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Abstract— Bi-directional search is a widely used strategy to
increase the success and convergence rates of sampling-based
motion planning algorithms. Yet, few results are available that
merge both bi-directional search and asymptotic optimality into
existing optimal planners, such as PRM∗, RRT∗, and FMT∗.
The objective of this paper is to fill this gap. Specifically, this
paper presents a bi-directional, sampling-based, asymptotically-
optimal algorithm named Bi-directional FMT∗ (BFMT∗) that
extends the Fast Marching Tree (FMT∗) algorithm to bi-
directional search while preserving its key properties, chiefly
lazy search and asymptotic optimality through convergence
in probability. BFMT∗ performs a two-source, lazy dynamic
programming recursion over a set of randomly-drawn samples,
correspondingly generating two search trees: one in cost-to-
come space from the initial configuration and another in cost-
to-go space from the goal configuration. Numerical experiments
illustrate the advantages of BFMT∗ over its unidirectional
counterpart, as well as a number of other state-of-the-art
planners.

I INTRODUCTION

Motion planning is the computation of paths that guide
systems from an initial configuration to a set of goal configu-
ration (s) around nearby obstacles, while possibly optimizing
an objective function. The problem has a long and rich history
in the field of robotics, and many algorithmic tools have been
developed; we refer the interested reader to [1] and references
therein. Arguably, sampling-based algorithms are among the
most pervasive, widespread planners available in robotics,
including the Probabilistic Roadmap algorithm (PRM) [2],
the Expansive Space Trees algorithm (EST) [3], [4], and the
Rapidly-Exploring Random Tree algorithm (RRT) [5]. Since
their development, efforts to improve the “quality” of paths
led to asymptotically-optimal (AO) variants of RRT and PRM,
named RRT∗ and PRM∗, respectively, whereby the cost of
the returned solution converges almost surely to the optimum
as the number of samples approaches infinity [6], [7]. Many
other planners followed, including BIT∗ [8] and RRT# [9] to
name a few. Recently, a conceptually different asymptotically-
optimal, sampling-based motion planning algorithm, called
the Fast Marching Tree (FMT∗) algorithm, has been presented
in [10], [11]. Numerical experiments suggested that FMT∗
converges to an optimal solution faster than PRM∗ or RRT∗,
especially in high-dimensional configuration spaces and in
scenarios where collision-checking is expensive.

It is a well-known fact that bi-directional search can
dramatically increase the convergence rate of planning
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algorithms, prompting some authors [12] to advocate its use
for accelerating essentially any motion planning query. This
was first rigorously studied in [13] and later investigated, for
example, in [14], [15]. Collectively, the algorithms presented
in [12]–[15] belong to the family of non-sampling-based
approaches and are more or less closely related to a bi-
directional implementation of the Dijkstra Method. More re-
cently, and not surprisingly in light of these performance gains,
bi-directional search has been merged with the sampling-based
approach, with RRT-Connect and SBL representing the most
notable examples [16], [17].

Though such bi-directional versions of RRT and PRM
are probabilistically complete, they do not enjoy optimality
guarantees. The next logical step in the quest for fast
planning algorithms is the design of bi-directional, sampling-
based, asymptotically-optimal algorithms. To the best of our
knowledge, the only available results in this context are [18]
and the unpublished work [19], both of which discuss bi-
directional implementations of RRT∗. Neither work, however,
provides a mathematically-rigorous proof of asymptotic
optimality starting from first principles. Accordingly, the
objective of this paper is to propose and rigorously analyze
such an algorithm.

Statement of Contributions: This paper introduces the Bi-
directional Fast Marching Tree (BFMT∗) algorithm.1 To
the best of the authors’ knowledge, this is the first tree-
based, asymptotically-optimal bi-directional sampling-based
planner. BFMT∗ extends FMT∗ to bi-directional search
and essentially performs a “lazy,” bi-directional dynamic
programming recursion over a set of probabilistically-drawn
samples in the free configuration space. The contribution of
this paper is threefold. First, we present the BFMT∗ algorithm
in Section III. Second, we rigorously prove the asymptotic
optimality of BFMT∗ (under the notion of convergence
in probability) and characterize its convergence rate in
Section IV. We note that the convergence rate of FMT∗
in [11] is proved only for obstacle-free configuration spaces,
while we generalize that result to allow for the presence
of obstacles. Finally, we perform numerical experiments in
Section V across a number of planning spaces that suggest
BFMT∗ converges to an optimal solution at least as fast as
FMT∗, PRM∗, and RRT∗, and sometimes significantly faster.

II PROBLEM DEFINITION

Let X be a d-dimensional configuration space, and let
Xobs be the obstacle region, such that X \ Xobs is an
open set (we consider ∂X ⊂ Xobs). Denote the obstacle-
free space as Xfree = cl(X \ Xobs), where cl(·) denotes
the closure of a set. A path planning problem, denoted

1The asterisk ∗, pronounced “star”, is intended to represent asymptotic
optimality much like for the RRT∗ and PRM∗ algorithms.



by a triplet (Xfree,xinit,xgoal), seeks to maneuver from
an initial configuration xinit to a goal configuration xgoal

through Xfree. Let a continuous function of bounded variation
σ : [0, 1]→ X , called a path, be collision-free if σ(τ) ∈ Xfree

for all τ ∈ [0, 1]. A path is called a feasible solution to the
planning problem (Xfree,xinit,xgoal) if it is collision-free,
σ(0) = xinit, and σ(1) = xgoal.

Let Σ be the set of all paths. A cost function for the
planning problem (Xfree,xinit,xgoal) is a function J : Σ→
R≥0 from Σ to the nonnegative real numbers; in this paper,
we consider as J(σ) the arc length of σ with respect to the
Euclidean metric in X (the extension to general cost functions
will be briefly discussed in Section IV-C).

Optimal path planning problem: Given a path
planning problem (Xfree,xinit,xgoal) and an arc
length function J : Σ→ R≥0, find a feasible path
σ∗ such that J(σ∗) = min{J(σ) | σ is feasible}.
If no such path exists, report failure.

Finally, we introduce some definitions concerning the
clearance of a path, i.e., its “distance” from Xobs [11]. For
a given δ > 0, the δ-interior of Xfree is defined as the
set of all points that are at least a distance δ away from
any point in Xobs. A collision-free path σ is said to have
strong δ-clearance if it lies entirely inside the δ-interior of
Xfree. A path planning problem with optimal path cost J∗
is called δ-robustly feasible if there exists a strictly positive
sequence δn → 0, with δn ≤ δ ∀n ∈ N, and a sequence
{σn}∞n=1 of feasible paths such that limn→∞ J(σn) = J∗

and for all n ∈ N, σn has strong δn-clearance, σn(1) = xgoal,
σn(τ) 6= xgoal for all τ ∈ (0, 1), and σn(0) = xinit.

III THE BFMT∗ ALGORITHM

In this section, we present the Bi-Directional Fast March-
ing Tree algorithm, BFMT∗, represented in pseudocode as
Algorithm 1. To begin, we provide a high-level description of
FMT∗ in Section III-A, on which BFMT∗ is based. We follow
in Section III-B with BFMT∗’s own high-level description,
and then provide additional details in Section III-C.

III-A FMT∗ – High-level description
The FMT∗ algorithm, introduced in [10], [11], is a unidirec-

tional algorithm that essentially performs a forward dynamic
programming recursion over a set of sampled points and
correspondingly generates a tree of paths that grow steadily
outward in cost-to-come space. The recursion performed
by FMT∗ is characterized by three key features: (1) It is
tailored to disk-connected graphs, where two samples are
considered neighbors (hence connectable) if their distance
is below a given bound, referred to as the connection
radius; (2) It performs graph construction and graph search
concurrently; and (3) For the evaluation of the immediate cost
in the dynamic programming recursion, one “lazily” ignores
the presence of obstacles, and whenever a locally-optimal
(assuming no obstacles) connection to a new sample intersects
an obstacle, that sample is simply skipped and left for later
(as opposed to looking for other locally-optimal connections
in the neighborhood).

The last feature, which makes the algorithm “lazy,” may
cause suboptimal connections. A central property of FMT∗
is that the cases where a suboptimal connection is made
become vanishingly rare as the number of samples goes to

infinity, which helps maintain the algorithm’s asymptotically
optimality. This manifests itself into a key computational
advantage—by restricting collision detection to only locally-
optimal connections, FMT∗ (as opposed to, e.g., PRM∗ [6])
avoids a large number of costly collision-check computations,
at the price of a vanishingly small “degree” of suboptimality.
We refer the reader to [10], [11] for a detailed description of
the algorithm and its advantages.

III-B BFMT∗ – High-level description

At its core, BFMT∗ implements a bi-directional version
of the FMT∗ algorithm by simultaneously propagating two
wavefronts (henceforth, the leaves of an expanding tree will
be referred to as the wavefront of the tree) through the free
configuration space. BFMT∗, therefore, performs a two-source
dynamic programming recursion over a set of sampled points,
and correspondingly generates a pair of search trees: one in
cost-to-come space from the initial configuration and another
in cost-to-go space from the goal configuration (see Fig. 1).
Throughout the remainder of the paper, we refer to the former
as the forward tree, and to the latter as the backward tree.

(a) 0% Coverage (b) 25% Coverage (c) 50% Coverage

Fig. 1: The BFMT∗ algorithm generates a pair of search trees:
one in cost-to-come space from the initial configuration (blue)
and another in cost-to-go space from the goal configuration
(purple). The path found by the algorithm is in green color.

The dynamic programming recursion performed by BFMT∗
is characterized by the same lazy feature of FMT∗ (see
Section III-A). However, the time it takes to run BFMT∗ on a
given number of samples can be substantially smaller than for
FMT∗. Indeed, for uncluttered configuration spaces, the search
trees grow hyperspherically, and hence BFMT∗ only has to
expand about half as far (in both trees) as FMT∗ in order to
return a solution. This is made clear in Fig. 1(a), in which
FMT∗ would have to expand the forward tree twice as far to
find a solution. Since runtime scales approximately with edge
number, which scales as the linear distance covered by the tree
raised to the dimension of the state space, we may expect in
loosely cluttered configuration spaces an approximate speed-
up of a factor 2d−1 over FMT∗ in d-dimensional space (the
−1 in the exponent is because BFMT∗ has to expand 2 trees,
so it loses one factor of 2 advantage).

III-C BFMT∗ – Detailed description

To understand the BFMT∗ algorithm, some background
notation must first be introduced. Let S be a set of points
sampled independently and identically from the uniform
distribution on Xfree, to which xinit and xgoal are added.
(The extension to non-uniform sampling distributions is
addressed in Section IV-C.) Let tree T be the quadruple
(V, E ,Vunvisited,Vopen), where V is the set of tree nodes, E



is the set of tree edges, and Vunvisited and Vopen are mutually
exclusive sets containing the unvisited samples in S and
the wavefront nodes in V , correspondingly. To be precise,
the unvisited set Vunvisited stores all samples in the sample
set S that have not yet been considered for addition to the
tree of paths. The wavefront set Vopen, on the other hand,
tracks in sorted order (by cost from the root) only those
nodes which have already been added to the tree that are
near enough to tree leaves to actually form better connections.
These sets play the same role as their counterparts in FMT∗,
see [10], [11]. However, in this case BFMT∗ “grows” two
such trees, referred to as T = (V, E ,Vunvisited,Vopen) and
T ′ = (V ′, E ′,V ′unvisited,V ′open). Initially, T is the tree rooted
at xinit, while T ′ is the tree rooted at xgoal. Note, however,
that the trees are exchanged during the execution of BFMT∗,
so T in Algorithm 1 is not always the tree that contains xinit.

The BFMT∗ algorithm is represented in Algorithm 1.
Before describing BFMT∗ in detail, we list briefly the
basic planning functions employed by the algorithm. Let
SAMPLEFREE(n) be a function that returns a set of n ∈
N points sampled independently and identically from the
uniform distribution on Xfree. Let COST(x′x) be the cost of
the straight-line path between configurations x′ and x. Let
PATH(z, T ) return the unique path in tree T from its root to
node z. Also, with a slight abuse of notation, let COST(x, T )
return the cost of the unique path in tree T from its root to
node x, and let COLLISIONFREE(x, y) be a boolean function
returning true if the straight-line path between configurations
x and y is collision free. Given a set of samples A, let
NEAR(A, z, r) return the subset of A within a ball of radius
r centered at sample z (i.e., the set {x ∈ A | ||x− z|| < r}).
Let the TERMINATE function represent an external termination
criterion (i.e., timeout, maximum number of samples, etc.)
which can be used to force early termination (or prevent
infinite runtime for infeasible problems). Finally, regarding
tree expansion, let SWAP(T , T ′) be a function that swaps
the two trees T and T ′. and let COMPANION(T ) return the
companion tree T ′ to T (or vice versa).

We are now in position to describe the BFMT∗ algorithm.
First, a set of n configurations in Xfree is determined by
drawing samples uniformly. Two trees are then initialized
using INITIALIZE as shown in Algorithm 2, with a forward
tree rooted at xinit and a reverse tree rooted at xgoal. Once
complete, tree expansion begins starting with tree T rooted
at xinit using the EXPAND procedure in Algorithm 3. In
the following, the node selected for expansion will be
consistently denoted by z, while xmeet will denote the lowest-
cost candidate node for tree connection (i.e., for joining the
two trees). The EXPAND procedure requires the specification
of a connection radius parameter, rn, whose selection
will be discussed in Section IV. EXPAND implements the
“lazy” dynamic programming recursion described (at a high
level) in Section III-B, making locally-optimal collision-free
connections from nodes x near z unvisited by tree T (those
in set Vunvisited within search radius rn of z) to wavefront
nodes x′ near each x (those in set Vopen within search radius
rn of x). Any collision-free edges and newly-connected nodes
found are then added to T , the connection candidate node
xmeet is updated, and z is dropped from the list of wavefront
nodes. The key feature of the EXPAND function is that in the
execution of the dynamic programming recursion it “lazily”

ignores the presence of obstacles (see line 6) – as discussed
in Section IV this comes at no loss of (asymptotic) optimality
(see also [10], [11]). Note the EXPAND function is identical
to that of unidirectional FMT∗, with the exception here of
additional lines for tracking the connection candidate xmeet.

After expansion, the algorithm checks whether a feasible
path is found on line 8. If unsuccessful so far, TERMINATE
(which reports failure upon early termination) is checked
before proceeding. If the algorithm has not terminated, it
checks whether the wavefront of the companion tree is empty
(line 14). If this is the case, the INSERT function shown in
Algorithm 4 samples a new configuration s uniformly from
Xfree and tries to connect it to a nearest neighbor in the
companion tree within radius rn. This way, the expanding
tree is ensured to have at least one configuration in its
wavefront available for expansion on subsequent iterations
(the alternative would be to report failure). This mimics
anytime behavior, and by forcing samples to lie close to tree
nodes we effectively “reopen” closed nodes for expansion
again. Uniform resampling may require many attempts before
finding a configuration s which can be successfully connected
to V ′open, though this appeared to have a negligible impact
on running time for our path planning studies. On the other
hand, a more effective strategy might bias resampling towards
areas requiring expansion (e.g., bottlenecks, traps) rather than
uniformly within tree coverage.

The algorithm then proceeds on lines 16–17 with the
selection of the next node (and corresponding tree) for
expansion. As shown, BFMT∗ “swaps” the forward and
backward trees on each iteration, each being expanded in
turns. As INSERT ensures the companion tree T ′ always has at
least one node in its frontier V ′open, a node is always available
for subsequent expansion as the next z. After selection, the
entire process is iterated.

Algorithm 1 The Bi-directional Fast Marching Tree Algo-
rithm (BFMT∗)

Require: Motion query (xinit,xgoal), Connection radius rn
1: S ← {xinit,xgoal} ∪ SAMPLEFREE(n)
2: T ← INITIALIZE(S, xinit)
3: T ′ ← INITIALIZE(S, xgoal)

4: z← xinit, xmeet ← ∅
5: success := false
6: while success = false
7: EXPAND(T , z, xmeet)
8: if xmeet 6= ∅
9: σ∗ = PATH(xmeet, T ) ∪ PATH(xmeet, T ′)

10: success = true
11: else
12: if TERMINATE()
13: return Failure
14: else if V ′open = ∅
15: INSERT(T ′)
16: z← argmin

x′∈V′
open

{COST(x′, T ′)}

17: SWAP(T , T ′)
18: return σ∗



Algorithm 2 Initializes a Fast Marching Tree

1: function INITIALIZE(S, x0)
2: V ← {x0}
3: E ← ∅
4: Vunvisited ← S \ {x0}
5: Vopen ← {x0}
6: return T = (V, E ,Vunvisited,Vopen)

Algorithm 3 Fast Marching Tree Expansion Step

Require: Connection radius rn
1: function EXPAND(T = (V, E ,Vunvisited,Vopen), z, xmeet)
2: Vopen,new ← ∅
3: Znear ← NEAR(Vunvisited, z, rn)
4: for x ∈ Znear

5: Xnear ← NEAR(Vopen,x, rn)
6: xmin ← arg min

x′∈Xnear

{COST(x′, T )+COST(x′x)}

7: if COLLISIONFREE(xmin,x)
8: V ← V ∪ {x} . Add x to tree
9: E ← E ∪ {(xmin,x)} . Add edge to tree

10: Vunvisited ← Vunvisited\{x} . Mark x visited
11: Vopen,new ← Vopen,new ∪ {x} . Save x

12: if {x ∈ V ′ and COST(x, T )+COST(x, T ′) <
COST(xmeet, T ) + COST(xmeet, T ′)}

13: xmeet←x . Save x as best connection

14: Vopen ← (Vopen ∪ Vopen,new)\{z} . Add new
nodes to the wavefront; drop z from the wavefront

15: return T = (V, E ,Vunvisited,Vopen)

III-C.1 BFMT∗ – Variations: As for any bi-directional
planner, the correctness and computational efficiency of
BFMT∗ hinge upon two key aspects: (i) how computation
is interleaved among the two trees (in other words, which
wavefront at each step should be chosen for expansion), and
(ii) when the algorithm should terminate. For instance, as
an alternative tree expansion strategy (i.e., item (i)), one
could replace lines 16–17 with the “balanced trees” condition
which enforces more of a balanced search, maintaining equal
costs from the root within each wavefront such that the two
wavefronts propagate and meet roughly equidistantly in cost-
to-go from their roots:

16: z1 ← arg min
x∈Vopen

{COST(x, T )}

17: z2 ← arg min
x′∈V′

open

{COST(x′, T ′)}

18: (z, T )← arg min
(z1,T ),(z2,T ′)

{COST(zi, Ti)}

19: T ′ = COMPANION(T )

Similarly, as an alternative termination condition (i.e., item
(ii)), one might replace line 8 with the “best path” criterion:

8: z ∈
(
V ′ \ V ′open

)
Currently line 8 returns the first available path discovered, at
the moment that the two wavefronts touch at xmeet (which

Algorithm 4 Insertion of New Samples

Require: Connection radius rn
1: function INSERT(T = (V, E ,Vunvisited,Vopen))
2: while Vopen = ∅ and not TERMINATE()
3: s← SAMPLEFREE(1)
4: Vnear ← NEAR(V, s, rn)
5: while Vnear 6= ∅
6: xmin ← arg min

x∈Vnear

{COST(x, T )+COST(xs)}

7: if COLLISIONFREE(xmin, s)
8: V ← V ∪ {s} . Add s to tree
9: E ← E ∪ {(xmin, s)} . Add edge to tree

10: Vopen ← Vopen ∪ {s} . Add to wavefront
11: break
12: else
13: Vnear ← Vnear \ {xmin}
14: return T = (V, E ,Vunvisited,Vopen)

is not, in general, the lowest cost path). This alternative
condition, on the other hand, returns the exact optimal path
from xinit to xgoal through the given set S of n samples.
This change terminates BFMT∗ when the two wavefronts
have propagated sufficiently far through each other that no
better solution can be discovered. Intuitively-speaking, this
occurs at the first moment where the two trees have both
selected, at the current iteration or previously, the same node
as the minimum cost node z from their respective roots.

Though seemingly promising ideas, no appreciable differ-
ences in performance were found using the above criteria in
combination or otherwise; hence we report only the simplest
version of our planner as Algorithm 1.

IV ASYMPTOTIC OPTIMALITY OF BFMT∗

In this section, we prove the asymptotic optimality of
BFMT∗. The claim is proven assuming BFMT∗ acts without
the INSERT procedure (see Algorithm 4) on line 15, in
place of which “Failure” is reported instead. The proof for
the full algorithm then follows immediately by a fortiori
argument. We begin with a result essentially stating that any
path in Xfree may be “traced” arbitrarily well by connecting
randomly-distributed points from a sufficiently large sample
set covering the configuration space. We refer to this property
as probabilistic exhaustivity [20]. We then provide the
(asymptotic) optimality proof for BFMT∗ by showing that the
algorithm recovers a solution with cost no greater than that of
any tracing path. In the following, let ζd denote the volume
of the unit ball in d-dimensional Euclidean space. Also, let
the complement of a probabilistic event A be denoted by Ac.

IV-A Probabilistic exhaustivity
Let σ : [0, 1] → X be a path. Given a set of samples

(referred to as waypoints) {ym}
M
m=1 ⊂ X , we associate a

path y : [0, 1] → X that sequentially connects the nodes
y1, . . . ,yM with line segments. We consider the waypoints
{ym} to (ε, r)-trace the path σ if: (i)

∣∣∣∣ym − ym+1

∣∣∣∣ ≤ r
for all m, (ii) the cost of y is bounded as J(y) ≤ (1+ε)J(σ),
and (iii) the distance from any point of y to σ is no more than
r, i.e., mint∈[0, 1]||y(s)− σ(t)|| ≤ r for all s ∈ [0, 1]. In the
context of sampling-based motion planning, we may expect to



find closely-tracing {ym} as a subset of the sampled points,
provided the sample size is large. This notion is formalized
in the following theorem (Theorem 4.1), proved as Theorem
IV.5 in [20] for the general case of driftless control-affine
control systems, a special case of which is path planning
without differential constraints (as addressed in this paper).

Theorem 4.1 (Probabilistic exhaustivity): Let
(Xfree,xinit,xgoal) be a path planning problem and
let σ : [0, 1] → Xfree be a feasible path. Let
S = {xinit,xgoal} ∪ SAMPLEFREE(n), ε > 0, and for fixed
n consider the event An that there exist {ym}

M
m=1 ⊂ S,

y1 = xinit, yM = xgoal which (ε, rn)-trace σ, where

rn = 4 (1 + η)
1
d

(
1

d

) 1
d
(
µ(Xfree)

ζd

) 1
d
(

log n

n

) 1
d

for a parameter η ≥ 0. Then, as n→∞, the probability that
An does not occur is asymptotically bounded as P[Acn] =

O
(
n−

η
d log−

1
d n
)

.

IV-B Asymptotic optimality (AO)

We are now in a position to prove the asymptotic optimality
of BFMT∗, which represents the main result of this section.
We start with an important lemma, which relates the cost of
the path returned by BFMT∗ to that of any feasible path.

Lemma 4.2 (Bi-directional FMT∗ cost comparison): Let
σ : [0, 1]→ Xfree be a feasible path with strong δ-clearance.
Consider running BFMT∗ to completion with n samples and
a connection radius:

rn = 4 (1 + η)
1
d

(
1

d

) 1
d
(
µ(Xfree)

ζd

) 1
d
(

log n

n

) 1
d

for a parameter η ≥ 0. Let Jn denote the cost of the path
returned by BFMT∗. Then for fixed ε > 0:

P[Jn > (1 + ε)J(σ)] = O
(
n−

η
d log−

1
d n
)
.

Proof: If xinit = xgoal, then BFMT∗ immediately
terminates with Jn = 0, trivially satisfying the claim. Thus
we assume that xinit 6= xgoal. Consider n sufficiently
large so that rn ≤ min

{
δ/2 , ε ||xinit − xgoal||

/
2
}

, and
apply Theorem 4.1 to produce, with probability at least
1−O

(
n−

η
d log−

1
d n
)

, a sequence of waypoints {ym}Mm=1 ⊂
S, y1 = xinit, yM = xgoal which (ε/2 , rn)-trace σ. We
claim that in the event that such {ym} exists, the BFMT∗
algorithm returns a path with cost upper bounded as Jn ≤
J(y) + rn ≤ (1 + ε/2)J(σ) + (ε/2)J(σ) = (1 + ε)J(σ). It
is clear that the desired result follows from this claim.

Assume the existence of an (ε/2 , rn)-tracing {ym}. Let
B(x, r) represent a ball of radius r centered at a sample
x. Note that our upper bound on rn implies that B(ym, rn)
intersects no obstacles. This follows from our choice of rn
and the distance bound

inf
s∈Xobs

||ym − s|| ≥ inf
s∈Xobs

||σm − s|| − ||ym − σm||

≥ 2rn − rn ≥ rn.
where σm is the closest point of σ to ym. This fact, along
with

∣∣∣∣ym − ym+1

∣∣∣∣ ≤ rn for all m, implies that when a
connection is attempted for ym, both ym−1 and ym+1 will
be in the search radius and no obstacles will lie within that
search radius. Running BFMT∗ to completion generates one

cost-to-come tree Ti(Vi, Ei,Vopen,i,Vunvisited,i) and one cost-
to-go tree Tg(Vg, Eg,Vopen,g,Vunvisited,g) rooted at xinit and
xgoal, respectively (the subscripts i and g are used to identify
the root of a tree without ambiguity). The above discussion
ensures that the trees will meet and the algorithm will return
a feasible path when it terminates – the path outlined by the
waypoints {ym} disallows the possibility of failure.

For each sample point x ∈ S, let Ji(x) := COST(x, Ti)
denote the cost-to-come of x from xinit in Ti, and let
Jg(x) := COST(x, Tg) denote the cost-to-go from x to
xgoal in Tg. If x is not contained in a tree Tk, k = {i, g},
we set Jk(x) = ∞. When the algorithm terminates, we
know there exists a sample point xmeet ∈ Vi ∩ Vg where
the two trees meet; indeed we select the particular meeting
point xmeet = arg minx∈Vi∩Vg Ji(x) + Jg(x). Then Jn =
Ji(xmeet) + Jg(xmeet). We now note a lemma bounding the
costs-to-come of the {ym}, the proof of which may be found
as an inductive hypothesis (Eq. 5) in Theorem VI.1 of [20].

Lemma 4.3: Let m ∈ {1, . . . ,M}. If Ji(ym) < ∞,
then Ji(ym) ≤

∑m−1
k=1

∣∣∣∣yk − yk+1

∣∣∣∣. Otherwise if ym /∈
Vi, then Ji(xmeet) ≤

∑m−1
k=1

∣∣∣∣yk − yk+1

∣∣∣∣. Similarly if
Jg(ym) < ∞, then Jg(ym) ≤

∑M−1
k=m

∣∣∣∣yk − yk+1

∣∣∣∣; oth-
erwise Jg(xmeet) ≤

∑M−1
k=m

∣∣∣∣yk − yk+1

∣∣∣∣.
To bound the performance Jn of BFMT∗, there are two

cases to consider. Note in either case we find that Jn ≤
J(y) + rn, thus completing the proof.

Case 1: There exists some ym ∈ Vi ∩ Vg .
In this case, Jn = Ji(xmeet) + Jg(xmeet) ≤
Ji(ym) + Jg(ym) < ∞ by our choice of xmeet.
Then applying Lemma 4.3 we see that Jn ≤
Ji(ym) + Jg(ym) ≤

∑M−1
k=1

∣∣∣∣yk − yk+1

∣∣∣∣ =
J(y).

Case 2: There are no ym ∈ Vi ∩ Vg .
Consider m̃ = max{m | Ji(ym) <∞}. Then
ym̃ ∈ Vi and ym̃ can not have been the minimum
cost element of Vopen,i at any point during algo-
rithm execution or else we would have connected
ym̃+1 ∈ Vi. Let z denote the minimum cost element
of Vopen,i when xmeet was added to Vi. We have
the bound:

Ji(xmeet) ≤ Ji(z) + rn≤Ji(ym̃) + rn

≤
m−1∑
k=1

∣∣∣∣yk−yk+1

∣∣∣∣ + rn. (1)

By our assumption for this case, ym̃ /∈ Vg.
Then by Lemma 4.3 we know that Jg(xmeet) ≤∑M−1

k=m

∣∣∣∣yk − yk+1

∣∣∣∣. Combining with the pre-
vious inequality yields Jn = Ji(xmeet) +
Jg(xmeet) ≤

∑M−1
k=1

∣∣∣∣yk − yk+1

∣∣∣∣ + rn = J(y) +
rn.

Remark 4.4 (Tightened bound for connection radius):
As discussed in [20], for the sake of clarity the constant term
4 in the expression for rn is greater than is necessary for
Theorem 4.1 to hold. A more careful argument along the lines
of the original FMT∗ AO proof [10] would suffice to show

that rn = 2(1 + η)1/d ·
(
1
d

)1/d(µ(Xfree)
ζd

)1/d(
log(n)
n

)1/d



satisfies the theorem as well.
Remark 4.5 (Alternative termination criteria): The proof

holds as well for the different expansion and termination
criteria discussed in Section III-C.1. However, due to space
constraints the details are omitted.

We now have everything we need to show that BFMT∗
is asymptotically-optimal. The next theorem defines this
formally.

Theorem 4.6 (BFMT∗ asymptotic optimality): Assume a
δ-robustly feasible path planning problem as defined in
Section II with optimal path σ∗ of cost J∗. Then BFMT∗
converges in probability to σ∗ as the number of samples
n→∞. Specifically, for any ε > 0,

lim
n→∞

P[Jn > (1 + ε)J∗] = 0

Proof: The proof follows as a corollary to Lemma 4.2.
By our δ-robustly feasible assumption, we can find a strong
δ-clearance feasible path σ : [0, 1]→ Xfree that approximates
σ∗ with cost J(σ) < (1 + ε/3)J∗ (i.e., less than factor ε/3
from J∗), for any ε > 0. By Lemma 4.2, we can choose
n sufficiently large such that BFMT∗ returns an ε/3 cost
approximation to the approximant:

P
[
Jn > (1 + ε/3)

2
J∗
]
< P[Jn > (1 + ε/3)J(σ)]

= O
(
n−

η
d log−

1
d n
)

To approach the optimal path, let the number of samples
n→∞. It follows that, for any η ≥ 0:

lim
n→∞

P
[
Jn > (1 + ε/3)

2
J∗
]
< lim
n→∞

O
(
n−

η
d log−

1
d n
)

= 0

Now we relate this to the original claim. First suppose that
ε ≤ 3. From (1 + ε/3)

2 ≤ 1+ε, the event {Jn > (1 + ε)J∗}
is a subset of the event

{
Jn > (1 + ε/3)

2
J∗
}

, hence:

lim
n→∞

P[Jn > (1 + ε)J∗] ≤ lim
n→∞

P
[
Jn > (1 + ε/3)

2
J∗
]

=0.

Because the probability is monotone-decreasing in ε as ε
increases, the statement holds for all ε > 3 as well (to see this,
apply Lemma 4.2 again for m sufficiently large to handle ε =
3; then by similar argument as above P[Jm > (1 + ε)J∗] <

P[Jm > (1 + 3)J∗] = O
(
m−

η
d log−

1
d m

)
and take the

limit as m → ∞). Hence limn→∞ P[Jn > (1 + ε)J∗] = 0
holds for arbitrary ε, and we see that BFMT∗ converges in
probability to the optimal path, as claimed.

Remark 4.7 (Convergence rate): Note that we can also
translate the convergence rate from Lemma 4.2 to the setup
of Theorem 4.6, which does not require strong δ-clearance.
For any ε > 0, the optimal path can be approximated by a
strong-δ-clear path with cost less than (1+ε)J(σ) and we can
focus on approximating that path to high-enough precision
to still approximate the optimal path to within (1 + ε). Since
the convergence rate in Lemma 4.2 only contains ε in the
rate’s constant, the big-O convergence rate remains the same.
This generalizes the convergence rate result in [11], which
only applied to a specific obstacle-free configuration space,
initial configuration, and goal region.

IV-C Sampling and cost generalizations
It is worth mentioning that the asymptotic optimality (AO)

properties of BFMT∗ are not limited to uniform configuration
sampling and arc-length cost functions. For example, if one

has prior information about areas that the optimal path is
unlikely to pass through, it may be advantageous to consider
a non-uniform sampling strategy that downsamples these
regions. As long as the sampling density is lower-bounded by
a positive number over the configuration space, BFMT∗ can be
slightly altered (by merely increasing rn by a constant factor)
to ensure it stays AO. The argument is analogous to that
made in [11], and essentially proceeds by making the search
radius wide enough to balance out the detrimental effect of
the lower sampling density (in some areas). An additional
common concern is when the cost is not arc-length, but some
other metric or line integral cost. In either case, BFMT∗
need only consider cost balls instead of Euclidean balls when
making connections. Details for adjusting the algorithm and
why the AO proof still holds can be derived from [11]. The
argument basically shows that the triangle inequality either
holds exactly (for metric costs) or approximately, and that
this approximation goes away in the limit as n→∞.

V SIMULATIONS

In this section, we provide numerical path-planning exper-
iments that compare the performance of BFMT∗ with other
sampling-based, asymptotically-optimal planning algorithms
(namely, FMT∗, RRT∗, and PRM∗)2. Given a planning
workspace and query, we aim to observe the quality of the
solution returned as a function of the execution time allotted
to the algorithm. Here dynamic constraints are neglected
and arc-length is used as path cost. As a basis for quality
comparison between incremental or ”anytime” planners (such
as RRT∗) and non-incremental planners (such as BFMT∗,
which generate solutions via sample batches), we vary the
number of samples drawn by the planners during the planning
process (which in essence serves as a proxy to execution time).
Note sample count has a different connotation depending on
the planner that will not necessarily be the number of nodes
stored in the constructed solution graph – for RRT∗ (with one
sample drawn per iteration), this is the number of iterations,
while for FMT∗, PRM∗, and BFMT∗, this is the number of
free space samples taken during initialization.

V-A Simulation Setup

To generate simulation data for a given experiment, we
queried the planning algorithms once each for a series of
sample counts, recorded the cost of the solution returned, the
planner execution time3, and whether the planner succeeded
or not, then repeated this process over 50 trials. To ensure a
fair comparison, each planning algorithm was tested using
the Open Motion Planning Library (OMPL) v1.0.0 [21],
which provides high-quality implementations of many state-
of-the-art planners and a common framework for executing
motion plans. In this way, we could ensure that all algorithms
employed the exact same primitive routines (e.g., nearest-
neighbor search, collision-checking, data handling, etc.), and
measure their performances fairly. Regarding implementation,

2Existing state-of-the-art sampling-based, bi-directional algorithms
(namely, RRT-Connect and SBL) were initially also included. However,
average costs for RRT-Connect and SBL were roughly 2-4x greater, which
occluded the details of other curves; they were thus omitted for clarity

3Code for all experiments was written in C++. Corresponding programs
were compiled and run on a Linux-operated PC, clocked at 2.4 GHz and
equipped with 7.5 GB of RAM.



BFMT∗, FMT∗, and PRM∗ used η = 0 from Lemma 4.2
for the nearest-neighbor radius rn in order to satisfy the
theoretical bounds provided in Section IV and [6]. For RRT∗,
we used the default OMPL settings; namely, a 5% goal bias
and a steering parameter equal to 20% of the maximum extent
of the configuration space (except for the α-puzzle, in which
case a value of 1.1 was found to work much better). For
FMT∗, we included the same INSERT routine as BFMT∗
for configuration resampling upon failure. For all algorithms,
early termination (e.g., using TERMINATE for BFMT∗) was
suppressed by defining a 1000 second time limit, well above
each planner’s worst-case execution time.

Before proceeding, note that each marker shown on the
plots throughout this section represents a single simulation
at a fixed sample count. The points on the curves, however,
represent the mean cost/time of successful algorithm runs only
for a particular sample count, with error bars corresponding
to one standard deviation of the 50 run sample mean.4 Sample
counts varied from the order of 200 to 2000 points for 2D
problems, from 1000 to 30000 points for 3D problems, and
500 to 4000 points for the hypercube examples.

V-B Results and Discussion

Here we present benchmarking results (average solution
cost versus average execution times and success rates)
comparing BFMT∗ to other state-of-the-art sampling-based
planners. Three benchmarking test scenarios were considered:
(1) a 2D “bug trap” and (2) a 2D “maze” problem for a convex
polyhedral robot in the SE(2) configuration space, as well as
(3) a challenging 3D problem called the “α-puzzle” in which
we seek to untangle two loops of metal (non-convex) in the
SE(3) configuration space. All problems were drawn directly
from OMPL’s bank of tests, and are illustrated in Fig. 2.
In each case, collision-checks relied on OMPL’s built-in
collision-checking library, FCL. Additionally, to tease out the
performance of BFMT∗ relative to FMT∗ in high-dimensional
environments, we also studied a point mass robot moving in
cluttered unit hypercubes of 5 and 10 dimensions.5

(a) SE(2) bug trap (b) SE(2) maze (c) SE(3) α-puzzle

Fig. 2: Depictions of the three OMPL rigid-body planning
problems

Figure 3 shows the results for each BFMT∗, FMT∗, RRT∗,
and PRM∗. Performance here is measured by execution time
on the x-axis and solution cost on the y-axis—high quality
data points are therefore located in the lower-left corner

4Standard deviation of the mean indicates where we expect with one-σ
confidence the distribution mean to lie based on the 50-run sample mean,
and is related to the standard deviation of the distribution by σµ = σ/

√
50.

5We populated the space to 50% obstacle coverage with randomly-sized,
axis-oriented hyperrectangles. xinit was set to the center at [0.5, . . . , 0.5],
with the goal xgoal at the ones-vector (i.e., [1, . . . , 1]).

(low-cost solutions obtained quickly). The plots reveal that
both FMT∗ and BFMT∗ for the most part outperform RRT∗
as well as PRM∗. In particular, BFMT∗ and FMT∗ achieve
higher success rates (always a flat 100% for the cases studied)
in shorter time. To extract further information, we need to
examine each test in detail.

In the Bug Trap and Maze problems, BFMT∗ notably
generates the same cost-time curve as FMT∗ (meaning they
return solutions of very similar cost for a given sample
count), but with data points shifted to the left (indicating they
were obtained in shorter execution time). Though not shown
due to slow running times for PRM∗ (whose results had to
be truncated to clarify detail), all planners appear to tend
towards similar low-cost solutions as more execution time
was allocated. However BFMT∗ and FMT∗ seem to converge
to an optimum much faster, particularly for the Maze problem
(on the order of 1.5 and 2.0 seconds respectively, compared
to 3-4 seconds for RRT∗ and 5-7 seconds for PRM∗). This
contrast becomes even more evident for the α-puzzle. Here
we see an unusual spread of solutions – one in a band at
around 500 cost and another at around 275. These indicate
the presence of two solution types, or homotopy classes:
one corresponding to the true α-puzzle solution, and another
less-efficient path. This appears to have yielded a “bump” in
the BFMT∗ cost-curve, where increasing the sample count
momentarily gives an increased average cost. We believe this
is a result of how BFMT∗ trees interconnect; at this count, by
unlucky circumstance, the longer homotopy seems to be found
first more often than usual. But as proved in Section IV, the
behavior disappears as n→∞. Note RRT∗ seems to avoid
this issue through goal biasing. Despite the difficult problem
structure, BFMT∗ finds the cheaper homotopy faster than
other planners, with many more of its data points clustered
in the lower-left corner, generally at lower costs and times
than RRT∗ and of equal quality but faster times than FMT∗.

These results suggest that BFMT∗ tends to an optimal cost
at least as fast as the other planners, and sometimes much
faster. To shed light on the relative performance of FMT∗
and BFMT∗ further, we compare them in higher dimensions.
Results for the 5D and 10D hypercube are shown in Fig. 4
(success rates were again at 100%, and were thus omitted).
Here BFMT∗ substantially outperforms FMT∗, particularly
as dimension increases, with convergence in roughly 0.5 and
1.4 seconds (5D), and 5 and 20 seconds (10D) on average.
This suggests that reachable volumes play a significant role in
their execution time. The relatively small volume of reachable
configurations around the goal at the corner implies that
the reverse tree of BFMT∗ expands its wavefront through
many fewer states than the forward tree of FMT∗ (which
in fact needlessly expands towards the zero-vector); tree
interconnection in the bi-directional case prevents its forward
tree from growing too large compared to unidirectional search.
This is pronounced exponentially as the dimension increases.
In trap or maze-like scenarios, however, bi-directionality does
not seem to change significantly the number of states explored
by the marching trees, leading to comparable performance
for the SE(2) bug-trap and maze. Note we expect a greater
contrast in execution times in favor of BFMT∗ as the cost of
collision-checking increases, such as with many non-convex
obstacles or in time-varying environments.
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Fig. 3: Simulation results for the three OMPL scenarios.
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Fig. 4: FMT∗ and BFMT∗ results for 5D and 10D cluttered
hypercubes (50% coverage; all success rates were 100%).

VI CONCLUSION

In this paper, we presented a bi-directional, sampling-based,
asymptotically-optimal motion planning algorithm named
BFMT∗, for which we rigorously proved its optimality and
characterized its convergence rate – arguably a first in the
field of bi-directional sampling-based planning. Numerical
experiments in Rd, SE(2), and SE(3) revealed that BFMT∗
tends to an optimal solution at least as fast as its state-of-
the-art counterparts, and in some cases significantly faster.
Convergence rates are expected to improve with paralleliza-
tion, in which each tree is grown using a separate CPU.

Future research will examine BFMT∗’s interaction with
more advanced techniques, such as adaptive sampling near
narrow passages or sample biasing in INSERT (Algorithm 4)
towards failed wavefronts. We also plan to extend BFMT∗ to
dynamic environments through lazy re-evaluation (leveraging
its tree-like forward and reverse path structures) in a way
that reuses previous results as much as possible. Maintaining
bounds on run-time performance and solution quality in this

context will remain the greatest challenges. Ultimately, we
hope that BFMT∗ will enable fast, easy-to-implement re-
planning with proven performance guarantees, analogous to
planning in static environments as we have shown here.
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