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Abstract

When testing conditions differ from those represented in
training data, so-called out-of-distribution (OOD) inputs can
mar the reliability of black-box learned components in the
modern robot autonomy stack. Therefore, coping with OOD
data is an important challenge on the path towards trust-
worthy learning-enabled open-world autonomy. In this paper,
we aim to demystify the topic of OOD data and its associ-
ated challenges in the context of data-driven robotic systems,
drawing connections to emerging paradigms in the ML com-
munity that study the effect of OOD data on learned models in
isolation. We argue that as roboticists, we should reason about
the overall system-level competence of a robot as it performs
tasks in OOD conditions. We highlight key research questions
around this system-level view of OOD problems to guide fu-
ture research toward safe and reliable learning-enabled auton-
omy.

1 Introduction
Machine learning (ML) systems are poised for widespread
usage in robot autonomy stacks in the near future, driven
by the successes of modern deep learning. For instance,
decision-making algorithms in autonomous vehicles rely on
ML-based perception and prediction models to estimate and
forecast the state of the environment. As we increasingly
rely on ML models to contend with the unstructured and
unpredictable real world in robotics, it is paramount that
we also acknowledge the shortcomings of our models, es-
pecially when we hope to deploy robots alongside humans
in safety-critical settings.

In particular, ML models may behave unreliably on data
that is dissimilar from the training data — inputs commonly
termed out-of-distribution (OOD). This poses a significant
challenge to deploying robots in the open world, e.g., as au-
tonomous vehicles or home assistance robots, as such robots
must interact with complex environments in conditions we
cannot control or foresee. Coping with OOD inputs remains
a key and largely unsolved challenge on the critical path to
reliable and safe open-world autonomy. However, there is no
generally-agreed-upon precise definition of what makes data
OOD; instead, its definition is often left implicit and varies
between problem formalisms and application contexts.

In this paper, we concretize the often nebulous notion
of the OOD problem in robotics, drawing connections to

existing approaches in the ML community. Critically, we
advocate for a system-level perspective of OOD data in
robotics, which considers the impacts of OOD data on down-
stream decision making and allows for leveraging compo-
nents throughout the full autonomy stack to mitigate nega-
tive consequences. To this end, we present robotics research
challenges at three timescales crucial to deploying reliable
open-world autonomy: (i) real-time decision-making, (ii)
episodic interaction with an environment, and (iii) the data
lifecycle as learning-enabled robots are deployed, evaluated,
and retrained.

We emphasize that this paper does not represent a com-
prehensive survey of existing paradigms and literature on
OOD topics in machine learning or robotics; in fact, many of
the OOD topics that we discuss, like runtime-monitoring of
perception systems (Rahman, Corke, and Dayoub 2021) or
heuristic uncertainty quantification of deep neural networks
(Abdar et al. 2021), constitute exhaustively surveyed sub-
fields in their own right. This work differs in that we pro-
vide an overview of the core considerations and system-wide
challenges that we see as essential areas of robotics research
activity for the coming years, rather than survey specific
styles of analysis or approaches tailored towards particular
submodules in the autonomy stack.

2 Running Examples
To better describe the challenges that OOD data creates in
learning-enabled robotic systems, we use the two future au-
tonomy systems shown in Figure 1 as running examples in
this paper. These conceptual examples highlight the plurality
of applications and design paradigms used to leverage ML
in the design of robotic systems.

Autonomous Drone Delivery Service: Firstly, we con-
sider an autonomous drone delivering packages in a city.
As illustrated in Figure 1, this robot uses several learning-
enabled components in its autonomy stack. The delivery
drone has to make explainable decisions and meet stringent
safety requirements by regulatory agencies to be deployed
among humans. Crucially, to maintain these reliability re-
quirements in rare and unforeseen circumstances, the drone
needs mechanisms to detect and manage OOD inputs.

Robotic Manipulators Assisting in the Home: Sec-
ondly, we consider the deployment of robotic manipulators
to assist with various tasks in and around the home, as shown



Figure 1: Left: A future drone delivery system. It uses a modular autonomy stack consisting of 1) a perception system that builds
an understanding of the drone’s state and its environment, 2) a prediction module that makes inferences about the behavior of
other agents and objects in the drone’s environment, 3) a high-level planning and decision-making module, and 4) low-level
controllers that actuate the drone’s propellers to control the drone’s trajectory. At deployment, the drone must safely navigate
many obstacles such as other delivery drones, power lines, and trees, not all of which can be anticipated at design time. Right:
Robotic manipulators assisting in the home. The manipulators are controlled end-to-end by directly passing the observations
of the robot through a policy network that outputs the actions the robot should take. At deployment, the manipulators perform
a wide range of household tasks like folding and hanging clothes, washing dishes, and cleaning up trash. Therefore, engineers
train the manipulator policy by creating targeted experiments to collect a large and diverse training dataset of many objects to
manipulate and tasks to complete.

in Figure 1. The manipulators’ tasks are so diverse and un-
structured that we consider a general manipulation policy
trained in an end-to-end fashion in a controlled environ-
ment, as commonly considered in the reinforcement learn-
ing (RL) community. When we deploy these manipulators
in people’s homes, the environments and contexts that these
robots encounter invariably differ from the lab or simulated
environments used for training, which can markedly impact
the system’s performance. Therefore, ensuring reliable per-
formance in OOD test environments is a crucial aspect of
the design challenge.

3 What Makes Data Out-Of-Distribution?
Well-engineered ML pipelines produce models that general-
ize well to test data sampled i.i.d. from the same distribution
as the training data. Consequently, when models fail to gen-
eralize at test time, we often attribute this to “OOD data”
in a catch-all manner. What makes data OOD, and what
causes these failures? In this section, we illustrate two con-
cepts that structure our perspective on these questions using
the notation of a standard supervised learning pipeline. As-
sume access to independent samples Dtrain = {(xi,yi)}Ni=1
drawn from an underlying joint distribution Ptrain with den-
sity ptrain(x,y), where x ∈ X and y ∈ Y . In supervised
learning, we fit a model f : X → Y on Dtrain and evalu-
ate its performance on a test data set Dtest drawn from Ptest

with density ptest(x,y).
Distributional Shifts: A distributional shift occurs when

test data Dtest is sampled from a distribution Ptest that dif-
fers from Ptrain, thereby making Dtest OOD and Dtrain

in-distribution (ID). Shifts can corrupt the performance of
the learned model f since it may no longer capture the
relationship between x and y in the test data. Distribu-

tional shifts can reflect fundamental changes in the under-
lying data generating process (often termed concept shift).
Concepts can shift discontinuously, like when important un-
observed features change between train and test, or they
can slowly drift over time. For example, when we use a
model-based approach for lower-level control of the deliv-
ery drone, slowly degrading actuators can make the predic-
tions of a learned dynamics model dangerously inaccurate.
Alternatively, shifts can be limited to part of the genera-
tive process. A covariate shift describes when p(x) changes
while p(y | x) remains constant (Shimodaira 2000). For in-
stance, we might train a vision model for the delivery drone
on images collected during the day but deploy the delivery
drone using the model at night. Similarly, label shift occurs
when p(y) changes and p(x | y) does not, for example
when deploying a pre-trained pedestrian detector in a new
country where there are overall more pedestrians (Saerens,
Latinne, and Decaestecker 2002). The language of distribu-
tional shifts is particularly suited to quantifying how popu-
lation level statistics, like the expected loss of a model, are
affected by changing conditions.

Functional Uncertainty: Since we do not have access to
Ptest directly and must learn a model f from a finite set
of samples Dtrain, we cannot be certain that f will make
good predictions at test time. This offers a complementary
view on the OOD problem; instead of reasoning about dis-
tributional differences, we aim to characterize the domain of
competence of a particular f , i.e., when and where we can
have confidence in its individual predictions, and conversely,
when we are uncertain in its predictions. We refer to this as
the functional uncertainty perspective on the OOD problem.
Causes of high functional uncertainty are not rooted only in
distributional notions; even when Ptest = Ptrain, the model
f may make poor predictions on rare inputs which were not



Figure 2: Learning a predictive model f from a finite dataset poses challenges, especially in the presence of distributional shift.
To address this, methods in the ML community consider both training and adapting models in anticipation of and response
to distributional shift. Besides improving models on OOD data, other approaches consider methods that quantify functional
uncertainty by predicting when inputs are anomalous or quantifying uncertainty in the model’s predictions.

well represented in the finite Dtrain. Instead, functional un-
certainty may arise from epistemic uncertainty, i.e., when
we are unaware of the input-output relations that our mod-
els do not capture in the test domain. Of course, distribu-
tional shifts can increase the likelihood of encountering test
data outside the domain of competence of f . Importantly,
functional uncertainty is linked to how f is used, as eval-
uating competence requires a measure of test-time perfor-
mance. While this measure can be generic (e.g., KL diver-
gence between f(x) and ptest(y | x)), it can also be tailored
to downstream utility functions.

4 Trends in OOD in Machine Learning
The OOD problem is an open challenge in the ML commu-
nity. Indeed, state-of-the-art models have been shown to be
extremely sensitive to subtle distributional shifts (e.g., see
(Torralba and Efros 2011; Geirhos et al. 2020; Hendrycks
and Dietterich 2019; Recht et al. 2019; Miller et al. 2021)
and the references therein). In this section, we discuss clas-
sical and core formulations and techniques from the ML lit-
erature that guide the ML community’s approach to tackling
the OOD challenge, summarized in Figure 2.

4.1 Coping with Distributional Shift
Standard ML techniques are built around the often unreal-
istic assumption that Ptest = Ptrain. A major line of ML
research aims to relax this assumption to develop learning
algorithms that can cope with distributional shifts.

Domain generalization considers the capacity of a model
trained only on data from Ptrain to generalize to an un-
known test-time data distribution Ptest. Thus, domain gener-
alization amounts to coping with distributional shift between
train and test time. To make this problem approachable, we
need to make assumptions on how much Ptest can reason-
ably differ from Ptrain. For example, one salient research di-
rection aims to improve distributional robustness, optimiz-
ing the worst-case performance within an envelope of dis-
tributional shifts to guarantee OOD performance (Ben-Tal

et al. 2013; Duchi and Namkoong 2021). However, it is of-
ten unclear how large distributional uncertainty sets should
be when conditions shift, a topic that roboticists working on
applications should address. To circumvent such ambiguity,
it is common to consider the robustness behavior on subpop-
ulations of the training data instead (Sagawa* et al. 2020).
A complementary research direction targets the root cause of
poor generalization under distributional shift from a causal
inference perspective: Learned models often pick up spu-
rious correlations in Dtrain, rather than the invariant cause
and effect relations that govern the underlying process (Pearl
2009; Peters, Bühlmann, and Meinshausen 2016; Arjovsky
et al. 2020). For example, the vision-based robotic manipu-
lator could rely on features in the background of the image
to identify object types in the foreground (e.g, cooking items
usually appear in kitchens), and thus fail to generalize to rea-
sonable distribution shifts where the background changes
(e.g., a pan on a sofa). Empirically, domain generalization
often improves most when we (pre)train larger models on
larger, more diverse datasets and infuse domain knowledge
by encoding invariances explicitly or via data augmentations
and self-supervised pretraining tasks (Miller et al. 2021;
Zhou et al. 2022; Gulrajani and Lopez-Paz 2021).

Domain adaptation aims to develop algorithms that
leverage both the training dataset and some (usually unla-
beled) test inputs {xi}Mi=1

iid∼ Ptest to optimize the learned
model f on Ptest. Domain adaptation therefore typically re-
quires a priori availability of some test domain data. This can
occur when we make batched predictions on a given test set,
or, for example, when we deploy the drone delivery service
in a new country and have a small budget for running pre-
deployment trials. Adapting f to the test inputs is a paradigm
that often yields drastic performance improvements with
simple algorithms because the test domain data allows us
to make inferences about a model’s performance on Ptest.
For example, for covariate shift problems, the most elemen-
tary approach is to apply importance reweighting techniques
to yield unbiased estimates of the model’s risk under Ptest



(Shimodaira 2000). Classic results in domain adaptation the-
ory state that performance degradation under distributional
shift is linked to how well a classifier can distinguish data
from the train and test domains (Ben-David et al. 2010;
Redko et al. 2020). These results motivate methods which
learn feature representations such that train and test data
look similar (Ganin et al. 2016), or learn transformations
between the train and test domains (Hoffman et al. 2018).
More broadly, progress on algorithms that adapt models in
response to shifted conditions is not limited to the batched
setting (surveyed extensively in (Wilson and Cook 2020)).
In particular, continual or lifelong learning algorithms seek
to adapt f over time in response to evolving distributions
(De Lange et al. 2022; Lesort et al. 2020), and meta-learning
considers the design of algorithms that can rapidly adapt
models to new distributions given separate datasets from re-
lated domains (Finn, Abbeel, and Levine 2017).

4.2 Assessing Functional Uncertainty
Domain adaptation and generalization focus on methods to
select or improve the learned model f in anticipation of or
response to a changed data distribution Ptest. Orthogonally,
we can also consider methods that aim to characterize the
functional uncertainty of a particular model f trained on
data Dtrain.

Detecting anomalous inputs: A key source of functional
uncertainty lies in inputs that are dissimilar to those seen in
the training data. Anomaly detection considers the challenge
of predicting if an individual input is dissimilar to Dtrain

(Salehi et al. 2021; Ruff et al. 2021; Yang et al. 2021). This
problem is also often called out-of-distribution detection, but
many approaches do not explicitly model the training distri-
bution, so we use the more generic term anomaly detection.
We can measure dissimilarity from the training data in var-
ious ways, such as via a distance metric, or by evaluating
likelihoods under a learned parametric model of ptrain(x).
These strategies are often applied in a learned feature space
instead of directly on the inputs because modeling distances
and distributions can be difficult for high-dimensional in-
puts, such as images.

Predictive Uncertainty: An alternative approach is to
design a model f that directly outputs a measure of con-
fidence in its predictions. To ensure confidence scores are
correct, some approaches ensure a model’s predictions are
calibrated, i.e. that the predictive uncertainty matches the
model’s error rate (Guo et al. 2017). Others, like confor-
mal inference, compute prediction intervals containing the
correct label with high probability (Balasubramanian, Ho,
and Vovk 2014). However, it is generally challenging to en-
sure that the confidence measures we use to assess func-
tional uncertainty remain calibrated in OOD regimes. For
example, the softmax output distribution of classification
networks is often confidently wrong on OOD data (Ova-
dia et al. 2019). Therefore, many empirical studies inves-
tigate design choices that encourage high predicted uncer-
tainty on inputs that are dissimilar to training inputs, such
as specific model architectures, auxiliary losses, and regu-
larizers (Abdar et al. 2021). Besides calibration algorithms
and design choices that encourage high predictive uncer-

tainty on anomalous inputs, Bayesian ML offers an appeal-
ing approach to assess functional uncertainty under covari-
ate shifts. This is because Bayesian methods allow us to
quantify epistemic uncertainty by incorporating subjective
prior beliefs to yield a posterior distribution p(f | Dtrain)
(Abdar et al. 2021). However, scaling Bayesian methods to
large models is a computationally challenging task. There-
fore, many methods approximate the Bayesian posterior, for
example, through ensembling, or monte-carlo dropout (Lak-
shminarayanan, Pritzel, and Blundell 2017; Gal and Ghahra-
mani 2016).

4.3 Evaluation
Researchers have developed benchmark datasets that con-
tain train/test splits curated for qualitative semantic dif-
ferences for evaluating OOD performance (e.g., see
(Hendrycks and Dietterich 2019; Koh et al. 2021; Miller
et al. 2021)). OOD test sets can include synthetic corrup-
tions like motion blur, Gaussian noise, and other perturba-
tions. In addition, many datasets may test robustness to nat-
urally occurring distribution shifts, like when we train the
delivery drone’s bird detection model only on images of land
birds and include images of waterbirds in the test set. Such
data sets provide an intuitive foothold to develop algorithms
by isolating reliability problems rooted in OOD data. How-
ever, it is often unclear how methods tested on semantically
OOD data will impact a robotic system downstream at de-
ployment.

5 Open Challenges for OOD in Robotics
Robotics has always been centered on building systems that
work well in the real world. Therefore, we argue for a
system-level perspective on tackling OOD data in learning-
enabled autonomy: Our ultimate goal is to reason about
an ML-enabled autonomous system’s reliability and compe-
tence when it applies learned models in a feedback loop over
time, as it operates in potentially shifted conditions. This
perspective differs from the model-level paradigms in the
ML community aimed at quantifying how a model’s accu-
racy degrades on independently-sampled OOD data because
learned models only constitute individual components of a
complex autonomy stack. Therefore, system-level perspec-
tives present unique challenges for the robotics community
related to detecting OOD conditions, responding to them to
avert system failures, and improving the robotic system’s
OOD closed-loop performance as a whole. We illustrate
these challenges by considering three different timescales
at which data-driven robotic systems operate, as shown in
Figure 3, each with distinct OOD challenges for robotics.
We discuss each timescale, drawing connections to methods
from the ML community and highlighting key open research
questions (RQ s) toward autonomous systems that leverage
ML while being robust to the OOD conditions they will in-
evitably encounter. In addition, we examine various aspects
of the RQs using our running examples and briefly touch
upon recent research trends to contextualize the RQs. We
emphasize that this discussion is not an exhaustive survey of
existing literature but rather a brief discussion to underscore
the significance of the RQs.



Figure 3: Data-driven systems operating at different timescales. (1) Learning-enabled robotic systems must take actions and
react to novel conditions in changing environments, requiring real-time OOD monitoring tools. (2) Long-horizon tasks (e.g.,
transporting a payload to a destination) require robotics OOD tools that consider episodic interactions, in which the typical
assumption that inputs are drawn i.i.d. does not hold and time correlations should be accounted for. (3) Finally, learning-based
models should be retrained offline to continuously improve the reliability of the overall robotic stack.

5.1 Real-time ML-Enabled Decision Making
To maintain system-level competence at runtime, we need
to reason about the downstream impact of individual OOD
inputs on the decision-making system in real-time. For ex-
ample, a failure of the delivery drone to detect a pedestrian
could be disastrous; we need to construct safeguards that en-
sure inference errors do not lead to system failure. There-
fore, at the real-time timescale, we need to monitor the com-
petence of the full decision-making stack on individual in-
puts encountered at test time. Even though runtime monitor-
ing is commonplace in robotics, its application to mitigate
the effect of OOD data on state-of-the-art learned compo-
nents suggests two key research questions centered around
the functional uncertainty viewpoint on OOD.
RQ 1 (Averting OOD failures through Runtime Monitor-
ing). Can we leverage full-stack sensory information at run-
time to detect if a decision system relying on a learned model
f will perform poorly, before a failure occurs?

Because we generally cannot identify all aspects of the
robot’s environment that affect the reliability of its ML com-
ponents, provable safety guarantees are virtually unattain-
able for autonomous systems without making restrictive as-
sumptions (Seshia, Sadigh, and Sastry 2020). Indeed, the
failures caused by conditions that were not represented at
design time –be it in training data or in simulated test
scenarios– are generally what we attribute as OOD. There-
fore, we view algorithms for monitoring autonomous sys-
tems at runtime as a core aspect of maintaining system-level
competence in OOD regimes.

Assessing the functional uncertainty on the model’s in-
puts is an important first step towards this goal, but is not
sufficient to monitor the performance of the overall robotics
stack. Instead, we need to reason about how functional un-
certainty propagates through the decision-making system
and devise goal-oriented measures of uncertainty on f that
capture system-level performance. Indeed, the downstream
impact of erroneous predictions may vary between systems

or the current system state. Access to the full robotic au-
tonomy stack also presents opportunities to use information
from additional sensors besides the model’s inputs to im-
prove our assessment of functional uncertainty during oper-
ation.
RQ 2 (OOD Aware Decision Making). Can we design
decision-making systems compatible with runtime monitors
robust to high functional uncertainty?

A robot must always choose an action to take, even if
runtime monitors suggest that a learned component f is
operating OOD. Thus, as roboticists, we must design sys-
tems where model uncertainties are assessed and accounted
for during decision-making. This entails the joint design
of real-time runtime monitors, uncertainty-aware decision-
making algorithms, and fallback strategies. Since fallbacks
may need to rely on redundancy or alternate sources of infor-
mation, the problem of ensuring the safety and reliability of
the aggregate autonomous system is a significantly more ex-
pansive challenge than that of characterizing the functional
uncertainty of an ML model in isolation.

Additional Examples: Consider the scenario of the de-
livery drone’s perception network failing to detect OOD ob-
ject types not seen at training time. At high speeds, missing
a detection on a single image can make obstacle avoidance
impossible. Runtime monitors as suggested in RQ 1 that flag
when the functional uncertainty of the visual object detector
on a specific input is high, signaling that the model outputs
are unreliable, can be critical to avoid catastrophic failures.
However, not every missed detection will affect the same
consequences: a missed detection of an OOD bird breed far
away is less likely to cause a collision than a missed detec-
tion of a nearby tree (complicating RQ 1). When the run-
time monitor signals that the object detection system is dan-
gerously inaccurate, the drone should land or continue safe
operation in a degraded state. Certifying that a fallback strat-
egy does not cause additional hazards, such as ensuring the
drone does not land on busy roads with limited sensing, re-



quires the system-level considerations outlined in RQ 2.
Knowing that particular objects are OOD for the robot

manipulator can help it decide which objects it can reliably
manipulate. This knowledge can allow the robot to abstain
from handling OOD objects instead of dropping and dam-
aging them. In addition, we can build system-level checks
around the manipulator policy to sanity-check its decisions.
For example, we could compare to grasps computed us-
ing more classical techniques or leverage additional sensing
modalities to estimate when the robot can or cannot success-
fully manipulate an object.

Recent Trends: As discussed in Section 4, quantifying
functional uncertainty of a model on OOD inputs is a lively
field of study, including anomaly detection (as surveyed in
(Salehi et al. 2021; Ruff et al. 2021; Hodge and Austin
2004)) and heuristics for predictive uncertainty like approxi-
mate Bayesian inference (e.g., (Sharma, Azizan, and Pavone
2021; Lakshminarayanan, Pritzel, and Blundell 2017; Amini
et al. 2020)) to name a few. However, such methods gen-
erally only apply to covariate shifts. In addition, robotics-
focused monitoring methods that leverage additional sen-
sors to learn how models are innacurate or check consis-
tency among modules (as surveyed in (Rahman, Corke, and
Dayoub 2021)), or learn to predict or recognize system fail-
ures also show promise (Luo et al. 2021; Farid et al. 2022).
However, these early approaches are often not goal-oriented,
heuristic, or unverifiable under distribution shift. Moreover,
while many existing control theoretic approaches provide
safety filters that interfere with black-box learned policies to
correct trajectories in settings where system dynamics and
state are known (e.g., (Leung et al. 2020; Fisac et al. 2019),
certifiably closing the loop on runtime monitors and fall-
backs in complex systems like our drone delivery example
is a broadly understudied problem.

5.2 Episodic closed-loop interaction
Learning-enabled robots do not passively make predictions
on a set of given individual inputs. Instead, they actively in-
teract with their environment to perform tasks. Thus, reli-
able robotic systems should also reason about the influence
of OOD conditions on the closed-loop decision-making sys-
tem over extended periods of time. At this timescale, this
sequential decision-making context induces key distinct re-
search challenges for the robotics community.
RQ 3 (Temporally Correlated OOD events). Can we de-
velop methods that account for the temporal correlations be-
tween inputs when we repeatedly evaluate a learned model
f under shifted conditions over the course of an episode?

As discussed in Section 4, considering population statis-
tics like the expected loss under distributional shift is one of
the core frameworks in ML research to study OOD perfor-
mance. However, when we deploy a robot over an episode,
the learned model’s inputs will be correlated over time, vio-
lating the standard ML assumption that test samples are i.i.d.
Even in nominal conditions, these temporal correlations in-
duce distributional shifts from training data. For example,
while an ML perception model would likely be trained on
a set of shuffled inputs from diverse weather conditions

from many trips, an autonomous vehicle will likely only
encounter one weather condition during a particular trip.
Therefore, as roboticists, we should investigate how we can
strengthen performance in anticipation of shifted conditions
that affect the reliability of model outputs over the course of
a trajectory, for example, by assuring generalization across
domains or rapidly adapting to conditions faced at deploy-
ment. In addition, we consider developing methods that cer-
tifiably detect performance-impacting shifts during execu-
tion without i.i.d. assumptions as a largely open problem.
RQ 4 (Mitigating Distributional Shifts). Can we con-
struct decision-making algorithms that mitigate distribu-
tional shifts between the training and deployment conditions
to ensure the overall reliability of the deployed system?

Robotic systems often have agency to mitigate distribu-
tional shifts through decision-making. For example, a drone
can avoid aggressive maneuvers in regions where it has lim-
ited data to mitigate the consequences of potential errors
in a learned dynamics model f . By ensuring that learning-
enabled components operate in-distribution, the design of
OOD monitors is simplified, the use of fallback strategies
is reduced, and the reliability of the robotic stack is gener-
ally improved. To achieve this intelligent behavior, we must
design methods to quantify and reason about the domain of
competency of learned systems in a manner that is amenable
to planning and decision making.

Additional Examples: Externally shifting conditions,
such as those that occur when we train the drone’s vision
system on daytime images and deploy at night, will consis-
tently degrade the perception system. RQ 3 asks how we can
distinguish consistent model errors induced by OOD con-
ditions from sporadic errors, which may be tolerable. How
many contiguous missed detections will induce a failure, and
how do we anticipate this before it is too late? In addition,
distributional shifts can stem from the fact that the drone
needs to use some policy for test deployments to collect data:
The delivery drone might use a slow and conservative pol-
icy to collect the data to learn interaction models for other
agents. If the drone flies very aggressively using these mod-
els, the closed-loop trajectory distribution will shift, mak-
ing the interaction models dangerously inaccurate. Exploit-
ing the drone’s ability to control this shift is RQ 4’s focus.

For the robotic manipulator, every household deployment
represents shifted conditions from the environment in which
we developed the policy: clothing styles and typical pots and
pans vary between households and countries. In the context
of RQ 3 and RQ 4, we should study how we can quickly
adapt the robot to the shifted or evolving conditions and ex-
pand operations to new task contexts reliably.

Recent Trends: Uncertainty in a robot’s dynamics model
or surroundings are forms of temporally correlated OOD un-
certainties eminent both in the learning-based control and
RL communities through topics like dynamics learning and
sim2real transfer (Brunke et al. 2022). However, quantifying
and managing the system-level effects of temporally cor-
related OOD data in complex sensing modalities like per-
ception systems is an expansive open problem, with early
steps including contributions like (Farid, Veer, and Majum-



dar 2022; Podkopaev and Ramdas 2022) aimed at detecting
shifted distributions between task executions rather than dur-
ing long-term deployments. In addition, the distributional
shift induced by a change in data collection and test poli-
cies is a core framework through which many robot learning
problems, like imitation learning (Ross, Gordon, and Bag-
nell 2011) and offline RL (Levine et al. 2020), are studied.
More broadly, ego-influenced distributional shifts may affect
any learned model in an autonomy stack, not just systems
trained end-to-end.

5.3 Data lifecycle
Finally, beyond interactions during individual episodes,
we can consider long-term cycles over which data-driven
robotic systems are deployed, evaluated, improved, and de-
ployed again. In this context, we view the development pro-
cess as a feedback loop, potentially with human experts in
the loop. At this scale, our goal is to use data collected dur-
ing operation to improve the system’s overall performance
across novel, rare, or shifted conditions.
RQ 5 (Leveraging Operational Data). How can we use data
collected during operation in diverse tasks and contexts to
improve the robustness and quality of learned models?

Retraining components on new data collected during op-
eration can mitigate the influence of OOD conditions by re-
ducing functional uncertainty and ensuring that training data
matches test conditions. However, simply appending opera-
tional data to Dtrain may not be enough to avoid learning
spurious correlations or improve performance on extremely
rare failure modes. Therefore, we should also aim to in-
crease the diversity of the data and leverage the fact that data
collected during different episodes of robot execution repre-
sents a set of diverse test-time contexts, which can be natu-
rally grouped into different operational domains. This task-
specific structure lends itself well to a variety of approaches
to improve domain generalization, like distributionally ro-
bust, multi-task, meta-, or causal learning, which can yield a
model that is able to better generalize to new conditions.
RQ 6 (Efficient Data Collection). How do we select what
operational data we should use to efficiently improve our
models?

Robotic fleets collect tremendous amounts of data dur-
ing operation, not all of which can be stored or labeled to
improve the performance of the autonomy stack. Moreover,
collecting more data through robot deployments is costly
and can see diminishing returns. Therefore, we need to un-
derstand how to efficiently collect data during operation or
testing and judiciously choose which data to flag for label-
ing. This problem has strong connections to research on es-
timating functional uncertainty in ML models, as the most
informative inputs to label correspond to those on which the
model f is most uncertain.

Additional Examples: Daily varying wind and weather
conditions can significantly affect the dynamics of a deliv-
ery drone carrying a large payload in an a priori hard-to-
model fashion. In line with RQ 5, we can use the episod-
ically collected trajectory data more effectively by using
meta-learning techniques to learn structure in the weather

disturbance dynamics so we can adapt online more rapidly,
improving control performance. However, a small delivery
drone has severely limited data storage capacity. Therefore,
RQ 6 concerns how we should select which data to store to
improve the system and what data we discard in real-time.
Furthermore, it is insufficient to keep a buffer and upload
it when an incident or failure occurs because reliability re-
quirements make system failures extremely rare, even when
learning-enabled subcomponents often make errors.

Alternatively, consider an example where we train the
robot manipulator to complete ten separate household tasks.
Suppose we naively train to maximize the average perfor-
mance across tasks. In that case, we might greedily sacri-
fice performance on one task, like sweeping the floor, be-
cause improvements on another task, like loading dishwash-
ers, outweigh the cost. Then, during deployment, some users
might request the robot to sweep the floor much more than
they use it to load dishes. The shifted task distribution these
users request will result in poor overall performance, even
though the engineers in the lab see a high average perfor-
mance. Instead, as is the focus in multi-task learning or sub-
group distributional robustness, the robot should be trained
in line with RQ 5 so that performance is consistently good
across tasks. Then, users will always observe good perfor-
mance no matter their task proclivities. In addition, engi-
neers will operate on a fixed budget for experimentation and
training, so they must judiciously design experiments that
maximize the robot’s performance, a facet of RQ 6.

Recent Trends: Roboticists have already started leverag-
ing some of the ML community trends aimed at improv-
ing generalization when distributions vary across deploy-
ments beyond augmenting datasets with new operational
data and retraining: Some approaches learn consistent pat-
terns by considering separate losses for each trajectory, for
example, by applying meta-learning to more rapidly learn
dynamics models (Richards et al. 2021) or policies (Naga-
bandi et al. 2019) across environments, leveraging causal
inference techniques to identify generalizable state and task
representations (as surveyed in (Stocking, Gopnik, and Tom-
lin 2022), (Kirk et al. 2021)), or through multi-task learning
(Rusu et al. 2016; Ahn et al. 2022). Finally, active learning
techniques (Settles 2012) need to be tailored to robotics to
collect and label data efficiently. Ongoing efforts in these
areas underscore the significance of the data lifecycle chal-
lenges in robotics and make progress on specific compo-
nents in the autonomy stack.

6 Conclusion
The recurring theme across these timescales is that the full-
stack nature of robotics requires a system-level perspective
on the OOD problem. We argue that roboticists should em-
brace this system-level perspective: Investigate both how
OOD data impacts the reliability of the full autonomy stack
and how to leverage the full autonomy stack to mitigate neg-
ative consequences. While these research questions are chal-
lenging and involve all aspects of the autonomy stack, they
represent necessary steps towards a future where we can
safely and reliably leverage ML to enable true open-world
autonomy.
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