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Abstract— This paper presents distributed algorithms for
formation control of multiple robots in three dimensions. In
particular, we leverage the mathematical properties of cyclic
pursuit along with results from contraction and partial contrac-
tion theory to design distributed control algorithms ensuring
global convergence to symmetric formations. As a base case
we consider regular polygons as desired formations and then
provide extensions to Johnson solid formations. Finally, we
analyze the robustness of the control algorithms under bounded
additive disturbances and provide performance bounds with
respect to the formation error.

I. INTRODUCTION

There has been much interest in distributed, multi-robot
systems due to the plethora of possible applications and
performance advantages. These systems have many attractive
properties such as robustness to single-point failures, scalable
implementation and potentially lower operating costs com-
pared to monolithic approaches. Furthermore, multiple robots
can together accomplish tasks which may be impossible or
very difficult for any single robot on its own [1], [2], [3].

A prototypical problem in this context is distributed for-
mation control, that is, the problem of ensuring convergence
to a desired formation via control algorithms amenable to a
distributed implementation [4], [5], [6]. Most of the available
results consider two-dimensional formations [7], [8], [9].
Yet, a number of robotic applications would require three-
dimensional (3D) formations. For example, it may be desired
to deploy a set of small satellites in orbit to surround a larger
damaged spacecraft to provide complete 3D reconstruction
and visualization of the damaged spacecraft. Other examples
include differential atmospheric, deep space, or underwater
measurements [10], [11].

Accordingly, the objective of this paper is to design and
rigorously analyze distributed control algorithms for 3D
formations. Our approach is to leverage the simple, yet
effective strategy of cyclic pursuit. Essentially, the cyclic
pursuit strategy entails letting each robot i follow its leading
neighbor i+ 1 modulo n, where n is the number of robots.
This approach is attractive due to its decentralized nature
and low information requirements; namely relative position.
The cyclic-pursuit strategy for formation control has become
popular in recent years due to its inherent robustness and
simplicity [12], [13], [14]. In particular, we adapt the cyclic
pursuit strategy proposed in [15] (that, in turn, generalizes
earlier results in [13], [14]), whereby each robot follows
neighbors on both sides, that is, robots i + m and i − m
where m = {1, 2, . . . N} counts the degree of look-ahead
for each robot up to a horizon N . This is referred to as the

Sumeet Singh, Edward Schmerling and Marco Pavone are with
the Department of Aeronautics and Astronautics, Stanford Univer-
sity, Stanford, CA, 94305, {ssingh19, schmrlng, pavone
@stanford.edu}

This work was supported in part by the Stanford Graduate Fellowship
(SGF) and the King Abdulaziz City for Science and Technology (KACST)

symmetric cyclic control algorithm. To prove stability (i.e.,
convergence to a desired formation), we exploit contraction
theory. Contraction theory is a relatively recent innovation
in control system design [16], and hinges upon an exact
differential analysis of convergence. At its core, contraction
theory studies exponential convergence of pairs of system
trajectories towards each other, and by extension, to a desired
target trajectory. This represents a generalization with respect
to traditional Lyapunov analysis, which studies convergence
to the origin, i.e., to a zero trajectory [17]. Partial contraction
theory extends this concept by considering the convergence
of trajectories to a “set of properties,” for example, a flow-
invariant subspace [18], [19].

The contributions of this paper are threefold. First, we
study convergence of the symmetric cyclic control algorithm
to a polygon formation in 3D. Our analysis differs from
the one in [15] as it considers a refined notion of the
target formation (necessary to properly constraint a polygon
formation). Our analysis (as the one in [15]) leverages
partial contraction theory and yields insights into the var-
ious tuning parameters for the symmetric cyclic controller
and their resulting effect on performance metrics such as
convergence rate and control saturation. Second, we extend
the definition of the target formation to be the intersection
of regular polygons, thereby forming the set of strictly
convex polyhedra known as Johnson solids. Control laws and
sufficient conditions for convergence are derived for these
relatively complex polyhedron formations, paving the way
for innovative mission concepts [20]. Third, we analyze the
robustness properties of the symmetric cyclic controller un-
der bounded additive disturbances and provide performance
bounds with respect to the formation error. These results
provide theoretical insights for experiments performed on
board the International Space Station, which highlighted the
remarkable robustness properties of cyclic controllers [14].

The rest of the paper proceeds as follows: Section II intro-
duces the mathematical background for contraction and par-
tial contraction theory and circulant matrices which forms the
basis for all subsequent analysis. Section III formalizes the
problem, introduces the formation subspace and symmetric
cyclic control law, and provides conditions for convergence
to a regular polygon. In Section IV, we extend the results
to Johnson solid formations. Section V examines robustness
properties of the symmetric cyclic controller under bounded
additive disturbances. Finally, in Section VI, we draw our
conclusions and provide avenues for future work.

II. MATHEMATIC PRELIMINARIES

A. Notation
Given a square matrix A, the symmetric part of A, i.e.,

(1/2)(A + AT ), is denoted by Asym. The smallest and
largest eigenvalues of Asym are denoted, respectively, by
λmin(A) and λmax(A). Accordingly, the matrix A is positive



definite (denoted A � 0) if λmin(A) > 0, and negative
definite (denoted A ≺ 0) if λmax(A) < 0. We will use this
convention for the rest of the paper. Let Ik denote the k-by-
k identity matrix. Let A⊗B denote the Kronecker product
between matrices A and B. The null space of a matrix A is
denoted by N (A). Finally, the set of eigenvalues of A will
be denoted by λ(A).

B. Contraction and Partial Contraction Theory
This section reviews basic results of nonlinear contraction

theory [16], [21]. The basic stability result in contraction
theory reads as follows.

Theorem II.1 (Contraction [16]). Consider a general system
of the form

ẋ = f(x, t), (1)

where x is the n × 1 state vector and f is a n × 1
nonlinear, continuously differentiable vector function with
Jacobian ∂f/∂x. If there exists a square matrix Θ(x, t) such
that Θ(x, t)T Θ(x, t) is uniformly positive definite and the
matrix

F :=

(
Θ̇ + Θ

∂f

∂x

)
Θ−1

is uniformly negative definite, then all system trajectories
converge exponentially to a single trajectory. In this case,
the system is said to be contracting.

A few remarks are in order. First, a matrix Θ(x, t) is uni-
formly positive definite if there exists β > 0 such that ∀x, ∀t
it holds λmin(Θ(x, t)) ≥ β, and is uniformly negative defi-
nite if there exists β > 0 such that ∀x, ∀t, λmax(Θ(x, t)) ≤
−β. Second, the matrix F is referred to as the generalized
Jacobian for system (1). Third, the matrix M(x, t) :=
Θ(x, t)T Θ(x, t) is referred to as the contraction metric.

We next discuss partial contraction theory, which allows
one to address questions more general than trajectory conver-
gence. Consider system (1), and assume there exists a flow-
invariant linear subspace M ⊂ Rn, i.e., a linear subspace
with the property that, for all t,

x ∈M⇒ f(x, t) ∈M.

Assume that the dimension of M is p, and let (e1, . . . , en)
be an orthonormal basis of Rn where the first p vectors form
a basis for M. Let Ū be a p × n matrix whose rows are
eT1 , . . . , e

T
p . Let V̄ be an (n − p) × n matrix whose rows

are eTp+1, . . . , e
T
n . One can easily verify that matrix V̄ is

sub-unitary and satisfies the properties V̄ T V̄ + ŪT Ū = In,
V̄ V̄ T = In−p, and x ∈ M if and only if V̄ x = 0. We will
refer to V̄ as the projection matrix ofM. The main theorem
in partial contraction theory can be stated as:

Theorem II.2 (Partial contraction [19]). Consider a flow-
invariant linear subspace M and its associated projection
matrix V̄ . A particular solution xp(t) of system (1) converges
exponentially to M if the auxiliary system

ẏ = V̄ f
(
V̄ Ty + ŪT Ū xp(t), t

)
is contracting with respect to y. If this is true for all
particular solutions xp, all trajectories of system (1) will
exponentially converge to M from all initial conditions.

Combining Theorems and II.1 and II.2, one obtains a
powerful tool to ensure converge to a desired flow-invariant
subspace.

Corollary II.3 (Convergence to flow-invariant subspace). A
sufficient condition for global exponential convergence toM
is

V̄
∂f

∂x
V̄ T ≺ 0, uniformly.

In this paper, the subspace M will represent a desired
symmetric formation.

Remark II.4 (Partial contraction with non-orthonormal ma-
trices). Note that the application of partial contraction
theory requires the rows of the projection matrix V̄ to
be orthonormal. However, the matrix V characterizing a
subspace M may not be row-wise orthonormal, e.g., when
it is obtained by combining a set of linearly independent
equations. However, as long as the equations are indepen-
dent, the matrix V will be full row-rank, Thus, it can always
be transformed via an invertible transformation T into an
orthonormal counterpart V̄ which satisfies (1) V = T V̄ , (2)
V̄ x = 0⇔ x ∈M, and (3) V̄ ∂f

∂x V̄
T ≺ 0⇔ V ∂f

∂x V
T ≺ 0

[18].

C. Circulant and Block-Circulant Rotational Matrices
A circulant matrix of order n is a square matrix with the

following structure:

C =


c1 c2 · · · cn
cn c1 · · · cn−1

...
...

...
c2 c3 · · · c1

 (2)

The elements of each row are identical to the row above, but
shifted one position to the right and wrapped around. Thus,
a circulant matrix can be compactly denoted as:

C = circ[c1 c2 . . . cn].

A useful circulant matrix with dimensions n×n used in this
paper is defined below:

Lm := circ[1, 0, . . . , 0, −1︸︷︷︸
(m+1)st element

, 0, . . . , 0].

In the following, we will denote by CL⊗R the set of block-
circulant matrices that can be written as L⊗Rβ , where L is
a circulant matrix and Rβ is a rotation matrix about the axis
ez := (0, 0, 1)T with rotation angle β. From the properties
of the Kronecker product, the eigenvalues and eigenvectors
of a matrix in CL⊗R are given, respectively, by the product
of eigenvalues and Kronecker product of eigenvectors of the
circulant matrix L and the rotation matrix Rβ .

III. SYMMETRIC PLANAR FORMATIONS

A. Problem Setup
Consider n mobile robots (uniquely labelled by an integer

i ∈ {1, . . . , n}). Denote the position of robot i at time t as
xi(t), where xi(t) ∈ R3. The overall state vector is denoted
by x = (xT1 ,x

T
2 , . . . ,x

T
n )T . The dynamics of each robot are

given by
ẋi = gi(x) + ui(x, t), (3)

where ui is the control action. It is desired to design the
control actions so that (1) they drive the global state vector x
to a desired symmetric formation, and (2) they are amenable
to a distributed implementation. As in [15], our strategy is to
“encode” a symmetric formation as a “formation subspace”,
as discussed next. The proofs for all theorems and lemmas
introduced in this section are provided in the appendix.



B. Formation Subspace

In this section we consider regular polygons as desired
symmetric formations – the extension to non-planar forma-
tions is discussed in Section IV. Consider the case where the
direction normal to the desired formation polygon is aligned
with the vector ez (the general case can be reduced to this
case via a coordinate transformation). We encode such a
formation via the subspace:

Mn = {x ∈ R3n :

(xi+1−xi) = R2π/n(xi+2−xi+1), i = 1, . . . , n−2, (4a)

eTz (xn−xn−1) = eTz (x1−xn)}, (4b)

where the indices are considered modulo n, and R2π/n

denotes a counterclockwise rotation around ez . The n − 2
constraints in (4a) will be referred to as rotational constraints
while the single constraint in (4b) will be referred to as the
in-plane constraint. The in-plane constraint, not considered
in [15], is needed in order to ensure that all robots lie
in the same plane (which is not ensured by the rotational
constraints alone, one can readily find counterexamples). The
following lemma shows that the constraints (4a) and (4b) are
indeed necessary and sufficient for the definition of a regular
polygon.

Lemma III.1 (Polygon constraints). The set of constraints
(4a) and (4b) are necessary and sufficient for the definition
of a regular polygon with normal direction ez . Furthermore,
these constraints are linearly independent.

In addition to the above result, consider the following
corollary regarding the sufficiency of the rotational con-
straints for the case where two neighboring robots in the
polygon are known to already lie on the desired plane.

Corollary III.2 (Reduced polygon constraints). Assume two
neighboring robots j and j + 1 are constrained to lie in the
desired plane with normal ez , where the indices {j, j+1} ∈
{1, . . . , n} are modulo n. Then the rotational constraints
given in (4a) are necessary and sufficient for the definition
of a regular polygon with normal direction ez .

Remark III.3 (Polygon Degrees of Freedom). The con-
straints (4a) and (4b) together form a set of 3n− 5 linearly
independent equations in 3n variables. The five missing
equations correspond to five distinct degrees of freedom:
three in translation, one in scaling, and one in in-plane
rotation. That is, the polygon may be translated anywhere
in space, scaled in size, or rotated within the desired plane
about the plane normal.

Both (4a) and (4b) can be compactly represented as the
null space of a certain matrix, as shown in the following
lemma.

Lemma III.4 (Compact constraints). Let Wrn :=
[In−2, 0(n−2)×2] and Wpn := [01×(n−2), 1, 0]. Define the
3(n− 2) + 1× 3n matrix

V :=

[
Wrn ⊗ I3
Wpn ⊗ eTz

]
︸ ︷︷ ︸

:=Wn

(L1 ⊗ I3 + (L1 − L2)⊗R2π/n)︸ ︷︷ ︸
:=Pn∈CL⊗R

. (5)

Then the rotational and in-plane constraints in equation (4a)
and (4b) are equivalent to the equation V x = 0.

Note that Wrn captures the rotational constraints, while
Wpn captures the in-plane constraint. The subspaceMn can
then be characterized as the null space of matrix V , that is,

V x = 0⇔ x ∈Mn.

Our standing assumption throughout this paper is that the
internal dynamics, i.e., g(x), are flow-invariant with respect
to Mn:

Assumption 1 (Flow invariance). The internal dynamics are
flow-invariant with respect to the desired formation, that is
for all x ∈Mn one has V g(x) = 0.

C. Symmetric Cyclic Controller
We consider the class of symmetric cyclic controllers

proposed in [15] (in turn generalizing the pursuit controllers
introduced in [13]):

ui =

N∑
m=1

km
[
Rm(xi+m−xi)+RTm(xi−m−xi)

]
, (6)

where N is the look-ahead horizon (0 < N < n−1), km > 0
is a gain, Rm is a rotation matrix around ez with rotation
angle αm, and (xi+m − xi) and (xi−m − xi) denote the
relative coordinates among robot i and its i + m and i −
m neighbors (modulo n). Note that the above control law
is spatially-distributed, as each robot only requires relative
position information from a set of neighboring robots.

Then, the cyclic controller can be written in compact form
as

u = −
N∑
m=1

km [Lm ⊗Rm + LTm ⊗RTm]x

= −
N∑
m=1

km Lm x = −Lx, (7)

Lm := Lm⊗Rm+LTm⊗RTm ∈ CL⊗R and L :=
N∑
m=1

km Lm.

In order to apply partial contraction theory, the control law
needs to be flow-invariant (note that, by Assumption 1, the
internal dynamics are flow invariant). The next lemma shows
that this is indeed the case.

Lemma III.5 (Flow invariance). Subspace Mn is flow-
invariant with respect to the symmetric cyclic control law
given in equation (7).

We are now in a position to apply partial contraction
theory to show that, under some assumptions, the cyclic con-
troller drives the system to the desired formation subspace
Mn. As the encoded constraints are linearly independent,
by construction, V is full row-rank so that an invertible
transformation to its orthonormal counterpart V̄ exists.

In the following, to prove convergence to Mn, we will
apply partial contraction theory with respect to V̄ . Let Ū be
a matrix whose rows represent an orthonormal basis for the
orthogonal complement of the subspace defined by the rows
of V̄ . According to Theorem II.2, we want to show that for
system

ẋ = g(x)− Lx,

the associated auxiliary system

ẏ =V̄

(
g(V̄ Ty + ŪT Ūxp)− L (V̄ Ty + ŪT Ūxp)

)
,



is contracting. Note that by Assumption 1 and Lemma III.5
the closed-loop dynamics are invariant with respect to Mn.
Then, according to Corollary II.3, one requires

V̄

(
∂g

∂x
− L

)
V̄ T ≺ 0, uniformly.

By Remark II.4, since V and V̄ are related by an invertible
transformation, the above stability requirement can be re-
formulated in terms of V directly, i.e.,

WnPn
(
∂g

∂x
− L

)
PTnWT

n ≺ 0, uniformly. (8)

Performing an eigenvalue analysis of (8) (that heavily ex-
ploits the properties of circulant matrices given in Section II-
C), one obtains the main result of this section.

Theorem III.6 (Polygon convergence). Assume

sup
x,t

(
λmax

(
Pn

∂g

∂x
PTn
)
− min

1≤i≤n
k∈{−1,0,1}

N∑
m=1

km λ
(m)
ik

)
<0, (9)

where

λ
(m)
ik =

2

e
2π(2(i−1)+k)j

n

[
cos(kαm)− cos

(
kαm+

2πm(i− 1)

n

)]
[(
e

2π(i−1+k)j
n −1

)(
e

2π(i−1)j
n −1

)]2
.

Then system (3) under the cyclic controller (6) globally
converges to a symmetric formation, i.e., to the formation
subspace Mn.

Due to the needed inclusion of in-plane constraint, the
eigenvalues in Theorem III.6 differ from those in [15].

For a given number of robots, the primary design param-
eters in the cyclic controller include the gains km and the
look-ahead horizon N . It is clear that increasing the gains
uniformly scales all eigenvalues of the projected Jacobian,
thereby increasing the exponential convergence rate. How-
ever, this is at the expense of a more aggressive controller
which increases the risk of saturating the controller. On
the other hand, increasing the look-ahead horizon, while
imposing greater information requirements for each robot,
also increases the convergence rate but at a lower risk of
control saturation. This is due to the fact that the net control
action generated is dependant on the asymmetry between the
forward and rear neighbors of each robot. Thus, instead of
directly scaling the controller via the gains which undoubt-
edly increases the control magnitude by the scale factor,
one can take advantage of the increased convergence rate
with a larger horizon, with comparatively modest increases
in control effort. The appendix presents a simulation result
exemplifying this intuition.

Remark III.7 (Formations of fixed size). If αm = mπ/n
then the formation converges to a regular polygon with fixed,
but unspecified size. This can be shown by noting that the
forward and rear components of the cyclic controller cancel
for x ∈Mn and αm = mπ/n.

Remark III.8 (Double integrator dynamics). Assuming zero
internal dynamics (i.e., g(x) = 0), the symmetric cyclic

control law can easily be extended to double integrator
dynamics by augmenting the control law as follows:

ui =kd

N∑
m=1

km
[
Rm(xi+m−xi)+RTm(xi−m−xi)

]
+

N∑
m=1

km
[
Rm(vi+m−vi)+RTm(vi−m−vi)

]
− kdvi ,

where kd > 0 is a constant gain, u now represents the
acceleration control command and v represents robot veloc-
ities. The control law remains spatially-distributed in terms
of relative velocities with the addition of a feedback term on
absolute velocity. Convergence analysis for the system can
be carried out by introducing an auxiliary variable si =
kdxi + vi which satisfies the circulant equation: ṡ = Ls.
Then, provided the system in terms of this auxiliary variable
s is contracting to the desired subspace, the trajectories
x, of the robots are the output of the first order system
ẋ+ kdx = s.

Remark III.9 (General plane of convergence). In the sce-
nario where the desired formation plane is not the horizontal
plane, a similarity transformed version of the control rotation
matrix Rm should be used. For consistency, let ez remain
the desired plane normal in a rotated frame defined by the
rotation matrix Rη . Define Rms to represent the similarity
transformed version of Rm, i.e.,

Rms = RTηRmRη.

Then, the rotation matrix Rm in (6) can be replaced by Rms .
Accordingly, the cyclic controller in (7) becomes:

u = − (In ⊗RTη )︸ ︷︷ ︸
:=RTη

N∑
m=1

kmLm (In ⊗Rη)︸ ︷︷ ︸
:=Rη

x

= −
N∑
m=1

kmLmηx = −Lηx,

(10)

where Lmη := RTη LmRη and Lη :=
N∑
m=1

km Lmη . The

expression for the projection matrix V becomes:

V =WnPnRη. (11)

These modifications do not affect convergence analysis, but
will be instrumental for the extension to Johnson solid
formations in Section IV.

Figure 1a demonstrates the use of the symmetric cyclic
controller with 6 robots. The robots were randomly initial-
ized around the point (1, 1, 1)T with a look-ahead horizon
N = 2 and a desired formation plane tilted 42o from the
vertical. In addition to cyclic control, the robots were also
subject to an additional decentralized controller that allowed
the formation to converge to a specific size with a desired
geometric center. The control was implemented in two phases
whereby the robots were first allowed to converge to a regular
polygon before a flow-invariant controller was switched on
to separate the robots to a desired distance and shift the
geometric center to the origin. This switch can clearly be
noted in Figure 1b which plots the inter-robot distances with
respect to robot 1. The analysis for this switching controller
is presented in the Appendix.



(a) 3D Trajectory with size and
center control.
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Fig. 1: Single planar formation simulation.

IV. POLYHEDRAL FORMATIONS

In this section we extend the results of Section III to
polyhedral formations. Specifically, we focus on convex
polyhedra having regular faces and equal edge lengths,
referred to as Johnson solids. The main idea is to associate
each face of a polyhedron with a set of robots equal to the
number of vertices of that face, see Figure 2.

Fig. 2: General polyhedron notation.

Specifically, let A be the set of robots, let F be the
set of faces in the Johnson polyhedron, and let Fk be its
kth face. Furthermore, let Vk be the set of vertices of face
Fk and let nk be the unit outward normal of face Fk
(pointing outward from the interior of the polyhedron). Let
the number of robots n be equal to the number of vertices
in the polyhedron. Each robot is uniquely associated with a
vertex in the polyhedron. Each face induces a sub-indexing
of the robots, specifically, let ik denote the index of robot
i in face k, where i = 1, . . . , n and k = 1, . . . , |F|, see
Figure 2. If robot i does not belong to face k, then we
use the convention ik = ∞. For consistency, we assume
a counter-clockwise index assignment within a face, where
the counter-clockwise direction is with respect to the outward
normal nk.

In order to study convergence using partial contraction
theory, we require a non-redundant characterization of the
polyhedron. In particular, we consider a strict subset of L <
|F| faces that are sufficient to fully constrain the formation.
Without loss of generality, assume that the set of these L
faces, which we will call FL, is the first L faces in F . The
faces in FL uniquely identify a Johnson polyhedron and will
be referred to as the basis faces of F . Prior to a discussion on

how this subset of faces is chosen, we first introduce some
necessary notation.

For notational convenience, for each face k = 1, . . . , L,
define the matrix Ē(k) ∈ R|Vk|×n as

[Ē(k)]ij =

{
1 if jk = i,

0 otherwise.
(12)

Thus [Ē(k)]ij equals one if robot j’s index within face k is
equal to i. Then, the state of all the robots in face k can be
compactly written as

x(k) =
(
Ē(k) ⊗ I3

)
x = E(k)x, (13)

where x is the global state vector and E(k) := Ē(k)⊗I3 acts
to permute subsets of the global state vector into a counter-
clockwise arrangement of robots for face k.

Let each face in the polyhedron (by assumption a regular
polygon) be described by a subspace M(k)

|Vk|, defined in a
way analogous to the one in Section III-B, as

M(k)
|Vk| = {x(k) ∈ R3|Vk| :

Rηk(x
(k)
i+1−x

(k)
i ) = R2π/nRηk(x

(k)
i+2−x

(k)
i+1), (14a)

i = 1, . . . , |Vk|−2,

eTz Rηk(x
(k)
|Vk|−x

(k)
|Vk|−1) = eTz Rηk(x

(k)
1 −x

(k)
|Vk|)}, (14b)

where Rηk is a rotation matrix that defines a coordinate frame
with its ez axis aligned with the outward face normal nk.
According to Lemma III.4, M(k)

|Vk| can be represented as the
null space of a 3(|Vk|−2)+1×3n matrix, denoted by Ṽ (k).
In other words, x ∈M(k)

|Vk| ⇔ Ṽ (k)x = 0.
The desired Johnson polyhedral formation can then be

represented as a subspace Mn given by the intersection of
the subspaces corresponding to the basis faces, that is

Mn = ∩Lk=1M
(k)
|Vk|. (15)

Alternatively, the desired Johnson polyhedral formation
can be represented as the intersection of null spaces
∩Lk=1N (Ṽ (k)). Using (11) and (13), one can write Ṽ (k) as

Ṽ (k) =W|Vk|P|Vk|RηkE
(k). (16)

Having established the description of the Johnson polyhedron
as the intersection of the subspaces corresponding to the basis
faces set FL, we now discuss how to select this subset within
F . First, we state the following extension of Remark III.3:

Remark IV.1 (Normal Parity). For two polygons with
linearly independent normals that share a common edge,
the in-plane rotational degrees of freedom reduce to two
realizations corresponding to inward versus outward facing
normals in the convex hull of the two polygons. This parity
is captured by the scaling degree of freedom: if the robots’
position vector x lies in the intersection of the null-spaces
for the two polygons and produces outward normals, then
the alternate solution −x produces inward normals.

We now present sufficient conditions for a basis face set:

Lemma IV.2 (Representation of a Johnson Polyhedron).
Assume that a basis set FL of a Johnson polyhedron satisfies
the following three properties:

1) Each face within FL is a regular polygon described by
the nullspace of the matrix Ṽ (k) where Ṽ (k) is as given
in (16).



2) Within the dual graph of the Johnson polyhedron, the
sub-graph induced by FL is a tree.

3) The faces in FL span all vertices.
Then, FL in conjunction with (15) uniquely characterizes a
Johnson polyhedron up to normal parity.

Proof. We begin with the first assumption. From Lemma
III.1 and Remark III.3, we know that each Ṽ (k) constrains
the plane normal and shape of a regular polygon spanned by
the vertex set Vk.

Let us now consider two adjacent faces within FL. From
Remark IV.1, these two faces must have a fixed orientation
in space up to normal parity. For any other face Fk ∈ FL,
by assumption 2, there exists a unique path in FL between
Fk and these two faces. Given the normal parity fixed by the
initial two faces, the orientation of Fk is fixed by applying
Remark IV.1 along this path. Thus the mutual orientation of
all faces in FL is fixed.

Finally, by assumption 3, each vertex in the polyhedron
belongs to at least one of the faces in FL. Then, the convex
hull of the vertices is the desired polyhedron.

Given our representation of the polyhedron in terms of the
basis faces set, we can now combine (15) and (16) to form
the global constraint matrix Ṽ :

Ṽ :=
[
Ṽ (1)T Ṽ (2)T · · · Ṽ (L)T

]T
. (17)

Thus, we can compactly characterize the global desired
formation subspace Mn as the null space of Ṽ , i.e.,

x ∈Mn ⇔ Ṽ x = 0.

As constructed, Ṽ is not full row-rank as there are redundant
constraints. Since stability analysis using partial contraction
is contingent upon a full row-rank projection matrix, we
propose a reduction of Ṽ that discards redundant constraints
in the Ṽ (k). To simplify the exposition, we use a labelling
convention for the tree of faces FL, where all basis faces
along the unique path between F1 and any Fj ∈ FL have
indices less than j.

We now propose the following structure for the sub-
blocks:

V (k) =

{
Ṽ (k) if k = 1, 2,

(Wr|Vk|
⊗ I3)P|Vk|RηkE(k) k = 3, . . . , L,

(18)
where, as defined in Lemma III.4, Wr|Vk|

=
[I|Vk|−2, 0(|Vk|−2)×2]. That is, in-plane constraints have
been removed from all but two (adjacent) faces within FL,
specifically, F1 and F2. The following Lemma proves that
the reduced constraints that stem from (18) are equivalent
to the original set of constraints using Ṽ (k), and that the
resulting global constraint matrix is full row-rank. The proof
is provided in the appendix.

Lemma IV.3 (Minimal representation of V ). Denote the set
of equations Ṽ (k)x = 0 where Ṽ (k) has the form given in
(16) for k = 1, . . . , L as the full-constraint set. Similarly,
denote the set of equations V (k)x = 0 where V (k) has the
form given in (18) as the reduced-constraint set. Then, the
solutions to the two sets of equations are identical. That is,

x ∈Mn ⇔ V x = 0.

where V =
[
V (1)T · · · V (L)T

]T
. Furthermore, V is full

row-rank.

Remark IV.4 (Polyhedron Degrees of freedom). Note that V

has a total of
(

3
L∑
k=1

|Vk| − 6L+ 2

)
linearly independent

equations for a total of
(

3
L∑
k=1

|Vk| − 6L+ 6

)
variables.

Three degrees of freedom correspond to the three trans-
lational degrees of freedom. The final degree of freedom
corresponds to scaling the polyhedron by some constant
α ∈ R. Applying a negative scaling factor may be interpreted
as flipping the entire formation — see normal parity, Remark
IV.1.

Having characterized the desired formation as the null
space of a full row rank matrix, we turn our attention to
the control law for each robot. Similarly to Section III-C,
we consider the control law for robot i stemming from face
k, that is u(k)

i , the cyclic controller

u
(k)
i =

Nk∑
m=1

k(k)
m

[
R(k)
ms(x

(k)
i+m−x

(k)
i )+R(k)T

ms (x
(k)
i−m−x

(k)
i )
]
,

(19)
where Nk < |Vk| − 1 is the look-ahead horizon for face
k, k(k)

m > 0 is a gain, R(k)
ms = RTηkR

(k)
m Rηk with R

(k)
m =

Rmπ/|Vk|, and x(k)
i+m and x(k)

i−m are neighboring robots within
face k (modulo |Vk|). The choice R(k)

m = Rmπ/|Vk| stems
from the requirement that robots converge to a polygon of
fixed size within each face (see Remark III.7).

The net control for each robot is then given by the
superposition of contributions for each face in which the
robot is present, i.e.,

ui =

L∑
k:ik 6=∞

u
(k)
i , i = 1, . . . , n. (20)

Using (19) and (10), the overall cyclic control vector
stemming from face k is given by

u(k) = −
Nk∑
m=1

k(k)
m L(k)

mηx
(k) := −L(k)

η E(k)x,

where L(k)
mη = RTηkL

(k)
m Rηk and L(k)

m = Lm ⊗R(k)
m +LTm ⊗

R
(k)T

m . This allows us to express the contribution to the
global control vector due to face k as

uk = E(k)Tu(k) = −E(k)TL(k)
η E(k)x.

Thus, the overall closed-loop dynamics are given by

ẋ =

L∑
k=1

uk(x). (21)

Note that, for simplicity, we are considering zero internal
dynamics. A sufficient condition for convergence to the
desired formation, i.e., to the subspace Mn, is provided by
the following theorem.

Theorem IV.5 (Polyhedron Convergence). Assume

J =

[
V

(
L∑
k=1

−E(k)TL(k)
η E(k)

)
V T
]
≺ 0. (22)

Then, the closed-loop dynamics (21) globally converge to a
Johnson polyhedral formation, i.e., to the formation subspace
Mn.



Proof. Let V̄ represent the orthonormal counterpart of V ,
whose existence is guaranteed given the results of Lemma
IV.3. First, we need to show that the dynamics (21) are flow
invariant. Indeed, as an immediate consequence of Remark
III.7 and the fact that the the rotation angle is set equal to
mπ/|Vk|, one has
x ∈Mn ⇒ uk(x) = 0, for all k = 1, . . . , L, (23)

and hence x ∈ Mn ⇒ V̄
L∑
k=1

uk(x) = 0, i.e., dynamics

(21) are flow invariant.
Consider, then, the following auxiliary system for system

(21):

ẏ = V̄

(
L∑
k=1

−E(k)TL(k)
η E(k)

(
V̄ Ty + ŪT Ūxp

))
.

Since the dynamics are flow invariant, and an invertible
transformation exists between V and V̄ , then by Remark II.4
and by applying Corollary II.3, one obtains the claim.

Remark IV.6. Note that the condition given in (22) is
markedly more complex than (9), required for convergence
to a single plane. In particular, we now have the addition of
cross-terms in the projected Jacobian due to the interaction
between the various faces. Additionally, when working with
the auxiliary system, we did not leverage the results of flow-
invariant subspaces as they were introduced in Section III.
This is because if the global state vector x converges to one
of the subspaces defined by V (k), then the global dynamics
will not necessarily be flow-invariant with respect to the
given face or any other faces in Mn. This is due to two
reasons: 1) Only the rotational set of constraints are used to
define faces other than the ones indexed by k = 1 and k = 2,
which we know are insufficient on their own to describe a
regular planar polygon and 2) the cyclic control law for each
robot as defined in (20) introduces coupling between various
faces. Thus, convergence is predicated on the decay of the
symmetric cyclic controller to zero for all faces.

Figure 3 shows simulation results demonstrating conver-
gence to complex 3D formations. The subset of faces chosen
to derive the control laws FL, are shaded in red while all
other faces are shaded in blue to indicate a closed polyhedron
formation.

A potential issue to note here is the resulting effect on the
system performance in the event of local robot failures. In
the regular polygon case, a single point of failure simply
requires the robots to reinitialize their indices within the
group and subsequently converge to a smaller polygon. In
the polyhedron case however, this can be problematic if the
failed robot is coupled to multiple faces. In this scenario,
a global restart may be required with a new polyhedron
configuration that fits the reduced set of robots.

V. ROBUSTNESS ANALYSIS

In this section we discuss the robustness properties of
the cyclic closed-loop dynamics (7) subject to additive
disturbances. Robustness performance is measured as the
Euclidean norm of the deviation of the perturbed system tra-
jectory from the nominal contracting trajectory, with respect
to the metric V̄ T V̄ , where V̄ is the orthonormal counterpart
of the nominal projection matrix as defined in (5). The
analysis presented in this section is restricted to zero internal

(a) Hexagon Box Formation - 12 robots

(b) Octahedron Formation - 6 robots

Fig. 3: Convergence to complex 3D formations.

dynamics (i.e., g(x) = 0) and to convergence to regular
polygons. An analogous proof can be constructed for the
Johnson polyhedron case.

Let z0(t) = V̄ x0(t) represent the dynamics of the un-
perturbed system under the action of the symmetric cyclic
controller (7). Then,

ż0(t) = −V̄ Lx0(t). (24)

Consider the perturbed dynamics zd(t), under an additive
state and/or time dependent disturbance:

żd(t) = −V̄ Lxd(t) + d(xd, t). (25)

Here the disturbance is measured in the transformed z
coordinates. Let δ(t) represent the difference between the
nominal and perturbed trajectories at time t. Specifically, let
δz(t) := zd(t) − z0(t) and δx(t) := xd(t) − x0(t). Note
that both δz and δx equal 0 at t = 0 as the trajectories are
assumed to start from the same point. Then,

δ̇z(t) = −V̄ L δx(t) + d(xd, t). (26)

Let R̄2(t) := δTz (t)δz(t); R̄ represents the Euclidean dis-
tance of the perturbed trajectory from the nominal one in the
transformed coordinates, referred to as the formation error.
The following theorem characterizes the robustness of cyclic
pursuit. The proof is provided in the appendix.

Theorem V.1 (Cyclic Control Robustness). Assume that the
nominal system is contracting with contraction rate Λ =
−λmin

(
V̄ LV̄ T

)
< 0 and that the disturbance is norm

bounded with upper bound d̄. Then the formation error in
the transformed z coordinates, that is R̄, is upper bounded
as

R̄(t) ≤ d̄

Λ
(eΛt − 1). (27)

Remark V.2. The bound R̄(t) describes the time-varying
deviation from a nominal contracting trajectory. In the limit
t → ∞, the steady state bound R̄ss = d̄/|Λ| provides a
measure of the steady-state formation error. Physically, it
represents a bound on the degree of asymmetry at each node



of the formation measured by the set of linear constraints
used to derive the subspace, that is, (4a) and (4b). The
inverse proportionality between R̄ss and |Λ| highlights a
potential trade-off between increased robustness, and control
saturation (km) and/or sensor requirements (N ).

Figure 4 provides insights into the tightness of the bound.
Here, perturbation was introduced into the system via error
in the control rotation angles. The rotation angle in Rm for
robot i is equal to α̃i(t) = α0 + δαi(t) where α0 = mπ/n
is the nominal control angle and δαi(t) is a perturbation,
sampled randomly from a uniform distribution over the
range ±1◦. The plotted curves in Figure 4a correspond to
the actual formation error R̄, the Gronwall bound in (27)
and a tighter bound governed by the following differential
inequality (derived in the proof for Theorem V.1):

˙̄R ≤ ΛR̄+ ‖d(xd, t)‖.
Figure 4b gives a measure of the tightness of the two bounds,
calculated as the percentage difference with respect to the
actual deviation.

(a) Comparison for ‖δz‖. (b) Bound tightness

Fig. 4: Tightness for robustness bounds.

The simulation was carried out for 6 robots, with look-
ahead horizon N = 2. Based on the chosen cyclic control
gains, Λ = −6.928 and d̄ = 0.065. From Figure 4b, we
can see that, on average, the differential equation bound
overestimates the actual deviation by about 30% while the
Gronwall bound is even more conservative.

VI. CONCLUSIONS

In this paper we studied distributed control algorithms for
3D formations, ranging from regular polygon to Johnson
solid formations. These algorithms are desirable for their
simplicity, in that they only require relative position measure-
ments and an agreement between the robots on the desired
orientation in space. For second order dynamics, the re-
quirements extend to include relative and absolute velocities.
Our approach was to leverage the mathematical properties of
cyclic pursuit along with results from contraction and partial
contraction theory. Furthermore, we studied the robustness of
cyclic controllers under bounded additive disturbances and
provided performance bounds with respect to the formation
error.

This work allows several possible avenues for exten-
sion. First, it would be useful to extend the use of partial
contraction theory to analyze convergence to more general
formations such as ellipses. This could be accomplished
using linear transformations on the constraints and the cyclic
controller. Additionally, analyzing the effects of control
saturation on system convergence is a vital prerequisite to
implementation on actual hardware. This might involve, for
instance, imposing either hard nonlinearities on the controller

output or embedding the output within a smooth bounded
function. It is also of interest to evaluate optimality prop-
erties of cyclic controllers by introducing an objective cost
function to be minimized and using it to guide gain selection
and/or look-ahead horizon. Finally, we would like to explore
opportunities to implement such algorithms for space and
underwater applications.
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APPENDIX

A. Mathematic Preliminaries

1) Kronecker Product: Let A and B be matrices of size
m× n and p× q respectively. The Kronecker product of A
and B is defined as:

A⊗B =

a11B · · · a1nB
...

...
am1B · · · amnB

 ,
where A⊗B has dimensions mp×nq. if λA is an eigenvalue
of A with eigenvector vA, and similarly λB and vB are an
eigenvalue and eigenvector pair for B then the corresponding
eigenvalue and eigenvector pair for A ⊗ B is λAλB and
vA ⊗ vB. Furthermore, we also note the following identity:
(A⊗B)(C ⊗D) = AC ⊗BD, where the products AC and
BD are defined.

2) Eigenvalues and Eigenvectors of Circulant Matrices:
From [22], the eigenvalues of a circulant matrix are the
Discrete Fourier Transform of the first row of the circulant
matrix.

Theorem VI.1 (Adapted from Theorem 3.1 in [22]). Every
circulant matrix C has eigenvectors:

vk =
1√
n

(1, e−2πj(k−1)/n, . . . , e−2πj(k−1)(n−1)/n)T ,

k = 1, 2, . . . , n,
(28)

and corresponding eigenvalues:

λk =

n−1∑
p=0

cpe
2πj(k−1)p/n, (29)

and can be expressed in the form C = UΛU∗ where U
is a unitary matrix with the kth column equal to the kth

eigenvector and Λ is a diagonal matrix of corresponding
eigenvalues. Note that the same matrix U diagonalizes all
circulant matrices. Thus if C and B are n × n circulant
matrices, with eigenvalues {λB,k}nk=1 and {λC,k}nk=1 re-
spectively, then:

1) C and B commute (CB = BC) and CB is also a cir-
culant matrix with eigenvalues equal to {λB,kλC,k}nk=1

2) C + B is also circulant with eigenvalues {λB,k +
λC,k}nk=1

B. Proofs

Proof of Lemma III.1. Necessity is trivial. We then consider
sufficiency. First, we prove that constraints (4a) and (4b)
ensure that all robots lie in a common plane, i.e.,

eTz xi = a, (30)

for all i ∈ {1, . . . , n} and some a ∈ R. Since ez is a left
eigenvector of R2π/n, with eigenvalue equal to 1, the rota-
tional constraints imply eTz (xi+1−xi) = eTz (xi+2−xi+1),
for i = 1, . . . , n − 2. Combining this set of equations with
the in-plane constraint, one can write

eTz (xi+1−xi) = eTz (xi+2−xi+1),

for i = 1, . . . , n − 1 and where the indices are modulo n.
One can then readily show that

eTz xi+2 = eTz x2 + i eTz (x2 − x1), (31)



for i = 1, . . . , n − 1 and where the indices are modulo n.
Hence, for i = n− 1, one obtains

eTz x1 = eTz x2 + (n− 1) eTz (x2 − x1),

which implies that eTz (x2 − x1) = 0. Hence, by setting
eTz x2 := a, one immediately obtains equation (30). We have
then proven that all robots lie in a common plane. Now, for
n points lying in a common plane, the rotational constraints
represent the definition of a regular polygon.

For independence, we note that each successive rotational
constraint involves at least one robot that does not be-
long to any of the previous constraints, proving that the
rotational constraints are independent. Then, the in-plane
constraint is necessary to ensure that the robots do not
form a spiral formation out of the desired plane, thereby
reducing the dimensionality of the solution subspace. Thus,
the in-plane constraint must be independent to the rotational
constraints.

Proof of Corollary III.2. Necessity is straightforward. We
then consider sufficiency. To prove the claim, we need to
show that the rotational constraints are sufficient to ensure
that all robots lie in the desired plane for j = 1, . . . , n. The
claim then follows directly. Now, the rotational constraints
imply

eTz (xi+1−xi) = eTz (xi+2−xi+1), (32)

for i = 1, . . . , n − 2. For two robots with indices j and
j + 1 that lie in the desired plane, we know that eTz xj =
eTz xj+1 = a ∈ R. Thus, for j = 1, . . . , n − 1, we can
recursively use (32) to show

eTz xi = eTz xj , (33)
for i = 1, . . . , n. For the case where j = n, we have:

eTz xn = eTz x1.

However, we note that (31) still holds for i = 1, . . . , n − 2
using the rotational constraints alone. Then, setting i = n−2,
we obtain
(eTz xn−eTz x1)+(n−1)eTz (x2−x1) = (n−1)eTz (x2−x1),

which gives eTz x2 = eTz x1. We can now again use (32)
recursively to show (33), completing the proof.

Proof of Lemma III.4. Equations (4a) and (4b) can be writ-
ten in matrix form as V x = 0, where

V =


I3 −(I3 +R2π/n) R2π/n

03×3 I3 −(I3 +R2π/n)
...

...
...

eTz R2π/n 01×3 01×3

. . .

03×3 · · · · · · 03×3

R2π/n 03×3 · · ·
...

...
...

...
...

· · · · · · eTz −eTz (I3 +R2π/n)

 .
(34)

Simplifying the above expression, one obtains
V =Wncirc[I3,−I3, 03×3, . . . , 03×3]+ (35)

Wncirc[03×3,−R2π/n, R2π/n, 03×3, . . . , 03×3]

=Wn(L1 ⊗ I3) +Wn((L1 − L2)⊗R2π/nI3)

=Wn

(
L1In ⊗ I3I3 + (L1 − L2)In ⊗R2π/nI3

)
=Wn(L1 ⊗ I3 + (L1 − L2)⊗R2π/n)(In ⊗ I3),

where the last equality follows from the properties of the
Kronecker product. The claim then follows.

Proof of Lemma III.5. Note that the rotational constraints in
(4a) and the in-plane constraint (4b) define the subspace,
Mn to be a regular polygon with normal ez . The following
analysis therefore assumes that all robots lie in a single plane
and satisfy the rotational constraints. Then,

ẋi+1 − ẋi =

N∑
m=1

km(x, t)
[
Rm(x, t)(xi+1+m − xi+1)

+RTm(x, t)(xi+1−m − xi+1)
]

−
N∑
m=1

km(x, t)
[
Rm(x, t)(xi+m − xi)

+RTm(x, t)(xi−m − xi)
]
. (36)

Now by the constraints described by (4a), we can state:
xi+1+m − xi+1 = R2π/n(xi+2+m − xi+2), and
xi+1−m − xi+1 = R2π/n(xi+2−m − xi+2).

Thus, the first term in (36) can be written as:

ẋi+1 =

N∑
m=1

km(x, t)
[
RmR2π/n(x, t)(xi+2+m − xi+2)

+RTmR2π/n(x, t)(xi+2−m − xi+2)
]

=R2π/n

N∑
m=1

km(x, t)
[
Rm(x, t)(xi+2+m − xi+2)

+RTm(x, t)(xi+2−m − xi+2)
]

=R2π/nẋi+2, (37)

where the order of Rm and R2π/n can be swapped since
they are rotation matrices about the same axis. Similarly, it
can be shown that ẋi = R2π/nẋi+1. Thus, rewriting (36):

ẋi+1 − ẋi = R2π/n(ẋi+2 − ẋi+1).

To prove the arbitrary normal case, simply replace Rm and
R2π/n with their similarity transformed versions with respect
to Rη 6= I3.

Proof of Theorem III.6. We provide the proof for the general
case where the desired formation plane is not necessarily the
horizontal plane. The proof leverages the following lemma.

Lemma VI.2. Given a symmetric matrix X such that X ≺ 0,
then WnXWT

n ≺ 0.

Proof. If X ≺ 0 then λmax(X ) < 0. Noting that
Wn is sub-unitary, by the Cauchy Interlacing theorem,
λmax(WnXWT

n ) ≤ λmax(X ) < 0.

The proof of the theorem then simply expands upon the
convergence conditions expressed in (8).

Given the results of Lemma VI.2, we only need to consider
the uniform negative-definiteness of the inner term (not
involving Wn) in (8). For the scenario where the desired
formation plane is not the horizontal x − y plane, by the
discussion in Remark III.9, we use the similarity transformed
versions of the projection matrix V and the cyclic controller
and show that it has no effect on the resulting analysis.

From (10) and (11), we begin by noting that
PnRηLmηRTη PTn = PnLmPTn since Lmη = RTη LmRη .
Thus, the analysis does not depend on the arbitrary choice



of the orientation of the desired plane normal in the global
coordinate system.

Now, given the matrices Pn and Lm are ∈ CL⊗R, they
have the same set of eigenvectors. Then, for any eigenvector
vi in this set, we have the following relation for the corre-
sponding eigenvalues:

λi
(
PnLmPTn

)
= λi(Pn)λi(PTn )λi(Lm).

To derive the eigenvalues of Pn, we note that Pn = L1⊗
I3 + (L1 − L2) ⊗ R2π/n which is the sum of two CL⊗R
matrices and thus the eigenvalues of Pn must be the sum of
the eigenvalues of L1 ⊗ I3 and (L1 − L2) ⊗ R2π/n. From
Theorem VI.1, we have the general result:

λi(Lm) = 1− e 2mπ
n (i−1)j , i = 1, . . . , n. (38)

Additionaly from Theorem VI.1, the eigenvalues of L1−L2

are the sum of eigenvalues of L1 and −L2. The eigenvalues
of R2π/n are {1, e± 2π

n j} = e
2kπ
n j where k ∈ {−1, 0, 1}.

Thus, the eigenvalues of Pn and PTn are the set i ∈
{1, . . . , n}, k ∈ {−1, 0, 1}:
λ(Pn,PTn ) =

(
1− e± 2π

n (i−1)j
)

+
(
e±

4π
n (i−1)j − e± 2π

n (i−1)j
)
e±

2kπ
n j , (39)

where the positive and negative signs are for Pn and PTn
respectively. In a similar fashion, the eigenvalues for Lm
are:
λ(Lm) =

(
1− e 2mπ

n (i−1)j
)
ekαmj

+
(

1− e
−2mπ
n (i−1)j

)
e−kαmj

=2

(
cos(kαm)− cos

(
kαm +

2πm(i− 1)

n

))
.

(40)
Multiplying (39) and (40) gives the expression for
λ
(
PnLmPTn

)
= λ

(m)
ik (x, t). To obtain the summation form

in (9), note that PnLmPTn ∈ CL⊗R for all m. Thus

λ

(
Pn

N∑
m=1

kmLmPTn
)

=
N∑
m=1

km
[
λ
(
PnLmPTn

)]
. Having

obtained the summation form, (9) follows directly from
trying to show (8) given Lemma VI.2.

Proof of Lemma IV.3. We proceed by induction. Let Fk =
{F1, . . . ,Fk} denote a partial list of faces, constrained
by the set of equations [V (k)]x = 0, where [V (k)] =[
V (1)T · · · V (k)T

]T
, k ≤ L. Similarly, let [Ṽ (k)] =[

Ṽ (1)T · · · Ṽ (k)T
]T

.

Base case: k = 2: It is clear that N
(
[V (2)]

)
= N ([Ṽ (2)])

as [V (2)] = [Ṽ (2)]. To see that [V (2)] is full row-rank,
we note that V (1) is full row-rank (Lemma III.1) and each
successive rotational constraint within V (2) (counting around
the polygon starting from the shared edge) involves at least
one robot that does not belong to any previous constraints
in V (1) or V (2). The in-plane constraint for V (2) further
reduces the dimension of the solution set by constraining
the rotational degree of freedom for F1: there is only one
orientation of F1 (up to normal parity) under which the edge
shared by the two faces is orthogonal to n2. Therefore all
constraints in [V (2)] are independent.

Hypothesis: Assume that the set of equations [Ṽ (k)]x = 0
and [V (k)]x = 0 are equivalent and that [V (k)] is full row-
rank.

We now prove that [Ṽ (k+1)]x = 0 and [V (k+1)]x = 0
are also equivalent and that [V (k+1)] is full row-rank. By
the inductive hypothesis, [Ṽ (k)]x = 0 ensures that Fk is
defined and as a direct consequence of Remark IV.1 and
Lemma IV.2, the faces have a fixed orientation consistent
with their position within the polyhedron.

Now, from our labeling convention, Fk+1 must share
exactly one edge (i.e. exactly 2 robots) with a face within
Fk, and that the edge must lie in a plane normal to
nk+1. The tree structure of FL prevents any additional
shared edges. From Corollary III.2, the rotational constraints
encoded in V (k+1) are indeed sufficient to form Fk+1.
Furthermore, as the shared edge between Fk+1 and Fk is
fixed in space, the constraints V (k+1) also ensure that Fk+1

does not possess any rotational degree of freedom within its
plane and therefore, must possess an orientation consistent
with its position within the polyhedron. Thus, [V (k+1)]x = 0
and [Ṽ (k+1)]x = 0 are equivalent.

To see that [V (k+1)] is full row rank, we note that each suc-
cessive rotational constraint within V (k+1) involves at least
one robot not represented by any of the existing constraints
within [V (k)] or V (k+1). Then, by similar reasoning as for
the base case, all constraints in [V (k+1)] are independent.

By induction, both claims are proven.

Proof of Theorem V.1. Starting from (26), δx = (V̄ T V̄ +
ŪT Ū)δx = V̄ T δz + ŪT Ūδx. Now, ŪT Ūδx ∈ Mn, so
V̄ L (ŪT Ū δx) = 0. Thus,

δ̇z(t) = −V̄ LV̄ T δz + d(xd, t).

Pre-multiplying by 2δz(t) we obtain:

2δTz δ̇z =
d(δTz δz)

dt
= −2δTz

(
V̄ LV̄ T

)
δz + 2δTz d(xd, t).

Letting R̄2 = δTz δz , one can write

dR̄2

dt
= 2R̄

dR̄

dt
= −2δTz

(
V̄ LV̄ T

)
δz + 2δTz d(xd, t).

Noting that:

−δTz
(
V̄ LV̄ T

)
δz ≤ −λmin

(
V̄ LV̄ T

)
δTz δz = ΛR̄2,

and

δTz d(xd, t) ≤ ‖δz‖‖d(xd, t)‖ = R̄‖d(xd, t)‖,

we get:

R̄ ˙̄R ≤ ΛR̄2 + R̄‖d(xd, t)‖.

Thus,

˙̄R ≤ ΛR̄+ ‖d(xd, t)‖, (41a)
≤ ΛR̄+ d̄ (41b)

By using Gronwall’s Lemma [23], the claim follows.



C. Control over Formation Size

By setting |αm| = mπ/n, the formation converges to a
regular polygon of fixed, but uncontrolled size. As a natural
extension of this approach, [15] introduces an additive term
to the control law to control the size of the formation.
The subsequent analysis for proving convergence however,
is inconsistent with the method of partial contraction theory.
We present an alternative algorithm for controlling formation
size and in addition, the center of the formation that only
leverages the property of flow-invariant subspaces. Assume
zero internal dynamics g(x). The algorithm is split into two
phases:

1) Phase 1: Apply the symmetric cyclic controller in (6)
with αm = mπ/n until the robots converge within some
error bound of the desired formation, as measured by
the residual of cyclic controller.

2) Phase 2: Apply the flow-invariant formation size and
center controllers in order to converge to a polygon with
desired inter-robot distance ρ and center xc.

To determine the switch from Phase 1 to Phase 2, a simple
decentralized algorithm can be implemented whereby each
robot evaluates the residual of its own symmetric cyclic
controller which is known to converge to zero when the
robots are in formation. Once all robots have sufficiently
converged to Mn, consider the following control law:

ui = fs(zi(x))(xi+1 − xi) + kc

(
xc −

1

n

n∑
i=1

xi

)
, (42)

where zi(x) = ‖xi+1 − xi‖ − ρ, ρ is the desired inter-
robot neighbor distance in the formation, fs is an odd scalar
function that operates on the error in inter-robot distance
satisfying the property zfs(z) > 0; kc is the geometric center
control gain and xc is the desired geometric center. Here
‖(·)‖ denotes the Euclidean norm.

The size controller acts only between robots i and i + 1,
modulo n while the formation center controller uses the
offset of the current geometric center from the desired
center and computes compensation in this direction which
is applied equally to all robots. In order to compute the
current geometric center of the formation in a decentralized
fashion, we only require a single robot to know its global
position. The geometric center can then be calculated ex-
tremely quickly via two successive message passes, the first
to iteratively compute the geometric center using relative
positions between robots, and the second to distribute this
value amongst all robots.

Define Mnρ to be a subset of the original invariant
subspaceMn, corresponding to the space of regular polygon
formations with inter-robot neighbor distance equal to ρ.
Thus,

Mnρ = {x : x ∈Mn ∧ ‖xi+1 − xi‖ = ρ}.

To prove convergence to this subspace, we first start with
a lemma to prove that the subspace, Mn is indeed flow-
invariant with respect to (42).

Lemma VI.3. The subspace Mn is flow-invariant with
respect to the dynamics given in (42).

Proof. It is straightforward to see that the formation center
controller is invariant to Mn.

Now, for x ∈ Mn, fs(zi(x)) is the same for all robots.
Let this value be equal to f̄s. The global size control vector
us can then be written as:

us = −f̄s(L1 ⊗ I3)x.

Thus, V us = −f̄s V (L1 ⊗ I3)x = 0, proving the claim.

Having shown that Mn is flow invariant with respect to
the augmented dynamics, the proof to show convergence to
the subspace, Mnρ is presented in [15] and leverages the
results of LaSalle’s Invariant Set Theorem [24].

Finally, to see that the center of the formation converges
to the desired center xc, note that for x ∈Mn:

d

dt
‖xc −

1

n

n∑
i=1

xi‖ = −
(xc − 1

n

n∑
i=1

xi)
T

‖xc − 1
n

n∑
i=1

xi‖
(

1

n

n∑
i=1

ẋi).

Now ẋi is given by the sum of the size and center controllers.
However, by symmetry, the sum of the size controller over
all robots must equal 0 when x ∈Mn. The summation then

simply equals nkc(xc −
1

n

n∑
i=1

xi). Thus, we obtain:

d

dt
‖xc −

1

n

n∑
i=1

xi‖ = −kc‖xc −
1

n

n∑
i=1

xi‖.

For kc > 0, the center of the formation converges to the
desired center xc.

D. Control Effort for Symmetric Cyclic Controller
In complement to the the 3D trajectories and inter-robot

distances plots presented in the main body of this paper, the
following plot exemplifies the reduction in control effort by
using a larger look-ahead horizon. For this simulation, we
neglect the formation size and center controllers, focusing
only on convergence to a planar polygon. In order to draw
comparisons, we maintain the same absolute convergence
rate upper bound, i.e. λmin

(
V̄ LV̄

)
while varying the look-

ahead horizon and gains. The plot shows the Euclidean norm
of the net cyclic controller, that is ‖Lx(t)‖2 for 6 robots
starting at the same initial conditions.
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(a) Control norm with N = 2,
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Fig. 5: Comparison of control effort with varying gains and
look-ahead horizon

From the plot we can immediately note a drastic reduction
in control effort for the case with N = 2. Indeed, the peak
control norm for the case with N = 1 and higher gains
is more than 2.5 times higher than for the controller with
N = 2 and smaller gains.
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