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Abstract— We present a framework for online generation
of robust motion plans for robotic systems with nonlinear
dynamics subject to bounded disturbances, control constraints,
and online state constraints such as obstacles. In an offline
phase, one computes the structure of a feedback controller
that can be efficiently implemented online to track any feasible
nominal trajectory. The offline phase leverages contraction
theory and convex optimization to characterize a fixed-size
“tube” that the state is guaranteed to remain within while
tracking a nominal trajectory (representing the center of the
tube). In the online phase, when the robot is faced with
obstacles, a motion planner uses such a tube as a robustness
margin for collision checking, yielding nominal trajectories
that can be safely executed, i.e., tracked without collisions
under disturbances. In contrast to recent work on robust online
planning using funnel libraries, our approach is not restricted
to a fixed library of maneuvers computed offline and is thus
particularly well-suited to applications such as UAV flight in
densely cluttered environments where complex maneuvers may
be required to reach a goal. We demonstrate our approach
through simulations of a 6-state planar quadrotor navigating
cluttered environments in the presence of a cross-wind. We also
discuss applications of our approach to Tube Model Predictive
Control (TMPC) and compare the merits of our method with
state-of-the-art nonlinear TMPC techniques.

I. INTRODUCTION

Despite significant progress in the field of motion plan-
ning, the problem of safe realtime planning for robots with
nonlinear and underactuated dynamics subject to uncertainty
has remained an outstanding challenge. A key difficulty is
that uncertainty and disturbances in the dynamics force us to
reason about the “funnel” of possible outcomes (see Fig. 1)
that the disturbances may drive the system to, rather than a
single planned trajectory.

The metaphor of a “funnel” was introduced to the robotics
community in [1] and has inspired recent algorithms for
feedback motion planning such as the LQR-Trees algorithm
[2] which constructs a tree of locally stabilizing feedback
controllers. However, LQR-Trees cannot handle scenarios in
which the task and environment are unknown until runtime.
Recently, the funnel library approach [3], [4] has been pro-
posed to handle online geometric constraints (e.g., obstacles)
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Fig. 1: A planar quadrotor navigating in realtime through a previously unseen cluttered
environment in the presence of a cross-wind disturbance from the left. A nominal
(disturbance-free) trajectory is generated online in response to obstacles reported in
the environment such that the invariant tube (computed offline) recentered around the
trajectory does not intersect obstacles. The actual executed trajectory veers to the right
of the tube due to the cross-wind but remains within it as guaranteed by our analysis.
The lighter shade represents the actual invariant tube while the darker shade is the
tube inflated by the quadrotor arm length and is used for collision checking.

that force the robot to replan in realtime. The approach lever-
ages computational tools from convex optimization (namely
sum-of-squares (SOS) programming) to compute, offline, a
library of funnels around a set of nominal trajectories in
which the state is guaranteed to remain despite bounded
disturbances. These funnels are then sequentially composed
online to avoid obstacles. However, this approach is restricted
to employing a fixed set of trajectories computed offline.
While the richness of the funnel library may be increased by
exploiting invariances in the dynamics [4] or pre-computing
a family of funnels parameterized by shifts to a nominal
trajectory [5], one would ideally like to generate a funnel
around any nominal trajectory generated online.

The goal of this paper is to propose an approach for doing
precisely this. In particular, in an offline stage one synthesizes
the structure of a tracking controller which can be efficiently
implemented online to guarantee exponential convergence
to any feasible nominal trajectory in the absence of distur-
bances. Additionally, the offline computation yields a fixed-
size invariant “tube” (akin to a funnel) that can be recentered
around any nominal trajectory as a guaranteed collision-free
envelope in the presence of bounded disturbances. In the
online phase, when the robot is faced with obstacles, one
can use such a tube as a robustness margin during collision
checking, thus leading to nominal trajectories that can be
safely executed. We stress that this paper does not propose
a new motion planning algorithm. Instead, it proposes a
framework for using a standard motion planner as a “black



box” or “primitive routine” to enable the online generation
of safe nominal motion plans that can be robustly executed.

Our approach has several advantages over prior work on
robust motion planning. By explicitly enforcing safety in the
online planning process, our approach is particularly suited
to planning in previously unseen and tightly-constrained
environments, where it might be difficult to find feasible
solutions by sequencing a pre-computed set of maneuvers
(Fig. 1). In contrast to the class of techniques that employ
linear reachability analysis to conservatively approximate
funnels/tubes for nonlinear systems by treating nonlinearities
as bounded disturbances (see, e.g., [6]), our analysis directly
reasons about intrinsic nonlinearities in the dynamics and
thus has the potential to be less conservative for highly
nonlinear systems. Further, our convex optimization-based
approach carries a smaller computational burden than differ-
ential game formulations for computing reachable tubes [7],
which require numerical solutions to PDEs. Finally, unlike
[7], we do not assume that obstacles in the environment are
known a priori but instead generate robust plans online.

The key idea behind our approach is to leverage contrac-
tion theory [8], a method for analyzing nonlinear systems
by studying convergence between pairs of trajectories. This
makes it particularly well-suited to the problem we consider
here since it does not require us to commit to a particular
nominal trajectory in order to analyze the stability properties
of a feedback controller designed to track it. In particular,
we design tracking controllers by using control contraction
metrics (CCMs) [9], a generalization of control Lyapunov
functions that can be computed using convex optimization.

Our formulation is closely related to Tube Model Pre-
dictive Control (TMPC), whereby one computes a tracking
feedback controller (in our case, via CCMs) that keeps
the state within an invariant “tube” (in our case, computed
via contraction theory) around the nominal MPC trajectory
despite disturbances. Indeed, we leverage the rich set of theo-
retical results from the TMPC literature to derive correctness
guarantees for our robust planning framework. Notably, our
method boasts several important advantages over existing
TMPC approaches, and thus is of independent interest as a
novel approach to TMPC. Specifically, due to the difficulty
of constructing invariant tubes and associated tracking con-
trollers for nonlinear systems [10], most existing schemes for
TMPC for nonlinear systems involve applying methods from
linear TMPC by decomposing the dynamics into a linear
and a nonlinear component (which is treated as a bounded
disturbance) [11], [12]. Other methods rely on Lipschitz
bounds, which can often be difficult to obtain [13], [14], or
assume the existence of stabilizing tracking controllers [15].
In contrast, our analysis is less conservative since it directly
exploits the intrinsic nonlinear properties of a system.

Our work is also conceptually related to the notion of
incremental input-to-state stability (δ-ISS), which was re-
cently used in [16] for discrete-time systems to characterize
invariant tubes as sublevel sets of a δ-ISS Lyapunov func-
tion, assumed given. δ-ISS has also been studied within a
contraction theory framework, e.g., in [17], where contrac-

tion metrics are derived for a class of nonlinear systems
stabilized using backstepping. In contrast to these methods,
our approach allows for both the design and optimization of
invariant tubes and tracking feedback controllers.

Statement of Contributions: The contribution of this paper
is fourfold. First, on the theoretical side, while our CCM
approach is directly inspired by [9], we present an alterna-
tive proof (Section III) of incremental exponential stability
between trajectories using a suitable CCM-derived controller.
This proof employs techniques from calculus of variations
and differential geometry to (a) derive a tighter characteriza-
tion of the controller’s disturbance rejection properties and
the size of the corresponding invariant tube (Section IV-A),
and (b) simplify the online implementation of the controller
(Section IV-C), under significantly weaker conditions for the
CCM as compared to [9] and [17]. Second, we derive a
bound on the magnitude of the tracking controller by leverag-
ing properties of CCMs and exploiting analogies with differ-
ential control Lyapunov functions (Section IV-D). Third, on
the algorithmic side, we present an offline/online framework
for robust motion planning where in the offline phase, we
formulate a quasiconvex optimization problem using SOS
programming that searches for an optimal CCM in order
to minimize the cross-section of the invariant tube (Section
IV-B), and derive the structure of a tracking controller that
can be efficiently implemented online to minimize control
effort. The optimized tube is used online to obtain nominal
motion plans that can be robustly tracked (Section II). Fourth,
on the experimental front, we illustrate our method on a
simulated 6 state planar-quadrotor system (Section VI-A) and
also discuss the merits of our approach in comparison with
state-of-the-art nonlinear TMPC algorithms (Section VI-B).

Notation: Let S+
j and Sj be the set of symmetric positive

definite and semidefinite matrices in Rj×j , respectively.
Given a matrix X , let X̂ := X + XT . The set of C2

functions from D to R is denoted by C2(D,R). We denote
the components of a vector y ∈ Rn as y[j], j = 1, . . . , n,
and its Euclidean norm as ‖y‖. Let ‖y‖A=

√
yTAy denote

a weighted norm for A ∈ S+
n . Let (σ(A), σ(A)) denote

the maximum and minimum singular values of a matrix A
and ∂yF (x) the directional derivative of the matrix valued
function F at x along the vector y. Given sets A and B, the
set A	 B is the Minkowski difference.

II. PROBLEM FORMULATION

We consider robotic systems whose dynamics are de-
scribed by the nonlinear differential equation:

ẋ(t) = f(x(t)) +B(x(t))u(t) +Bww(t), (1)
where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input,
and w(t) ∈ Rnw is the disturbance. We assume that functions
f(x) and B(x) are smooth, and Bw ∈ Rn×nw is a constant
matrix with σ̄(Bw) = 1 (in other words, Bw simply selects
the channels where the disturbance is active). We write B(x)
in column form as

[
b1(x), b2(x), . . . , bm(x)

]
. A state-input

trajectory satisfying (1) is denoted as a pair (x, u).
The disturbance signal w(t) is assumed to be piecewise C1

and norm-bounded, i.e., there exists w̄ such that ‖w(t)‖≤ w̄,



for all t ≥ 0. We enforce state constraints (e.g., arising from
obstacles in the robot’s environment and physical constraints
such as joint limits) and input constraints, that is: x(t) ∈ X
and u(t) ∈ U for all t, where X and U are defined to be the
closures of bounded, open, and connected sets in Euclidean
space. The motion planning problem we wish to address is
to find a (possibly non-stationary) policy π : X × R → U
that (1) drives the state x to a compact region Xgoal ⊆ X , (2)
satisfies the state and input constraints, and (3) minimizes a
quadratic cost:

J(x(t), π) :=

∫ Tgoal

0

1 + ‖π(x(t), t)‖2Rdt,

where R ∈ S+
m and Tgoal is the first time x(t) enters Xgoal. As

posed, the motion planning problem entails an optimization
over the class of state-feedback functions – a computationally
intractable task in general. In an effort to reduce compu-
tational complexity, our strategy is to parameterize general
state-feedback policies as a sum of a nominal (open-loop)
input u∗ and a feedback term designed to track the nominal
state trajectory x∗ (induced by u∗ assuming no disturbances):

π(x(t), t) = u∗(t) + k(x∗(t), x(t)). (2)
This formulation represents a compromise between the gen-
eral class of state-feedback control laws and a purely open-
loop formulation (i.e., no tracking).

In this work we will assume the existence of a motion
planner (e.g., a standard sampling-based planner [18], [19])
that computes a nominal input u∗ online (i.e., when obstacles
in the environment are reported) in order to drive the initial
state to the goal region assuming no disturbances while
minimizing the quadratic cost. The objective of this paper
is to design a tracking feedback controller k(·, ·) that can
robustly track a planned nominal trajectory in the presence of
disturbances. Furthermore, we wish to characterize a robust
control invariant (RCI) tube (defined below) centered around
the nominal trajectory that the state of the closed-loop system
is guaranteed to remain within when the tracking controller
is applied. Consequently, the RCI tube can be used by the
motion planner as a robustness margin in order to compute
a guaranteed safe nominal motion plan (x∗, u∗) online.

Online synthesis of a tracking controller k(·, ·) and as-
sociated RCI tube for each nominal motion plan may be
prohibitively difficult (see, e.g., [20]). Instead, in this paper
we compute both an RCI tube and the structure of a feedback
controller offline (Section III) and present efficient methods
for online implementation of the controller (Section IV). We
start with a formal definition of RCI tubes.

A. Robust Control Invariant Tubes

Suppose (x∗, u∗) is a state-input trajectory satisfying the
nominal dynamics (i.e., (1) with w ≡ 0) and (x, u) is a
state-input trajectory satisfying (1) under the action of a
parameterized policy (2). Let T ∗goal be the first time x∗(t)
enters Xgoal. An RCI tube is defined as:

Definition II.1 (RCI Tube). Let Ω : Rn → 2R
n

be a mapping
s.t. x ∈ Ω(x) and Ω(x) is a closed and bounded set for every
x. Then, Ω(·) is an RCI mapping (additionally Ω(x) is an

RCI set centered on x) if there exists a tracking controller
k(x∗, x) s.t. if x(t0) ∈ Ω(x∗(t0)), then for all allowable
realizations of the disturbance w(t), x(t) ∈ Ω(x∗(t)) for
all t0 ≤ t ≤ T ∗goal. Given an RCI mapping Ω(·), an RCI
tube centered on the trajectory x∗(t), t0 ≤ t ≤ T ∗goal, is the
region ∪t0≤t≤T∗goalΩ(x∗(t)).

Intuitively, a tracking controller with an associated RCI
tube Ω(·) guarantees that the state of the system is always
“close” to its nominal value x∗(t) (precisely, within set
Ω(x∗(t)). In Section IV we will use contraction theory to
compute an RCI mapping Ω that is independent of the
nominal trajectory x∗. Thus, by planning a nominal state-
input trajectory satisfying the tightened constraints:
x∗(·) ∈ X̄ := X 	 Ω, (3a)
u∗(·) ∈ Ū := {ū ∈ U : ∀x∗(t) ∈ X̄ ,∀x(t) ∈ X such that

x(t) ∈ Ω(x∗(t)), ū+ k(x∗(t), x(t)) ∈ U}, (3b)
one can ensure that the robotic system will safely reach the
goal region Xgoal (modulo the size of the RCI set) in the
presence of disturbances. Note that one can ensure that the
system reaches Xgoal (without the extra buffer from the RCI
set) by constraining the RCI set to be contained within Xgoal
at T ∗goal. Constraint (3a) ensures that the RCI tube around
the trajectory does not intersect any obstacles, while (3b) is
defined for a given tracking controller and ensures that the
net applied control satisfies the input limit.

Given such a nominal motion plan (x∗, u∗) defined over
the time interval [0, T ∗goal], one may adopt two different
frameworks for its robust execution. In the first approach,
one could simply execute the controller in (2) until the
robot enters Xgoal. In the second approach, provided there
exist sufficient online computational resources, one can use
a receding-horizon algorithm in which the nominal trajectory
is periodically and locally re-updated over a short time-
horizon T < Tgoal. This allows one to reduce the tracking
cost (as information about the realized disturbances is taken
into account) and is the approach adopted in this paper. Such
a receding-horizon strategy is formalized next.

B. Receding Horizon Implementation

Given a robust motion plan (i.e., a nominal state-input
trajectory (x∗, u∗) such that the RCI tube centered on x∗

does not intersect any obstacles), one can make local updates
to it using the following MPC problem solved at the discrete
time instants ti, i ∈ N≥0:

Optimization Problem MPC — Given current state x(ti)
and a robust motion plan (x∗, u∗) with associated RCI
mapping Ω(·), solve

min
ū(t)∈C2([ti,ti+T ],Ū)

x̄(ti)∈X̄

∫ ti+T

ti

‖ū(τ)‖2R dτ

subject to
x(ti) ∈ Ω(x̄(ti)), (4)
˙̄x(τ) = f(x̄(τ)) +B(x̄(τ))ū(τ), (5)
x̄(τ) ∈ X̄ , ū(τ) ∈ Ū , ∀τ ∈ [ti, ti + T ] (6)
x̄(ti + T ) = x∗(ti + T ). (7)



Problem MPC should be understood as a local re-
optimization step – thus it should be solved using local
methods such as trajectory optimization techniques [21]
or elastic bands [22] (as opposed to fully-fledged global
planners). Notice that the initial value of the updated nominal
state trajectory, i.e., x̄(ti), is also an optimization variable
above subject to the RCI constraint (4). This permits more
drastic updates to the nominal trajectory, e.g., to counter-
act consistently large disturbances. The terminal constraint
given by (7) is used to ensure recursive feasibility for
the MPC problem, as addressed by the next lemma. The
state-input pair solution to problem MPC is denoted as
(x∗T (t; x̄(ti)), u

∗
T (t; x̄(ti))) : [ti, ti + T ]→ X̄ × Ū , of which

the segment [ti, ti+δ) is implemented using (2), before MPC
is re-solved (with δ < T ). This defines the sampled MPC
strategy commonly employed for continuous-time systems.
The following lemma establishes recursive feasibility for
problem MPC.

Lemma II.2 (Recursive Feasibility for MPC). Suppose prob-
lem MPC is feasible at the initial solve step t0 = 0. Then,
the problem is feasible for all ti, i ∈ N≥0.

Proof. Let (x∗T (t; x̄(ti)), u
∗
T (t; x̄(ti))) : [ti, ti+T ]→ X̄ ×Ū

denote the solution to problem MPC at time-step ti. Then at
solve time ti+1 = ti + δ, due to the RCI property associated
with the tracking controller, one is guaranteed that the actual
state x(ti) lies within the set Ω(x∗T (ti+1; x̄(ti))). Consider
then the following feasible, but possibly suboptimal solution
to problem MPC at solve time ti+1:

x̄(τ) =

{
x∗T (τ ; x̄(ti)) for τ ∈ [ti+1, ti + T ]

x∗(τ) for τ ∈ [ti + T, ti+1 + T ],

ū(τ) =

{
u∗T (τ ; x̄(ti)) for τ ∈ [ti+1, ti + T ]

u∗(τ) for τ ∈ [ti + T, ti+1 + T ],

The state-input trajectory above is simply a concatenation
of the tail portion of the previous solution with the nominal
motion plan solution, and represents a feasible solution for
problem MPC due to the terminal constraint (7) (which
guarantees that x∗T (·, x̄(ti)) rejoins the nominal motion plan
x∗ at time ti + T ). Hence, the feasible set of the MPC
problem at solve time ti+1 is not empty, which proves
recursive feasibility.

C. Overall Algorithm

Algorithm 1 provides pseudocode for our overall approach.

III. CONTROL CONTRACTION METRICS AND
DIFFERENTIAL CONTROLLERS

In this section we define incremental exponential stability
as the measure of convergence between trajectories used in
this paper (Section III-A), formally introduce control con-
traction metrics as differential analogues of control Lyapunov
functions (Section III-B), and define the notion of a differen-
tial controller which when integrated, yields an exponentially
stabilizing tracking feedback controller (Section III-C). Note
that all state-input trajectories in this section are assumed to
be solutions to the nominal dynamics (i.e., with w ≡ 0).

Algorithm 1 Robust planning algorithm

1: OFFLINE:
2: Inputs: dynamics model, U (control input constraints)
3: Compute: Ω (RCI set), k(·, ·) (controller structure)
4: ONLINE:
5: Inputs: x(0) (initial state), X (state constraints), Xgoal

6: Compute nominal (x∗, u∗), such that x∗(·) ∈ X
7: Initialize: tplan ← 0
8: At each time t:
9: if New obstacles reported or goal region is changed then

10: Re-plan nominal (x∗, u∗)
11: else if t− tplan = δ then
12: (x∗T (·; x̄(t)), u∗T (·; x̄(t)))← MPC(x(t), x∗, u∗,Ω)
13: Update tplan ← t
14: end if
15: Apply control u∗T (t; x̄(tplan)) + k(x∗T (t; x̄(tplan), x(t))

A. Incremental Exponential Stability

Definition III.1 (Incremental Exponential Stability). Con-
sider a nominal state-input trajectory pair (x∗(t), u∗(t)).
Suppose there exist λ,C > 0 and a controller of the form
u∗(t) + k(x∗(t), x(t)) such that

‖x∗(t)− x(t)‖≤ Ce−λt‖x∗(0)− x(0)‖, (8)
where (x(t), u∗(t) + k(x∗(t), x(t))) is a state-input solution
trajectory for the nominal dynamics. Then, the trajectory
x∗(t) is said to be incrementally exponentially stabilizable
(IES) with rate λ and overshoot constant C.

B. Control Contraction Metrics

Denote the tangent space of X at x ∈ X by TxX 1

and the tangent bundle of X by TX =
⋃
x∈X {x} × TxX .

The variational dynamics [9] (i.e., dynamics characterizing
infinitesimal displacements with respect to a nominal trajec-
tory) for the nominal system are defined as

δ̇x =

:=A(x,u)︷ ︸︸ ︷(
∂f(x)

∂x
+

m∑
j=1

u[j]
∂bj(x)

∂x

)
δx +B(x)δu, (9)

where δx ∈ TxX is a tangent vector to a smooth path of
states at x ∈ X , and δu ∈ TuU is a tangent vector to a
smooth path of controls at u ∈ U . Let M : Rn → S+

n be a
smooth matrix function that is uniformly bounded (i.e., there
exist constants 0 < α < α such that αIn � M(x) � αIn).
The inner product V (x, δx) := δTxM(x)δx endows X with
a Riemannian metric according to the metric tensor M(x),
and represents an infinitesimal measure of length on X . For a
given smooth curve c : [0, 1]→ X , we define its length l(c)
and energy E(c) as l(c) :=

∫ 1

0

√
V (c(s), cs(s))ds, E(c) :=∫ 1

0
V (c(s), cs(s))ds, where cs(s) = ∂c(s)/∂s.
Let Γ(p, q) be the set of smooth curves on X that connect

points p and q. Define d(p, q) := infc∈Γ(p,q) l(c) and let γ ∈
Γ(p, q) be the (possibly non-unique) minimizing geodesic
which achieves this infimum. Note that d2(p, q) = E(γ).

1Since X is simply the closure of an open set in Rn, the tangent space
TxX for all x in the interior of X is simply Rn while TxX on the boundary
is a half-space in Rn.



A control contraction metric (CCM) on X is a covariant
2-tensor field M(x) such that the induced Riemannian metric
V (x, δx) shrinks at all points in TX , i.e., there exists a
differential controller δu : TX → TuU , such that V̇ (x, δx) <
0, ∀(x, δx) ∈ TX . Thus, V (x, δx) may be interpreted
as a differential control Lyapunov function (CLF) on the
tangent bundle TX – extending an analogy also explored
in [23] using Finsler metrics, albeit, for closed-loop systems.
Suppose now that the following two conditions hold for some
constant λ > 0 and all (x, δx) ∈ TX :

∂bjM(x) +M(x)
∂bj(x)

∂x

∧

= 0, j = 1, . . . ,m (10)

δTx

(
∂fM(x) +M(x)

∂f(x)

∂x

∧)
δx < −2λδTxM(x)δx (11)

for all δx such that δTxM(x)B(x) = 0.

Condition (10) implies that the vectors bj form a Killing
vector field for the metric tensor M(x), while (11) indicates
that for all directions where the system lacks controllability
(given by the nullspace of BT (x)M(x)), the system is
naturally contracting with rate λ. Under conditions (10) and
(11), V̇ reduces to:

V̇ (x, δx, δu) =δTx

(
M(x)

∂f(x)

∂x

∧)
δx + 2δTxM(x)B(x)δu

+δTx (∂fM(x)) δx.

(12)

C. Incrementally Stabilizing Controllers

Given conditions (10) and (11), [9] shows that there always
exists an integrable differential feedback controller of the
form δu(x, δx) = K(x)δx such that the following inequality
holds for all (x, δx) ∈ X × Rn 2:

V̇ (x, δx) = δTx

(
∂fM(x) +M(x)

∂f(x)

∂x

∧

+M(x)B(x)K(x)
∧

)
δx

< −2λδTxM(x)δx = −2λV (x, δx). (13)
In the scenario where (10) fails to be true, one may leverage
the following weaker alternative to conditions (10) and (11):
δTx

(
∂f+BuM(x) +M(x)A(x, u)
∧)

δx < −2λδTxM(x)δx

(14)

for all δx such that δTxM(x)B(x) = 0.

In [9], it is proven, by construction, that the weaker condition
above is still sufficient to guarantee the existence of a differ-
ential feedback controller, however, the differential controller
is now a function of u as well, i.e., δu = δu(x, δx, u). Given
a desired nominal state-input trajectory pair (x∗(t), u∗(t)),
let γ(·, t) ∈ Γ(x∗(t), x(t)) denote a minimizing geodesic
connecting x∗(t) and x(t). Consider the following control
law:

π(x(t), t) = u∗(t) +

∫
γ(·,t)

δu(γ(s, t), δγ(s, t))ds

= u∗(t) +

∫ 1

0

K(γ(s, t))δγ(s, t)ds︸ ︷︷ ︸
=k(x∗(t),x(t))

, (15)

2Note that we drop the distinction between TxX at the boundary versus
the interior and simply assume that TxX = Rn.

where δγ(s, t) := ∂γ(s, t)/∂s. The geometric interpretation
of (15) and inequality (13) is illustrated in Fig. 2. In case the

Fig. 2: Schematic of the differential CLF V (x, δx) at the endpoints of the geodesics
γ(·, t) and γ(·, t′) at times t and t′ > t and the geodesic velocity vector at the
position s ∈ (0, 1) along the geodesic. The contours of V are shaped according to
the metric tensor M(x). The differential controller ensures that at all points along the
geodesic, V (x, δx) is shrinking in the direction tangent to the geodesic.

weaker condition (14) is used, δu = δu(x, δx, u), and thus
π(x(t), t) will be given by the solution to the differential
equation

π(x(t), t) = u∗(t) +

∫
γ(·,t)

δu(γ(s, t), δγ(s, t), π(γ(s, t), t))ds,

(16)
where δu(·) is designed such that V̇ (x, δx, u) is less than
−2λV (x, δx) for all (x, δx) along the minimizing geodesic.
Theorem III.2, which is central to our approach, proves that
control law (15) ensures the trajectory x(t) is IES with
respect to x∗(t) in the sense of Definition III.1. The proof
differs significantly from the one presented in [9] as it is later
adapted in the next section for deriving the RCI mapping.

Theorem III.2 (Incrementally stabilizing controller). Let
(x∗, u∗) and (x, u) be state-input trajectory pairs for the
nominal dynamics where π(x(t), t) is given by (15) using a
CCM which satisfies equations (10) and (11) 3 . Then, x(t)
is IES with respect to x∗(t) in the sense of Definition III.1.

Proof. We give the proof for a CCM satisfying the stronger
condition in (10) since the corresponding argument for the
weaker condition is identical with only minor adjustments.
Let ε be a small positive constant. At time t′ ≥ 0, construct a
parameterized surface of solutions c : [0, 1]×(t′−ε, t′+ε)→
X to the nominal dynamics subject to the following version
of the control law (15):

π(c(s, t), t) = u∗(t) +

∫ s

0

δu(c(s, t), δc(s, t))ds, (17)

where the integral above is computed along the curve c(·, t)
and c(·, t′) = γ(·, t′), the minimizing geodesic at time t′.
Notice that the curve t→ c(0, t) corresponds to the trajectory
x∗(t) for t ∈ (t′ − ε, t′ + ε) while the curve t → c(1, t) is
an osculating curve to the trajectory x(t) at t = t′ since
c(·, t′) = γ(·, t′) and thus, π(c(1, t′), t′) = π(x(t′), t). This
is illustrated in Fig. 3.

Consider the time derivative of the Riemann energy
E(c(·, t)) of the parameterized solutions:

Ė(c(·, t)) =

∫ 1

0

∂V (s, t)

∂t
ds, (18)

3Alternatively, π(x(t), t) is given by (16) using a CCM satisfying the
weaker condition (14).



Fig. 3: Construction of a parameterized surface of solutions c(·, ·) (shaded blue)
anchored at the geodesic (shown in grey) at time t′. The path endpoint t → c(0, t)
coincides with x∗(t) and t→ c(1, t) is an osculating curve at x(t′).

where we have employed the shorthand V (s, t) =
V (c(s, t), δc(s, t)). Then, by application of the control law
in (15) along with inequality (13), one has that V̇ (s, t) ≤
−2λV (s, t) for all s ∈ [0, 1] and t ∈ (t′ − ε, t′ + ε). It
follows that Ė(c(·, t))

∣∣∣
t=t′
≤ −2λE(c(·, t′)). We now further

manipulate (18) as follows:

Ė(c(·, t)) =

∫ 1

0

[(
∂V (s, t)

∂c(s, t)

)T
∂c(s, t)

∂t

+

(
∂V (s, t)

∂δc

)T
∂δc(s, t)

∂t

]
ds (19)

Recall that δc(s, t) = ∂c(s, t)/∂s. Thus, we may write
∂δc(s, t)

∂t
=
∂2c(s, t)

∂t∂s
=
∂2c(s, t)

∂s∂t
,

where the order of differentiation can be swapped since
c(·, ·) ∈ C2. Substituting the expression above back into (19)
and using integration-by-parts yields

Ė(c(·, t)) =

∫ 1

0

(
∂V (s, t)

∂c(s, t)
− ∂

∂s

(
∂V (s, t)

∂δc

))T
∂c(s, t)

∂t
ds

+

[(
∂V (s, t)

∂δc

)T
∂c(s, t)

∂t

]∣∣∣∣∣
s=1

s=0

,

Notice that at time t = t′, c(·, t′) is the minimizing geodesic.
Thus, the bracketed expression in the integrand above is 0
for all s ∈ [0, 1] since c(·, t′) must necessarily satisfy the
Euler-Lagrange equation. Thus, at time t = t′, we have:

Ė(c(·, t))
∣∣∣
t=t′

=

[(
∂V (s, t)

∂δc

)T
∂c(s, t)

∂t

]∣∣∣∣∣
s=1

s=0, t=t′

. (20)

Consider the time derivative of the Riemann energy of the
minimizing geodesic between x∗(t) and x(t). If x(t′) /∈
Cut(x∗(t′)) (where Cut(x) denotes the cut-locus at x), then
the derivative of E(γ(·, t)) is well-defined at t = t′ (i.e.,
the exponential map is a local diffeomorphism) and given
by [24, Chp 9]:

Ė(γ(·, t)
∣∣∣
t=t′

=

[(
∂V (s, t)

∂δγ

)T
∂γ(s, t)

∂t

]∣∣∣∣∣
s=1

s=0,t=t′

. (21)

Notice that since c(·, t′) = γ(·, t′), the expression above and
the one in (20) must be equal at t = t′. Thus, we arrive at
the following chain of inequalities:

Ė(γ(·, t)
∣∣∣
t=t′

= Ė(c(·, t))
∣∣∣
t=t′
≤ −2λE(c(·, t′))

= −2λE(γ(·, t′)).
This result is true for all t′ ≥ 0 such that x(t′) /∈ Cut(x∗(t′)).
For completeness, suppose now that x(t′) ∈ Cut(x∗(t′)), a
Lebesgue measure zero set. In this scenario, the minimizing
geodesic γ(·, t′) may not be unique and thus the Riemannian
distance d(x∗(t), x(t)) is not smooth at t = t′. However, it
can be shown that the upper Dini derivative of E(γ(·, t))

defined as:

D+E(γ(·, t))
∣∣
t=t′

= lim sup
t↘t′

E(γ(·, t))− E(γ(·, t′))
t− t′

exists and satisfies the inequality [25]4

D+E(γ(·, t)
∣∣
t=t′
≤

[(
∂V (s, t)

∂δγ

)T
∂γ(s, t)

∂t

]∣∣∣∣∣
s=1

s=0,t=t′

, (22)

where D+ denotes the upper right Dini derivative. The
rest of the proof proceeds as before, yielding the following
inequalities:
D+E(γ(·, t)

∣∣
t=t′
≤ Ė(c(·, t))

∣∣∣
t=t′
≤ −2λE(c(·, t′))

= −2λE(γ(·, t′)), (23)
for all t′ ≥ 0. By the Comparison Lemma [26], E(γ(·, t)) ≤
E(γ(·, 0))e−2λt. Since d2(x∗(t), x(t)) = E(γ(·, t)) and the
metric tensor M(x) is uniformly bounded, one concludes

‖x(t)− x∗(t)‖≤
√
α

α
‖x(0)− x∗(0)‖e−λt.

Thus, x∗(t) is IES with rate λ and overshoot
√
α/α.

The construction of the surface of solutions is needed
as one cannot directly reason about the evolution of the
minimizing geodesic, i.e., c(s, t) 6= γ(s, t) for s ∈ (0, 1)
except at t = t′. Instead, we leverage the Euler-Lagrange
equation to relate the time derivative of the Riemann energy
of the surface of solutions with that of the minimizing
geodesic. Thus, the energy of the minimizing geodesic may
be viewed as an incremental CLF, thereby defining the
structure of the feedback controller as a smooth function that
needs to satisfy inequality (23). The key idea of this paper
is to use the tracking controller k(·, ·) to yield the invariant
tube and accompanying robustness guarantees.

While the interpretation of the energy as an incremental
CLF is an observation also made in [9], by showing equiva-
lence between the right hand sides of (18), (20), and (21) and
using this to establish IES for x∗(t), we are able to derive the
robustness guarantees for controller (15) under significantly
weaker conditions than those necessary in [9]. We explore
this distinction in greater detail in Section IV-A.

Remark III.3. It can be shown that conditions (10) and
(11) are invariant under state diffeomorphism and metric
pushforward [9]. This invariance allows one to relax the
topological assumptions on the state space X . In particular,
one may take X to be an embedded n−manifold in Rk
where k ≥ n, as long as the contraction conditions hold
on one (and thus, any) choice of local coordinates in Rn.
This highlights the coordinate-free (i.e., intrinsic) nature of
CCM-based stabilization.

IV. CONTRACTION-BASED TUBES AND CONTROLLERS

In this section we: (1) derive the RCI mapping for a given
tracking feedback controller using contraction-theoretical
tools (Section IV-A), (2) show how to compute CCMs that

4In actual fact, it is shown in [25] that the one-sided derivative of
E(γ(·, t)) along any tangent vectors at x∗(t′) and x(t′) (defined using
limt↘t′ (·)) exists from which it follows that the limit lim supt↘t′ (·)
exists.



minimize a certain measure of the size of the RCI set
(Section IV-B), (3) propose an offline/online approach where
a CCM is computed offline and the tracking controller is
implemented online by using the CLF analogy introduced
in the previous section (Section IV-C), and (4) derive a
bound on the tracking control effort allowing us to com-
pute the tightened control constraint set Ū (Section IV-D).
Henceforth, (x∗(t), u∗(t)) is assumed to satisfy the nominal
dynamics, while x(t) denotes the actual state trajectory (i.e.,
with disturbances) using the control law u∗(t) + k(x∗, x),
where k(x∗, x) is a CCM-derived tracking controller.

A. Feasible Contraction-Based Tubes

In this section we derive the RCI mapping assuming that
the feedback controller is given by (15) using a CCM.

Theorem IV.1 (Disturbance Rejection). Assume there exists
a CCM M(x) satisfying conditions (10) and (11) that is
uniformly bounded, i.e., αIn � M(x) � αIn, for all
x ∈ X where α > 0. Factorize M(x) as Θ(x)TΘ(x)
and define αw := σ(Θ(x)Bw). Then, the geodesic energy
between trajectories x(t) and x∗(t), i.e., E(γ(·, t)), satisfies
the differential inequality:
D+E(γ(·, t)) ≤ −2λE(γ(·, t))+2d(x∗(t), x(t))αw ‖w(t)‖. (24)

Proof. Inequality (22) implies:

D+E(γ(·, t)) ≤ 2δTγ (1, t)M(γ(1, t))(f(x(t)) +B(x(t))u(x(t))

− 2δTγ (0, t)M(γ(0, t)) (f(x∗(t)) +B(x∗(t))u∗(t))

+ 2δTγ (1, t)M(γ(1, t))Bww(t)), (25)
where u(x(t)) is given by (15). By the IES property of the
nominal system, i.e., inequality (23), the expression above
can be bounded as:
D+E(γ(·, t)) ≤ −2λE(γ(·, t))+2δTγ (1, t)M(γ(1, t))Bww(t).

Defining δz(s, t) := Θ(γ(s, t))δγ(s, t), we obtain
D+E(γ(·, t)) ≤ −2λE(γ(·, t))+2δTz (1, t)Θ(γ(1, t))Bww(t).

Recall that the velocity field of a geodesic is parallel along
the geodesic [24] and thus V (γ(s, t), δγ(s, t)) = E(γ(·, t))
for all s ∈ [0, 1]. This implies that

√
V (γ(s, t), δγ(s, t)) =

‖δz(s, t)‖= d(x∗(t), x(t)). Using the Cauchy-Schwarz in-
equality one obtains the stated differential inequality.

Remark IV.2. Notice that the differential inequality derived
in (24) may be integrated in time to yield a δ−ISS statement
similar to Definition 2.3 in [17]. Specifically, in [17], the
authors prove δ− ISS by leveraging a decrescent condition
similar to inequality (13) with respect to tangent vectors δw
defined on the tangent space of the disturbance manifold
W , yielding a differential ISS condition. The key difference
here then is by leveraging the separability of the disturbance
term (i.e., inequality (25)), and by using a tracking controller
that enforces contraction along the minimizing geodesic at
each time (see Fig. 2), we do not need to impose similar
differential ISS like conditions on V (x, δx). We further note
that a similar bound is also proved in [9] but under stronger
conditions, which resemble the differential ISS conditions
in [17]. Indeed, the relaxation of such conditions for Theo-
rem IV.1 is the primary motivation for our alternative proof

strategy for Theorem III.2.

Since ‖w(t)‖≤ w̄ for all t, and the right-hand side of (24)
is locally Lipschitz in E (for E > 0), then if d(x∗(0), x(0)) ∈
(0, αww̄/λ], by the Comparison Lemma [26], the geodesic
distance is upper bounded by αww̄/λ, for all time t ≥ 0.
Thus, the RCI mapping may be expressed as:

Ω(x∗) = {x ∈ X : d(x∗, x) ≤ αww̄/λ := d̄}, (26)
and will be implemented within the initial state constraint (4)
in problem MPC. Notice that the mapping above is given
using the Riemann distance which may depend on a spa-
tially varying metric. In order to efficiently plan a nominal
trajectory whose associated RCI tube doesn’t collide with
obstacles, we would prefer a mapping that is independent of
x∗. To this end, consider the following technical lemma.

Lemma IV.3. (Geodesic Boundedness) Consider points x∗ ∈
X̄ , x ∈ X s.t. x ∈ Ω(x∗) where Ω(x∗) is given in (26).
Suppose the CCM M(x) satisfies M(x) �M for all x ∈ X ,
where M � αIn . Define the ellipsoid

Ω̃(x∗) := {x ∈ X : ‖x− x∗‖2M≤ d̄2}, (27)

and suppose Ω̃(x∗) ⊂ X . Then, the minimizing geodesic γ
is contained entirely within Ω̃(x∗), i.e., γ(s) ∈ Ω̃(x∗) for all
s ∈ [0, 1], and thus Ω(x∗) ⊆ Ω̃(x∗).

Proof. Consider the following chain of inequalities:

E(γ) =

∫ 1

0

δγ(s)TM(γ(s))δγ(s)ds

≥
∫ 1

0

δγ(s)TMδγ(s)ds

≥ ‖x− x∗‖2M ,
where the first inequality follows from the Lemma condition,
and the second inequality follows from the fact that M ∈ S+

n

defines a flat Riemannian metric under which geodesics are
straight lines. Thus, we obtain the implication:

E(γ) ≤ d̄2 ⇒ ‖x− x∗‖2M≤ d̄2.

To complete the proof we note that since γ is a minimizing
geodesic, it follows that d(x∗, γ(s)) = sd(x∗, x) for all s ∈
[0, 1].

Equation (27) gives an ellipsoidal outer approximation of
the RCI tube as defined in (26), and is thus independent
of x∗. This is essential for two reasons: (1) it drastically
simplifies collision checking with respect to obstacles by
avoiding geodesic computations, and (2) the tightened state
constraint set X̄ in problem MPC must be taken to be X 	Ω̃
to ensure that the minimizing geodesic lies within X , i.e.,
where the CCM conditions hold.

We next show how one can leverage convex optimization
and SOS programming to compute an optimized CCM that
minimizes the size of the RCI tube and the outer ellipsoidal
approximation. This in turn minimizes the deviation of the
perturbed trajectory from the nominal, thereby reducing the
amount by which we must tighten the set X .

B. Optimized Contraction-Based Tubes
As shown in [9], condition (11) can be written as a

pointwise Linear-Matrix-Inequality (LMI) by introducing the



dual metric W (x) := M(x)−1 and the change of variables
ηx := M(x)δx. Specifically, define a matrix B⊥(x) whose
columns form a basis for the null space of B(x)T (i.e.,
B(x)TB⊥(x) = 0). Then, conditions (10) and (11) are
equivalent to:

∂bjW (x)− ∂bj(x)

∂x
W (x)

∧

= 0, j = 1, . . . ,m (28)

BT⊥

(
−∂fW (x) +

∂f(x)

∂x
W (x)

∧

+ 2λW (x)

)
B⊥ ≺ 0.

(29)
The equivalent reformulation of the weaker condition (14)
in terms of the dual metric is given by LMI (29) and:

BT⊥

(
∂bjW (x)− ∂bj(x)

∂x
W (x)

∧)
B⊥ = 0, j = 1, . . . ,m.

(30)
In this section we replace the CCM feasibility problem, i.e.,
conditions (28) and (29), with a quasiconvex optimization
problem to minimize the size of the outer approximation
for the RCI mapping. A trade-off between the overshoot
constant

√
α/α and contraction rate λ was briefly discussed

in [27]. Here, we further explore this aspect by formu-
lating a global optimization program to characterize such
a trade-off and minimize conservatism. Ideally, one would
directly like to minimize the bound in (27) subject to condi-
tions (28) and (29). However, this problem is non-convex and
infinite-dimensional. Hence, we consider a tractable, finite-
dimensional, quasiconvex approximation whereby the dual
metric W (x) is parameterized as a matrix polynomial and the
LMIs are written as SOS constraints, enforced over the semi-
algebraic set X using the Positivstellensatz relaxations [28].
Recognizing that for a fixed contraction rate λ, the CCM
conditions define a convex feasibility region for W (x),
consider the problem OPT

ĈCM
:

Optimization Problem OPT
ĈCM

— Solve

min
λ∈R>0

min
W∈C∞(X ,S+n )

W∈S+n , β,β∈R>0

JCCM (β, β, λ) :=
1

λ2

(
β/β

)
subject to eq. (28), eq. (29) (31)

βIn �W (x) �W � βIn (32)
where the conditions hold uniformly for all x ∈ X .

The objective function JCCM is an upper-bound on the
worst-case (normalized) Euclidean distance within the el-
lipsoid defined in (27) since from (32), we have: α = 1/β,
α = 1/β, and M = W

−1
. Thus,

sup
x∈Ω̃(x∗)

‖x− x∗‖2

w̄2
=

α2
w

λ2α
≤ 1

λ2

(
α

α

)
= JCCM .

Minimizing the condition number of a positive definite
matrix over a closed convex set is quasiconvex [29] and may
be solved using a sequence of convex feasibility problems. In
this paper, we leverage an additional cost function within the
feasibility problems, namely, minimization of tr(WT

s WWs)
where tr(·) denotes the trace. The matrix Ws ∈ S+

n is a
scaling matrix chosen to shape the ellipsoid Ω̃(·) to minimize
its projection on more stringently constrained states. Problem

OPT
ĈCM

can then be solved using line search on λ, where
for a fixed λ one has to solve a sequence of SOS programs.

The solution to problem OPT
ĈCM

provides an optimized
CCM and an RCI tube, computed offline. In the next section
we use the computed CCM to formulate the online imple-
mentation of the feedback controller.

C. Offline/Online Tracking Control via Contraction Theory

By minimizing the tracking control effort, one can
curtail the suboptimality introduced by the parameteriza-
tion (2). Given a CCM computed offline by solving problem
OPT

ĈCM
, the feedback controller is computed as a solution

to the following QP:
Optimization Problem OPT online — At time t ≥ 0,
given a desired/current state pair (x∗(t), x(t)) and a min-
imizing geodesic γ(·, t) connecting these two states (i.e.,
γ(0, t) = x∗(t) and γ(1, t) = x(t)), solve

k∗(x∗(t), x(t)) = argmin
ux∈Rm

‖ux‖2

s.t. 2δTγ (1, t)M(x(t))ˆ̇x(t)− 2δTγ (0, t)M(x∗(t))ẋ∗(t)

≤ −2λE(γ(·, t)), (33)
where ˆ̇x(t) = f(x(t)) + B(x(t))(u∗(t) + ux) represents
the nominal dynamics evaluated at x(t) and ẋ∗(t) =
f(x∗(t)) +B(x∗(t))u∗(t).

A few comments are in order. First, the existence of the dual
metric W (x) ensures that there exists a differential feedback
controller such that inequality (13) holds for all (x, δx)
along the minimizing geodesic between x∗ and x. Then, by
the equivalence shown between expressions (18) and (21),
problem OPT online is always feasible. Second, the linear
inequality (33) is essentially a relaxation of (13), in that it
only enforces contraction tangent to the given geodesic. In
contrast, the differential controller proposed in [9], obtained
by solving a feasibility problem, must ensure that the system
contracts in all directions with at least rate λ. Such a relax-
ation still guarantees IES as only the flow along the geodesic
affects the convergence of x(t) to x∗(t). On the other hand,
such a relaxation can often dramatically decrease control
effort as compared with computing the controller using (15).
Third, problem OPT online is a QP subject to a single linear
inequality and thus may be solved analytically (given the
geodesic γ(·, t)). Indeed, the QP above strongly resembles
the min-norm formulation of Sontag’s generalized formula
for CLF-based stabilization [30], thereby underscoring the
interpretation of the Riemann energy of the minimizing
geodesic as an incremental CLF.In Section V we present
efficient numerical methods for the geodesic computation.

D. Tracking Control Effort

For systems that satisfy the stronger Killing field condition
given by (28), Theorem IV.5 provides a bound on the
magnitude of the optimized tracking controller computed
using problem OPT online. We first require the following
technical lemma:

Lemma IV.4 (Norm Bound for Tracking Controller). Let S
be a symmetric matrix in Rn×n and Y a matrix in Rm×n.



Construct matrices Y ∈ Rn×m and Y ⊥ ∈ Rn×(n−m) such
that the columns of Y form an orthonormal basis for the
column space of Y T , i.e., Col(Y T ), and the columns of
Y ⊥ form an orthonormal basis for the nullspace of Y , i.e.,
N (Y ). Suppose, then, that the following conditions hold:

ηTz Sηz < 0, ∀ηz ∈ N (Y ) ⊂ Rn, (34)

θ

2
max

ηzY
∈Sm−1

ε,ε⊥≥0
ε2+ε2⊥≤1

ε
‖ηzY ‖

2
SY

‖Y Y ηzY ‖
+ 2ε⊥

‖Y T⊥SY ηzY ‖
‖Y Y ηzY ‖

< δu, (35)

for some constants δu ∈ R>0 and θ ∈ R>0, where Sm−1

denotes the m− 1 unit sphere, and SY := Y
T
SY . Then,

θ ηTz Sηz < 2δu‖Y ηz‖,∀ηz s.t. ‖ηz‖≤ 1. (36)

Proof. Notice first that condition (34) is indeed necessary
and sufficient for the inequality in (36) to hold for all
ηz ∈ N (Y ). For condition (35), we will first generate
an equivalent reformulation of inequality (36) and then
demonstrate sufficiency.

Decompose ηz as ηzY + ηzY⊥ , where ηzY ∈ Col(Y T ) and
ηzY⊥ ∈ N (Y ). Now write ηzY = εη̂zY and ηzY⊥ = ε⊥η̂zY⊥
where ε ∈ (0, 1], 0 ≤ ε⊥ ≤

√
1− ε2, and η̂zY and η̂zY⊥ are

unit vectors contained in Col(Y T ) and N (Y ), respectively.
Substituting these expressions into inequality (36) above
yields

θ

(
ε2‖η̂zY ‖2S+ε2⊥‖η̂zY⊥ ‖

2
S+2εε⊥η̂

T
zY⊥

Sη̂zY

)
< 2δ̄uε‖Y η̂zY ‖.

(37)
Notice now that

max
η̂zY⊥

∈N (Y )
η̂TzY⊥

Sη̂zY = ‖Y T⊥Sη̂zY ‖,

and by condition (34), ‖η̂zY⊥ ‖
2
S< 0 for all η̂zY⊥ ∈ N (Y ).

Thus, by upper-bounding the left hand side of the inequality
in (37) and rearranging, we obtain the following sufficient
condition for inequality (36):

θ

2

(
ε
‖η̂zY ‖2S
‖Y η̂zY ‖

+ 2ε⊥
‖Y T⊥Sη̂zY ‖
‖Y η̂zY ‖

)
< δ̄u, (38)

for all η̂zY ∈ Col(Y T ). Now, given that the columns of
Y are an orthonormal basis for Col(Y T ), then η̂zY may be
expressed as Y ηzY where ηzY ∈ S

m−1. Substituting this
expression into the inequality above yields (35).

We now leverage Lemma IV.4 to derive the bound on the
magnitude of optimized tracking controller.

Theorem IV.5 (Tracking Control Effort). Define

F (x) := −∂fW (x) +
∂f(x)

∂x
W (x)

∧

+ 2λW (x).

Assume the dual CCM W (x) satisfies conditions (28) and
(29). Factorize W (x) as L(x)TL(x) and define S(x) =
L−TFL−1 and Y (x) = BTL−1. Suppose then that the
matrices S(x) and Y (x) satisfy property (35) for all x ∈ X
with θ = d̄ = αww̄/λ, where Y and Y ⊥ are defined as stated
in Lemma IV.4. Then, the optimized feedback controller
k∗(x∗, x) satisfies the bound:

‖k∗(x∗, x)‖≤ δu, (39)

for all x∗, x ∈ X such that x ∈ Ω(x∗).

Proof. As a consequence of CCM condition (29), the ma-
trices S(x) and Y (x) satisfy property (34) for all x ∈ X .
Then, in conjunction with property (35), it follows from the
conclusions of Lemma IV.4 that

d̄2ηTz
(
L−TFL−1

)
ηz < 2d̄ δu‖BTL−1ηz‖,

∀ηz s.t. ‖ηz‖ ≤ 1,
(40)

for all x ∈ X . Let ηx := d̄L−1ηz . Then, the set {ηz ∈ Rn :
‖ηz‖≤ 1} is equivalent to the set {ηx ∈ Rn : ‖ηx‖2W (x)≤
d̄2} and inequality (40) may be written as

a(x, ηx) < δu‖r(x, ηx)‖,
∀ηx s.t. ηTxW (x)ηx ≤ d̄2,

(41)

for all x ∈ X , where
a(x, ηx) := ηTx F (x)ηx,

r(x, ηx) := 2B(x)T ηx.
Notice that statement (41) along with the CCM condi-
tion (29) is equivalent to the feasibility of the following
CLF (with respect to bounded controls) like condition stated
in [31]:

inf
‖δu‖≤δu

(
a(x, ηx) + r(x, ηx)T δu

)
< 0, (42)

for all ηx satisfying ‖ηx‖2W (x)≤ d̄2. Then, by Theorem 1
in [31] there exists an almost-smooth function δu(x, ηx),
bounded in Euclidean norm by δu, such that condition (42)
(equivalently the dual form of inequality (13)) is satisfied
for all (x, ηx) along the minimizing geodesic connecting any
x∗ ∈ X̄ and x ∈ Ω(x∗). For completeness, this function is
given below:

δu(x, ηx) =


0 if r = 0,

−
a+

√
a2 + δ

4

u‖r‖4

δu‖r‖2
(

1 +

√
1 + δ

2

u‖r‖2
)r else,

where we have dropped the parenthesis (x, ηx) for clarity.
For each x ∈ X , the function above is continuous for all ηx
(requisite for integrability) and smooth for ηx 6= 0.

By the equivalence shown through (20), the tracking
controller given by integrating the function above along
the minimizing geodesic connecting x∗ and x is indeed
a feasible solution to problem OPT online that satisfies the
bound claimed in (39), completing the proof.

A few comments regarding the computation of the bound
δu are in order. Note that from Theorem IV.5, one needs
to show that inequality (41) holds for all x ∈ X . Rewriting
this inequality as (40), one may deduce a simpler, yet loose
approximation of δu as:

δu = sup
x∈X

(
d̄λmax(L−TFL−1)

2σ>0(BTL−1)

)
, (43)

where σ>0(·) denotes the smallest non-zero singular value
and λmax(·) the largest eigenvalue. A better approximation
may be obtained by leveraging Lemma IV.4 and inequal-
ity (35). One would compute δu(x) for each x ∈ X so that
δu = supx∈X δu(x). For fixed (ε, ε⊥), the maximization
over η̂zY ∈ S

m−1 in (35) belongs to the class of sum-
of-ratios fractional programming and is in general, NP-



complete. Recently in [32], the authors presented a two-stage
algorithm using tight SDP relaxations of parameterized sub-
problems for maximizing the sum of a generalized Rayleigh
quotient and another Rayleigh quotient on the unit sphere.
The algorithm is much too intensive for this application
however, considering that inequality (35) must be verified
for all x ∈ X . Thus, a suboptimal approximation may be
obtained by decoupling the maximization as

max
ε,ε⊥≥0
ε2+ε2⊥≤1

(
ε max
ηzY
∈Sm−1

‖ηzY ‖
2
SY

‖Y Y ηzY ‖

+ 2ε⊥ max
ηzY
∈Sm−1

‖Y T⊥SY ηzY ‖
‖Y Y ηzY ‖

)
The two inner maximizations correspond to maximizing gen-
eralized Rayleigh quotients, yielding an outer maximization
of an affine expression in (ε, ε⊥) over a convex set.

V. NUMERICAL IMPLEMENTATION

In this section we discuss numerical methods for the online
computation of the geodesic and the solution to problem
OPT online.

Computation of the geodesic between two points p, q ∈
X can be framed as the following functional optimization
problem:
Optimization Problem OPT γ — At time t ≥ 0, given
desired state x∗(t) and current state x(t), solve

min
c(·,t)∈Γ(x∗(t),x(t))

E(c(·, t)) (44)

Following the approach in [33], such a problem can be
efficiently solved by applying the Chebyshev global pseu-
dospectral method, i.e., by discretizing the interval [0, 1]
using the Chebyshev-Gauss-Lobatto (CGL) nodes and using
Chebyshev interpolating polynomials up to degree N to ap-
proximate the solution. The integral in (44) is approximated
using the Clenshaw-Curtis quadrature (CCQ) scheme with
K > N nodes. As in [33], we choose K > N since the
integral involves the inverse of the dual metric W and is not
guaranteed to be polynomial.

Given the solution to the geodesic problem OPT γ ,
parameterized by a set of values {γ(sk)}Kk=0 and
{δγ(sk)}Kk=0, sk ∈ [0, 1], problem OPT online may now
be solved as an analytical QP using (γ(sk), δγ(sk)), k ∈
{0,K}.

VI. NUMERICAL EXPERIMENTS

We now demonstrate our approach on a 6-state planar-
quadrotor system (Section VI-A). Also, we show how our
results lead to an approach for Tube MPC that boasts several
advantages over state-of-the-art counterparts (Section VI-B).

A. Planar Quadrotor

We consider a 6-state planar-quadrotor system, whose
dynamics and model parameters can be found in [34, Section
6.6] (omitted due to space limitations). Notably, this system
is underactuated and has unstable zero dynamics and thus
represents a challenging system to benchmark our approach.
By reformulating the dynamics using a body-referenced

velocity vector (vx, vz), where vx is the lateral velocity and
vz is the vertical velocity, condition (28) requires that the
dual metric W (x) is not a function of vz or φ̇, the roll-rate.
Furthermore, given the translational invariance of the dy-
namics, W (x) was parameterized as a matrix polynomial up
to order 4 in (vx, φ). We impose the state-bounds (vx, vz) ∈
[−2, 2]×[−1, 1] m/s and (φ, φ̇) ∈ [−45o, 45o]×[−60, 60]o/s,
while the propeller thrusts are limited to the range [0.1, 2]mg
where m is the mass and g is the gravitational acceleration.
We consider as disturbance a cross-wind of magnitude up
to 0.1 m/s2. Problem OPT

ĈCM
was solved by sweeping

through a range of values for λ, using the parser YALMIP
and solver Mosek [35] to solve the SOS programs, each
of which took about 60 seconds. Fig. 4 plots the optimal
objective of Problem OPT

ĈCM
as a function of λ. The

0.2 0.4 0.6 0.8 1
0

200

400

600

800

1000

λ

J
C
C
M

Fig. 4: Problem OPT
ĈCM

objective as a function of λ .

optimal contraction rate was λ = 0.83. Using gridding, we
found that for this example αw = 0.33 and d̄ = 0.04. To
put these numbers in perspective, the projection of the outer
ellipsoidal approximation of the RCI set onto the x−z plane
has a major axis equal to .76 m, and a minor axis equal
to .44m, which compare quite favorably with the quadrotor
wingspan, equal to .5 m. That is, the size of the RCI tube
is rather small and thus the nominal motion planner for the
quadrotor is not overly constrained by the tightening of the
state constraints.

Having computed (offline) the RCI mapping, we tested
Algorithm 1 on the previously unseen densely cluttered
environment in Fig. 1. For simplicity, the disturbance here
was modeled as a constant perturbing force but the results
hold for any bounded time-varying force with varying di-
rectionality. Problem MPC is re-solved every δ = 1s with
horizon T = 2s (using the pseudospectral collocation method
and the SNOPT solver) while the tracking controller is
implemented using zero-order-hold at 200 Hz. Even using an
inefficient implementation in MATLAB, the time required to
compute the tracking controller (on a 3.5 GHz Intel equipped
with 16 GB of RAM) is on the order of 4ms. In turn, each
MPC iteration takes 0.35s. This compares quite favorably
with the re-solve time of 1s. Furthermore, we expect that
this can be significantly improved with a more efficient
implementation and by using trajectory optimization methods
that fully exploit the local nature of the problem. We do not
report the computation of the nominal trajectory (line 6 in
Algorithm 1) since it highly depends on the motion planner
used and is not a focus of this paper.

This example provides evidence that Algorithm 1 can



be used for the online generation of safe motion plans
that can be reliably executed (provided that the nominal
motion plan can also be computed in realtime). This example
also illustrates the benefits of our method as compared
to the funnel library approach [4]. A pre-computed set of
trajectories (as required by [4]) would be unlikely to contain
a sequence leading from the start to goal while maneuvering
through the very tight spaces between obstacles.

B. Application to TMPC

As mentioned in the introduction, the results of this paper
can be readily applied in the context of Tube MPC (TMPC).
Specifically, consider the canonical problem of stabilization
about an equilibrium point (taken to be the origin). To apply
our results to TMPC, we modify problem MPC as follows:
(1) switch to a running cost of the form ‖x‖2Q+‖u‖2R, where
Q ∈ Sn, (2) augment the cost function with a terminal
cost P : X̄f → R, and (3) replace the terminal equality
constraint (7) with a terminal set constraint, i.e., x̄(T ) ∈
Xf ⊆ X̄ where 0 ∈ Xf . The terminal set and cost are chosen
according to standard stabilization assumptions under the
quasi-infinite horizon framework [36], and may be computed
using, e.g., LQR. As there is no longer a notion of an
initial “motion plan”, the reference trajectory is generated
in receding horizon fashion by problem MPC and tracked
using the CCM-derived feedback controller (also referred to
as the “ancillary controller” in TMPC nomenclature).

To compare the resulting approach to TMPC with state-
of-the-art methods, we consider the following second-order
nonlinear system (taken from [13]):

ẋ(t) =

[
−1 2
−3 4

]
x+

[
0

−0.25x3
2

]
+

[
0.5
−2

]
u(t) +

[
0
1

]
w(t).

(45)
The control constraints are |u(t)|≤ 2,∀t ≥ 0. The state
constraints, while not explicitly given in [13], are taken to
be the [−5, 5]2 box. The disturbance w(t) is norm bounded
(‖w‖≤ 0.1), and the state and control cost matrices are
Q = diag(0.5, 0.5) and R = 1.

As for the planar-quadrotor example, to obtain a CCM,
we solved problem OPT

ĈCM
by sweeping through a range

of values for the contraction rate λ. The objective function
JCCM was minimized for λ = 1.74. In particular, we found
that the optimized dual metric is in fact constant for all x ∈
X (i.e., is a flat metric), and is given by:

W =

[
4.25828 −0.93423
−0.93423 3.76692

]
.

Thus, the RCI mapping is given by the ellipsoid Ω(x∗) =
{x ∈ X : ‖x − x∗)‖2W−1≤ 0.093w̄2}. Since here the
geodesic between two points is simply given by the straight
line connecting those two points (i.e., Ω(·) is a geodesically
convex set), the outer approximation in (27) coincides with
the RCI set itself (i.e., M = M = W−1). Fig. 5 plots
the above RCI set using w̄ = 0.1, along with the RCI set
computed in [13] for the same disturbance level (in [13], a
linear state feedback ancillary controller is used). We observe
that our approach yields a markedly smaller invariant set.

We now compare the performance of our method, dubbed

Fig. 5: Comparison of the CCM-derived RCI set (shaded black) and the RCI set
computed in [13] (shaded red), centered at the origin, for the same disturbance upper
bound w̄ = 0.1.

contraction-based TMPC, with TMPC methods from [14]
and [13] for system (45). In order to ensure fair comparison,
we kept the parameters for the the MPC algorithm the same
for all three implementations, namely, MPC sample time δ =
0.1s, time horizon T = 1.5s, and zero-order-hold sampling
time 0.005s. For the tube algorithm in [14], the auxiliary
MPC problem was re-solved every 0.05s (δ/2). The terminal
control invariant set Xf was also taken from [13] and kept
fixed. The initial state was (3.4,−2.4).

Consider the state trajectory plot in Fig. 6, obtained
assuming a constant disturbance with magnitude 0.1. We
present this plot only for our approach. The actual trajectory
(in blue) closely tracks the nominal MPC trajectory. Using
contraction-based TMPC the state converged to a steady-state
value of (0.0258, 0.006723), while the steady-state values
using the algorithms from [13] and [14] were found to be
(0.03891, 0.01437) and (0.073, 0.035), respectively. While

Fig. 6: Closed-loop state trajectory using the optimized ancillary ancillary controller.
Red: nominal MPC solution, Blue: actual trajectory. Also plotted is the terminal
invariant set (shaded gray) and snapshots of the RCI mapping along the nominal MPC
trajectory (green ellipsoids).

the performance characteristics in terms of state-boundedness
for all three algorithms are in the same order of magnitude
for this example, the “dual-MPC” algorithm from [14] is less
suitable for fast, continuous dynamical systems as it essen-
tially requires solving an additional optimal control problem
for the ancillary controller (albeit with relaxed constraints)
– a heavier computational burden. Relaxing the nominal
and/or ancillary re-computation times for this controller led
to noticeably worse performance. In contrast, as the CCM is
constant and consequently, the minimizing geodesic is simply
the straight line between x∗ and x, our ancillary feedback
controller is entirely analytical. In addition, as mentioned



earlier and in [14], the bound on the deviation of the state
from the nominal MPC trajectory is difficult to quantify
exactly. Indeed, the cost function for the auxiliary MPC
problem required rather ad-hoc tuning to yield acceptable
levels of disturbance rejection.

On the other hand, the bound on the ancillary feedback
controller derived in [13] is prohibitively high. In partic-
ular, the static linear state-feedback law designed in [13]
is bounded in absolute value by 0.85. Thus, the restricted
control constraints for the nominal MPC must necessarily be
|u∗|≤ 1.15 (since the total control input is constrained to be
|u|≤ 2). Under such restrictions, the nominal MPC problem
would not even be feasible at the initial state of (3.4,−2.4).
In contrast, our optimized ancillary controller satisfies the
bound ‖k∗(x∗, x)‖≤ 0.207, leaving a significantly improved
margin of |u∗|≤ 1.793 for the nominal MPC input.

In Fig. 7 we compare the feasibility domains for the
nominal MPC algorithm using the control constraints: |u∗|≤
1.15 and |u∗|≤ 1.793. By analyzing the intrinsic properties
of the nonlinearities in the system dynamics rather than
relying on Lipschitz bounds, we obtained both a significant
reduction in the size of the RCI set, and a drastic reduction
in the required ancillary control effort, thereby increasing the
domain of feasibility for the nominal MPC problem.

Fig. 7: Improvement in feasible domain for the nominal MPC problem taken from [13].

VII. CONCLUSIONS AND FUTURE WORK

We presented a framework for robust motion planning for
robots with nonlinear dynamics subject to bounded distur-
bances, input constraints, and online state constraints. Our
approach allows one to generate certifiably safe trajectories
online in response to obstacles in the environment. We
leveraged recent advances in contraction theory in the form
of CCMs to synthesize a tracking feedback controller and
an associated fixed-size invariant tube around any feasible
trajectory. Such an invariant tube can then be used as a
robustness margin during online trajectory generation. We
demonstrated our approach on a planar quadrotor model
navigating through cluttered environments in the presence of
cross-wind disturbances. We further discussed applications of
our work to TMPC and showed that our approach compares
favorably to state-of-the-art nonlinear TMPC algorithms.

Our analysis is generally conservative due to the fact
that we derive a globally valid invariant tube. A promising
approach for reducing this conservatism may be to partition
the state space into regions in which CCMs are computed
locally (while ensuring compatibility between regions). We

also plan to extend our work to stochastic models of distur-
bances and sensor noise, which are of practical importance
for hardware implementation.
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