of-plane to the first waypoint. Consequently, relatively few edges are added that both

lie in the reachable set of xinit and safely avoid the large conical obstacles. As we progress to the

second and third subplans, the corresponding trees become denser (more steering trajectories are

both safe and within our cost threshold J̄) as the state space becomes more open. Compared with

the planar case, the extra degree-of-freedom associated with the out-of-plane dimension appears to

allow more edges ahead of the target in the in-track direction than before, likely because now the

exhaust plumes generated by the chaser are well out-of-plane from the target spacecraft. Hence the

spacecraft smoothly and tightly curls around the ellipsoidal KOZ to the goal.

The net ∆v costs for this example come to 0.611 m/s (unsmoothed) and 0.422 m/s (smoothed).

Counter-intuitively, these costs are on the same order of magnitude and slightly cheaper than the

planar case; the added freedom given by the out-of-plane dimension appears to outweigh the high costs

typically associated with inclination changes and out-of-plane motion. These cost values correspond

to total thruster ∆v allocation costs of 0.893 m/s and 0.620 m/s, respectively—increases of 46% and

47% above their counterpart cost metric values. Again, our cost metric appears to be a reasonable

proxy for actual propellant use.
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Figure 8.6: Representative non-planar motion planning solution using the FMT∗ algorithm (Algo-
rithm 6) with n = 900 (300 per subplan), J̄ = 0.4 m/s, and relaxed waypoint convergence. The output
from FMT∗ is shown in green, while the trajectory combined with post-processing smoothing is shown
in blue. Explored trajectories found to be safe are shown in grey. Actively-safe minimum-propellant
abort trajectories are shown as purple dashed lines (one for each burn ∆vi along the trajectory).

8.1.4 Active Safety Evaluation

A natural question one might ask is just how effective our active-safety policy is, and whether it

truly tolerates the control failures it was designed to withstand. In this subsection, we attempt to

evaluate through simulation the robustness of our F -fault tolerant abort safety logic (see Section 6.3;

note in this study we take F = 2). Here safety is measured by repeatedly executing the same motion

plan under probabilistic “stuck-off” thruster actuation losses and plotting the resulting average

success rates as a function of thruster failure likelihood. We compare two different versions of the

planar guidance scenario—one with embedded active-safety constraints, and one without. Failures

are simulated at each burn location. Before every scheduled burn, a Bernoulli trial is conducted to

assign thruster availabilities; the ∆v-allocation algorithm (which solves Eq. (5.6)) then attempts to

allocate the burn vector with whichever functional thrusters remain, continuing to follow the nominal

trajectory if successful or otherwise activating a CAM (if including actively-safe constraints) or else

concluding failure (due to the lack of knowledge of a safe abort decision). If the entire nominal

trajectory can be followed safely to the final goal (satisfying Eq. (5.1)), then nominal mission success

is declared. If a safe abort CAM is executed (satisfying Eq. (6.1)), then abort success is declared.

The overall “success rate” is thus defined as the mean number of nominal or abort mission successes

conducted over a set of 50 trials, repeated for each thruster failure probability (ranging from 0% to

10% chance of failure per thruster firing).

Results from our simulation experiments are presented in Fig. 8.7. Immediately evident is that

the actively-safe motion planning strategy works exactly as designed, improving mission success

rates to 100% over the safety-unconstrained case. We further note that even though the spacecraft
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with CAMs (with active-safety constraints)

Figure 8.7: Measuring the robustness of our CWH active-safety guidance policy. Observe that the
active-safety strategy guarantees safety up to two stuck-off thruster failures, as designed.

cannot typically finish its nominal mission once one or more failures have occurred, actively-safe

maneuvers are always available, even for cases involving greater than F = 2 failures. This indicates

that our particular CAM policy (aborting to higher or lower circularized orbits, using a one-burn

circularization maneuver coupled with a “turn-burn-turn” attitude slew policy) happens to work

quite robustly for the given motion planning scenario, exceeding our design constraints and enabling

safety for even higher numbers of failures than anticipated.

8.1.5 Performance Evaluation

To evaluate the performance of our approach, an assessment of solution quality is necessary as a

function of planning parameters—i.e., the number of samples n taken and the reachability set cost

threshold J̄ . As proven in Section 7.4, the solution cost will eventually reduce to the optimal value
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as we increase the sample size n. Alternatively, we can attempt to reduce cost by increasing the cost

threshold J̄ used for nearest-neighbor identification, so that more connections are explored. Both,

however, work at the expense of running time. To understand the effects of these changes on quality,

especially at finite sample counts where the asymptotic guarantees of FMT∗ do not necessarily imply

cost improvements, we measure the cost versus computation time for the planar planning scenario

parameterized over several values of n and J̄ .

Results are reported in Figs. 8.8–8.9. Here we call FMT∗ once each for a series of sample

count/cost threshold pairs, plotting the total cost of successful runs at their respective run times2

as measured by wall clock time. Note only the online components of each FMT∗ call—i.e., graph

search/construction, constraint-checking, and termination evaluations—constitute the run times

reported; everything else may either be stored onboard prior to mission launch or otherwise computed

offline on ground computers and later uplinked to the spacecraft. See Section 7.3 for details. Samples

are stored as a d× n array, while inter-sample steering controls ∆v∗i and times τi are precomputed

as n × n arrays of d/2 × N and N × 1 array elements, respectively. Steering state and attitude

trajectories x∗(t) and q(t), on the other hand, are generated online through Eq. (5.4) and our

nadir-pointing attitude policy, respectively. This reduces memory requirements, though nothing

precludes them from being generated and stored offline as well, to save additional computation time.

Figure 8.8 reports the effects on solution cost from varying the cost threshold J̄ while keeping

n fixed. As described in Section 7.2, increasing J̄ implies a larger reachability set size, and hence

increases the number of candidate neighbors evaluated during graph construction. Generally, this

gives a cost improvement at the expense of extra processing; though there are exceptions, as in

Fig. 8.8a at J̄ ≈ 0.3 m/s. Likely this arises from a single new neighbor (connected at the expense of

another, since FMT∗ only adds one edge per neighborhood) that readjusts the entire graph subtree,

ultimately increasing the cost of exact termination at the goal. Indeed, we see that this does not

occur where inexact convergence is permitted, given the same sample distribution.

We can also vary the sample count n while holding J̄ constant. From Figs. 8.8a–8.8b, we select

J̄ = 0.22 m/s and 0.3 m/s, respectively, for each of the two cases (the values which suggest the best

solution cost per unit of run time). Repeating the simulation for varying sample count values, we

obtain Fig. 8.9. Note the general downward trend as run time increases (corresponding to larger

sample counts)—a classical trade-off in sampling-based planning. However, there is bumpiness.

Similar to before, this is likely due to new connections previously unavailable at lower sample counts

that cause a slightly different graph with an unlucky jump in propellant cost. This reinforces that n

and J̄ should always be tuned before applying FMT∗.

As the figures show, the utility of trajectory smoothing is clearly affected by the fidelity of the

planning simulation. In each, trajectory smoothing yields a much larger improvement in cost at

2All simulations are implemented in MATLAB 2012b and run on a PC operated by Windows 10, clocked at 4.00
GHz, and equipped with 32.0 GB of RAM. CVXGEN and CVX [158], disciplined convex programming solvers, are
used to implement ∆v-allocation and trajectory smoothing, respectively.
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(a) Exact waypoint convergence (n = 2000)
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Figure 8.8: Algorithm performance for the given LEO proximity operations scenario as a function of
cost threshold (J̄ ∈ [0.2, 0.4]) with n held constant (lowering J̄ at these n yields failure). Results are
reported for both: (i) trajectories constrained to rendezvous exactly with pre-specified waypoints,
and (ii) trajectories free to terminate anywhere in Xgoal (within position/velocity tolerances).
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(a) Exact waypoint convergence (J̄ = 0.22 m/s).
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(b) Inexact waypoint convergence (J̄ = 0.3 m/s).

Figure 8.9: Algorithm performance for the given LEO proximity operations scenario as a function of
sample count (n ∈ [650, 2000]) with J̄ held constant (lowering n further at these J̄ yields failure).
Results are reported for trajectories both with and without exact waypoint convergence.
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modest increases in computation time when we require exact waypoint convergence. It provides

little improvement, on the other hand, when we relax these waypoint tolerances; FMT∗ (with

goal region sampling) seems to return trajectories with costs much closer to the optimum in such

cases, making the additional overhead of smoothing less favorable. This conclusion is likely highly

problem-dependent; these tools must always be tested and tuned to the particular application.

Note that the overall run times for each simulation are on the order of 1-5 seconds, including

smoothing. This clearly indicates that FMT∗ can return high-quality solutions in real-time for

spacecraft proximity operations. Though run on a computer currently unavailable to spacecraft, we

hope that our examples serve as a reasonable proof-of-concept; we expect that with a more efficient

coding language and implementation, our approach would be competitive on spacecraft hardware.

8.2 Conclusion

A technique has been presented for efficiently automating minimum-propellant guidance during near-

circular orbit proximity operations, enabling the computation of near-optimal feasible trajectories in

real time (on the order of 1–5 seconds for our numerical examples). The approach uses a modified

version of the FMT∗ sampling-based motion planning algorithm to approximate the solution to the

minimal-propellant trajectory control problem Eq. (5.1) under impulsive Clohessy-Wiltshire-Hill

(CWH) dynamics. Our method begins by discretizing the feasible space of Eq. (5.1) through state

space sampling in the CWH Local-Vertical Local-Horizontal (LVLH) frame. Next, state samples and

their forward reachability sets, which we have shown comprise sets bounded by unions of ellipsoids

taken over steering maneuver duration, are precomputed offline and stored onboard the spacecraft

together with all pairwise steering solutions. Finally, the FMT∗ algorithm is called online to efficiently

construct a tree of trajectories through the feasible state space towards a goal region, returning a

solution that satisfies a broad range of trajectory constraints (e.g ., plume impingement and obstacle

avoidance, control allocation feasibility, etc.) or else reporting failure. If desired, trajectory smoothing

using the techniques outlined in Section 7.5 can be employed to reduce solution propellant cost.

The proposed planning framework for impulsively-actuated spacecraft offers several interesting

avenues for future research. For example, though nothing in the methodology forbids it outside

of computational limitations, it would be interesting to revisit the problem with attitude states

included in the planning process (instead of abstracted away, as we have done here by assuming an

attitude profile). This would allow direct inclusion of attitude constraints into maneuver planning

(e.g ., enforcing line-of-sight, keeping solar panels oriented towards the Sun to stay power positive,

maintaining a communication link between the chaser antenna and ground, etc.). Also of interest

are other actively-safe policies that relax the need to circularize escape orbits (potentially costly

in terms of propellant use) or which mesh better with trajectory smoothing, without the need to

add compensating impulses (see Section 7.5). Extensions to dynamic obstacles (such as debris or
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maneuvering spacecraft, which are unfixed in the LVLH frame), elliptical target orbits, higher-order

gravitation, curvilinear coordinates, or dynamics under relative orbital elements also represent key

research areas useful for extending applicability to more general maneuvers. Finally, memory and

run time performance evaluations of our algorithms on space-like hardware are vital to assessing our

method’s true benefit to spacecraft planning in practice.



Chapter 9

Conclusions

The sampling-based planning framework proposed in this dissertation provides a new general, flexible

way of designing provably-safe, propellant-efficient trajectories for impulsively-actuated spacecraft

operating in close proximity to other objects. The approach consists of seven overall steps:

1. Problem Formulation: Formulate the mission trajectory constraints required for nominal

and active Collision Avoidance Maneuver (CAM) trajectories.

2. Steering Design: Develop a steering function (i.e., a Two-Point Boundary Value Problem

solver) that is able to generate optimal (or at least, propellant-efficient) point-to-point reference

state trajectories for the system dynamics under a relaxed version of the guidance problem. The

fewer relaxations that are made, the faster constraint evaluation will be online and the better

guided trajectory exploration will be; on the other hand, the advantage of the sampling-based

framework is that the steering function can simply ignore any constraints that are too hard

to solve directly or which cannot be known ahead of time (such as the positions of orbiting

debris). If precomputation of actively-safe abort trajectories is desirable, the steering function

should include impulses at only the initial and target states (so that safety can be evaluated

purely at graph nodes instead of graph edges).

3. CAM Policy Design: Find a safe, stable positively-invariant set to use for termination of

active abort maneuvers, preferably something that the designer knows cannot be invalidated

during the mission by newly-discovered or time-varying obstacles or constraints. Re-evaluation

of the set’s safety may be needed online if this cannot be ensured.

4. Precomputation Phase: Precompute a set of samples from the state space and their corre-

sponding pairwise steering trajectories; if abort safety mission constraints (such as Keep-Out

Zones) are prescribed and time-invariant, then the active safety of abort trajectories under

failures can be cached as well.

134
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5. Online Phase: Storing only the steering trajectory costs, steering control trajectories, and

abort safety control trajectories onboard the vehicle, compute online a feasible, low-cost

trajectory using an asymptotically-optimal batch sampling-based planner like FMT∗ or BFMT∗.

Full state trajectories associated with steering and abort trajectories may be cached as well for

additional speed-ups, if memory allows.

6. Post-Processing Phase: Smooth the resulting solution trajectory if further processing time

is available.

7. Feedback: To account for state uncertainty, dynamic perturbations, and control disturbances

during execution, follow the returned guidance trajectory using a stable feedback controller,

possibly recomputing the solution in a receding-horizon fashion as one would do using Model

Predictive Control (MPC).

The framework’s major contribution is its ability to return online trajectories in a matter of seconds

(or conceivably much faster, with improved coding implementations and/or parallelization), while

simultaneously tending towards the minimum-propellant solution (in the limit that we take our state

space discretization of n samples to infinity) and deterministically guaranteeing safety with respect

to control failures. The key breakthrough of our solution for autonomous spacecraft guidance is

its judicious distribution of computations; in essence, only what must be computed onboard, such

as collision-checking and graph construction, is computed online—everything else, including the

most intensive computations, are relegated to the ground where computational effort and execution

time are less critical. Furthermore, only minimal information (steering problem control trajectories,

costs, and nearest-neighbor set memberships) requires storage onboard the spacecraft. Though we

have illustrated through numerical simulations the ability to tackle a particular minimum-propellant

LEO near-field rendezvous problem, it should be noted that the methodology applies equally well

to other objectives, such as the minimum-time problem, and can be generalized to other dynamic

models and environments. The approach is flexible enough to handle non-convexity and mixed

state-control-time constraints without compromising real-time implementability, so long as constraint

function evaluation is relatively efficient. In short, the proposed approach appears to be useful for

automating the mission planning process for spacecraft proximity operations, enabling real-time

computation of low cost trajectories.

9.1 Summary

The dissertation began in Chapter 1 with a detailed study of the spacecraft proximity operations

guidance problem, including a discussion of its importance to the science and engineering community

at large and a simple analysis of some of its unique challenges. From there, we motivated our choice

for sampling-based planning algorithms as a solution to this problem through highlights of recent



136 CHAPTER 9. CONCLUSIONS

autonomous demonstration missions and a brief review of other state-of-the-art techniques. A broad

introduction to sampling-based planning followed, setting the stage for the remainder of the thesis.

In Part I of the thesis, we designed and tested a new family of efficient batch sampling-based motion

planning algorithms. In Chapter 3, we extended the unidirectional FMT∗ algorithm to bi-directional

search and showed by our construction that this new algorithm, dubbed the Bi-directional Fast

Marching Trees (BFMT∗) algorithm, preserves the probabilistic exhaustivity, asymptotic optimality

and convergence rate guarantees of its counterpart—arguably firsts in the field of bi-directional

sampling-based planning. Numerical experiments in Rd, SE(2), and SE(3) revealed that BFMT∗

tends to an optimal solution at least as fast as its state-of-the-art counterparts, and in some cases

significantly faster. The addition of BFMT∗ gives trajectory designers an additional efficient tool for

solving motion planning problems. We then demonstrated the performance of FMT∗ on a working

robotic testbed, showcasing the algorithm’s ability to solve a simulated autonomous rendezvous and

docking problem on a planar, 3-DOF analogue to deep-space flight.

In Part II of the thesis, we described our proposed methodology for provably-safe, propellant-

efficient autonomous guidance. Through Chapters 5–7, using near-circular orbit guidance as a running

example, we demonstrated each of the steps of our solution framework as outlined in the chapter

introduction, progressing in sequence through the formulation of our specific guidance problem, the

design of our steering controller and one-burn CAM policy, and finally the presentation of our solution

framework built from a modified version of the FMT∗ algorithm. Along the way, we characterized

for the first time the form of forward-reachable sets under the sum-of-2-norms propellant-cost metric

under Clohessy-Wiltshire-Hill dynamics, revealing that these sets are tightly upper- and lower-

bounded by unions of ellipsoids taken over maneuver duration. Furthermore, we designed a general,

“anytime”-capable algorithm for sampling-based trajectory smoothing that efficiently reduces solution

trajectory costs in post-processing using a bisection technique. This smoothing algorithm can be

applied to any Linear Time-Invariant (LTI) system with impulsively-actuated controls. Finally,

we ended in Chapter 8 with a detailed trade study of FMT∗’s online performance as applied to

both planar and non-planar examples of a realistic, single-chaser single-target near-field rendezvous

mission in near-circular orbit. Ultimately, we showed that the approach can return efficient, low-cost

solutions in real-time, while handling a bevy of constraints like plume impingement and collision

avoidance, control allocation feasibility with respect to a collection of distributed thrusters, and a

2-fault tolerance to “stuck-off” thruster failures.

9.2 Future Work

Though this dissertation has addressed a number of difficulties associated with real-time guidance

for spacecraft proximity operations, the complexity of the field and the wide variety of imaginable

missions leaves many avenues open for further study. Furthermore, as so few autonomous guidance
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missions have been demonstrated at the time of this writing, the number of practical directions

available for development are effectively limitless. In this section, we outline just a few of these

important areas for future work.

Accounting for Disturbances and Uncertainty One of the most important elements of any

GN&C system is the rigorous handling of dynamic perturbations together with actuation, localization,

and measurement uncertainties. Throughout this work, we have neglected the instability and

performance issues brought about by an uncertain state; we assume the initial and goal states

xinit and xgoal can be determined exactly once on orbit, along with the positions and velocities of

any nearby objects, such as the states of any neighboring spacecraft or debris. In reality, orbit

determination is highly uncertain and at best requires a certain amount of time for navigation filters

to converge once targets (if cooperative) are in range to broadcast their relative state estimates.

Addressing this state uncertainty, possibly by extending sampling-based planners to allow formal

guarantees of optimality with respect to a finite-measure initial state set (such as an uncertainty

ellipse), would be of critical importance for both theoretical and practical purposes. In addition,

solving the question of how to handle discrepancies in control allocation due to thruster misfirings,

canted thruster nozzles, imprecise manufacturing and assembly, uncertain burn times, friction, and

so forth, would be vital before such planners could be used onboard any real-world application.

Finally, and not unrelated to the concerns above, a formalized approach to imparting closed-loop

feedback to our guidance algorithm, backed by theoretical analysis regarding its robustness and

regions of convergence, would go a long way towards validating the technique with respect to dynamic

perturbations and model uncertainties. A reasonable approach might be development of a dynamic

version of FMT∗ and BFMT∗, as we discuss in detail below, which efficiently reuses previous solutions

upon repeated calls, which one might embed within a receding-horizon controller.

Extensions to Other Scenarios The numerical experiments in this thesis have demonstrated

the performance of our approach on a simulated single-chaser, single-target near-field rendezvous

maneuver in a near-circular orbit scenario. Though little impedes it from being applied to other

scenarios, it remains to be seen how well the framework extends to other common proximity operations

missions. Examples include propellant-optimized relative guidance near elliptic orbits, during final

approach/on-orbit servicing, in deep-space (neglecting the effects of external gravitational influences),

or in close proximity of celestial small bodies (such as comets, asteroids, and small moons) [159].

The latter case is particularly interesting, especially with regard to CAM policy design. The

microgravitational environment near small bodies allows entirely new types of positively-invariant

sets for termination of CAMs, including forced equilibrium points (e.g ., through body-fixed hovering1),

low-∆v escape trajectories, or even near-inertial hovering maneuvers that take solar gravitation into

1Though forced equilibria are technically not positively-invariant under a limited propellant budget, they may be
well-approximated as such because so little propellant is needed to maintain them per unit time.
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account [160]. Because our abort safety policy design approach relies so heavily on designer intuition

and mission specifics (CAM policies must be achievable under all possible failures of interest, or else

actively-safe samples will never be discovered for online planning), studies are needed to determine

which types of CAMs and corresponding positively-invariant sets are most appropriate to these kinds

of new dynamic scenarios.

It could also be of interest to extend our guidance scheme from Linear Time-Invariant (LTI)

dynamics to higher-fidelity dynamic models, to improve accuracy and allow longer guidance maneuver

durations. Ideally this means accounting for perturbations like attractor oblateness, atmospheric

drag, and third-body gravitational effects during the planning process, so that guidance algorithms

can better predict true propellant costs (and therefore enable propellant savings). Alternatively, this

could be achieved using an appropriate feedback strategy.

Finally, it would be useful to remove some of the limitations of our approach, where some of

the theory breaks down. For example, the instantaneous thrust assumption made throughout our

work greatly simplifies our dynamic equations, and in particular allows us to precompute our active

safety evaluations if we restrict impulses to samples (edge endpoints) only—all edges then become

coasting arcs that we know are passively-safe. Unfortunately, the instantaneous thrust assumption

can be inaccurate during very short duration proximity operations maneuvers, or for systems with

low thrust-to-weight ratios. Extensions to finite-time or continuous-time propulsion models would

greatly improve simulation accuracies. The ability to accommodate low-thrust propulsion systems,

including nuclear-electric and solar-electric propulsion, Hall/ion/plasma thrusters, and solar sails,

would be particularly constructive for small-body proximity operations [161, 162]. In addition, though

the theory allows multi-spacecraft planning (in which we embed the states that lead to collision

with another maneuvering spacecraft within the obstacle region Xobs), in practice this is extremely

difficult to handle using planning alone; often game-theoretic principles are needed to predict other

vehicles’ motions. This problem coordinating fleets of independent spacecraft is a rich area for further

investigation. Though collision avoidance has been examined extensively in the formation flying and

fleet planning communities [163], little appears to have been done to simultaneously address fleet

propellant-minimization, pointing constraints, plume impingement avoidance, control feasibility, etc.,

which suggests that perhaps our sampling-based scheme could be beneficial.

Other Challenging Trajectory Constraints We have demonstrated in this thesis the ability

to handle a number of difficult constraints, including collision and plume impingement avoidance,

control allocation with impulse bit bounds, and a “stuck-off” thruster fault tolerance. However,

it would also be of interest to introduce other constraints of the like mentioned in Section 1.1.3,

including slew rate, relative pointing, solar array shadowing, and illumination or communication

window timing constraints, all of which fortunately fall within the framework as is, but have yet to

be demonstrated. One possibility for addressing attitude constraints might be full-state guidance

(incorporating attitude and attitude rate with position and velocity in the state vector), as mentioned
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in Section 8.2. Additionally, path integral constraints, of the form:

g(x,u, t) =

∫
x(τ),τ∈[t0, t]

L(y) · dy =

∫ t

t0

L(x(τ)) · ẋ(τ) dτ ≤ 0

(where u is embedded implicitly in the state dynamics ẋ(τ) = f(x,u, τ)) fit within our methodology

as well, but likely require special handling within state-to-state steering in order to avoid wasted

exploration along trajectories that accumulate path costs L too quickly. Accounting for such

constraints is important, however, because they can represent momentum wheel saturation and power

consumption limitations [83], both of which are critical factors in many spacecraft missions.

In addition, time-varying constraints, such as orbiting debris or suddenly-introduced obstacles like

hazardous outgassing plumes, will require particularly special care [164], as our proposed methodology

is specifically tailored for static environments. As we saw, when mission objectives and constraints

are static and known beforehand—for example, when obstacles are not moving in the dynamic

reference frames used to describe our states x ∈ X and controls u ∈ U—more computations, like

abort trajectory safety verification, may be precomputed in advance of deployment. This can save

significant online computation time. However, precomputation may not always be possible. In

some contexts, it may suffice to assume a static environment and re-plan sufficiently often using

FMT∗ or BFMT∗ as is [165] (see also Section 4.2), or it may be appropriate to make conservative

approximations, such as modeling moving obstacles as “velocity obstacles” [166, 167] (static obstacles

constructed from the volume of the physical obstacle swept out over time). In other cases, using

a dynamic version of FMT∗ and BFMT∗ that is able to revisit previously-computed trees and

efficiently prune newly-invalidated edges may be the more functional, less-conservative solution (see

[168–170] for notable examples of dynamic algorithms). Investigations are needed to determine which

techniques are most effective in combination with our unique solution approach.

Another direction of important research is how to best accommodate constraints that are currently

out of the scope of our framework, including logical constraints (different from our active safety

constraints, which we accounted for explicitly) and risk constraints. Logical constraints encode

high-level specifications into the mission planning process, such as “achieve all of the following once,

in any order: refuel the target, charge batteries before Earth eclipse, and broadcast health information

to ground.” Risk constraints are probabilistic inequality expressions that allow trajectory designers

to balance performance with uncertainty [171, 172]—a particularly useful tool in strictly risk-averse

applications like spacecraft planning. In general, these kinds of constraints cannot currently be

handled by the proposed framework because their evaluation cannot be broken-up piece-wise into a

sequence of local subproblems; evaluating them over a sequence of connected graph edges cannot

predict whether they will ultimately be able to meet the requirements of each risk or logical constraint

until we have the full solution trajectory all the way to the goal.
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Different Sampling Schemes In all of our numerical experiments, only the standard, low-

discrepancy Halton sequence was used to generate sample sets. Though the sequence works well

enough in our examples, performance gains could be made if sampling were able to take better

account of our propellant-related cost functional. Low-discrepancy sequences excel at covering state

spaces uniformly in terms of Euclidean distance, but it would be interesting and much more efficient

if we could uniformly cover our cost-to-go space instead. A simple heuristic might be to bias our

sample distribution towards states near coasting arcs, which may be far apart physically but which

cost effectively nothing to reach. How to best achieve this remains an open question.

Different Cost Functionals This thesis has been primarily concerned with minimizing propellant

consumption. It would be interesting to analyze the approach’s performance under other types of cost

functionals, such as the minimum-time problem or a mixed propellant and total burn count objective

(to promote fewer numbers of burns, which can wreak havoc on navigation systems). Extensions

to pareto-optimal guidance and multi-objective optimization would also be useful, as space mission

trajectory designers must often trade-off between several guidance objectives at once.

Realistic Vehicle Simulations Finally, the true test for any algorithm is its performance on

realistic space hardware, due to their strict computational constraints. As such, it is critical that

these kinds of new, theoretical guidance strategies be verified through hardware-in-the-loop testing,

including thorough investigations of their memory usage and run-time performance. Experiments

are also needed to estimate state error magnitudes under typical trajectory-following controllers,

to determine whether guidance trajectories are truly representative of dynamic feasibility. Though

difficult to run within the gravitational well of Earth, possible testing options include: air-bearing

robots [122, 173, 174] (see also Section 4.2), gantry systems [175], 6-DOF dynamic simulators driven

by manipulator arms or hexapod platforms [176, 177], reduced-gravity aircraft, commercial suborbital

flights (hopefully a reality in the near-future), and, finally, on-orbit demonstrations [178, 179].

9.3 Vision for the Future

As can be seen, much work remains to bring truly autonomous guidance and control into future

spacecraft missions. It is hoped though that this thesis presents a significant incremental step in

the right direction. With the flexibility and modularity of our real-time sampling-based planning

framework, we envision a new comprehensive mission planning paradigm in which every phase of

future spacecraft missions—from launch, to orbital operations, to planetary exploration—is guided

by the same algorithmic framework. This would significantly ease the validation and verification

process without compromising solution cost, safety, or computational efficiency, hopefully one day

enabling entirely new mission capabilities never before achieved in spaceflight.



Appendix A

The Clohessy-Wiltshire-Hill

Equations

Throughout this work, spacecraft proximity operations are specialized to the canonical scenario of a

spacecraft (called the chaser) moving in the near-vicinity of another spacecraft (called the target)

that is constrained to a circular orbit about a large gravitational attractor. Though the methods

presented in this thesis may be easily generalized to other scenarios, we restrict our attention to

this case due to its frequent occurrence in orbital mission planning. In this appendix, we derive

the dynamic equations that govern the translational motions of such spacecraft during near-circular

orbit proximity operations (Appendix A.1), and present their closed-form solution (Appendix A.2).

These equations, known as the Clohessy-Wiltshire-Hill (CWH) equations [142, 143], are well-known

and quite pervasive within the spacecraft control community. Though the derivation here is a

reproduction, we include it to keep the thesis self-contained.

A.1 Derivation of the CWH Equations

To begin, let us make a few assumptions:

• There is only a single gravitational attractor that yields a spherically-symmetric gravitational

field (inverse-square law gravitation).

• There are no forces exerted between the chaser and target (that is, we neglect their mutual

gravitation and assume the spacecraft do not influence one another).

• The target spacecraft moves in a perfect circle about the attractor (a constraint which requires

that the target exert zero net translational thrust at all times).

141
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Figure A.1: Setup used to derive the Clohessy-Wiltshire-Hill (CWH) equations. The orbital motion
of the chaser spacecraft is linearized about the circular orbit of the target spacecraft, and expressed
in the Local-Vertical, Local-Horizontal (LVLH) frame associated with the moving target.

The scenario can be visualized in Fig. A.1. In essence, we assume that each spacecraft moves

according to Restricted Two-Body Problem (Keplerian) dynamics (in the Earth-Centered Inertial

(ECI) X-Y -Z frame), with the target constrained to perfect circular orbit (to which we attach a

moving Local-Vertical, Local-Horizontal (LVLH) δx-δy-δz frame). The accuracy of these assumptions

is limited by orbit insertion/determination errors and by orbital perturbations, including atmospheric

drag, attractor oblateness, and third-body effects. For these reasons, the CWH equations are only

useful for modeling short duration maneuvers, where “short” implies a sufficiently-small duration

(typically a few target orbital periods, or less) such that these uncertainties and perturbations do not

have time to drive predicted motions significantly far from truth.

To describe this mathematically, we have for the chaser spacecraft that:

ṗ = −GMm

r3
r + F

using Newton’s Law of Gravitation (and neglecting relativistic effects), where G is the universal

gravitational constant, M is the attractor mass, m is the chaser mass, p is its linear momentum,

and F is its applied thrust. Writing ṗ as ˙(mv) = ṁv +mv̇, let us assume that m is approximately

constant (i.e., that propellant usage during proximity operations is small compared to the total

spacecraft mass, such that the term ṁv� mv̇, where � is applied component-wise). Then we can

re-express our dynamics as:

r̈ = − µ
r3

r +
F

m
(A.1)

where µ = GM is the gravitational parameter associated with the gravitational attractor.
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It follows analogously for the target (i.e., the LVLH frame origin, or reference point) that:

r̈ref = − µ

r3
ref

rref (A.2)

Now, by our circular orbit assumption, rref is equal to a constant and the LVLH frame angular

velocity satisfies ωref = θ̇Ẑ = θ̇δ̂z. Combined with Fig. A.1, it follows that:

rref = rref r̂ref = rref δ̂x

ṙref =
˙(

rref δ̂x
)

=��*
0

ṙref δ̂x + rref
˙̂
δx = rref θ̇δ̂y

r̈ref =
¨(

rref δ̂x
)

=��*
0

r̈ref δ̂x + rref
¨̂
δx = −rref θ̇

2δ̂x

where we used the facts that
˙̂
δx = ωref × δ̂x = θ̇δ̂z × δ̂x = θ̇δ̂y and that

¨̂
δx = ωref × ˙̂

δx =

θ̇δ̂z× θ̇δ̂y = −θ̇2δ̂x. Substituting into Eq. (A.2),

−rref θ̇
2δ̂x = − µ

r3
ref

(
rref δ̂x

)
we see immediately that θ̇2 = µ

r3ref
, which yields (taking only the positive solution):

nref , θ̇ =

√
µ

r3
ref

(A.3)

where nref , a constant, is the mean motion of the target spacecraft orbit. Integrating, we find that:

θ(t) =

∫ t

t0

nref dt = nref(t− t0) (A.4)

for the polar angle (true/eccentric/mean anomaly) of the target spacecraft.

Turning our attention to the chaser spacecraft, let us express the inertial dynamics of Eq. (A.1) in

the target LVLH frame. These relative dynamics will give us the equations necessary for linearization.

From Fig. A.1, note that r = rref + δr. It follows that r̈ = r̈ref + δ̈r, which means we now need only

find an expression for δ̈r. Let ˙(·) and (̊·) denote time derivatives in the inertial ECI and moving

LVLH frames, respectively. Then we have, relating the two derivatives to one another, that:

δ̇r = δ̊r + ωref × δr

δ̈r =
˙(

δ̊r + ωref × δr
)

=
.
δ̊r + ˙(ωref × δr) =

(
˚̊δr + ωref × δ̊r

)
+

(
��
�*0

ω̇ref × δr + ωref × δ̇r
)

=
(

˚̊δr + ωref × δ̊r
)

+
(
ωref × δ̊r + ωref × (ωref × δr)

)
= ˚̊δr + 2ωref × δ̊r + ωref × (ωref × δr)
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where we used that ω̇ref =
˙(

nref δ̂z
)

= ṅref δ̂z + nref
˙̂
δz = 0, since both nref and δ̂z are constant.

Resolving into the LVLH coordinate frame,

δr =


δx

δy

δz

 δv = δ̊r =


˙δx

δ̇y

δ̇z

 ˚̊δr =


δ̈x

δ̈y

δ̈z

 ωref =


0

0

nref

 r =


rref + δx

δy

δz

 F =


Fδx

Fδy

Fδz


we find that:

r̈ = r̈ref + δ̈r

=


−rrefn

2
ref

0

0

+



δ̈x

δ̈y

δ̈z

+ 2




0

0

nref

×


˙δx

δ̇y

δ̇z


+


0

0

nref

×



0

0

nref

×

δx

δy

δz





=


−rrefn

2
ref

0

0

+



δ̈x

δ̈y

δ̈z

+ 2


−nref δ̇y

nref
˙δx

0

+


0

0

nref

×

−nrefδy

nrefδx

0




=


δ̈x− 2nref δ̇y − n2

ref(rref + δx)

δ̈y + 2nref
˙δx− n2

refδy

δ̈z


Equating with Eq. (A.1), and rearranging:

δ̈x

δ̈y

δ̈z

 = − µ
r3


rref + δx

δy

δz

+


2nref δ̇y + n2

ref(rref + δx)

−2nref
˙δx+ n2

refδy

0

+
1

m


Fδx

Fδy

Fδz

 (A.5)

we obtain the non-linear equations of motion for the chaser spacecraft in the LVLH frame, where

r =

√
(rref + δx)

2
+ δy2 + δz2.

To linearize these equations of motion, we must first put them into first-order form. Define our

state x as the relative position and velocity vector, x ,
[
δrT, δvT

]T
, and let our control u be the

specific force (force per unit mass), u , F/m . Then:

ẋ =

[
δv

f(x,u)

]
(A.6)

where f(x,u) is the right-hand side of Eq. (A.5). We aim to linearize Eq. (A.6) about the equilibrium

point at the LVLH origin (xeq = 0 with ueq = 0), corresponding to the unforced circular orbit of the

target. Restricting our attention to only the velocity equations (as the position dynamics are already
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linear),

f(x,u) ∼= f(xeq,ueq) +
∂ f

∂x

∣∣∣∣
xeq,ueq

(x− xeq) +
∂ f

∂u

∣∣∣∣
xeq,ueq

(u− ueq) (A.7)

Using Eq. (A.5), it is a straightforward exercise to show that the Jacobian matrices ∂ f
∂x and ∂ f

∂u can

be expressed in the LVLH frame as:

∂ f

∂x
=


− µ
r3 + 3µ(rref+δx)2

r5 + n2
ref

3µ(rref+δx)δy
r5

3µ(rref+δx)δz
r5 0 2nref 0

3µδy(rref+δx)
r5 − µ

r3 + 3µδy2

r5 + n2
ref

3µδyδz
r5 −2nref 0 0

3µδz(rref+δx)
r5

3µδzδy
r5 − µ

r3 + 3µδz2

r5 0 0 0


∂ f

∂u
=


1 0 0

0 1 0

0 0 1


Substituting into Eq. (A.7) and evaluating at xeq = ueq = 0, we find that f(xeq,ueq) = 0 and hence:

f(x,u) ∼=


3n2

ref 0 0 0 2nref 0

0 0 0 −2nref 0 0

0 0 −n2
ref 0 0 0

x +


1 0 0

0 1 0

0 0 1

u

Substituting into Eq. (A.6), we obtain, finally, the linear Clohessy-Wiltshire-Hill (CWH) equations :

ẋ =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2
ref 0 0 0 2nref 0

0 0 0 −2nref 0 0

0 0 −n2
ref 0 0 0


︸ ︷︷ ︸

,A

x +



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1


︸ ︷︷ ︸

,B

u (A.8)

where x = [δx, δy, δz, δẋ, δẏ, δż]
T

are the position and velocity coordinates of the chaser as expressed

in the LVLH frame, u = 1
m [Fδx, Fδy, Fδz]

T
is the specific thrust of the chaser resolved in the LVLH

frame, and nref is the mean motion of the target spacecraft orbit, as given by Eq. (A.3).
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A.2 Analytical Solutions to the CWH Equations

The CWH equations represented by Eq. (A.8) admit a closed-form solution. To derive it, we make

use of the Laplace Transform L as well as its inverse L−1, defined for causal systems as:

L(f(t)) = F (s) =

∫ ∞
t0

e−stf(t) dt (A.9a)

L-1(F (s)) = f(t) =
1

2πj
lim
T→∞

∫ γ+jT

γ−jT
estF (s) ds (A.9b)

where γ is a real number large enough to ensure that the vertical line of integration Re(s) = γ in the

complex plane lies to the right of any singularities of F (s). As we will see, these two operations turn

out to be very useful in simplifying ordinary differential equation (ODE) expressions.

We begin by applying the Laplace transform to both sides of Eq. (A.8):

L(ẋ(t)) = L(Ax(t) + Bu(t))

sL(x(t))− e−st0x(t0) = AL(x(t)) + BL(u(t))

(sI−A)X(s) = e−st0x(t0) + BU(s)

X(s) = (sI−A)
−1
e−st0x(t0) + (sI−A)

−1
BU(s)

where on the second line we used integration-by-parts (for the left-hand-side) and the linearity of the

Laplace Transform (for the right-hand-side). If we now apply the Inverse Laplace Transform, we find:

x(t) = L-1(X(s)) = L-1
(
(sI−A)

−1
e−st0

)
x(t0) + L-1

(
(sI−A)

−1
BU(s)

)
where we again rely on linearity to simplify the right-hand-side. Now, let ϕ(s) represent the Laplace

Transform of some time-domain function Φ(t). We make use of two well-known facts: (i) the

Inverse Laplace Transform of the exponential e−st0 times ϕ(s) creates a shift in the time-domain

L-1(ϕ(s)e−st0) = Φ(t− t0), and (ii) the Inverse Laplace Transform of the product of two s-domain

functions ϕ(s) and G(s) is given by L-1(ϕ(s)G(s)) = Φ(t) ∗ g(t), a convolution integral in the time

domain (verification of both properties is a straightforward exercise in calculus that we do not show

here). Setting ϕ(s) = (sI−A)
−1

and G(s) = BU(s) in this case, we obtain:

x(t) = Φ(t− t0)x(t0) +

∫ t

t0

Φ(t− τ)Bu(τ) dτ (A.10)

Equation (A.10) reveals that to find the solution x(t) to our dynamic equations, we need only

determine Φ(t) = L-1
(
(sI−A)

−1)
. Note that the argument, (sI−A)

−1
, called the resolvent of A,

is defined at all s ∈ C except for the eigenvalues of A. If we re-express the resolvent in terms of its
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power series,

(sI−A)
−1

=
1

s

(
I− A

s

)−1

=
1

s

(
I +

A

s
+

(
A

s

)2

+ . . .

)
=

I

s
+

A

s2
+

A2

s3
+ . . .

(valid at all s values with |s| sufficiently-large and far from the eigenvalues of A), we obtain an

expression that is easier to evaluate inside the Inverse Laplace Transform:

Φ(t) = L-1
(
(sI−A)

−1)
= I + tA +

(tA)
2

2!
+ . . . =

∞∑
k=0

(tA)
k

k!
, etA (A.11)

where etA is called the matrix exponential of A. Putting Eq. (A.10) and Eq. (A.11) together, the

solution to our system dynamics (applicable, in fact, to any LTI system) is therefore given by:

x(t) = eA(t−t0)x(t0) +

∫ t

t0

eA(t−τ)Bu(τ) dτ (A.12)

Hence all that remains to compute a closed-form expression for the CWH dynamic equations

is to derive an analytical expression for the matrix Φ(t) = eAt = L-1
(
(sI−A)

−1)
, called the state

transition matrix of our system. Rather than evaluating the infinite sum in Eq. (A.11), it actually

turns out to be much simpler to use the inverse Laplace Transform directly on the elements of the

resolvent of A. Substituting the CWH system matrix A, shown in Eq. (A.8),

(sI−A) =



s 0 0 −1 0 0

0 s 0 0 −1 0

0 0 s 0 0 −1

−3n2
ref 0 0 s −2nref 0

0 0 0 2nref s 0

0 0 n2
ref 0 0 s



(sI−A)
−1

=



4n2
ref+s

2

s(n2
ref+s

2)
0 0 1

n2
ref+s

2
2nref

s(n2
ref+s

2)
0

−6n3
ref

s2(n2
ref+s

2)
1
s 0 −2nref

s(n2
ref+s

2)
−3n2

ref+s
2

s2(n2
ref+s

2)
0

0 0 s
n2
ref+s

2 0 0 1
n2
ref+s

2

3n2
ref

n2
ref+s

2 0 0 s
n2
ref+s

2
2nref

n2
ref+s

2 0
−6n3

ref

s(n2
ref+s

2)
0 0 −2nref

n2
ref+s

2

−3n2
ref+s

2

s(n2
ref+s

2)
0

0 0
−n2

ref

n2
ref+s

2 0 0 s
n2
ref+s

2


it now becomes a straightforward matter of applying the inverse Laplace Transform to each element

of (sI−A)
−1

(easily achieved via a combination of partial fraction decompositions and a table of

elementary Laplace transforms). Introducing θ(t) = nreft as the polar angle (true anomaly) of the



148 APPENDIX A. THE CLOHESSY-WILTSHIRE-HILL EQUATIONS

target spacecraft, the result (once all the dust settles) turns out to be:

Φ(t) =



4− 3 cos θ 0 0 1
nref

sin θ 2
nref

(1− cos θ) 0

6 sin θ − 6θ 1 0 2
nref

(cos θ − 1) 1
nref

(4 sin θ − 3θ) 0

0 0 cos θ 0 0 1
nref

sin θ

3nref sin θ 0 0 cos θ 2 sin θ 0

6nref(cos θ − 1) 0 0 −2 sin θ 4 cos θ − 3 0

0 0 −nref sin θ 0 0 cos θ


(A.13)

To make our solution explicit for impulsive dynamics resolved in the CWH frame (the rotating

Local-Vertical, Local-Horizontal frame of the target spacecraft), suppose that we apply the control

trajectory u(t) =
∑N
i=1 ∆viδ(t− τi) to our chaser spacecraft, comprising N impulses ∆vi =

[ ∆vδx,i,∆vδy,i,∆vδz,i ]
T

at burn times τi for i ∈ [1, . . . , N ]. Define the chaser initial state as

x(t0) = x0 = [ δx0, δy0, δz0, δẋ0, δẏ0, δż0 ]
T

. Then the chaser state transition equations are given by:

δx(t) = (4− 3 cos θ)δx0 +

(
1

nref
sin θ

)
δẋ0 +

(
2

nref
(1− cos θ)

)
δẏ0 (A.14a)

+

Nt∑
i=1

[(
1

nref
sin θi

)
∆vδx,i +

(
2

nref
(1− cos θi)

)
∆vδy,i

]
δy(t) = (6 sin θ − 6θ)δx0 + δy0 +

(
2

nref
(cos θ − 1)

)
δẋ0 +

(
1

nref
(4 sin θ − 3θ)

)
δẏ0 (A.14b)

+

Nt∑
i=1

[(
2

nref
(cos θi − 1)

)
∆vδx,i +

(
1

nref
(4 sin θi − 3θi)

)
∆vδy,i

]

δz(t) = (cos θ)δz0 +

(
1

nref
sin θ

)
δż0 +

Nt∑
i=1

(
1

nref
sin θi

)
∆vδz,i (A.14c)

δẋ(t) = (3nref sin θ)δx0 + (cos θ)δẋ0 + (2 sin θ)δẏ0 +

Nt∑
i=1

[(cos θi)∆vδx,i + (2 sin θi)∆vδy,i] (A.14d)

δẏ(t) = (6nref(cos θ − 1))δx0 + (−2 sin θ)δẋ0 + (4 cos θ − 3)δẏ0 (A.14e)

+

Nt∑
i=1

[(−2 sin θi)∆vδx,i + (4 cos θi − 3)∆vδy,i]

δż(t) = (−nref sin θ)δz0 + (cos θ)δż0 +

Nt∑
i=1

(cos θi)∆vδz,i (A.14f)

where θ = nref(t− t0), θi = nref(t− τi), and Nt =
∑N
i=1 1[τi ≤ t] is the number of burns occurring

at or before time t.

These equations represent the expanded form of Eq. (5.4), originally presented in Chapter 5

during the introduction of the CWH equations. Having such closed-formed solutions is useful for
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propagating state trajectories x(t) given steering control laws u(t), such as those returned by Eq. (7.3)

or Eq. (7.6), without requiring numerical computation of the state transition matrix Φ(t). Better still,

the expressions in Eq. (A.14) are exact and can be computed very efficiently—and even faster when

the trigonometric terms cos θ, sin θi, etc. are cached or tabulated. Note that we employ Eq. (A.14)

in Chapter 8 to quickly propagate trajectory edges in the FMT∗ graph (see Algorithm 6) as well

as to generate the unconstrained minimal-propellant solution trajectory required for our smoothing

technique (see Algorithm 7).



Appendix B

Optimal Circularization Under

Impulsive CWH Dynamics

As detailed in Section 6.3.1, a vital component of our Collision Avoidance Manuever (CAM) policy is

the generation of one-burn minimal-propellant transfers to circular orbits located radially above or

below the target. Assuming we need to abort from some state x(tfail) = xfail, the problem we wish

to solve in order to assure safety (per Definition 16 and as seen in Fig. 6.5) is:

Given: Failure state xfail, and CAM uCAM

(
tfail ≤ t < T−h

)
, 0,uCAM(Th) , ∆vcirc(x(Th))

minimize
Th

∆v2
circ(Th)

subject to xCAM(tfail) = xfail Initial Condition

xCAM(T+
h ) ∈ Xinvariant Invariant Set Termination

ẋCAM(t) = f(xCAM(t),0, t), for all tfail ≤ t ≤ Th System Dynamics

xCAM(t) 6∈ XKOZ, for all tfail ≤ t ≤ Th KOZ Collision Avoidance

where Th is the future time at which to implement an abort circularization burn ∆vcirc, ∆vcirc is

the burn magnitude, XKOZ is the target Keep-Out Zone (KOZ) ellipsoid (Eq. (6.2)), and Xinvariant is

the set of orbits whose projections are circles with radii either above or below XKOZ (Eq. (6.4)).

Due to the analytical descriptions of state transitions, as given by Eq. (5.4) (or more explicitly by

Eq. (A.14)), it is a straightforward task to express the decision variable Th, invariant set constraint,

and objective function analytically in terms of θ(t) = nref(t − tfail), the polar angle of the target

spacecraft. Using Corollary 18, keeping in mind we need only circularize the planar projection of our

150
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orbit per Remark 21, we find that:

∆v2
circ(θ) =

[
(3nrefδxfail + 2δẏfail)

2
+

1

4
δẋ2

fail + n2
refδz

2
fail

]
sin2 θ

+

[
1

4
(3nrefδxfail + 2δẏfail)

2
+ δẋ2

fail + δż2
fail

]
cos2 θ

+

[
3

4
δẋfail(3nrefδxfail + 2δẏfail)− nrefδżfailδzfail

]
sin 2θ

(B.1)

The problem is therefore one-dimensional in terms of θ. We can reduce the invariant set termination

constraint to an invariant set positioning constraint if we ensure the spacecraft ends up at a position

inside Xinvariant and circularize the orbit, since x(θ+
circ) = x(θ−circ) +

[
0

∆vcirc(θcirc)

]
∈ Xinvariant. Denote

θcirc = nref(Th − tfail) as the target anomaly at which we enforce circularization. Now, suppose the

failure state xfail lies outside of the KOZ (otherwise there exists no safe CAM, and we conclude

that xfail is unsafe). We can define a new variable θmin = nref(t− tfail) and integrate the coasting

dynamics forward from time tfail until the chaser touches the boundary of the KOZ (θmax = θ−collision)

or until we have reached one full orbit (θmax = θmin + 2π) such that, between these two bounds, the

CAM trajectory satisfies the dynamics and contains only the coasting segment outside of the KOZ.

Replacing the dynamics and collision avoidance constraints with the bounds on θ as a box constraint,

the problem becomes:

minimize
θcirc

∆v2
circ(θcirc)

subject to θmin ≤ θcirc ≤ θmax Theta Bounds

δx2
(
θ−circ

)
≥ ρ2

δx Invariant Set Positioning

(B.2)

Restricting our search range to θ ∈ [θmin, θmax], our problem reduces to minimizing a function

of one variable subject to one constraint, something we can easily optimize analytically using the

method of Lagrange multipliers. To solve, we seek to minimize the Lagrangian, L = ∆v2
circ + λgcirc,

where gcirc(θ) = ρ2
δx − δx2

(
θ−circ

)
. There are two cases to consider:

Case 1: Inactive Invariant Set Positioning Constraint

We set λ = 0 such that L = ∆v2
circ, corresponding to the case that circularization takes place radially

above or below the radial span of the target KOZ. Candidate optimizers θ∗ must satisfy ∇θL(θ∗) = 0.

Taking the gradient of L,

∇θL =
∂∆v2

circ

∂θ
=

[
3

4
(3nrefδxfail + 2δẏfail)

2 − 3

4
δẋ2

fail + n2
refδz

2
fail − δż2

fail

]
sin 2θ

+

[
3

2
δẋfail(3nrefδxfail + 2δẏfail)− 2nrefδżfailδzfail

]
cos 2θ
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and setting ∇θL(θ∗) = 0, we find that:

tan 2θ∗ =
−
(

3
2δẋfail(3nrefδxfail + 2δẏfail)− 2nrefδżfailδzfail

)
3
4 (3nrefδxfail + 2δẏfail)

2 − 3
4δẋ

2
fail + n2

refδz
2
fail − δż2

fail

Denote the set of candidate solutions that satisfy Case 1 by Θ∗1. In the general case, this does not

admit an analytical solution (its roots must be found numerically). Interestingly, however, there are

special cases:

• Circularizing a coast maneuver from rest: Setting δẋfail = δẏfail = 0, we find tan 2θ∗ = 0,

hence θ∗ = k π2 for all non-negative integers k ∈ Z+. This means the best time to circularize

our orbit is at any multiple of quarter-orbit periods after our failures occurs.

• Circularizing a planar coast maneuver: Setting δzfail = δżfail = 0, we obtain:

tan 2θ∗ =
−
(

3
2δẋfail(3nrefδxfail + 2δẏfail)

)
3
4 (3nrefδxfail + 2δẏfail)

2 − 3
4δẋ

2
fail

=
2(3nrefδxfail + 2δẏfail)(−δẋfail)

(3nrefδxfail + 2δẏfail)
2 − δẋ2

fail

If we let a , (3nrefδxfail + 2δẏfail) and b , −δẋfail, then from the double-angle identity

tan-1
(

2ab
a2−b2

)
= 2 tan-1

(
b
a

)
it follows that θ∗ = tan-1

(
−δẋfail

(3nrefδxfail+2δẏfail)

)
. This has a geometric

interpretation. First, notice that the coefficients of δẋ(θ) in Eq. (A.14) for planar motion match

exactly the numerator and denominator inside the argument of tan-1 in θ∗. Now, let us look

for a moment for values of θ at which δẋ = 0:

δẋ(θ) = δẋfail cos θ + (3nrefδxfail + 2δẏfail) sin θ , 0 =⇒ θ = θ∗

Thus θ∗ represents the true anomalies (times) at which the chaser satisfies δẋ = 0. In other

words, the minimum-cost circularization ∆v in the planar case occurs where the chaser has zero

radial velocity, at apoapse or periapse (as we might expect from two-body orbital mechanics).

Case 2: Active Invariant Set Positioning Constraint

Here the chaser attempts to circularize its orbit at the boundary of the zero-thrust RIC shown in

Fig. 6.4a. The positioning constraint is active, and therefore gcirc(θ) = ρ2
δx − δx2

(
θ−circ

)
= 0. This

is equivalent to finding where the coasting trajectory from x(tfail) = xfail crosses δx(θ) = ±ρδx for

θ ∈ [θmin, θmax]. This can be achieved using standard root-finding algorithms. Denote the set of

candidate solutions that satisfy Case 2 by Θ∗2.

Solution to the Minimal-Cost Circularization Burn

The global optimizer θ∗ either lies on the boundary of the box constraint, at an unconstrained

optimum (θ ∈ Θ∗1), or at the boundary of the zero-thrust RIC (θ ∈ Θ∗2), all of which are economically
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obtained through either numerical integration or a root-finding solver. Therefore, the minimal-cost

circularization burn time T ∗h satisfies:

θ∗ = nref(T
∗
h − tfail) = arg min

θ∈{θmin,θmax}
⋃

Θ∗1
⋃

Θ∗2

∆v2
circ(θ)

where ∆v2
circ(θ) is given by Eq. (B.1). If no solution exists (which can happen if and only if xfail

starts inside the KOZ), there is no safe circularization CAM and we therefore declare xfail unsafe.

Otherwise, the CAM is saved for future trajectory feasibility verification. If later we find that we

can achieve the one-burn abort maneuver from xfail given by ∆vcirc(θ∗) under all failure cases of

interest (either offline if mission constraints are known a priori and time invariant, i.e., independent

of the arrival time tfail at xfail, or online otherwise), then xfail can be declared an actively-safe state

(see Section 6.3.3). This forms the basis for our actively-safe sampling routine in Algorithm 6, as

described in detail in Section 7.3.



Appendix C

Intermediate Results for the FMT∗

Optimality Proof

We report here a number of useful lemmas concerning bounds on the trajectory costs between samples,

which are used throughout the asymptotic optimality proof for FMT∗ in Section 7.4. We begin with

the proof of Lemma 23, which relates the propellant-burn cost function Eq. (7.4) between points

x0 and xf to the norm of the stacked ∆v-vector ‖∆V‖ = ‖xf −Φ(tf , t0)x0‖G−1 . We then provide

a lemma bounding the sizes of the minimum and maximum eigenvalues of G, useful for bounding

reachable volumes from x0. Finally, we prove Lemma 25 which forms the basis of our asymptotic

optimality analysis for FMT∗. Here Φ(tf , t0) = eAT is the state transition matrix, T = tf − t0 is the

maneuver duration, and G is the N = 2 impulse Gramian matrix:

G(T ) = ΦvΦ
−1
v =

[
eATB B

][
eATB B

]T
, (C.1)

where Φv(t, {τi}i) is the aggregate ∆v transition matrix corresponding to burn times {τi}i = {t0, tf}.

Lemma 23 (Fuel Burn Cost Bounds). For the cost function in Eq. (7.4), we have the following

upper and lower bounds:

‖∆V‖ ≤ J(x0,xf) ≤
√

2‖∆V‖.

Proof. For the upper bound, note that by the Cauchy-Schwarz inequality:

J = ‖∆v1‖ · 1 + ‖∆v2‖ · 1 ≤
√
‖∆v1‖2 + ‖∆v2‖2 ·

√
12 + 12 =

√
2‖∆V‖.

154
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Similarly, for the lower bound, note that:

J =

√
(‖∆v1‖ + ‖∆v2‖)2 ≥

√
‖∆v1‖2 + ‖∆v2‖2 = ‖∆V‖.

This completes the proof.

Lemma 31 (Bounds on Gramian Eigenvalues). Let Tmax be less than one orbital period for the

system dynamics of Section 5.1.3, and let G(T ) be defined as in Eq. (C.1). Then there exist constants

Mmin,Mmax > 0 such that λmin(G(T )) ≥MminT
2 and λmax(G(T )) ≤Mmax for all T ∈ (0, Tmax].

Proof. We bound the maximum eigenvalue of G through norm considerations, yielding λmax(G(T )) ≤(∥∥eATB
∥∥ + ‖B‖

)2 ≤ (e‖A‖Tmax + 1
)2

, and take Mmax =
(
e‖A‖Tmax + 1

)2
. As long as Tmax is less

than one orbital period, G(T ) only approaches singularity near T = 0 [155]. Explicitly Taylor-

expanding G(T ) about T = 0 reveals that λmin(G(T )) = T 2
/

2 + O
(
T 3
)

for small T , and thus

λmin(G(T )) = Ω
(
T 2
)

for all T ∈ (0, Tmax].

Lemma 25 (Steering with Perturbed Endpoints). For a given steering trajectory x(t) with initial

time t0 and final time tf , let x0 := x(t0), xf := x(tf), T := tf − t0, and J := J(x0,xf). Consider

now the perturbed steering trajectory x̃(t) between perturbed start and end points x̃0 = x0 + δx0 and

x̃f = xf + δxf , and its corresponding cost J(x̃0, x̃f).

Case 1: T = 0. There exists a perturbation center δxc (consisting of only a position shift) with

‖δxc‖ = O
(
J2
)

such that if ‖δx0‖ ≤ ηJ3 and ‖δxf − δxc‖ ≤ ηJ3, then J(x̃0, x̃f) ≤ J(1 + 4η + O(J))

and the spatial deviation of the perturbed trajectory x̃(t) from x(t) is O(J).

Case 2: T > 0. If ‖δx0‖ ≤ ηJ3 and ‖δxf‖ ≤ ηJ3, then J(x̃0, x̃f) ≤ J
(
1 + O

(
ηJ2T−1

))
and the

spatial deviation of the perturbed trajectory x̃(t) from x(t) is O(J).

Proof. For bounding the perturbed cost J(x̃0, x̃f), we consider the two cases separately.

Case 1: T = 0

Here 2-impulse steering degenerates to a single net impulse ∆v; that is, xf = x0 + B∆v with

‖∆v‖ = J . To aid in the ensuing analysis, denote the position and velocity components of states

x =
[
rT,vT

]T
as r = [ I,0 ]x and v = [ 0, I ]x. Since T = 0, we have rf = r0 and vf = v0 + ∆v. We

pick the perturbed steering duration T̃ = J2 (which will provide an upper bound on the optimal

steering cost) and Taylor-expand the steering system (Eq. (5.4)) for small durations T̃ as:

rf + δrf = (r0 + δr0) + T̃ (v0 + δv0 + ∆̃v1) + O
(
T̃ 2
)

(C.2)

vf + δvf = (v0 + δv0) + ∆̃v1 + ∆̃v2 + T̃
(
A21(r0 + δr0) + A22(v0 + δv0 + ∆̃v1)

)
+ O

(
T̃ 2
)

(C.3)

where ∆̃v1 and ∆̃v2 denote the perturbed steering trajectory’s intercept and rendezvous impulse

vectors, respectively, and A21 =

[
3n2

ref 0 0
0 0 0
0 0 −n2

ref

]
and A22 =

[
0 2nref 0

−2nref 0 0
0 0 0

]
.
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If we solve Eq. (C.2) for ∆̃v1 to first order, we find:

∆̃v1 = T̃−1(δrf − δr0)− (v0 + δv0) + O
(
T̃
)
.

By selecting δxc =
[
T̃vT

0 0T
]T

(note: ‖δxc‖ = J2‖v0‖ = O
(
J2
)
) and supposing that ‖δx0‖ ≤ ηJ3

and ‖δxf − δxc‖ ≤ ηJ3, we have that:

‖∆̃v1‖ ≤ J−2(‖δx0‖ + ‖δxf − δxc‖) + ‖δx0‖ + O
(
J2
)

= 2ηJ + O
(
J2
)
.

Now solving Eq. (C.3) for ∆̃v2 = ∆v + (δvf − δv0)− ∆̃v1 + O
(
J2
)
, and taking norms of both sides:

‖∆̃v2‖ ≤ ‖∆v‖ + (‖δx0‖ + ‖δxf − δxc‖) + 2ηJ + O
(
J2
)
≤ J + 2ηJ + O

(
J2
)
.

Therefore the perturbed cost satisfies:

J(x̃0, x̃f) ≤ ‖∆̃v1‖ + ‖∆̃v2‖

≤ J(1 + 4η + O(J)).

Case 2: T > 0

We pick T̃ = T to compute an upper bound on the perturbed cost. Applying the explicit form of the

steering control ∆V (see Eq. (7.3)) along with the norm bound
∥∥Φ−1

v

∥∥ = λmin(G)
−1/2 ≤M−1/2

min T−1

from Lemma 31, we have:

J(x̃0, x̃f) ≤
∥∥Φ−1

v (tf , {t0, tf})(x̃f −Φ(tf , t0)x̃0)
∥∥

≤
∥∥Φ−1

v (xf −Φx0)
∥∥ +

∥∥Φ−1
v δxf

∥∥ +
∥∥Φ−1

v Φδx0

∥∥
≤ J +M

−1/2
min T−1‖δxf‖ +M

−1/2
min T−1e‖A‖Tmax‖δx0‖

≤ J
(
1 + O

(
ηJ2T−1

))
.

In both cases, the deviation of the perturbed steering trajectory x̃(t) from its closest point on the

original trajectory is bounded (quite conservatively) by the maximum propagation of the difference in

initial conditions; that is, the initial disturbance δx0 plus the difference in intercept burns ∆̃v1−∆v1,

over the maximum maneuver duration Tmax. Thus,

‖x̃(t)− x(t)‖ ≤ e‖A‖Tmax

(
‖δx0‖ + ‖∆̃v1‖ + ‖∆v1‖

)
≤ e‖A‖Tmax

(
ηJ3 + 2J + o(J)

)
= O(J)

where we have used ‖∆v1‖ ≤ J and ‖∆̃v1‖ ≤ J(x̃0, x̃f) ≤ J + o(J) from our above arguments.
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[61] B. Açikmeşe, J. M. Carson, et al. “A Robust Model Predictive Control Algorithm for In-

crementally Conic Uncertain/Nonlinear Systems”. In: International Journal on Robust and

Nonlinear Control 21.5 (2011), pp. 563–590. doi: 10.1002/rnc.1613.

[62] R. Bevilacqua, M. Romano, et al. “Guidance Navigation and Control for Autonomous Mul-

tiple Spacecraft Assembly: Analysis and Experimentation”. In: Int. Journal of Aerospace

Engineering (Dec. 2011), pp. 1–18. doi: 10.1155/2011/308245.

http://dx.doi.org/10.3182/20080706-5-KR-1001.02232
http://dx.doi.org/10.3182/20080706-5-KR-1001.02232
http://dx.doi.org/10.1109/ACC.2013.6580581
http://dx.doi.org/10.1016/S0094-5765(03)80009-7
http://dx.doi.org/10.1016/S0094-5765(03)80009-7
http://dx.doi.org/10.1137/1.9781611970791
http://dx.doi.org/10.1109/MSP.2010.936020
http://dx.doi.org/10.1016/j.automatica.2014.06.008
http://dx.doi.org/10.1117/12.603178
http://dx.doi.org/10.1002/rnc.1613
http://dx.doi.org/10.1155/2011/308245


162 BIBLIOGRAPHY
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