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A SAMPLING-BASED APPROACH TO SPACECRAFT
AUTONOMOUS MANEUVERING WITH SAFETY SPECIFICATIONS

Joseph A. Starek∗, Brent Barbee†, and Marco Pavone‡

This paper presents a method for safe spacecraft autonomous maneuvering that leverages
robotic motion planning techniques to spacecraft control. Specifically, the scenario we
consider is an in-plane rendezvous of a chaser spacecraft in proximity to a target spacecraft
at the origin of the Clohessy-Wiltshire-Hill frame. The trajectory for the chaser spacecraft
is generated in a receding-horizon fashion by executing a sampling-based robotic motion
planning algorithm named Fast Marching Trees (FMT∗), which efficiently grows a tree of
trajectories over a set of probabilistically-drawn samples in the state space. To enforce safety,
the tree is only grown over actively safe samples, from which there exists a one-burn collision
avoidance maneuver that circularizes the spacecraft orbit along a collision-free coasting arc
and that can be executed under potential thruster failures. The overall approach establishes
a provably-correct framework for the systematic encoding of safety specifications into the
spacecraft trajectory generation process and appears promising for real-time implementation
on orbit. Simulation results are presented for a two-fault tolerant spacecraft during autonomous
approach to a single client in Low Earth Orbit.

INTRODUCTION

Autonomous execution of spacecraft proximity operations requires the real-time computation of spacecraft
trajectories that must satisfy collision avoidance, plume impingement [1,2], sensor field-of-view, and a number
of other complex navigation constraints [3, Ch. 4]. To make matters worse, the trajectory generation process is
complicated by the need to meet stringent safety specifications in the face of a wide variety and number of
failure modes [4]. The objective of this paper is to devise a computationally-efficient method for enforcing
infinite-horizon hard collision safety specifications for autonomous spacecraft proximity operations in the
face of probabilistic control failures. Specifically, this work embeds the rendezvous trajectory design problem
for an impulsive spacecraft within the context of safety-constrained robotic motion planning [5] in order
to robustify the planning process to thruster stuck-off failures and facilitate real-time autonomous escape
trajectory generation on orbit. Due to the fuel-limited nature of many spacecraft missions, emphasis is placed
on finding minimum-∆v escape maneuvers in order to improve mission reattempt opportunities. Along these
lines, we prioritize the use of active safety measures (which allow actuated Collision Avoidance Maneuvers
or CAMs) over passive safety guarantees (which shut off all thrusters and restrict the system to zero control,
thereby conservatively limiting the search space of possible escape maneuvers to coasting arcs).

Our approach extends earlier sampling-based treatments of spacecraft autonomous maneuvering [5–7]
through the use of actuated escape maneuvers with trajectory safety constraints defined by positively-invariant
sets, similar, e.g., to [8–12]. Our key contributions are the deterministic guarantee of safe transfers up to a given
thruster fault tolerance under potential stuck-off failures, the use continuous full-state dynamics (including
attitude), and the ability to use arbitrary state-space samples. Our work automates (roughly-speaking) the
safety-constrained rendezvous design process taken by Barbee et al. [13].
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The structure of the paper is as follows. We begin by formalizing the definition of infinite-time vehicle
safety under control errors, then reformulate it as a finite-horizon mathematical optimization problem using
the notion of safe, stable positively-invariant sets. The problem is designed to certify the safety of a particular
vehicle state using the standard sampling and collision-checking routines of sampling-based robotic motion
planning algorithms. If enforced for all samples, safety of the resulting motion planning solution is assured.
This framework is then specialized to spacecraft maneuvering in Low Earth Orbit (LEO), from which our
active safety strategy is motivated and derived. Numerical simulations using Fast Marching Trees (FMT∗)
then follow, illustrating the method’s effectiveness and improvement over safety-unconstrained planning.

VEHICLE SAFETY

Consistent with the notions proposed by Schouwenaars et al. [14], Wehse [3, 4.1.2], and Fraichard [15], the
definition of vehicle safety in this paper is taken as the following:

Definition 1 (Vehicle Safety). A vehicle state is considered safe if and only if there exists, under the worst-
possible environment and failure conditions, a collision-free, dynamically-feasible trajectory satisfying the
constraints that navigates the vehicle to a sequence of states in which it can remain indefinitely.

Note indefinitely∗ is a critical component of the definition. Trajectories without infinite-horizon safety
guarantees can ultimately violate constraints [11] and are therefore a potential risky choice that can defeat
the purpose of using a hard constraint in the first place. Hence throughout this work we will impose safety
constraints over an infinite-horizon (or, as we will show using invariant sets, an effectively infinite horizon).

Consider now a vehicle system with state vector x ∈ X and control vector u ∈ U(x) that evolves over
time t ∈ T = [t0, ∞) according to dynamics ẋ = f(x,u, t). Let Tfail ⊆ T represent the set of possible
failure times (for instance, a set of prescribed burn times {τi}, the final approach phase Tapproach, or the
entire maneuver duration T ). When a failure occurs, control authority is lost through a reduction in actuator
functionality, negatively impacting system controllability. Let Ufail(x) ⊂ U(x) represent the new control
set, where we assume that 0 ∈ Ufail for all x (i.e. we assume that no actuation is always a feasible option).
Mission safety is commonly imposed in two different ways [3, 4.4]:

• Passive Safety: For all possible tfail ∈ Tfail, ensure that x(tfail) satisfies Definition 1 with u(t) = 0 for
all t ≥ tfail. For spacecraft, this means its coasting arc from the point of failure must be safe for all time
(though practically this is imposed only over a finite horizon).

• Active Safety: For all possible tfail ∈ Tfail and failure modes Ufail, design actuated collision avoidance
maneuvers to satisfy Definition 1 with u(t) ∈ Ufail for all t ≥ tfail, where u(t) is not necessarily
restricted to 0.

In much of the literature, only passive safety is considered out of a need for tractability (to avoid verification
over a combinatoric explosion of failure mode possibilities) and in order to capture the common failure mode
in which control authority is lost completely. Though considerably simpler to implement, this approach
potentially neglects many mission-saving control policies.

Maneuver to a safe, stable, positively-invariant set

Instead of evaluating trajectory safety for all future times t ≥ tfail, it is generally more practical to consider
finite-time solutions starting at x(tfail) that terminate at a point inside a safe positively invariant set Xinvariant. If
the maneuver is safe and the invariant set is safe for all time, then safety of the vehicle is assured.

Definition 2 (Positively Invariant Set). A setM is positively invariant with respect to ẋ = f(x) if and only if
x(0) ∈M⇒ x(t) ∈M, t ∈ R+.

This yields the following problem for finite-time verification of trajectory safety:
∗“Indefinite” here implies sufficiently-long for all practical purposes under the accuracy of the dynamics model.
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Definition 3 (Finite-Time Trajectory Safety Verification). For all tfail ∈ Tfail and for all Ufail(x(tfail)) ⊂
U(x(tfail)), there exists {u(τ), τ ≥ tfail} ∈ Ufail(x(tfail)) and T > tfail such that x(τ) ∈ Xfree, tfail ≤ τ ≤ T
and x(T ) ∈ Xinvariant ⊆ Xfree.

where T is some finite safety verification horizon time. Though in principle any safe positively-invariant set
Xinvariant is acceptable, not just any will do in practice; in real-world scenarios, unstable trajectories caused by
model uncertainties could cause state divergence towards configurations whose safety has not been verified.
Hence care must be taken to use only stable positively-invariant sets∗.

Combining Definition 3 with other control constraints and slightly adjusting the notation, vehicle safety
verification after a failure at x0 can be expressed in its full generality as the following optimization problem in
decision variables tf ∈ [t0, ∞), x(t) ∈ RN , and u(t) ∈ RM , for t ∈ [t0, tf]:

minimize
tf,x(t),u(t)∈Ufail(x0)

J(x(t),u(t), t)

subject to ẋ(t) = f(x(t),u(t), t) (Dynamics)
x(t0) = x0 (Initial Condition)
x(tf) ∈ Xinvariant (Invariant Set Termination)
gi(x,u) ≤ 0, i = [1, . . . , p] (Inequality Constraints)
hj(x,u) = 0, j = [1, . . . , q] (Equality Constraints)

(1)

where here gi and hj represent the inequality and equality constraints, respectively, imposed for ensuring
escape maneuver safety (e.g., to avoid a collision), and Xinvariant denotes the space of safe, invariant state
trajectories. Typically we seek any feasible solution following a failure, in which case we can take J = 1.

Fault-Tolerant Safety Strategy

The difficulty of solving the finite-time trajectory safety problem lies in the fact that a feasible solution
must be found for all possible failure times (typically assumed to be any time during the mission) as well as
for all possible failures. To illustrate, for a K-fault tolerant spacecraft with N control components (thrusters,
momentum wheels, CMG’s, etc) that we each model as either “operational” and “failed,” this yields a total of:

Nfail =

K∑
k=0

(
N
k

)
=

K∑
k=0

N !

(N − k)!k!

possible optimization problems that must be solved for every time tfail along the design trajectory†. By any
standard, this is intractable, and hence explains why so often passive safety guarantees are selected (requiring
only one control configuration check instead of Nfail, since we prescribe u = 0 which we know lies in Ufail
given our assumption. This is analogous to setting k = N with K , N ). One idea for simplifying the problem
while still satisfying safety (Equation (1)), which we employ here, consists of the following strategy:

Theorem 4 (Fault-Tolerant Active Safety). To solve Equation (1), it is sufficient (but not necessary) to
implement the following procedure:

1. From each x(tfail), prescribe a Collision-Avoidance Maneuver (CAM) ΠCAM (that is, an escape policy)
that gives a horizon time T and escape control sequence u = ΠCAM (x) designed to automatically
satisfy u(τ) ⊂ U for all tfail ≤ τ ≤ T and x(T ) ∈ Xinvariant.

2. For each possible failure mode Ufail(x(tfail)) ⊂ U(x(tfail)) up to tolerance K, determine if the control
law is feasible; that is, see if u = ΠCAM (x) ⊂ Ufail for the particular failure in question.

∗One way to determine and assess the stability of these positively-invariant sets is the well-known LaSalle Invariant Set Theorem [16]
†Each spacecraft configuration under k possible failures of N control components can be modeled as choosing k components out of

N for failure, which we sum up to tolerance K.
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This effectively removes decision variables u from Equation (1), allowing simple numerical integration
for satisfaction of the dynamic constraints, an a posteriori verification of the control constraints gi and hj ,
and a final test of control feasibility (a simple LP for spacecraft with body-fixed actuators). This checks if
the given CAM, guaranteed to provide a safe escape route, can actually be accomplished in the given failure
situation. The approach is conservative due to the fact that the control is imposed and not derived; however,
the advantage is a greatly simplified optimal control problem with difficult-to-handle constraints relegated to a
posteriori checks. Note that formal definitions of safety require that this be satisfied for all possible failure
modes of the spacecraft — we do not avoid the combinatoric explosion of Nfail. However, the feasibility
problems are each greatly simplified — reduced to control allocation LP’s for the case of impulsively-actuated
spacecraft – and with K typically restricted to at most 3, the problem remains tractable. The difficult part,
then, lies in computing ΠCAM, but this can easily be derived in an off-line fashion. Hence, the strategy should
work well for vehicles with difficult, non-convex objective functions and constraints, and particularly well in
cases where the problem can be convexified by removing the control vector u from the decision variables.

SAFETY IN CWH DYNAMICS

We now apply the ideas of the previous section to the specific case of an in-plane rendezvous of a servicing
spacecraft (or “chaser”) in proximity to a target spacecraft (or “client”) in circular orbit at the origin of the
Clohessy-Wiltshire-Hill (CWH) Local-Vertical, Local-Horizontal (LVLH) frame. When resolved in this
rotating reference frame, the chaser dynamics linearized about the target orbit have been shown to obey the
following unforced state-transition equations [17]. Let θ = n(t− t0) be the true anomaly/polar angle of the
client relative to an inertial axis in its orbital plane, where n is the client mean motion. As shown in Figure 1,
let δx, δy, and δz be the cross-track (radial), in-track (circumferential) and out-of-plane positions of the chaser
relative to the client, and let δẋ, δẏ, and δż be its corresponding velocities. Then:

δx = (4− 3 cos θ)δx0 +

(
1

n
sin θ

)
δẋ0 +

(
2

n
(1− cos θ)

)
δẏ0 (2a)

δy = (6 sin θ − 6θ)δx0 +

(
2

n
(cos θ − 1)

)
δẋ0 + δy0 +

(
1

n
(4 sin θ − 3θ)

)
δẏ0 (2b)

δz = (cos θ)δz0 +

(
1

n
sin θ

)
δż0 (2c)

δẋ = (3n sin θ)δx0 + (cos θ)δẋ0 + (2 sin θ)δẏ0 (2d)
δẏ = (6n(cos θ − 1))δx0 + (−2 sin θ)δẋ0 + (4 cos θ − 3)δẏ0 (2e)
δż = (−n sin θ)δz0 + (cos θ)δż0 (2f)

A “Keep-Out Zone” (KOZ), typically ellipsoidal and denoted as XKOZ, is defined about the target in the
CWH frame. Throughout its approach, the chaser must certify that it will not enter this KOZ up to a thruster
fault tolerance. Per Definition 3, this necessitates a search for a safe invariant set for finite-time escape along
with, as outlined by Theorem 4, the definition of an escape policy ΠCAM, which we describe next.

CAM Policy

For mission safety following a failure under CWH dynamics, Definition 3 requires us to find a terminal state
in an invariant set Xinvariant entirely contained within the free state space Xfree. We choose for Xinvariant the set
of circularized orbits that skip the radial band spanned by the KOZ ellipse. The reason this is necessary is that
any attempts to circularize within this band would result in an eventual collision with the target KOZ, either in
the short-term or after nearly one full synodic period. In the event of an unrecoverable failure or abort scenario
requiring longer than one synodic period to resolve from the ground, circularization here would jeopardize
the target and fail to satisfy Definition 1. Such a band is called a zero-thrust “Region of Inevitable Collision
(RIC),” as without intervention a collision with the KOZ is imminent and certain. Fortunately, the zero-thrust
RIC, which we denote as Xric, can be identified by inspection in this case; its complement, therefore, is a
safe invariant set Xinvariant that we can use to terminate safe escape maneuvers. As a result, for the coplanar
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Figure 1. Illustration of the CWH targeting scenario and Keep-Out Zone (KOZ). n is
the mean motion of the target spacecraft orbit, θ is its mean anomaly, t denotes time,
δr and δv the chaser relative position and velocity, and (δx, δy, δz) LVLH coordinates.
The frame rotates with the target as it orbits the gravitational attractor, µ.

case, any CAM policy that circularizes the chaser orbit at a position outside of this radial band would be
guaranteed safe. See Equations (3)–(5) for a mathematical description, and Figure 2 for an illustration.

XKOZ =
{

x
∣∣∣ xTRx ≥ 1, where R = diag

(
ρ−2
δx , ρ

−2
δy , ρ

−2
δz , 0, 0, 0

)
, with ρi representing (3)

the ellipsoidal KOZ semi-axis in the i-th LVLH frame axis direction.}

Xric =

{
x

∣∣∣∣ |δx| < ρδx, δẋ = 0, δẏ = −3

2
nδx

}
⊃ XKOZ (4)

Xinvariant =

{
x

∣∣∣∣ |δx| ≥ ρδx, δẋ = 0, δẏ = −3

2
nδx

}
= X c

ric (5)

(a) Safe circularization burn zonesXinvariant for pla-
nar CWH dynamics. Any circularization attempts
inside Xric will result in eventual penetration of
the client KOZ, as indicated by the arrows.

KOZ

Circularization RIC

Reference Line

Chaser

(b) Inertial view of the radial band spanned by the
KOZ that defines the RIC. Its complement shows
the invariant positions in Xinvariant used for safe
trajectory escape maneuver targeting.

Figure 2. Visualizing the Safe and Unsafe Circularization Regions Used by the CAM Safety Policy

In short, our CAM policy to safely escape from a state x at which the spacecraft arrives (possibly under
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failures) at time t consists of the following:

1. Coast from x(t) to some new T > t such that x(T−) lies at a position in Xinvariant.

2. Circularize the orbit at x(T ) such that x(T+) ∈ Xinvariant.

3. Coast along the new orbit (horizontal drift along the in-track axis in the CWH relative frame) in Xinvariant
until allowed to continue the mission (e.g., after approval from ground operators).

Determining the Circularization Time, T

In the event of a thruster failure at state x(t) that requires an emergency CAM, the time T > t at which
to attempt a circularization maneuver after coasting from x(t) becomes a degree of freedom. As we intend
to maximize the recovery chances of the chaser spacecraft in the event of a failure, we choose T so as to
minimize the cost of the circularization burn ∆vcirc, whose magnitude we denote ∆vcirc. Details on the
approach, heavily optimized for speed, have been relegated to Appendix A.

Verifying CAM Policy Feasibility

Once the circularization burn time is determined, feasibility of the escape trajectory under the failure
configuration at x(t) is all that remains to determine whether the chaser spacecraft can execute it. It can be
shown that, when attempting to solve the minimum-control-effort allocation problem for rigid-body spacecraft
(in this case, the minimum-∆v allocation problem), thruster magnitudes can be obtained by solving a simple
LP [18], typically accomplished on the order of milliseconds.

Actively-Safe CWH Targeting

Combining these tools together, CWH targeting with built-in actively-safe CAM trajectories can be repre-
sented collectively as Algorithms 1–2. The approach is presented in the form of two subroutines: SAMPLEFREE
and COLLISIONFREE, standard functions within the sampling-based motion planning paradigm. Sampling-
based planning [5, 19, 20] essentially breaks down a global continuous trajectory optimization problem into
a series of smaller, simpler optimal control problems through intelligent sampling and expansion towards
intermediate waypoints in the collision-free configuration space Xfree. SAMPLEFREE implements a sampling
scheme in which we save only those states in the configuration space X for which we can find escape policies
as described previously. COLLISIONFREE tests whether a steering trajectory formulated between two sampled
states xi and xf meets mission constraints, avoids the target KOZ, and satisfies the control allocation problem
for both the nominal path as well as all CAMs under all potential failure conditions.

Algorithm 1 Samples the free configuration space. Ensures that only actively-safe sample points are available
for expansion during execution of the FMT∗ algorithm.

1: function SAMPLEFREE(X , Nsamples, t0)
2: Initialize S as S ← ∅
3: while S has less than Nsamples samples
4: Sample a new state as s← SAMPLE(X )
5: Implement the CAM policy from s as [uCAM, T ]← ΠCAM(s(t0))

6: Compute the CAM trajectory xCAM(tCAM) =
∫ T
t0
f(x,uCAM, τ) dτ

7: if COLLISIONFREE(xCAM,uCAM, tCAM)
8: Add s to S
9: return S

Combined with the steering algorithm described in Appendix B, this yields a generalized formulation
for actively-safe CWH targeting that can be implemented using any asymptotically-optimal sampling-based
motion planner (though our algorithm of choice will be the Fast Marching Trees (FMT∗) algorithm [21],
represented in pseudocode as Algorithm 3). FMT∗ intelligently expands a tree of feasible paths from an
initial state xinit to a goal state xgoal around obstacles. As it makes connections, it relies on adding and
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Algorithm 2 Tests if the trajectory x(t) generated under control u(t) (namely, a series of impulses ∆v(τ)
applied at times τ = [τ1, . . . , τN ]) meets mission constraints (particularly CAM safety constraints).

1: function COLLISIONFREE(x(t),u(t), t)
2: safe = (all t ≤ Tmax) and (all x ∈ X ) and (all x 6∈ XKOZ)
3: If safe, start with burn k = 1
4: while safe and k ≤ N
5: Test the feasibility of nominal burn ∆v(τk) (impingement/control feasibility)
6: for each failure f ∈ Ufail(x(τk)) (including no failure)
7: Test the feasibility of CAM burn ∆vCAM(Tk) under failure f (break if infeasible)
8: safe = false if nominally infeasible or a CAM is infeasible under any failure
9: k = k + 1

10: return safe

removing nodes (waypoint states) from three sets: a set of unexplored nodes Vunvisited not yet connected by
the algorithm, a frontier Vopen of nodes likely to make efficient connections to unexplored neighbors, and an
interior Vclosed of nodes that are no longer useful for exploring the state space X . Refer to [21] for full details.

When called to solve for a path from xinit to xgoal using Nsamples free-space sample points, this approach
is guaranteed (by our careful construction) to return a trajectory, if one exists, that minimizes the ∆v cost of
connecting the two states through the given set of Nsamples sample points subject to the mission constraints
and for which there exists a safe and available CAM trajectory from each state along the path under all failures
f considered in Ufail. As we show, this can be used to guarantee the availability of escape trajectories during
CWH proximity operations under a maximum control fault-tolerance.

Algorithm 3 The Fast Marching Tree Algorithm (FMT∗). Computes a minimal-cost path from a given initial
state x(t0) = xinit to a target state xgoal, through a fixed number Nsamples of samples S . When SAMPLEFREE
and/or COLLISIONFREE account for safety constraints, FMT∗ can generate actively-safe paths.

1: Add xinit to the root of the tree T , as a member of the frontier set Vopen

2: Generate samples S ← SAMPLEFREE(X , Nsamples, t0) and add them to the unexplored set Vunvisited

3: Set the lowest-cost node in the tree as z← xinit

4: while true
5: for each neighbor x of z in Vunvisited

6: Find the neighbor xmin in Vopen of cheapest cost-to-go to x
7: Compute the trajectory between them as [x(t),u(t), t]← STEER(xmin,x) (see Appendix B)
8: if COLLISIONFREE(x(t),u(t), t)
9: Add the trajectory from xmin to x to the tree T

10: Add successful x to Vopen and remove them from the unexplored set Vunvisited

11: Remove z from the frontier Vopen and add it to Vclosed

12:
13: if Vopen is empty
14: return Failure
15: Reassign z as the node in Vopen with smallest cost-to-come from the root (xinit)
16: if z is in the goal region Xgoal

17: return Success, and the unique path from the root (xinit) to z

SIMULATIONS

The scenario considered in this paper is modeled as the approach phase of a satellite servicing mission, in
which a servicer spacecraft seeks to rendezvous and dock with an uncooperative client moving in a well-defined,
circular orbit in LEO. We use the Landsat-7 mission as a reference [22, 3.2] (see Figure 3(a)–(b)), in line with
current robotic servicing studies at NASA.
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(a) Landsat-7 Schematic (Nadir (-δx direc-
tion) is oriented downwards, while the in-
track (+δy) direction is pointing leftwards).

(b) Landsat-7 Orbit (Image courtesy of the
Landsat-7 Science Data Users Handbook).

(c) Motion planning query used for numerical exper-
iments. The spacecraft must track a series of guid-
ance waypoints to the goal, located radially above the
client. Positional goal tolerances are visualized as circles
around each waypoint, which successively shrink in size.

Figure 3. Target Spacecraft and Orbit Scenario Used for Numerical Experiments

Setup

The rendezvous maneuver is assumed to begin sufficiently close to the target∗ after insertion into a lower
coplanar circular orbit. We imagine the chaser must be repositioned for a near-field approach from above.
Let x = [δx, δy, δz, δẋ, δẏ, δż]

T represent the position and velocity, respectively, of the chaser center-of-
mass relative to the target center-of-mass resolved in the Clohessy-Wiltshire-Hill (CWH) Local-Vertical,
Local-Horizontal (LVLH) frame. From its initial state, the chaser is required to navigate to a sequence
of pre-specified CWH position waypoints, eventually terminating at a fixed goal position. For nominal
maneuvering, an attitude controller is assumed to stabilize the chaser in a nadir-pointing attitude. Should a
CAM become necessary, the chaser is assumed to initiate the smallest possible “turn and burn” slew maneuver
to reorient a remaining thruster for the CAM circularization burn (such that CAM thruster allocation is
always possible with at least one working thruster, given enough time for the slew). Details are omitted here
due to space limitations. Throughout the maneuver, the chaser must avoid entering the elliptic target KOZ,
enforce hard safety constraints with regard to a two-fault tolerance to stuck-off thruster failures [3, 4.1.1], and
otherwise avoid interfering with the target (including avoiding LandSat-7’s nadir-pointing communication
lobes (represented by a truncated half-cone), or impinging its surfaces with exhaust).

The FMT∗ planning algorithm [21] is called once for each waypoint in the guidance sequence, and their
solutions linked to yield an overall solution to the planning problem. Each subsequent call programmatically
defines new axes-aligned configuration search spaces based on the locations of the previous terminal state and
the target waypoint, and then adds some threshold space around them. Samples are drawn from the new space,
the query is solved, and then the entire motion plan is followed to the waypoint goal region. Then the process
is repeated for the next waypoint in the sequence. By shrinking subsequent goal radii and pre-specifying
reasonable position waypoints, the chaser can converge reliably to the final goal.

∗Sufficiently close in this context implies that any higher-order terms of the linearized relative dynamics are negligible, e.g., within a
few percent of the target orbit mean radius
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Results

Results demonstrating the active safety policy for comparison with the nominal trajectory (without active
safety constraints) are provided here for the survey maneuver shown in Figure 3(c). We first illustrate in
Figure 4 the difference in the two motion planning solutions, taken over identical sample sets and subject
to the same constraints (excluding active safety). Because of the additional safety constraints placed on the
actively-safe solution, the tree of explored paths shown in (b) are a subset of those in (a). The addition of the
safety constraint at first has no effect, where the chaser is far from the target and well outside of the Region
of Inevitable Collision (RIC) defined by the elliptical Keep-Out Zone (KOZ). However, the plan deviates
noticeably in the positive in-track direction while it moves ahead of the target between waypoints 3 and 4, so
as to be sure that it will have safe paths available to escape the RIC in the event of a failure. Observe that all
escape CAM’s also escape the RIC, always executing circularization burns (indicated by the horizontal lines)
radially above or below the KOZ. This is as we expected.

We compare the robustness of the two strategies to failures in Figure 5 by examining the mean success
rate as a function of the likelihood of thruster failure. Here, each motion plan is simulated with probabilistic
control actuation errors and tested to see whether the chaser can successfully complete its mission or otherwise
safely execute a CAM without violating any of the planning constraints. The “success rate” is defined here
as the mean number of safe motion plan or CAM executions per 50 trials, repeated once for each thruster
failure probability. Immediately evident is that the actively safe plan works as designed, showing a distinct
improvement in success rate over the safety-unconstrained case. We further note that though the spacecraft
cannot easily finish its nominal mission when failures occur, actively-safe maneuvers are always available,
even for cases of greater than two failures. This indicates that the CAM policy (for both the trajectory and
attitude) works quite robustly for the given scenario.

With regards to computational complexity, simulations were run on 100 samples per motion plan, with five
motion plans strung together to form a global solution to the overall problem. The current implementation
completes its online calculations (including steering between states, calling COLLISIONFREE and TERMINA-
TION, and, if generating an actively safe trajectory, computing and verifying CAM “turn and burn” attitude
trajectories) in near-real-time, on the order of minutes per plan. To make the approach amenable to real-time
implementation, we plan to pre-compute attitude-trajectories from failure states (samples) as well as leverage
recent developments for FMT∗ parallel processing. We expect these modifications to reduce computation
times to the order of seconds.

CONCLUSIONS

This paper explored the use of positively-invariant sets to provide deterministic safety guarantees for the
motion planning of autonomous vehicles with uncertain and unpredictable losses of control authority. In
short, we argued that for guaranteeing active safety, it is sufficient to enforce that a state is never entered
without a viable escape sequence to a safe invariant set from that state, under all possible failure modes. The
approach was illustrated for autonomous spacecraft proximity operations in LEO under impulsively-actuated
circular CWH dynamics, for a single chaser spacecraft on approach to a single target subject to strict ellipsoidal
Keep-Out Zone requirements. The strategy employed, when subject to unrecoverable thruster stuck-off failures,
was to enforce a simple one-burn escape maneuver strategy to circularize the spacecraft orbit about a future
state along its coasting arc. It was shown that so long as the orbital radius at the circularization point lay
outside of the radial band spanned by the target KOZ, the resultant orbit would be guaranteed safe.

Future examinations will attempt to accommodate thruster stuck-on and mis-allocation failures, localization
uncertainty, and extension to small-body proximity operations. We also plan to develop risk-constrained
approaches that reduce the degree of conservatism inherent in deterministic safety guarantees.
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(a) CWH motion plan without active-
safety constraints. Under nominal con-
ditions, this is the best path between
waypoints amongst the given samples.

(b) CWH motion plan with built-in active safety. Circulariza-
tion CAMs from each burn location are shown in teal. Along
with the nominal path, each is safe (does not pass through
the KOZ) and feasible under all two-fault failures.

Figure 4. Comparison between regular and actively-safe motion plans and trees.

APPENDIX A: OPTIMAL CIRCULARIZATION UNDER IMPULSIVE CWH DYNAMICS

The optimization we want to solve, such that we satisfy Definition 3, can be expressed as:

Given: x(t),u(t ≤ τ < T ) = 0,u(T ) = ∆vcirc(x(T ))

minimize
T

∆v2
circ(T )

subject to ẋ(τ) = f(x(τ),0, τ), t ≤ τ ≤ T (Dynamics)
x(τ) 6∈ XKOZ, t ≤ τ ≤ T (KOZ Collision Avoidance)

x(T+) ∈ Xinvariant (Invariant Set Termination)

Due to the analytical descriptions of state transitions as given in Equation (2), it is a straightforward task
to express the decision variable T , invariant set constraint, and objective function analytically in terms of
θ(t) = n(t − t0), the polar angle of the target spacecraft. The problem is therefore one-dimensional in
terms of θ. We can reduce the invariant set termination constraint to an invariant set positioning constraint
if we ensure the spacecraft ends up at a position inside Xinvariant and circularize the orbit, since x(θ+

circ) =

x(θ−circ) +

[
0

∆vcirc(θcirc)

]
∈ Xinvariant. Denote θcirc = n(T − t0) as the target anomaly at which we enforce

circularization. Now, suppose the failure state x(t) satisfies the collision avoidance constraint with the KOZ
(otherwise the CAM is infeasible and we conclude x is unsafe). We can set θmin = n(t− t0) and integrate the
coasting dynamics forward until the chaser touches the boundary of the KOZ (θmax = θ−collision) or for one
full orbit (θmax = θmin + 2π) such that, between these two bounds, the CAM trajectory satisfies the dynamics
and contains only the coasting segment outside of the KOZ. Replacing the dynamics and collision avoidance
constraints with the bounds on θ as a box constraint, the problem now reduces to:

minimize
θcirc

∆v2
circ(θcirc)

subject to θmin ≤ θcirc ≤ θmax (Theta Bounds)

δx2
(
θ−circ

)
≥ ρ2

δx (Invariant Set Positioning)

Restricting our search range to θ ∈ [θmin, θmax], this is a function of one variable and one constraint,
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strategy under failures.
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(c) Histogram of success rates as a function of the
number of thruster failures for the safety strategy
with CAMs.

Figure 5. Measuring the robustness of the CWH active-safety targeting strategy.

something we can easily optimize analytically using the method of Lagrange multipliers. We seek to minimize
the Lagrangian, L = ∆v2

circ + λgcirc, where gcirc(θ) = ρ2
δx − δx2

(
θ−circ

)
. There are two cases to consider:

Case 1: Inactive Invariant Set Positioning Constraint We set λ = 0 such that L = ∆v2
circ. Candidate

optimizers θ∗ must satisfy∇θL(θ∗) = 0. Taking the gradient of L and setting ∇θL(θ∗) = 0, we find that:

tan 2θ∗ =
−
(

3
2δẋ0(3nδx0 + 2δẏ0)− 2nδż0δz

)
3
4 (3nδx0 + 2δẏ0)

2 − 3
4δẋ

2
0 + n2δz2 − δż2

0

In the general case, this does not admit an analytical solution (its roots must be found numerically).
However, it can be shown that for particular conditions on the initial state, the true anomalies (times) θ∗ that
solve the expression can be derived analytically. For instance, for planar maneuvers (δz0 = δż0 = 0), it can be
shown that θ∗ occurs where the chaser satisfies δẋ(θ∗) = 0 (i.e., at apoapse or periapse, as we might expect).
Details are omitted here for brevity. Denote the set of candidate solutions that satisfy Case 1 by Θ∗1.

Case 2: Active Invariant Set Positioning Constraint In this case, the chaser spacecraft attempts to circu-
larize its orbit at the boundary of the zero-thrust RIC shown in Figure 2 . The positioning constraint is active,
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and therefore gcirc(θ) = ρ2
δx − δx2

(
θ−circ

)
= 0. This is equivalent to finding where the coasting trajectory from

x(t) crosses δx(θ) = ±ρδx for θ ∈ [θmin, θmax]. This can be achieved using standard root-finding algorithms.
Denote the set of candidate solutions that satisfy Case 2 by Θ∗2.

Solution to the Minimal-Cost Circularization Burn The global optimizer θ∗ either lies on the boundary
of the box constraint, at one of the unconstrained candidate solutions (θ ∈ Θ∗1) or at the boundary of the
zero-thrust RIC (θ ∈ Θ∗2), all of which were fortunately economically obtained through either numerical
integration or root-finding techniques. Therefore, the minimum-cost circularization burn time T satisfies:

θ∗ = n(T − t0) = arg min
θ∈{θmin,θmax}

⋃
Θ∗

1

⋃
Θ∗

2

∆v2
circ(θ) (6)

If no such solution exists (e.g., if and only if x(t) starts in the target KOZ), the circularization CAM is declared
unsafe. Otherwise, the CAM is saved for feasibility verification.

APPENDIX B: THE STEERING PROBLEM

It is well known that the classical Clohessy-Wiltshire-Hill (CWH) equations [17, 23] for motion about a
circular reference orbit are given by a time-invariant linear system of form ẋ = Ax+Bu, where the dynamics
matrix A is a function only of nref of the client spacecraft orbit, and the input matrix is B = [03×3, I3×3]

T. The
state x = [δx, δy, δz, δẋ, δẏ, δż]

T and the applied force-per-unit-mass u = 1
m [Fx, Fy, Fz]

T of the spacecraft
are defined relative to the cross-track, in-track, and out-of-plane directions, respectively, of the client’s rotating
Local Vertical, Local Horizontal frame. Define Φ(t, τ) , eA(t−τ) as the state transition matrix. Consider the
case of applying N impulsive velocity changes at times t0 ≤ τi ≤ tf, i ∈ [1, . . . , N ]. It can be shown that:

x(t) = Φ(t, t0)x(t0) +
[

Φ(t, τ1)B . . . Φ(t, τN )B
]︸ ︷︷ ︸

,Φv(t,τi)

 ∆v1

...
∆vN


︸ ︷︷ ︸

,∆V

= Φ(t, t0)x(t0) + Φv(t, τi)∆V

We can now solve the 2PBVP or “steering problem” between an initial state x(t0) = x0 and final state
x(tf) = xf under CWH dynamics. Substituting and rearranging, we seek a stacked burn vector ∆V such that:

Φv(tf, τi)∆V = xf − Φ(tf, t0)x0

If N = 2 (so that Φv is square) and if it is non-singular (that is, the time differences tf − τi satisfy certain
conditions ), the solution for ∆V is unique and therefore we can use matrix inversion to obtain the solution. If
N ≥ 2, an infinite number of solutions exist. A reasonable choice in this case that minimizes the 2-norm of
∆V is the Moore-Penrose pseudo-inverse. Hence, we use:

∆V =

Φ−1
v (xf − Φ(tf, t0)x0) N = 2

ΦT
v

(
ΦvΦ

T
v

)−1

(xf − Φ(tf, t0)x0) N > 2

to derive feasible connections between x0 and xf with N impulses applied at fixed times τi. Given N , x0, xf,
burn magnitude bounds ∆vmin,∆vmax and maneuver duration bounds dmin, dmax, we can obtain an optimal
connection (that minimizes fuel, subject to the given parameters) by solving the convex problem:

minimize
∆vi,τi,tf

N∑
i=1

||∆vi||2

subject to dmin ≤ tf − t0 ≤ dmax

t0 ≤ τi ≤ tf for all i ∈ [1, . . . , N ]

∆vmin ≤ ||∆vi||2 ≤ ∆vmax for all i ∈ [1, . . . , N ]

Φv(tf, τi)∆V = xf − Φ(tf, t0)x0

We solve this for FMT∗ steering assuming N = 2, ∆vmin = 0, ∆vmax =∞, dmin = 0, and dmax = 0.05 2π
n .
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