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Abstract

We present a framework for online generation of robust motion plans for robotic systems
with nonlinear dynamics subject to bounded disturbances, control constraints, and online state
constraints such as obstacles. In an offline phase, one computes the structure of a feedback
controller that can be efficiently implemented online to track any feasible nominal trajectory.
The offline phase leverages contraction theory and convex optimization to characterize a fixed-
size “tube” that the state is guaranteed to remain within while tracking a nominal trajectory
(representing the center of the tube). In the online phase, when the robot is faced with obstacles,
a motion planner uses such a tube as a robustness margin for collision checking, yielding nominal
trajectories that can be safely executed, i.e., tracked without collisions under disturbances. In
contrast to recent work on robust online planning using funnel libraries, our approach is not
restricted to a fixed library of maneuvers computed offline and is thus particularly well-suited
to applications such as UAV flight in densely cluttered environments where complex maneuvers
may be required to reach a goal. We demonstrate our approach through numerical simulations of
planar and 3D quadrotors, and hardware results on a quadrotor platform navigating a complex
obstacle environment while subject to aerodynamic disturbances. The results demonstrate the
ability of our approach to jointly balance motion safety and efficiency for agile robotic systems.

1 Introduction

Despite significant progress in the field of motion planning, the problem of safe real-time planning
for robots with nonlinear and underactuated dynamics subject to uncertainty has remained an
outstanding challenge. A key difficulty is that uncertainty and disturbances in the dynamics force
us to reason about the “funnel” (or tube) of possible outcomes (see Figs. 1 and 2) that the
disturbances may drive the system to, rather than a single planned trajectory. Consequently,
the key challenges for planning translate into the ability to guarantee both safety (with respect to
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constraint satisfaction and collision avoidance) and performance (with respect to some cost function
optimality) for the robotic system in cluttered and possibly dynamically changing environments.
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Figure 1: A planar quadrotor navigating in real-time through a previously unseen cluttered environment in the presence of a
horizontal cross-wind disturbance. A nominal (disturbance-free) trajectory (dashed-red line) is generated online in response
to obstacles reported in the environment such that the invariant tube (computed offline) centered around the trajectory does
not intersect obstacles. The breakpoints in the tube mark the instances where the nominal path is locally re-optimized as it
adjusts to the actual executed trajectory veering to the edges of the tube due to the cross-wind (but still remains within it as
guaranteed by the tracking controller). The spacing between the edge of the tube and the obstacles accounts for the size of the
vehicle itself.

(a) (b)

Figure 2: Illustration of the robust planning with invariant tubes methodology on a full 3D quadrotor in simulation and
experiment.

1.1 Outline of Approach

The goal of this paper is to propose an approach for generating motion plans with certifiable margins
of safety. In particular, in an offline stage one synthesizes the structure of a tracking controller
which can be efficiently implemented online to guarantee exponential convergence to any feasible
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nominal trajectory in the absence of disturbances. Additionally, the offline computation yields a
fixed-size invariant “tube” (akin to a funnel) that can be centered around any nominal trajectory as
a guaranteed collision-free envelope in the presence of bounded disturbances. In the online phase,
when the robot is faced with obstacles, one can use such a tube as a robustness margin during
collision checking, thus leading to nominal trajectories that can be safely executed. We stress that
this paper does not propose a new motion planning algorithm. Instead, it proposes a framework
for using a standard motion planner as a “black box” or “primitive routine,” combined with a
feedback control design methodology, that together enable the online generation of safe nominal
motion plans that can be robustly executed.

The key idea behind our approach is to leverage contraction theory (Lohmiller and Slotine, 1998),
a method for analyzing nonlinear systems by studying convergence between pairs of trajectories.
This makes it particularly well-suited to the problem we consider here since it does not require
us to commit to a particular nominal trajectory in order to analyze the stability properties of
a feedback controller designed to track it. In particular, we design tracking controllers by using
control contraction metrics (CCMs) (Manchester and Slotine, 2017), a generalization of control
Lyapunov functions that can be computed using convex optimization.

2 Problem Statement and Related Work

Consider robotic systems whose dynamics are described by the nonlinear differential equation:

ẋ(t) = f(x(t)) +B(x(t))u(t) +Bw(x(t))w(t), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control input, and w(t) ∈ Rnw is the disturbance. The
function f : Rn → Rn captures the drift, B : Rn → Rn×m is the input matrix mapping, depicted
in column-stacked form as (b1, . . . , bm), and Bw : Rn → Rn×nw is the disturbance matrix mapping
with σ̄(Bw(x)) = 1 for all x, where σ̄(·) denotes the maximum singular value. In other words, Bw
simply selects the channels where the disturbance is active. A state-input trajectory satisfying (1)
is denoted as a pair (x, u). Additionally, we enforce state constraints (e.g., arising from obstacles in
the robot’s environment and physical constraints such as joint limits) and input constraints, that
is: x(t) ∈ X and u(t) ∈ U for all t, where X and U are defined to be the closures of bounded, open,
and connected sets in Euclidean space.

The motion planning problem we wish to address is to find a (possibly non-stationary) policy
π : X ×R→ U that (i) drives the state x to a compact region Xgoal ⊆ X , (ii) satisfies the state and
input constraints, and (iii) minimizes a quadratic cost:

J(x(t), π) :=

∫ Tgoal

0
1 + ‖π(x(t), t)‖2R dt,

where ‖(·)‖R :=
√

(·)TR(·) denotes the weighted norm with respect to R, a strictly positive definite
matrix, and Tgoal is the first time x(t) enters Xgoal.

The topic of planning under uncertainty has been approached from two general methodologies
within the robotics community. In the first approach, one seeks probabilistic guarantees on safety
(e.g., collision probabilities) for a stochastic model of uncertainty. This is elegantly described by
the chance-constrained programming framework (Charnes and Cooper, 1959). Typical solution
methods generally consider linear systems affected by Gaussian noise (Blackmore et al., 2006, 2011;
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Ono et al., 2013) or more generally, exploit linear-Gaussian dependencies (Luders et al., 2016). The
extension to nonlinear dynamics and/or non-Gaussian noise is inherently difficult; typical methods
employ sampling (Monte Carlo) techniques (Janson et al., 2015b; Sun et al., 2015), stochastic
Lyapunov theory (Battilotti and De Santis, 2003; Buehler et al., 2016), or Gaussian processes
with (probabilistically) robust feedback linearization (Helwa et al., 2019). In the more general
case with partial observability and/or noisy sensing, the stochastic formulation is lifted to the
belief space planning framework (Kaelbling et al., 1998; Kurniawati et al., 2008; Prentice and
Roy, 2009; Platt et al., 2012; Agha-mohammadi et al., 2014). This approach has been typically
constrained by limitations such as Gaussian belief state assumptions, linear dynamics, and/or small
state and action spaces, for instance in the Partially Observable Markov Decision Process (POMDP)
framework.

In the second approach, in contrast to the stochastic methodology, one considers bounded mod-
els of uncertainty, where w(t) is assumed to be piecewise C1 and norm-bounded, i.e., there exists
some strictly positive real number w̄ such that ‖w(t)‖2≤ w̄ for all t ≥ 0. This is typically described
as the robust planning problem, and is the formulation adopted within this work. A fundamental
component of solving this problem is based around computing and/or optimizing over reachable
sets, or their over -approximations. Figure 3 depicts a rough classification of various methods for
computing bounds on the reachable sets, ranked by the conservativeness of the approximation.
The figure is by no means exhaustive and additional references are provided following the figure,
but it is useful for understanding the overarching categorization of various methods, ranging from
approximative linear analysis, through Lyapunov-based certificates computed using convex opti-
mization, to formal verification using dynamic programming and differential games; see also the
recent review (Bansal et al., 2017).

Figure 3: An overview of methods for computing exactly or outer-approximating the reachability set for nonlinear systems. The
references in the blue-outline box constitute the primary motivation for our planning framework, i.e., sequential composition of
invariant tubes. The red-outline box indicates the method for computing these tubes, i.e., via CCMs.

On the exact end of the spectrum, one may leverage logic-based methods (e.g., quantifier elim-
ination) to recursively compute the backward reachable set of a given goal set (Raković et al.,
2006a; Kong et al., 2015). In a similar vein, the differential game formulation treats any admissable
disturbance as an adversarial agent and one can compute the backward reachable set of unsafe sets
(e.g., obstacle locations) as the solution to a Hamilton-Jacobi PDE using level-set methods (Tomlin
et al., 2003; Gillula et al., 2010; Chen et al., 2016; Herbert et al., 2017; Fridovich-Keil et al., 2018).
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While these methods are exact in that they precisely characterize a collision-free “roadmap” to
the goal set, and in the differential game formulation, also yield the optimal closed-loop controller,
implementation of these methods for dynamically changing or unknown environments and/or high-
dimensional systems is computationally prohibitive. A computational relaxation in this spirit is
the barrier certificates method (Prajna et al., 2007; Barry et al., 2012) in which one characterizes
the unsafe regions in the state-space as the zero-superlevel set of a function whose time derivative
on the zero-level set is negative for a given controller and all admissible disturbances. While this
yields a more conservative sufficient condition, the method is again incompatible with generalizing
to unknown environments discovered in real-time.

As presented earlier, the motion planning problem entails an optimization over the class of
state-feedback functions – a computationally intractable task in general with a solution that is
incompatible with changing environments (e.g., obstacle locations). In an effort to reduce compu-
tational complexity, the prevailing solution approach, and indeed the strategy adopted within this
work, is to parameterize general state-feedback policies as a sum of a nominal (open-loop) input
u∗ and a feedback term designed to track the nominal state trajectory x∗ (induced by u∗ assuming
no disturbances):

π(x(t), t) = u∗(t) + k(x∗(t), x(t)), (2)

where k(·, ·) is the feedback tracking controller. Commonly referred to as feedback motion planning,
such a solution approach represents a compromise between the general class of state-feedback
control laws and a purely open-loop formulation (i.e., no tracking). In order to ensure satisfaction
of all constraints in the presence of disturbances, one needs to characterize the reachable set or
“funnel” (Burridge et al., 1999), around the trajectory being tracked. Formally, this is defined
through the notion of robust control invariant (RCI) tubes.

Suppose (x∗, u∗) is a state-input trajectory satisfying the nominal dynamics (i.e., (1) with w ≡ 0)
and (x, u) is a state-input trajectory satisfying (1) under the action of a parameterized policy (2).
Let T ∗goal be the first time x∗(t) enters Xgoal. An RCI tube is defined as follows.

Definition 2.1 (RCI Tube). Let Ω : Rn → 2R
n

be a mapping s.t. x ∈ Ω(x) and Ω(x) is a closed
and bounded set for every x. Then, Ω(·) is an RCI mapping (additionally Ω(x) is an RCI set
centered on x) if there exists a tracking controller k(x∗, x) s.t. if x(t0) ∈ Ω(x∗(t0)), then for all
allowable realizations of the disturbance w(t), x(t) ∈ Ω(x∗(t)) for all t0 ≤ t ≤ T ∗goal. Given an RCI
mapping Ω(·), an RCI tube centered on the trajectory x∗(t), t0 ≤ t ≤ T ∗goal, is the swept region⋃
t0≤t≤T ∗goal

Ω(x∗(t)).

Intuitively, a tracking controller with an associated RCI tube Ω(·) guarantees that the state of
the system is always “close” to its nominal value x∗(t) (precisely, within set Ω(x∗(t)). Thus, by
planning a nominal state-input trajectory satisfying the tightened constraints:

x∗(·) ∈ X̄ := X 	 Ω, (3a)

u∗(·) ∈ Ū := {ū ∈ U : ∀x∗(t) ∈ X̄ , ∀x(t) ∈ X s.t. x(t) ∈ Ω(x∗(t)), ū+ k(x∗(t), x(t)) ∈ U}, (3b)

where 	 denotes the Minkowski set difference, one can ensure that the robotic system will safely
reach the goal region Xgoal (modulo the size of the RCI set) in the presence of disturbances. Note
that one can ensure that the system reaches Xgoal (without the extra buffer from the RCI set) by
constraining the RCI set to be contained within Xgoal at T ∗goal. Constraint (3a) ensures that the
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RCI tube around the trajectory does not intersect any obstacles, while (3b) is defined for a given
tracking controller and ensures that the net applied control satisfies the input limit.

For fully-actuated (i.e., feedback linearizable) systems, RCI tubes or funnels may be computed
and optimized using sliding control (Slotine, 2007; Lopez et al., 2018). More conservative ap-
proximations of these sets may be found using linear reachability analysis, where one computes
continuous linearizations of the dynamics about reference trajectories and treats nonlinearities as
bounded disturbances (Althoff and Dolan, 2014; Althoff et al., 2015). Alternatively, by bounding
the dynamics’ Lipschitz constant or Jacobian, one obtains an exponentially growing outer approx-
imation of the reachable set. For instance, in (Pin et al., 2009), a bound on the global Lipschitz
constant is used to compute sequentially tightened constraint sets for a reference trajectory to
ensure robust constraint satisfaction, while (Bravo et al., 2006) presents a general framework for
computing outer approximations of reachable sets using zonotopes, which, while possessing favor-
able computational properties, again yield overly conservative approximations. The differential
inequality approach in (Scott and Barton, 2013; Villanueva et al., 2017) attempts to alleviate the
conservativeness resulting from such linear methods through online co-optimization of the reference
trajectory and its associated reachable set. In similar spirit, (Manchester and Kuindersma, 2017,
2019) leverage a measure of the size of the approximate invariant funnels computed using linear
analysis (i.e., propagation of ellipsoids under linearized dynamics) within the formulation of the
cost function for the nominal trajectory itself. However, these problems are posed as one-off offline
computations and not suitable for real-time re-planning on fast robotic systems. In general, treating
nonlinearities as bounded disturbances naturally leads to overly conservative approximations.

Convex programming-based verification methods such as sum-of-squares (SOS) programming
have gained increasing popularity in feedback motion planning. For instance, the LQR-Trees algo-
rithm (Tedrake et al., 2010) constructs a tree of local LQR feedback controllers, however, it cannot
handle scenarios in which the task and environment are unknown until runtime. Recently, the
funnel library approach (Majumdar and Tedrake, 2012, 2017) has been proposed to handle online
geometric constraints (e.g., obstacles) that force the robot to re-plan in real-time. The approach
leverages SOS programming to compute, offline, a library of funnels around a set of nominal tra-
jectories in which the state is guaranteed to remain despite bounded disturbances. These funnels
are then sequentially composed online to avoid obstacles. However, this approach is restricted to
employing a fixed set of trajectories computed offline. While the richness of the funnel library
may be increased by exploiting invariances in the dynamics (Majumdar and Tedrake, 2017) or pre-
computing a family of funnels parameterized by shifts to a nominal trajectory (Majumdar et al.,
2012), one would ideally like to generate a funnel around any nominal trajectory generated online.

The concept of feedback motion planning is also fundamental within Tube Model Predictive
Control (TMPC), whereby one computes a tracking feedback (also termed ancillary) controller
that keeps the state within an invariant “tube” around the nominal MPC trajectory despite dis-
turbances. TMPC has been studied extensively for linear systems with bounded disturbances or
model uncertainties (Langson et al., 2004; Mayne et al., 2005; Limon et al., 2010; Farina and Scat-
tolini, 2012; Rakovic et al., 2012), and for linear systems with stochastic disturbances (Fleming
et al., 2015) (see also the recent review (Mayne, 2014)). The application of TMPC to nonlinear
systems is certainly not new, see for instance (Raković, 2009) where the properties of TMPC for
nonlinear systems are explored via lifting the analysis to set dynamics and employing the Banach
fixed-point theorem. However, the construction of invariant tubes and the design of the associated
ancillary controller in the nonlinear setup is significantly more complicated than in the linear case.
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In (Raković, 2009) for instance, the existence of a stabilizing (nonlinear) ancillary controller (that
results in contracting set iterates) is simply assumed, while in (Kögel and Findeisen, 2015), a static
linear state feedback ancillary controller is used to stabilize the “linear” component of the nonlinear
dynamics and Lipschitz continuity is used to bound the effect of disturbance propagation. Some
techniques to construct the ancillary controller and accompanying invariant tube proposed in exist-
ing literature include systems with matched nonlinearities and linear ancillary feedback (Raković
et al., 2006b); integral sliding mode ancillary feedback with Lipschitz-based reachability analy-
sis (Rubagotti et al., 2011); ellipsoidal invariant tubes constructed using linear-matrix-inequalities
(LMI) and bounds on the Lipschitz constant (Yu et al., 2013) or assuming a polytopic linear dif-
ferential inclusion model for the dynamics (Yu et al., 2010); ancillary-MPC with Lipschitz-based
reachability analysis (Mayne et al., 2011); systems with incrementally conic uncertainties stabilized
using linear ancillary feedback (Carson III et al., 2013); and linearization with static or time-varying
linear ancillary feedback with nonlinearities treated as bounded disturbances (Cannon et al., 2011).
As with the robotic planning literature, methods leveraging linearization or Lipschitz constants
are inherently overly conservative. The notion of incremental input-to-state stability (δ-ISS) for
discrete-time systems was used in (Bayer et al., 2013) to derive the invariant tube as a sublevel set
of the associated δ-ISS Lyapunov function, which was assumed to be given. More recently, (Köhler
et al., 2019) leverages the assumed existence of such a function and implicitly incorporates constraint
tightening via constraining the growth of this function (using a nonlinear dynamical representa-
tion of the scalar defining the Lyapunov sublevel sets) as part of the MPC optimization problem.
Again, these bounding functions are either assumed given, or constructed assuming local linear
feedback. In contrast, the work presented herein focuses on the design and optimization of the
functions themselves (and the associated feedback controllers), subsequently permitting the use of
algorithms such as the one presented in (Köhler et al., 2019).

2.1 Statement of Contributions

In this paper, we leverage recent advances in contraction theory for control design through the use of
control contraction metrics (CCM) (Manchester and Slotine, 2017). Contraction theory (Lohmiller
and Slotine, 1998) is a method of analyzing nonlinear systems in a differential framework, i.e., via the
associated variational system (Crouch and van der Schaft, 1987, Chp 3), and is focused on the study
of convergence between pairs of state trajectories towards each other. Thus, at its core, contraction
explores a stronger notion of stability – that of incremental stability between solution trajectories,
instead of the stability of an equilibrium point or invariant set. While the analysis in (Lohmiller
and Slotine, 1998) and most other works on contraction theory focus on analyzing the stability of
closed-loop vector fields – (Jouffroy, 2003; Sontag, 2010; Sontag et al., 2014; Simpson-Porco and
Bullo, 2014; Forni and Sepulchre, 2014); see also the recent review in (Aminzarey and Sontag,
2014) and references therein, recent results demonstrate the applicability of contraction theory for
constructive control design, e.g., control via backstepping (Sharma and Kar, 2009; Zamani et al.,
2013), control for singularly perturbed systems using multiple time-scales (Rayguru and Kar, 2015),
and control via CCMs (Manchester et al., 2015; Manchester and Slotine, 2017; Singh et al., 2017).
The concept of δ-ISS has also been studied within a contraction theory framework, e.g., in (Zamani
et al., 2013), where contraction metrics are derived for a class of nonlinear systems stabilized using
backstepping. Compared to works on establishing incremental stability through suitable δ-ISS
Lyapunov functions (Angeli, 2002, 2009), contraction metrics are an intrinsic characterization of
incremental stability (i.e., coordinate invariant) and the search for a suitable metric and associated
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stabilizing controller via convex optimization boasts obvious practical benefits.
The contributions of this paper are the following. First, on the theoretical side, while the CCM

approach is directly inspired by (Manchester and Slotine, 2017), we present an alternative proof
(Section 3.2) of incremental exponential stability between trajectories using a suitable CCM-derived
controller. This proof employs techniques from calculus of variations and differential geometry in
order to (i) derive a tighter characterization of the controller’s disturbance rejection properties and
the size of the corresponding invariant tube (Section 3.5), and (ii) simplify the online implementa-
tion of the controller (Section 5.1), under significantly weaker conditions for the CCM as compared
to (Manchester and Slotine, 2017) and (Zamani et al., 2013). Second, we derive a bound on the
magnitude of the tracking controller by leveraging properties of CCMs and exploiting analogies with
differential control Lyapunov functions (Section 5.3). Third, on the algorithmic side, we present
an offline/online framework for robust motion planning where in the offline phase, we formulate a
quasiconvex optimization problem using SOS programming that searches for an optimal CCM in
order to minimize the cross-section of the invariant tube (Section 4), and derive the structure of a
tracking controller that can be efficiently implemented online. The optimized tube is used online to
obtain nominal motion plans that can be robustly tracked (Section 6). Fourth, on the experimental
front, we illustrate our method and several variations on simulated 6-state planar-quadrotor and
10-state 3D quadrotor systems (Section 7). Finally, we present experimental results on a quadrotor
hardware testbed by generating robust motion plans using sampling-based planning and polyno-
mial smoothing for a cluttered lab environment and evaluate the performance of the quadrotor in
the presence of aerodynamic disturbances induced by unmodeled drag forces (Section 8).

A preliminary version of this work was presented at ICRA 2017 (Singh et al., 2017). In this
revised and extended version, we additionally present (i) full proofs for all technical results, (ii)
a tutorial on CCM computation with illustrative examples, (iii) extensions to the online plan-
ning algorithm to leverage less conservative time-varying tubes, (iv) extensive additional numerical
experiments, including failure analysis, and (v) validation on a hardware testbed.

Our approach has several advantages over prior work on robust motion planning and MPC.
First, by explicitly enforcing safety in the online planning process, the method is particularly
suited to planning in previously unseen and tightly-constrained environments, where it might be
difficult to find feasible solutions by sequencing a pre-computed set of maneuvers (Fig. 1). Second,
in contrast to the class of techniques that employ linear reachability analysis to conservatively ap-
proximate funnels/tubes for nonlinear systems by treating nonlinearities as bounded disturbances,
our analysis directly reasons about intrinsic nonlinearities in the dynamics and thus has the poten-
tial to be less conservative for highly nonlinear systems. Notably, our approach allows for both the
design and optimization of invariant tubes and tracking feedback controllers. Third, the method
is computationally rooted in convex optimization, which in turn carries a smaller computational
burden than differential game formulations for computing reachable tubes, which require numerical
solutions to PDEs.

Notation: Let Sj be the set of symmetric matrices in Rj×j and denote S≥0
j , respectively S>0

j , to be

the set of symmetric positive semi-definite, respectively positive definite matrices in Rj×j . Given
a matrix X, let X̂ := X + XT . The set of C2 functions from D to R is denoted by C2(D,R). We
denote the components of a vector y ∈ Rn as y[j], j = 1, . . . , n, and its Euclidean norm as ‖y‖.
Let ‖y‖A=

√
yTAy denote a weighted norm for A ∈ S>0

n . Let σ(A) denote the maximum, and
σ(A)) the minimum, singular values of a matrix A. Let λ̄(A) denote the maximum, and λ(A) the
minimum, real eigenvalues of a symmetric matrix A. Let ∂yF (x) denote the Lie derivative of the
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matrix-valued function F at x along the vector y. Finally, given sets A and B, the set A	B is the
Minkowski difference.

3 Trajectory Tracking with Contraction Theory

In this section, we demonstrate how to derive trajectory tracking controllers with (i) exponential
convergence properties in the absence of disturbances, and (ii) strong boundedness properties in
the presence of bounded disturbances, by leveraging contraction theory. In particular, this section
of the paper is concerned with the task of robust nonlinear feedback control design. The integration
of the results of this section into a feedback planning algorithm will be the focus of Section 6. The
core principle behind contraction theory (Lohmiller and Slotine, 1998) is to study the evolution
of distance between any two infinitesimally close neighboring trajectories and draw conclusions
on the distance between any finitely apart pair of trajectories. We begin by first introducing the
fundamentals of contraction theory, in the absence of control.

3.1 Introduction to Contraction

Given an autonomous system of the form: ẋ(t) = f(x(t)), consider two neighboring trajectories
separated by an infinitesimal (virtual) displacement δx; formally, δx is a vector in the tangent space
TxX at x. The dynamics of this virtual displacement are given by:

δ̇x =
∂f

∂x
δx,

where ∂f/∂x is the Jacobian of f . The dynamics of the infinitesimal squared distance δTx δx between
these two trajectories is then given by:

d

dt

(
δTx δx

)
= 2δTx

∂f

∂x
δx.

Then, if the (symmetric part) of the Jacobian matrix ∂f/∂x is uniformly negative definite, i.e.,

sup
x
λ̄

(
1

2

∂f(x)

∂x

∧)
≤ −λ < 0,

for some λ ∈ R>0, one has that the squared infinitesimal length δTx δx is exponentially convergent
to zero at rate 2λ. By path integration of δx between any pair of trajectories, one has that the
distance between any two trajectories shrinks exponentially to zero. The vector field f is thereby
referred to be contracting at rate λ, and λ is referred to as the contraction rate.

Contraction metrics generalize this observation by considering as infinitesimal squared length
distance, a symmetric positive definite function V (x, δx) = δTxM(x)δx, where M : X → S>0

n is a
mapping from X to the set of uniformly positive definite n×n symmetric matrices. Formally, M(x)
may be interpreted as a Riemannian metric tensor, endowing the space X with the Riemannian
squared length element V (x, δx). A fundamental result in contraction theory (Lohmiller and Slotine,
1998) is that any contracting system admits a contraction metric M(x) such that the associated
function V (x, δx) satisfies:

V̇ (x, δx) ≤ −2λV (x, δx), ∀(x, δx) ∈ T X ,
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for some positive contraction rate λ. Thus, the function V (x, δx) may be interpreted as a differential
Lyapunov function; see also (Forni and Sepulchre, 2014) for such an analogy, albeit using Finsler
metrics.

3.2 Control Contraction Metrics

Control contraction metrics (CCMs) generalize contraction analysis to the controlled dynamical
setting, in the sense that the analysis searches jointly for a controller design and the metric that
describes the contraction properties of the resulting closed-loop system. To introduce this concept,
we first define the notion of incremental exponential stabilizability.

Definition 3.1 (Incremental Exponential Stability). Consider a nominal state-input trajectory
pair (x∗(t), u∗(t)) for the unperturbed controlled dynamics (i.e., (1) with w ≡ 0). Suppose there
exist λ,C > 0 and a feedback controller k(x∗(t), x(t)) such that the resulting state trajectory x(t)
for the unperturbed dynamics with control u(x(t)) = u∗(t) + k(x∗(t), x(t)) satisfies

‖x∗(t)− x(t)‖≤ Ce−λt‖x∗(0)− x(0)‖. (4)

Then, the trajectory x∗(t) is said to be incrementally exponentially stabilizable (IES) with rate λ
and overshoot constant C.

We now illustrate how to leverage contraction theory to derive trajectory tracking controllers
that guarantee IES for any nominal state trajectory x∗(t). Denote the tangent space of X at x ∈ X
by TxX 1 and the tangent bundle of X by TX =

⋃
x∈X {x} × TxX . The variational dynamics (i.e.,

dynamics of the virtual displacement δx along any nominal state-input trajectory (x(t), u(t))) for
the unperturbed controlled system are given by (Crouch and van der Schaft, 1987, Chp 3):

δ̇x =

:=A(x,u)︷ ︸︸ ︷(
∂f(x)

∂x
+

m∑
j=1

u[j]
∂bj(x)

∂x

)
δx +B(x)δu, (5)

where δx ∈ TxX is a tangent vector to a smooth path of states at x ∈ X , and δu ∈ TuU is a tangent
vector to a smooth path of controls at u ∈ U . Let M : X → S>0

n be a smooth matrix function
that is uniformly bounded (i.e., there exist constants 0 < α < α such that αIn � M(x) � αIn).
Continuing the interpretation of V (x, δx) = δTxM(x)δx as a Riemannian squared differential length
element, for a given smooth curve c : [0, 1] → X , we define its length l(c) and energy E(c) as
l(c) :=

∫ 1
0

√
V (c(s), cs(s))ds, E(c) :=

∫ 1
0 V (c(s), cs(s))ds, where cs(s) = ∂c(s)/∂s.

Let Γ(p, q) be the set of smooth curves on X that connect points p and q. The Riemann
distance between points p and q is defined as the quantity d(p, q) := infc∈Γ(p,q) l(c), and denote
E(p, q) := d2(p, q) to be the Riemann energy. Let the curve γ ∈ Γ(p, q) be the (possibly non-
unique) minimizing geodesic which achieves this infimum. Notice that E(γ) = d2(p, q).

A smooth, uniformly positive definite matrix-valued function M(x) is a CCM for the system
ẋ = f(x) + B(x)u, if there exists a differential controller δu : TX → TuU , such that V̇ (x, δx) <
0, ∀(x, δx) ∈ TX . Thus, V (x, δx) may be interpreted as a differential control Lyapunov function
(CLF) on the tangent bundle TX . In the next section, we study the necessary and sufficient
conditions for the existence of CCMs.

1Since X is the closure of an open set in Rn, the tangent space TxX for all x in the interior of X is simply Rn,
while TxX on the boundary of X is a half-space in Rn.
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3.3 Conditions for CCMs

Suppose that the following equality holds for all x ∈ X :

∂bjM(x) +M(x)
∂bj(x)

∂x

∧

= 0, j = 1, . . . ,m. (6)

Condition (6) implies that the vectors bj form a Killing vector field for the metric tensor M(x).
Under this condition, V̇ reduces to

V̇ (x, δx, δu) = δTx

(
∂fM(x) +M(x)

∂f(x)

∂x

∧)
δx + 2δTxM(x)B(x)δu. (7)

Then, if the following property holds for some constant λ > 0 and all (x, δx) ∈ TX :

δTx

(
∂fM(x) +M(x)

∂f(x)

∂x

∧)
δx ≤ −2λδTxM(x)δx (8)

for all δx such that δTxM(x)B(x) = 0,

then (Manchester and Slotine, 2017) shows that there always exists an integrable differential feed-
back controller of the form δu(x, δx) = K(x)δx such that the following inequality holds for all2

(x, δx) ∈ X × Rn:

V̇ (x, δx) = δTx

(
∂fM(x) +M(x)

∂f(x)

∂x

∧

+M(x)B(x)K(x)
∧

)
δx

≤ −2λδTxM(x)δx = −2λV (x, δx). (9)

Notice that condition (8) simply indicates that for all directions where the variational system lacks
controllability (given by the nullspace of BT (x)M(x)), the system is naturally contracting with
rate λ. In the scenario where (6) fails to be true, one may leverage the following weaker alternative
to conditions (6) and (8):

δTx

(
∂f+BuM(x) +M(x)A(x, u)
∧)

δx ≤ −2λδTxM(x)δx (10)

for all δx such that δTxM(x)B(x) = 0.

In (Manchester and Slotine, 2017), it is proven, by construction, that the weaker condition above
is still sufficient to guarantee the existence of a differential feedback controller. However, in this
case, the differential controller becomes a function of u as well, i.e., δu = δu(x, δx, u).

We now illustrate how to leverage such a differential controller, which guarantees stability on an
infinitesimal scale by the property V̇ (x, δx) ≤ −2λV (x, δx) along any nominal trajectory, to derive
a stabilizing controller for any pair of finitely-apart trajectories.

2Note that we drop the distinction between TxX at the boundary versus the interior and simply assume that
TxX = Rn.
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3.4 Incrementally Stabilizing Controllers

Given a desired nominal state-input trajectory pair (x∗(t), u∗(t)), let γ(·, t) : [0, 1] → X denote a
minimizing geodesic connecting x∗(t) and x(t). Consider the following control law:

π(x(t), t) = u∗(t) +

∫
γ(·,t)

δu(γ(s, t), δγ(s, t)) ds

= u∗(t) +

∫ 1

0
K(γ(s, t))δγ(s, t) ds︸ ︷︷ ︸

= k(x∗(t),x(t))

, (11)

where δγ(s, t) := ∂γ(s, t)/∂s. The geometric interpretation of (11) and inequality (9) is illustrated
in Fig. 4.

Figure 4: Schematic of the differential CLF V (x, δx) at the endpoints of the geodesics γ(·, t) and γ(·, t′), at times t and t′ > t
respectively, and the geodesic velocity vector at the position s ∈ (0, 1) along the geodesic. The contours of V are shaped
according to the metric tensor M(x). The differential controller ensures that at all points along the geodesic, V (x, δx) is
shrinking in the direction tangent to the geodesic.

In case the weaker condition (10) is used, δu = δu(x, δx, u), and thus π(x(t), t) will be given by
the solution to the differential equation

π(x(t), t) = u∗(t) +

∫
γ(·,t)

δu(γ(s, t), δγ(s, t), π(γ(s, t), t)) ds, (12)

where δu(·) is designed such that V̇ (x, δx, u) ≤ −2λV (x, δx) for all (x, δx) along the minimizing
geodesic. Theorem 3.2, which is central to the approach, proves that control law (11) ensures
the trajectory x(t) is IES with respect to x∗(t) in the sense of Definition 3.1. The proof differs
significantly from the one presented in (Manchester and Slotine, 2017) as it is later adapted in the
next section for deriving the RCI mapping.

Theorem 3.2 (Incrementally stabilizing controller). Let (x∗, u∗) and (x, u) be state-input trajectory
pairs for the nominal dynamics where π(x(t), t) is given by (11) using a CCM which satisfies
equations3 (6) and (8). Then, x(t) is IES with respect to x∗(t) in the sense of Definition 3.1.

Proof. Notice that at each time instant t, (11) implicitly defines a smooth virtual parameterized
surface of solutions ct : (s, t′) ∈ [0, 1]× (−ε, ε) 7→ X (where ε is an arbitrarily small positive value),

3Alternatively, π(x(t), t) is given by (12) using a CCM satisfying the weaker condition (10).
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to the nominal dynamics as follows:

c′t(s, t
′) :=

∂ct
∂t′

(s, t′) = f(ct(s, t
′)) +B(ct(s, t

′))πt(ct(s, t
′), t′), ct(·, 0) = γ(·, t), (13)

where

πt(ct(s, t
′), t′) = u∗(t+ t′) +

∫ s

0
δu(ct(s, t

′), δct(s, t
′)) ds, (14)

where δct(s, t
′) = ∂ct(s, t

′)/∂s. Consider the time derivative of the Riemann energy E(x∗(t), x(t))
between x∗(t) and x(t). If x(t) /∈ Cut(x∗(t)) (where Cut(x) denotes the cut-locus at x), then the
derivative of E(x∗(t), x(t)) is well-defined at t (i.e., the exponential map is a local diffeomorphism)
and given by (Spivak, 1999, Chp 9):

Ė(x∗(t), x(t)) =

[(
∂V

∂δx
(γ(s, t), δγ(s, t))

)T ∂γ(s, t)

∂t

]∣∣∣∣∣
s=1

s=0

. (15)

This result is true for all t ≥ 0 such that x(t) /∈ Cut(x∗(t)). For completeness, suppose now that
x(t) ∈ Cut(x∗(t)), a Lebesgue measure zero set. In this scenario, the minimizing geodesic γ(·, t)
may not be unique and thus the Riemannian energy E(x∗(t), x(t)) is not smooth. However, it can
be shown that the upper Dini derivative of E(x∗(t), x(t)), defined as:

D+E(x∗(t), x(t)) := lim sup
t′↘t

E(x∗(t′), x(t′))− E(x∗(t), x(t))

t′ − t

exists, and satisfies the inequality4 (Adelstein and Epstein, 2017):

D+E(x∗(t), x(t)) ≤

[(
∂V

∂δx
(γ(s, t), δγ(s, t))

)T ∂γ(s, t)

∂t

]∣∣∣∣∣
s=1

s=0

. (16)

Notice that the parameterized set of solutions in (13) satisfies: (i) ct(·, 0) = γ(·, t), (ii) δct(0, 0) =
δγ(0, t) and δct(1, 0) = δγ(1, t), and (iii) ∂γ(0, t)/∂t = c′t(0, 0) = ẋ∗(t) and ∂γ(1, t)/∂t = c′t(1, 0) =
ẋ(t). Thus, we have the following equality[(

∂V

∂δx
(γ(s, t), δγ(s, t))

)T ∂γ(s, t)

∂t

]∣∣∣∣∣
s=1

s=0

=

[(
∂V

∂δx
(ct(s, 0), δct(s, 0))

)T
c′t(s, 0)

]∣∣∣∣∣
s=1

s=0

=

∫ 1

0

∂

∂s

((
∂V

∂δx
(ct(s, 0), δct(s, 0))

)T
c′t(s, 0)

)
ds.

(17)

Now since γ(·, t) (and thus ct(·, 0)) is a geodesic, it satisfies the Euler-Lagrange equation, which in
coordinates reads as:

∂

∂s

(
∂V

∂δx
(ct(s, 0), δct(s, 0))

)
[i] = 2

∂

∂s

 n∑
j=1

Mij(ct(s, 0)) δct(s, 0)[j]

 = δct(s, 0)T
∂M

∂x[i]
(ct(s, 0))δct(s, 0),

4In actual fact, it is shown in (Adelstein and Epstein, 2017) that the one-sided derivative of E(x∗(t), x(t)) along any
tangent vectors at x∗(t) and x(t) (defined using limt′↘t(·)) exists, from which it follows that the limit lim supt′↘t(·)
exists.
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for all i ∈ {1, . . . , n} and s ∈ (0, 1). By definition

∂c′t(s, t
′)

∂s
= A(ct(s, t

′), π(ct(s, t
′), t))δct(s, t

′) +B(ct(s, t
′))δu(s, t′),

i.e., the variational dynamics. Leveraging this equality with the Euler-Lagrange equation, one
obtains

∂

∂s

((
∂V

∂δx
(ct(s, 0), δct(s, 0))

)T
c′t(s, 0)

)
= δct(s, 0)T

(
∂c′t(s,0)M(s, 0) +M(s, 0)A(s, 0)
∧)

δct(s, 0) + 2δct(s, 0)TM(s, 0)B(s, 0)δu(s, 0)

= V ′(ct(s, 0), δct(s, 0), δu(s, 0)) =:
∂V

∂t′
(ct(s, 0), δct(s, 0), δu(s, 0)),

where the last line follows by definition, and we use the abbreviation (s, 0) for sake of clarity. Now
by deliberate design of δu, we have:

V ′(ct(s, 0), δct(s, 0), δu(s, 0)) ≤ −2λV (ct(s, 0), δct(s, 0)),

for all s ∈ [0, 1]. Combining the inequality above and equations (16) and (17), one obtains the
following chain of inequalities:

D+E(x∗(t), x(t)) ≤
∫ 1

0
V ′(ct(s, 0), δct(s, 0), δu(s, 0)) ds

≤ −2λ

∫ 1

0
V (ct(s, 0), δct(s, 0)) ds

= −2λ

∫ 1

0
V (γ(s, t), δγ(s, t)) ds = −2λE(x∗(t), x(t)).

(18)

It follows that E(x∗(t), x(t)) ≤ E(x∗(0), x(0))e−2λt. Since d2(x∗(t), x(t)) = E(x∗(t), x(t)) and the
metric tensor M(x) is uniformly bounded, one concludes

‖x(t)− x∗(t)‖≤
√
α

α
‖x(0)− x∗(0)‖e−λt.

Thus, x∗(t) is IES with rate λ and overshoot
√
α/α.

The construction of the virtual parameterized set of solutions induced by (13) is needed as one
cannot directly reason about the evolution of the minimizing geodesic. Instead, we leverage the
Euler-Lagrange equation to relate the time derivative of the Riemann energy between the trajec-
tories x∗(·) and x(·) and the Lie derivative of the metric tensor M(x) with respect to the nominal
dynamics. Thus, the Riemannian energy between x∗(t) and x(t) may be viewed as an incremental
CLF, thereby defining the structure of the feedback controller as any piecewise continuous (in time)
function that satisfies inequality (18).

Remark 3.3. While the interpretation of the energy as an incremental CLF is an observation
also made in (Manchester and Slotine, 2017), by showing equivalence between the right hand sides
of (16), (17), and (18) and using this to establish IES for x∗(t), we are able to: (i) derive the
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robustness guarantees for controller (11) under significantly weaker conditions than those necessary
in (Manchester and Slotine, 2017); we explore this distinction in greater detail in Section 3.5, and
(ii) derive a significantly simpler form of the controller than the integral construction in eq. (11);
see Section 5.1.

Remark 3.4. It can be shown that conditions (6) and (8) are invariant under state diffeomorphism
and metric pushforward (Manchester and Slotine, 2017). This invariance allows one to relax the
topological assumptions on the state space X . In particular, one may take X to be any embedded
smooth n-manifold in Rk where k ≥ n, as long as the contraction conditions hold on one (and thus,
any) choice of local coordinates in Rn. This highlights the coordinate-free (i.e., intrinsic) nature of
CCM-based stabilization.

3.5 Contraction-Based Tubes

We now deduce the disturbance rejection properties of the feedback controller given by (11) and
derive the resulting RCI mapping for the closed-loop system stabilized with this controller. Hence-
forth, (x∗(t), u∗(t)) is assumed to satisfy the unperturbed dynamics, while x(t) denotes the actual
state trajectory (i.e., with disturbances) using the control law u∗(t) + k(x∗, x), where k(x∗, x) is a
CCM-derived tracking controller.

Theorem 3.5 (Disturbance Rejection). Assume there exists a CCM M(x) satisfying conditions
(6) and (8) that is uniformly bounded, i.e., αIn � M(x) � αIn, for all x ∈ X where α > 0.
Factorize M(x) as Θ(x)TΘ(x) and define

αw := sup
x∈X

σ(Θ(x)Bw(x)).

Then, the geodesic energy between trajectories x(t) and x∗(t), i.e., E(x∗(t), x(t)), satisfies the dif-
ferential inequality:

D+E(x∗(t), x(t)) ≤ −2λE(x∗(t), x(t)) + 2 d (x∗(t), x(t)) αw ‖w(t)‖. (19)

Proof. Inequality (16) implies:

D+E(x∗(t), x(t)) ≤ 2δTγ (1, t)M(γ(1, t))

[
f(x(t)) +B(x(t))u(x(t))

]
− 2δTγ (0, t)M(γ(0, t))

[
f(x∗(t)) +B(x∗(t))u∗(t)

]
+ 2δTγ (1, t)M(γ(1, t))Bw(x(t))w(t), (20)

where u(x(t)) is given by (11). By the IES property of the nominal system, i.e., inequality (18),
the expression above can be bounded as:

D+E(x∗(t), x(t)) ≤ −2λE(x∗(t), x(t)) + 2δTγ (1, t)M(γ(1, t))Bw(x(t))w(t).

Defining δz(s, t) := Θ(γ(s, t))δγ(s, t), we obtain

D+E(x∗(t), x(t)) ≤ −2λE(x∗(t), x(t)) + 2δTz (1, t)Θ(γ(1, t))Bw(x(t))w(t).
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Recall that the velocity field of a geodesic is parallel along the geodesic (Spivak, 1999) and thus
V (γ(s, t), δγ(s, t)) = E(x∗(t), x(t)) for all s ∈ [0, 1]. This implies that

√
V (γ(s, t), δγ(s, t)) =

‖δz(s, t)‖= d(x∗(t), x(t)). Using the Cauchy-Schwarz inequality one obtains the stated differen-
tial inequality.

Remark 3.6. Notice that the differential inequality derived in (19) may be integrated in time to
yield a δ-ISS statement similar to Definition 2.3 in (Zamani et al., 2013). Specifically, in (Zamani
et al., 2013), the authors prove δ-ISS by leveraging a decrescent condition similar to inequality (9)
with respect to tangent vectors δw defined on the tangent space of the disturbance manifold W,
yielding a differential ISS condition. The key difference here then is by leveraging the separability
of the disturbance term (i.e., inequality (20)), and by using a tracking controller that enforces
contraction along the minimizing geodesic at each time (see Fig. 4), we do not need to impose similar
differential ISS like conditions on V (x, δx). We further note that a similar bound is also proved
in (Manchester and Slotine, 2017) but under stronger conditions, which resemble the differential
ISS conditions in (Zamani et al., 2013). Indeed, the relaxation of such conditions for Theorem 3.5
is the primary motivation for our alternative proof strategy for Theorem 3.2.

Notice that the equality in (19) yields the well known Bernoulli differential equation. Then, since
‖w(t)‖≤ w̄ for all t, if d(x∗(0), x(0)) ∈ (0, αww̄/λ], it follows by the Comparison Lemma (Khalil,
2002), that the geodesic distance is upper bounded by αww̄/λ, for all time t ≥ 0. Thus, the RCI
mapping may be expressed as:

Ω(x∗) = {x ∈ X : d(x∗, x) ≤ αww̄/λ := d̄}, (21)

Notice that the mapping above is given using the Riemann distance which may depend upon a
spatially varying metric. In order to efficiently plan a nominal trajectory whose associated RCI
tube does not collide with obstacles, we would prefer a mapping that is independent of x∗. To this
end, consider the following technical lemma.

Lemma 3.7. (Geodesic Boundedness) Consider points x∗ ∈ X̄ , x ∈ X s.t. x ∈ Ω(x∗) where Ω(x∗)
is given in (21). Suppose the CCM M(x) satisfies M(x) � M for all x ∈ X , where M � αIn .
Define the ellipsoid

Ω̃(x∗) := {x ∈ X : ‖x− x∗‖2M≤ d̄2}, (22)

and suppose Ω̃(x∗) ⊂ X . Then, the minimizing geodesic γ is contained entirely within Ω̃(x∗), i.e.,
γ(s) ∈ Ω̃(x∗) for all s ∈ [0, 1], and thus Ω(x∗) ⊆ Ω̃(x∗).

Proof. Consider the following chain of inequalities:

E(x∗, x) =

∫ 1

0
δγ(s)TM(γ(s))δγ(s)ds

≥
∫ 1

0
δγ(s)TMδγ(s)ds

≥ ‖x− x∗‖2M ,

where the first inequality follows from the Lemma assumptions, and the second inequality follows
from the fact that M ∈ S>0

n defines a flat Riemannian metric under which geodesics are straight
lines. Thus, we obtain the implication:

E(x∗, x) ≤ d̄ 2 ⇒ ‖x− x∗‖2M≤ d̄ 2.
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To complete the proof we note that since γ is a minimizing geodesic, it follows that d(x∗, γ(s)) =
sd(x∗, x) for all s ∈ [0, 1].

Equation (22) gives an ellipsoidal outer approximation of the RCI tube as defined in (21), and
is thus independent of x∗ (see Figure 5 for an illustration). This is essential for two reasons: (i) it
drastically simplifies collision checking with respect to obstacles by avoiding geodesic computations,
and (ii) the tightened state constraint set X̄ in problem MPC must be taken to be X 	 Ω̃ to ensure
that the minimizing geodesic lies within X , i.e., where the CCM conditions hold.

Figure 5: Illustration of the sets Ω(x∗) and Ω̃(x∗) along a trajectory x∗(t). Due to the spatially varying M(x), the set Ω(x∗)
(shaded grey) continuously changes shape along the trajectory, making rapid collision checking difficult. The outer ellipsoidal
approximation (shaded blue) Ω̃(x∗) is a fixed-size, easier to use collision margin.

So far we have shown how the existence of a feasible CCM M(x) allows us to construct exponen-
tially stabilizing controllers with bounded-input-bounded-output disturbance rejection guarantees.
In the next section, we demonstrate how one can leverage convex optimization techniques, specifi-
cally SOS programming, to compute offline, an optimized CCM that minimizes the size of the RCI
tube and the outer ellipsoidal approximation.

4 Offline Synthesis of Optimized Contraction-Based Tubes

In this section we show how to compute CCMs offline that minimize a certain measure of the size
of the RCI set which in turn minimizes the deviation of the perturbed trajectory from the nominal,
thereby reducing the amount by which we must tighten the set X . Specifically, we demonstrate
how to transform the CCM conditions (6), (8), and (10) into convex constraints, and formulate
the synthesis problem as a quasiconvex optimization problem with appropriate objective functions.
Additionally, we illustrate the resulting methodology with a representative example. We begin first
with a brief review of SOS programming.

4.1 Sum-of-Squares Programming

Our computational approach is rooted in SOS programming, for which we provide a brief review
here. For a more detailed review of SOS programming and its applications, please refer to (Parrilo,
2000; Ahmadi and Majumdar, 2016; Majumdar and Tedrake, 2017). We begin by discussing semi-
definite programs (SDPs), a class of convex optimizations problems formulated over the space of
symmetric positive semi-definite matrices. A symmetric matrix X ∈ S≥0

n is positive semi-definite
(psd) if x>Xx ≥ 0 for all x ∈ Rn, x 6= 0, and is denoted as X � 0. An SDP in standard form is
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written as:

minimize
X∈S≥0

n

Tr(C>X)

subject to A>i X = bi, i = 1, 2, ...,m,

X � 0

(23)

where C and {Ai}i are elements of Sn, and “Tr” denotes the trace operator. SOS programs provide
a means of certifying nonnegativity of polynomials either globally or over basic semialgebraic sets.
A basic semialgebraic set S is a subset of the Euclidean space characterized by a finite set of
polynomial inequalities and equalities, that is,

S := {x ∈ Rn : φi(x) ≥ 0, ψj(x) = 0}, (24)

where {φi}, {ψj} are multivariate polynomials in x. The simplest task within this class of problems
is verifying the nonnegativity of a given polynomial p over S, already NP-hard (Parrilo, 2000).
SOS programming provides a convex relaxation approach to accomplish this task. Specifically, a
polynomial p is termed SOS if it can be written in the form

∑
k z

2
k for some other polynomials zk.

While such a decomposition is not necessary, it is sufficient to guarantee (global) nonnegativity of
p. Moreover, if one can find a set of SOS polynomials Li and ordinary polynomials qj such that

p−
∑
i

Liφi +
∑
j

qjψj is SOS, (25)

then one obtains a certificate of nonnegativity of p(x) over S. Indeed, in the above equation when
φi(x) ≥ 0 and ψj(x) = 0, i.e., x ∈ S, one has that p(x) ≥

∑
i Li(x)φi(x) ≥ 0, as required. Such a

certificate is the extension of the generalized S-procedure (Iwasaki and Hara, 2005) to the setting
of real-valued polynomials (Parrilo, 2000), and additionally constitutes a necessary condition for a
subclass of semialgebraic sets (Putinar, 1993). More complex necessary and sufficient conditions
for verifying nonnegativity over any semialgebraic set using SOS decompositions also exist, and
leverage the Stengle Positivstellensatz involving products of φi (Parrilo, 2000). For our purposes,
however, the certificate of nonnegativity as per equation (25) is sufficient.

The computational advantage of SOS programming stems from its intrinsic link to SDPs. Specif-
ically, a polynomial p of degree 2d is SOS if and only if p(x) = z(x)TQz(x), where Q � 0 and z
is a vector of monomials up to order d. Thus, certifying that a polynomial is SOS reduces to the
task of finding a psd matrix Q subject to a finite set of linear equalities, thus taking the form
in (23). Certificates of the form in (25) will form the building block for the computation of CCMs,
as discussed next.

4.2 Optimized CCMs

As shown in (Manchester and Slotine, 2017), condition (8) can be written as a pointwise Linear-
Matrix-Inequality (LMI) by introducing the dual metric W (x) := M(x)−1 and the change of
variables ηx := M(x)δx. Specifically, define a matrix B⊥(x) whose columns form a basis for the
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null space of B(x)T (i.e., B(x)TB⊥(x) = 0). Then, conditions (6) and (8) are equivalent to:

∂bjW (x)− ∂bj(x)

∂x
W (x)

∧

= 0, j = 1, . . . ,m (26)

BT
⊥

(
−∂fW (x) +

∂f(x)

∂x
W (x)

∧

+ 2λW (x)

)
︸ ︷︷ ︸

:=G(x)

B⊥ � 0. (27)

The equivalent reformulation of the weaker condition (10) in terms of the dual metric is given by
LMI (27) and:

BT
⊥

(
∂bjW (x)− ∂bj(x)

∂x
W (x)

∧)
B⊥ = 0, j = 1, . . . ,m. (28)

In this section we replace the CCM feasibility problem, i.e., conditions (26) and (27), with a
quasiconvex optimization problem to minimize the size of the outer approximation for the RCI
mapping. A trade-off between the overshoot constant

√
α/α and contraction rate λ was briefly

discussed in (Manchester and Slotine, 2014). Here, we further explore this aspect by formulating
a global optimization program to characterize such a trade-off and minimize conservatism. Ideally,
one would directly like to minimize the bound in (22) subject to conditions (26) and (27). However,
this problem is non-convex and infinite-dimensional.

First, to address the infinite-dimensionality of the problem, we consider a finite-dimensional
approximation whereby the dual metric W (x) is parameterized as a polynomial matrix and the
LMIs are written as SOS constraints, enforced over the semi-algebraic set X using the relaxations
introduced in the previous section. Second, we propose an objective function that can be solved
using line-search and quasiconvex optimization. Formally, we define the offline synthesis problem
OPT

ĈCM
:

Optimization Problem OPT
ĈCM

— Solve

min
λ∈R>0

JCCM (λ) := min
W∈C∞(X ,S>0

n )

W∈S>0
n , β,β∈R>0

1

λ2

(
β

β

)

subject to eq. (26), eq. (27) (29)

βIn �W (x) �W � βIn , (30)

where the conditions hold uniformly for all x ∈ X .

The cost function above is an upper-bound on the worst-case (normalized) Euclidean distance

within the ellipsoid defined in (22) since from (30), we have: α = 1/β, α = 1/β, and M = W
−1

.
Thus,

sup
x∈Ω̃(x∗)

‖x− x∗‖2

w̄2
=

α2
w

λ2α
≤ 1

λ2

(
α

α

)
=

1

λ2

(
β

β

)
.

Recognizing that for a fixed contraction rate λ, the CCM conditions define a convex feasibility
region for W (x), and that minimization of the condition number of a positive definite matrix over
a closed convex set (i.e., the inner minimization in problem OPT

ĈCM
) is quasiconvex (Lu and
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Pong, 2011), problem OPT
ĈCM

can then be solved using line search on λ and bisection search
over the condition number of W (x) (i.e., a sequence of feasibility problems). In the implementation
of the bisection search we further minimized the expression Tr(WsW ) where Ws ∈ S>0

n is a diagonal
scaling matrix. This is motivated by the following observation:

Remark 4.1. One may alternatively choose the following objective for problem OPT
ĈCM

:

1

λ2

(
Tr(WsW )

β

)
,

where Ws ∈ S>0
n is a diagonal scaling matrix. This cost function is motivated by the observation:(

d

w

)2

=
α2
w

λ2
≤ α

λ2
=

1

βλ2
,

and that the projection of the ellipsoid (22) along the ith state is the interval:
[
−d
√
W ii , d

√
W ii

]
.

Thus, this cost function attempts to minimize the size of this interval along each state dimension
(relatively weighted by the matrix Ws). Since Tr(·) is convex and β = λmin(W ) is concave, for a
fixed λ, we obtain another quasiconvex objective for the inner minimization in problem OPT

ĈCM
,

which can be solved using bisection search.

4.3 Illustrative Example: Planar Quadrotor

Consider the 6-state planar quadrotor system depicted in Figure 6. The state vector is defined as

Figure 6: Definition of planar quadrotor state variables: l denotes the thrust moment arm (symmetric), and u1 and u2 denote
the right and left thrust forces respectively.

(px, pz, φ, ṗx, ṗz, φ̇)T . For synthesizing the dual CCM however, it will be helpful to consider the
alternative state-space representation: (px, pz, φ, vx, vz, φ̇)T where (vx, vz) describe the velocity in
the body frame of the vehicle with vx representing the slip velocity (lateral) and vz representing
the velocity along the thrust axis. The dynamics in control affine form for this state representation
are given as:

ẋ =



ṗx
ṗz
φ̇
v̇x
v̇z
φ̈

 =



vx cos(φ)− vz sin(φ)
vx sin(φ) + vz cos(φ)

φ̇

vzφ̇− g sin(φ)

−vxφ̇− g cos(φ)
0

+



0 0
0 0
0 0
0 0

1/m 1/m
l/J −l/J


[
u[1]
u[2]

]
, (31)
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where m and J denote the mass and moment of inertia about the out-of-plane axis. The inertial
properties were taken from (Steinhardt and Tedrake, 2012), and were m = 0.486 kg, J = 0.00383
Kg m2, and l = 0.25 m. By translation invariance of the dynamics, we expect that W will not be
a function of (px, pz). Furthermore, by leveraging this state representation, condition (26) requires
that W is not a function of vz or φ̇. Thus, for a 6-state system, the CCM must necessarily only be
a function of (vx, φ).

Let us impose the state-space bounds: (vx, vz) ∈ [−2, 2]× [−1, 1] m/s and (φ, φ̇) ∈ [−45o, 45o]×
[−60, 60]o/s, which may be concatenated together as the vector constraint h(x) ≥ 0. A simple
choice for B⊥ is the matrix [

I4

02×2

]
.

Parameterize W (x) as a polynomial matrix in (vx, φ) with up to degree 4 monomials. With condi-
tion (26) dealt with, the remaining constraints in problem OPT

ĈCM
may be written as:

β ≥ 1 (32)

βI6 −W � 0 (33)

h(x) ≥ 0⇒ W −W (x) � 0 (34)

h(x) ≥ 0⇒ W (x)− βI6 � 0 (35)

h(x) ≥ 0⇒ −BT
⊥G(x)B⊥ � εI4. (36)

where ε is a small positive number and the constraint β ≥ 1 is imposed to ensure uniform def-
initeness. To enforce the semi-definite constraints of the type h(x) ≥ 0 ⇒ F (x) � 0 where
F : X → RnF×nF is some matrix-valued function, we leverage the quadratic form of the matrices
by introducing auxiliary indeterminates y of dimension nF so that the constraint may be equiva-
lently written as h(x) ≥ 0⇒ yTF (x)y ≥ 0, for all y. Leveraging certificates of the form in (25), we
pose the constraints:

yTFy −
∑
i

Lihi is SOS

{Li} is SOS,

where {Li} is a collection of SOS functions in (x, y). To keep the scale of the problem under
control, one may wish to enforce simplifying structural properties for the multipliers L(x, y) such
as only retaining monomials quadratic in y (to reflect that yTF (x)y only contains quadratic terms
in the auxiliary indeterminate y). The trigonometric terms in G(x) from the dynamics function
were approximated using Chebyshev polynomial expansions up to third order.

Having cast the optimization as a SOS program, we may now proceed with solving problem
OPT

ĈCM
. We swept through a range of values for λ, using the Spotless polynomial optimization

toolbox (Tobenkin et al., 2013) and MOSEK SDP solver (ApS, 2017) to solve the SOS programs,
each of which took about 40 seconds. Figure 7 plots the optimal curve for JCCM as a function
of λ. The optimal contraction rate was determined to be λ = 0.83 and the corresponding dual
metric W (x) contained 15 unique monomials in (φ, vx). Assuming a cross-wind acting along either
direction of the inertial px axis with effective acceleration up to 0.1 m/s2, we used gridding to
determine d = 0.038. The resulting projections of the ellipsoid (22) are shown below in Figure 8.
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Figure 7: Problem OPT
ĈCM

objective as a function of λ .

(a) Projection of ellipsoidal tube onto
the position states px-pz .

(b) Projection of ellipsoidal tube onto
the velocity states vx-vz .

(c) Projection of ellipsoidal tube onto
the rotational states φ-φ̇.

Figure 8: Projections of the ellipsoidal tube upon various state-dimensions.

Notice that the projection of the outer ellipsoidal approximation of the RCI set onto the px-pz
plane has a major axis equal to 74 cm, and a minor axis equal to 41 cm, which compare quite
favorably with the quadrotor wingspan, equal to 50 cm. That is, the size of the RCI tube is
rather small and thus the nominal motion planner for the quadrotor is not overly constrained by
the tightening of the state constraints. We next discuss an example for which the CCM synthesis
problem can be drastically simplified using non-traditional state representations.

4.4 Case Study: Control of Mechanical Lagrangian Systems

In this section we demonstrate how to synthesize CCMs for fully-actuated Lagrangian systems
by borrowing concepts from sliding mode control. The analysis presented here demonstrates an
alternative method of designing CCMs via elegant state-space descriptions. Indeed the use of con-
traction theory for fully actuated systems is addressed quite recently both in (Manchester et al.,
2015) and (Reyes-Báez et al., 2017). In (Manchester et al., 2015) the authors demonstrate that a
constant CCM can always be constructed for fully actuated systems using the state-space descrip-
tion x = (q, q̇)T where q ∈ Rn is the vector of generalized coordinates, thereby reducing the dual
metric search problem to a finite-dimensional SDP. In (Reyes-Báez et al., 2017), the authors instead
leverage ideas from sliding control (and feedback linearization), and derive a suitable contraction
metric for an alternate state-space description and a given feedback controller. In the following, we
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also borrow ideas from sliding control but additionally provide a synthesis procedure for optimizing
the controller’s disturbance rejection properties and consequently, obtain tighter bounds than those
resulting from the procedure in (Manchester et al., 2015), without using feedback linearization as
in (Reyes-Báez et al., 2017). To do this, we first introduce the notion of partial contraction (Wang
and Slotine, 2005).

4.4.1 Partial Contraction using Virtual Systems

Consider the autonomous system ẋ(t) = f(x(t)) and let x(t;x0) denote the solution at time t,
starting from x0 at t = 0. Define the following system:

ẏ(t) = f̂(y(t), x(t;x0)), y(0) = y0, (37)

which satisfies the property:
f̂(x, x) = f(x),

and with solutions denoted as y(t; y0). Thus setting y0 = x0 recovers the trajectory x(t;x0). Then,
if there exists a uniformly (in x) stable differential Lyapunov function V (y, δy, t) for the above
system, with associated variational dynamics

δ̇y(t) =
∂f̂

∂y
(y, x)δy,

then y(t; y0) is contracting towards y(t;x0), i.e., x(t;x0). The crux of the argument is based on
defining the time-varying system:

ẏ(t) = f̃x0(t, y(t)) := f̂(y(t), x(t;x0)), y(0) = y0,

and observing that the contracting properties of f̂(·, ·) imply that solutions of the above time-
varying system with arbitrary initial conditions y0 and y′0 converge towards each other. Setting
y′0 = x0 proves the desired claim. The system (37) is defined as the “virtual” system for ẋ = f(x).

4.4.2 Fully Actuated Systems

Consider the fully actuated Lagrangian dynamical system:

H(q)q̈ + C(q, q̇)q̇ = u,

where q ∈ Rn is the vector of generalized coordinates, H(q) ∈ S>0
n is the inertia matrix, C(q, q̇)

contains the damping and Coriolis terms, and without loss of generality, we neglect the potential
term. Let (q∗(t), q̇∗(t))T represent the desired trajectory in generalized coordinates. Instead of
using the state representation x = (q, q̇)T , consider the change of variables:

x(t) :=

[
q̃(t)
σ(t)

]
:=

[
q(t)− q∗(t)
p(t)− pr(t)

]
,

where p(t) := H(q(t))q̇(t) is the generalized momentum, and pr(t) := H(q(t))q̇∗(t)−H(q(t))Λq̃(t)
where Λ ∈ S>0

n is a constant, positive definite, diagonal (for simplicity) matrix. Then, the dynamics
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in this state-representation may be written as:

ẋ =

[
H−1(q)(σ + pr)− q̇∗

Ḣ(q)q̇ − C(q, q̇)q̇ + u− ṗr

]
=

[
−Λq̃ +H−1(q)σ(

ḢH−1 +HΛH−1 − CH−1
)
σ +

(
−HΛ2 + CΛ

)
q̃ − (Cq̇∗ +Hq̈∗)

]
+

[
On
In

]
u,

(38)

where q̈∗ is a function of (q∗, q̇∗, u∗). One may interpret σ as a pseudo-sliding variable since
σ = 0 implies the stable first order dynamics for q̃. Notice that the state/control trajectory
pair (x∗(t), u∗(t)) = (0, u∗(t)) is a feasible solution for the dynamics above.

Recall that C = C(q(t), q̇(t)) = C(q∗(t) + q̃(t), q̇∗(t) + ˙̃q(t)) =: Ct(q̃, ˙̃q) where the subscript (·)t
is used to denote the dependence upon the fixed signal q∗(t). Similarly, write H = H(q) = Ht(q̃).
Using the expression above for ˙̃q = −Λq̃ + H−1

t (q̃)σ, we further delineate Ct(q̃, ˙̃q) as Ct(q̃, σ).
Consider, then, the following virtual system for the above dynamics:

ẏ =

[
−Λy1 +H−1

t y2(
−HtΛ

2 + CtΛ
)
y1 +

(
ḢtH

−1
t +HtΛH

−1
t − CtH

−1
t

)
y2 − (Ct(y1, y2)q̇∗ +Ht(y1)q̈∗)

]
+

[
On
In

]
u,

where we omit the explicit dependences (q̃) and (q̃, σ) for clarity. Clearly, setting y(0) = (q̃(0), σ(0))
and u = u(t) recovers the true state trajectory x(t) while setting y(0) = (0, 0) and u(t) = u∗(t)
recovers the desired nominal state trajectory x∗(t) = (0, 0) for all t ≥ 0.

We now design a constant CCM for the virtual system. The result will also yield a stabilizing
controller in the virtual space where as highlighted in the paragraph above, the endpoints of the
geodesic in virtual space coincide with the nominal trajectory x∗(t) = (0, 0) and actual trajectory
x(t). First, the variational dynamics for the virtual system above are given by:

δ̇y =

[
−Λ H−1

t

∗ ∗

]
δy +

[
On
In

]
δu,

where the (∗) indicate quantities that will become irrelevant in the CCM synthesis problem. Taking

B⊥ =

[
In
On

]
,

and assuming a constant dual metric W with the following block structure:

W =

[
W⊥ Wu

∗ W‖

]
,

where W⊥,W‖ ∈ S>0
n and Wu ∈ Rn×n, the stability condition (27) requires that:

−ΛW⊥ −W⊥Λ +H−1
t W T

u +WuH
−1
t � −2λW⊥.

Condition (26) simply requires that W is not a function of y2, which is automatically satisfied
given W is parameterized as a constant matrix. As the CCM should be independent of the desired
nominal trajectory, we set Wu = On, yielding, for given λ,Λ, the following LMI:

−ΛW⊥ −W⊥Λ � −2λW⊥.
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This is an insightful result since the inequality above simply requires that the bandwidth of the
pseudo-sliding variable σ, encapsulated by Λ, is faster than the contraction rate λ. With respect
to (Manchester et al., 2015), by avoiding the construction of the dual metric in (q, q̇) space, the

resulting disturbance bound (for input disturbances) will depend upon σ
(
W−1
‖

)
instead of an

expression that includes bounding the singular values of H−1(q), which can be very poor indeed5.
As compared with (Reyes-Báez et al., 2017), we do not use feedback linearization to cancel out the
nonlinearities for σ̇ in (38), nor do we assume a fixed feedback controller and associated resulting
contraction metric. In contrast, the proposed method explicitly allows a practitioner to balance
the robustness properties of the controller and the bandwidth tradeoff between Λ and λ.

Let us examine this design tradeoff. Parameterize W⊥ = w⊥In and W‖ = w‖In where w⊥, w‖ ∈
R>0. Then taking Bw = B, we have that

d̄ =
w

λ
√
w‖
,

where, as before, w bounds the Euclidean norm of the disturbance inputs. Projecting the bound
into the virtual space (consequently bounding the state x), we obtain:

|q̃[i]| ≤ w

λ

√
w⊥
w‖

, and |σ[i]|≤ w

λ
∀i = 1, . . . , n. (39)

Re-writing σ as H(q)
(

˙̃q + Λq̃
)

and leveraging the bounds above on q̃ and σ, one may further

deduce bounds on ˙̃q, which can be shown to be proportional to σ(Λ)‖q̃‖+σ̄(H−1(q))‖σ‖. While (39)
highlights the design insight into reducing the error bounds on q̃ and σ, it is apparent that a more
aggressive Λ will result in weaker bounds. A strong case can be made, however, for the importance
of bounding the error in generalized momentum as opposed to generalized rates.

Remark 4.2. One may further customize the dual metric for this class of systems by choosing a
set of positive scalars {w⊥[i]}ni=1 corresponding to the diagonal matrix W⊥, such that the bound on
the ith generalized coordinate qi may be expressed as:

|q̃[i]|≤ w

λ

√
w⊥[i]

w‖
.

The simplicity of such a customization and design freedom highlights the benefits of the virtual CCM
method outlined in this case study.

5 Online Computation of CCM Controller

The solution to problem OPT
ĈCM

provides an optimized CCM and an RCI tube, computed offline.
In this section we describe the online component of the robust planning framework, namely, the
implementation of the CCM-based tracking controller (Section 5.1). In addition, we also derive a
bound on the tracking control effort allowing us to compute the tightened control constraint set Ū
(Section 5.3).

5This is easily seen since for input disturbances, the matrix Bw = B =
[
On , H

−1(q)
]T

and thus αw will depend
upon σ(H−1(q)).
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5.1 Tracking Controller

Equation (11) provides an example of how to construct a stabilizing feedback controller that guar-
antees the associated stability and robustness properties. That is, it establishes the existence of
an exponentially stabilizing feedback controller with respect to the computed CCM. However, this
feedback controller is not unique. Given the existence of this controller, we construct an alternative
feedback controller that still satisfies the desired stability properties with respect to the computed
CCM, but additionally, also minimizes the net control effort in order to curtail the suboptimality
introduced by the “nominal plus tracking feedback” parameterization in (2). Given a CCM com-
puted offline by solving problem OPT

ĈCM
, the feedback controller is computed as a solution to

the following analytical QP:

Optimization Problem OPT online — At time t ≥ 0, given a desired/current state pair
(x∗(t), x(t)) and a minimizing geodesic γ(·, t) connecting these two states (i.e., γ(0, t) = x∗(t)
and γ(1, t) = x(t)), solve

k∗(x∗(t), x(t)) = argmin
k∈Rm

‖k‖2

subject to 2δTγ (1, t)M(x(t))ˆ̇x(t)− 2δTγ (0, t)M(x∗(t))ẋ∗(t)

≤ −2λE(x∗(t), x(t)), (40)

where ˆ̇x(t) = f(x(t)) +B(x(t))(u∗(t) +k) represents the nominal dynamics evaluated at x(t) and
ẋ∗(t) = f(x∗(t)) +B(x∗(t))u∗(t).

A few comments are in order. First, the existence of the dual metric W (x) ensures that there
exists a differential feedback controller such that inequality (9) holds for all (x, δx) along the mini-
mizing geodesic between x∗ and x. Then, by the equivalence shown in (17), problem OPT online is
always feasible. Second, the linear inequality (40) is essentially a relaxation of (9), in that it only
enforces contraction tangent to the given geodesic. In contrast, the differential controller proposed
in (Manchester and Slotine, 2017), obtained by solving a feasibility problem, must ensure that the
system contracts in all directions with at least rate λ (implemented online by integrating the con-
troller along the minimizing geodesic as in (11)). Such a relaxation still guarantees IES as only the
flow along the geodesic affects the convergence of x(t) to x∗(t). On the other hand, one can often
dramatically decrease control effort as compared with computing the controller using (11). Third,
problem OPT online is a QP subject to a single linear inequality and thus may be solved analytically
(given the geodesic γ(·, t)). Indeed, the QP above strongly resembles the min-norm formulation of
Sontag’s generalized formula for CLF-based stabilization (Primbs et al., 1999), thereby underscor-
ing the interpretation of the Riemann energy of the minimizing geodesic as an incremental CLF.
We now address online computation of the geodesic.

5.2 Computing Geodesics Online

Computation of the geodesic between two points p, q ∈ X can be framed as the following functional
optimization problem:

Optimization Problem OPT γ — At time t ≥ 0, given desired state x∗(t) and current state
x(t), solve

min
c∈Γ(x∗(t),x(t))

E(c) (41)
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Following the approach in (Leung and Manchester, 2017), such a problem can be efficiently solved
by applying the Chebyshev global pseudospectral method, i.e., by discretizing the interval [0, 1]
using the Chebyshev-Gauss-Lobatto nodes and using Chebyshev interpolating polynomials up to
degree N to approximate the solution. The integral in (41) is approximated using the Clenshaw-
Curtis quadrature scheme with K > N nodes. As in (Leung and Manchester, 2017), we choose
K > N since the integral involves the inverse of the dual metric W . Thus, the integrand in E(c) is
not guaranteed to be polynomial.

Given the solution to the geodesic problem OPT γ , parameterized by a set of values {γ(sk)}Kk=0

and {δγ(sk)}Kk=0, sk ∈ [0, 1], problem OPT online may now be solved as an analytical QP using
δγ(s0) and δγ(sK).

5.3 Bounding Feedback Control Effort

There are two ways to compute bounds on the CCM feedback controller. For systems that satisfy
the stronger Killing field condition given by (26), Theorem 5.2 provides a bound on the magnitude of
the optimized tracking controller computed using problem OPT online. We first require the following
technical lemma:

Lemma 5.1 (Norm Bound for Tracking Controller). Let S be a symmetric matrix in Rn×n and
Y a full row-rank matrix in Rm×n. Construct matrices Y ∈ Rn×m and Y ⊥ ∈ Rn×(n−m) such that
the columns of Y form an orthonormal basis for the column space of Y T , i.e., Col(Y T ), and the
columns of Y ⊥ form an orthonormal basis for the nullspace of Y , i.e., N (Y ). Suppose, then, that
the following conditions hold:

ηTz Sηz ≤ 0 ∀ηz ∈ N (Y ) ⊂ Rn (42)

κ ≤ 2δ̄u
θ
, where κ =


0 if λ̄(SY ) ≤ 0√√√√( λ̄(SY )

σ>0(Y Y )

)2

+ 4

(
σ̄(Y

T
⊥SY )

σ>0(Y Y )

)2

else
, (43)

for some constants δu ∈ R≥0 and θ ∈ R>0, where σ>0(·) denotes the smallest non-zero singular

value, and SY := Y
T
SY . Then,

θ ηTz Sηz ≤ 2δu‖Y ηz‖ ∀ηz s.t. ‖ηz‖≤ 1. (44)

Proof. See Appendix A.

We now leverage Lemma 5.1 to derive the bound on the magnitude of optimized tracking controller.

Theorem 5.2 (Tracking Control Effort). Define

F (x) := −∂fW (x) +
∂f(x)

∂x
W (x)

∧

+ 2λW (x).

Assume the dual CCM W (x) satisfies conditions (26) and (27). Factorize W (x) as L(x)TL(x)
and define S(x) = L−TFL−1 and Y (x) = BTL−1. Let δ̄u be a positive real number such that the
matrices S(x) and Y (x) satisfy property (43) for all x ∈ X with θ = d̄ = αww̄/λ, where Y and Y ⊥
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are defined as stated in Lemma 5.1. Then, the optimized feedback controller k∗(x∗, x) satisfies the
bound:

‖k∗(x∗, x)‖≤ δu, (45)

for all x∗, x ∈ X such that x ∈ Ω(x∗).

Proof. As a consequence of CCM condition (27), the matrices S(x) and Y (x) satisfy property (42)
for all x ∈ X . Then, in conjunction with property (43), it follows from the conclusions of Lemma 5.1
that

d̄ 2ηTz
(
L−TFL−1

)
ηz ≤ 2d̄ δu‖BTL−1ηz‖,

∀ηz s.t. ‖ηz‖ ≤ 1,
(46)

for all x ∈ X . Let ηx := d̄L−1ηz. Then, the set {ηz ∈ Rn : ‖ηz‖≤ 1} is equivalent to the set
{ηx ∈ Rn : ‖ηx‖2W (x)≤ d̄

2} and inequality (46) may be written as

a(x, ηx) ≤ δu‖r(x, ηx)‖, ∀ηx s.t. ηTxW (x)ηx ≤ d̄ 2, (47)

for all x ∈ X , where

a(x, ηx) := ηTx F (x)ηx,

r(x, ηx) := 2B(x)T ηx.

Notice that statement (47) along with the CCM condition (27) is equivalent to the feasibility of the
following CLF-like condition (with respect to bounded controls) stated in (Lin and Sontag, 1991):

inf
‖δu‖≤δu

(
a(x, ηx) + r(x, ηx)T δu

)
≤ 0, (48)

for all ηx satisfying ‖ηx‖2W (x)≤ d̄2. Then, by Theorem 1 in (Lin and Sontag, 1991) there exists

an almost-smooth function δu(x, ηx), bounded in Euclidean norm by δu, such that condition (48)
(equivalently the dual form of inequality (9)) is satisfied for all (x, ηx) along the minimizing geodesic
connecting any x∗ ∈ X̄ and x ∈ Ω(x∗). For completeness, this function is given below:

δu(x, ηx) =


0 if r = 0,

−
a+

√
a2 + δ

4
u‖r‖4

δu‖r‖2
(

1 +

√
1 + δ

2
u‖r‖2

)r else,

where we have dropped the parenthesis (x, ηx) for clarity. For each x ∈ X , the function above is
continuous for all ηx (requisite for integrability) and smooth for ηx 6= 0.

By the equivalence shown through (17), the tracking controller given by integrating the function
above along the minimizing geodesic connecting x∗ and x is indeed a feasible solution to problem
OPT online that satisfies the bound claimed in (45), completing the proof.

A few comments regarding the computation of the bound δu are in order. Note that from
Theorem 5.2, one needs to show that inequality (47) holds for all x ∈ X . Rewriting this inequality
as (46), one may deduce a simpler, yet loose approximation of δu as:

δu =
d̄

2
sup
x∈X

(
λ̄(L−TFL−1)

σ>0(BTL−1)

)
, (49)
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where we omit the explicit dependence on x for notational clarity. A better approximation may be
obtained by leveraging Lemma 5.1, specifically, inequality (43):

δu =
d̄

2
sup
x∈X

κ(x), (50)

where κ is as given in (43) and S, Y, Y , Y ⊥ are as defined in Theorem 5.2.
For systems that do not satisfy the strong Killing field condition in (26), and instead satisfy the

alternative pair of conditions, i.e., (27) and (28), one may bound the feedback control by augmenting
the state with u, and treating u̇ as the actual input. The RCI tube obtained via the analysis in
Section 3.5 then captures a bound on both x and u. We will shortly illustrate both methods for
bounding the control effort.

6 Robust Planning

We are finally ready to formalize the robust planning algorithm. The core part of the algorithm
relies on computing nominal motion plans (x∗, u∗) for the unperturbed dynamics using tightened
constraints. Given the tubes derived in Section 3.5 and the control effort bounds computed in the
previous section, these tightened constraints are given as:

x∗(·) ∈ X̄ := X 	 Ω̃, (51a)

u∗(·) ∈ Ū := {ū ∈ U : ∀x∗(t) ∈ X̄ , ∀x(t) ∈ X s.t. x(t) ∈ Ω(x∗(t)), ū+ k(x∗(t), x(t)) ∈ U}. (51b)

Notice that the state constraint is shrunk by the fixed-size ellipsoid Ω̃ to ease computation (e.g.,
collision-checking). On the other hand, since x(t) is guaranteed to lie in the true RCI tube Ω(·)
defined using the geodesic distance, the control constraint is shrunk based on the bounds computed
in the previous section. Having computed such a plan, one may adopt two different frameworks
for its robust execution. In the first approach, one could simply execute the controller derived
from problem OPT online until the robot enters Xgoal. In the second approach, provided there exist
sufficient online computational resources, one can use a receding-horizon algorithm in which the
nominal trajectory is periodically and locally re-updated over a short time-horizon T < Tgoal. This
allows one to reduce the tracking cost (as information about the realized disturbances is taken into
account). We outline such a receding-horizon strategy next.

6.1 Receding Horizon Implementation

Given a robust motion plan (i.e., a nominal state-input trajectory (x∗, u∗) such that the RCI tube
centered on x∗ does not intersect any obstacles), one can make local updates to it using the following
MPC problem solved at the discrete time instants ti, i ∈ N≥0:
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Optimization Problem MPC — Given current state x(ti) and a robust motion plan (x∗, u∗)
with associated RCI mapping Ω(·), solve

min
ū(·)∈C2([ti,ti+T ],Ū)

x̄(ti)∈X̄
Ti∈R>0

∫ ti+T

ti

‖ū(τ)‖2R dτ − µTi

subject to x(ti) ∈ Ω(x̄(ti)), (52)

˙̄x(τ) = f(x̄(τ)) +B(x̄(τ))ū(τ), (53)

x̄(τ) ∈ X̄ , ū(τ) ∈ Ū ∀τ ∈ [ti, ti + T ] (54)

x̄(ti + T ) = x∗(Ti), ti + δ ≤ Ti ≤ T ∗goal, (55)

where µ > 0 is a weighting factor. The time Ti (hereby termed as the “re-join” time), also an
optimization variable within problem MPC, marks the point where the MPC state trajectory re-
joins the initial motion plan and will be used to ensure persistent feasibility (see Lemma 6.1).

Problem MPC should be understood as a local re-optimization step – thus it should be solved
using local methods such as trajectory optimization techniques (Betts, 2010) or elastic bands (Quin-
lan and Khatib, 1993) (as opposed to fully-fledged global planners). Notice that the initial value
of the updated nominal state trajectory, i.e., x̄(ti), is also an optimization variable above subject
to the RCI constraint (52). This permits more drastic updates to the nominal trajectory, e.g., to
counteract consistently large disturbances. The terminal constraint given by (55) is used to ensure
recursive feasibility for the MPC problem, as addressed by the next lemma. The optimal re-join
time for problem MPC is denoted as T ∗i and the corresponding optimal state-input pair is denoted
as (x∗T (·;x(ti)), u

∗
T (·;x(ti))) : [ti, ti + T ] → X̄ × Ū , of which the segment [ti, ti + δ) is implemented

using (2), before MPC is re-solved (with δ < T ). This defines the sampled MPC strategy com-
monly employed for continuous-time systems. The following lemma establishes recursive feasibility
for problem MPC.

Lemma 6.1 (Recursive Feasibility for MPC). Suppose problem MPC is feasible at the initial solve
step t0 = 0. Then, the problem is feasible for all ti, i ∈ N≥0.

Proof. Let (x∗T (t;x(ti)), u
∗
T (t;x(ti))) : [ti, ti + T ] → X̄ × Ū and T ∗i denote the solution to problem

MPC at time-step ti. Then at solve time ti+1 = ti + δ, due to the RCI property associated
with the tracking controller, one is guaranteed that the actual state x(ti+1) lies within the set
Ω(x∗T (ti+1;x(ti))). Consider then the following feasible, but possibly suboptimal solution to problem
MPC at solve time ti+1:

x̄(τ) =

{
x∗T (τ ;x(ti)) for τ ∈ [ti+1, ti + T )

x∗(τ) for τ ∈ [T ∗i , T
∗
i + δ],

ū(τ) =

{
u∗T (τ ;x(ti)) for τ ∈ [ti+1, ti + T )

u∗(τ) for τ ∈ [T ∗i , T
∗
i + δ],

The state-input trajectory above is simply a concatenation of the tail portion of the previous
solution with the nominal motion plan solution, and represents a feasible solution for problem
MPC due to the terminal constraint (55) (which guarantees that the end-point of x∗T (·, x(ti)) re-
joins the nominal motion plan x∗ at time T ∗i ). Hence, the feasible set of the MPC problem at solve
time ti+1 is not empty, which proves recursive feasibility.
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Remark 6.2. For E(x∗(0), x(0)) > 0, the Comparison Lemma gives the following analytical, time-
varying bound corresponding to the differential inequality (19):

E(x∗(t), x(t)) ≤
[√
E(x∗(0), x(0))e−λt + d̄

(
1− e−λt

)]2
.

Thus, for the MPC problem solved at time ti, one can modify constraint (52) to:

E(x̄(ti), x(ti)) ≤ E(x∗T (ti;x(ti−1)), x(ti)). (56)

This constraint states that the Riemann energy between the start of the new nominal MPC trajectory
x̄(ti) and current state x(ti) is at most the Riemann energy between the current MPC reference (as
computed at the previous solve time ti−1) and current state x(ti). This constraint may then be
leveraged along with the shifted time-varying bound:

E(x∗(t), x(t)) ≤
[√
E(x̄(ti), x(ti))e

−λ(t−ti) + d̄
(

1− e−λ(t−ti)
)]2

, t ∈ [ti, ti + T ],

within the ellipsoid (22) to obtain a time-varying tube that is smaller than the static ellipsoid
and therefore, will be less conservative when incorporated within the tightened constraint set given
in (51a). We demonstrate such an implementation in Section 7.

Algorithm 1 provides pseudocode for the overall approach.

Algorithm 1 Robust planning algorithm

1: OFFLINE:
2: Inputs: dynamics model, U (control input constraints)
3: Compute: Ω (RCI set), k(·, ·) (controller structure)
4: ONLINE:
5: Inputs: x(0) (initial state), X (state constraints), Xgoal

6: Compute nominal (x∗, u∗), such that x∗(·) ∈ X
7: Initialize: tplan ← 0
8: At each time t:
9: if New obstacles reported or goal region is changed then

10: Re-plan nominal (x∗, u∗)
11: else
12: if t− tplan = δ then
13: (x∗T (·;x(t)), u∗T (·;x(t)), T ∗)← MPC(x(t), x∗, u∗,Ω)
14: Update tplan ← t
15: end if
16: end if
17: Apply control u∗T (t;x(tplan)) + k(x∗T (t;x(tplan)), x(t))

7 Numerical Experiments

We now verify our approach in simulation by continuing with the 6-state planar-quadrotor system
in Section 7.1, and then apply the framework to the more challenging 10-state 3D quadrotor model
in Section 7.2. All simulation code (MATLAB) is available at https://github.com/StanfordASL/
RobustMP.
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7.1 Planar Quadrotor

We continue with the 6-state planar-quadrotor system subject to horizontal cross-wind with effective
acceleration up to 0.1 m/s2, whose dual metric W (x) was designed in Example 4.3. Notably, this
system is underactuated and has unstable zero dynamics, and thus represents a challenging system
to benchmark the approach. In addition to the state-space constraints introduced during the metric
synthesis, we imposed limits on the thrust for each propeller to the range [0.1, 2]mg. The feedback
control effort bound δu was determined using (49) to be 0.6 N (0.13 mg), a fraction of the overall
control range.

Having computed (offline) the RCI mapping, we tested Algorithm 1 on the previously unseen
densely cluttered environment in Figure 1. The disturbance direction fluctuated (continuously)
between left and right to try to push the vehicle into an obstacle. Problem MPC was re-solved
every δ = 1s with horizon T = 2s using the pseudospectral collocation method and the SNOPT
solver, and leveraged the static bound given in (22). The tracking controller was implemented
using zero-order-hold at 200 Hz. Leveraging a suboptimal implementation in MATLAB, the time
required to compute the tracking controller (on a 3.5 GHz Intel equipped with 16 GB of RAM) is on
the order of 3.5 ms. On average, each MPC problem took 0.35 s to solve. This compares favorably
with the re-solve time of 1 s. Furthermore, we expect that this computational performance can be
significantly improved with a more efficient implementation and by using trajectory optimization
methods that fully exploit the local nature of the problem. We do not report the computation of
the nominal trajectory (line 6 in Algorithm 1) since it highly depends on the motion planner used
and is not a focus of this paper.

This example provides evidence that Algorithm 1 can be used for the online generation of safe
motion plans that can be reliably executed (provided that the nominal motion plan can also be
computed in real-time). This example also illustrates the benefits of our method as compared to
the funnel library approach (Majumdar and Tedrake, 2017). A pre-computed set of trajectories (as
required by (Majumdar and Tedrake, 2017)) would be unlikely to contain a sequence leading from
the start to goal while maneuvering through the very tight spaces between obstacles.

In Figure 9, we illustrate the use of time-varying tubes as derived in Remark 6.2 within the
online MPC problem. The MPC lookahead and re-solve times were increased to T = 4 s and δ = 1.5
s respectively. We draw attention to the MPC solver making effective use of the time-varying tube
to generate tighter nominal trajectories that would have been deemed infeasible using the fixed-size
tube.
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(a) Comparison of the initial motion plan (dashed-white line) and the online
locally re-optimized trajectory (dashed-red line) leveraging time-varying tube
bounds.

(b) Zoomed in view near an obstacle where the locally re-optimized trajectory
is able to take a much tighter cut around the obstacle as consequence of
significantly tighter time-varying bounds. Also shown is the actual trajectory
(solid-black line) which can be seen to remain inside the time-varying tube
centered around the re-optimized trajectory (dashed-red line).

Figure 9: Implementation of the planar quadrotor example with time-varying tubes. For clarity, the quadrotor graphic has
been removed and the obstacles have been inflated by the vehicle size.

7.2 3D Quadrotor

7.2.1 Dynamics and Constraints

We adopt the state-space representation x = (px, py, pz, ṗx, ṗy, ṗz, f, φ, θ, ψ)T where position p =
(px, py, pz)

T ∈ R3 and corresponding velocities are expressed in the global inertial (vertical axis
pointing down) frame. Adopting the North-East-Down frame convention for the quadrotor body
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and the XY Z Euler-angle rotation sequence, the attitude (roll, pitch, yaw) is parameterized as
(φ, θ, ψ) and f ∈ R>0 is the net (normalized by mass) thrust generated by the four rotors. For the
purposes of controller design, we consider as control inputs u := (ḟ , φ̇, θ̇, ψ̇)T . Actual implementa-
tion embeds the ḟ term within an integrator and the resulting thrust and angular velocity reference
are passed to a lower-level controller on the quadrotor that is assumed to operate at a much faster
time-scale. Given this parameterization, the dynamics of the quadrotor may be written as:p̈xp̈y

p̈z

 = ge3 − f b̂z =

 −f sin(θ)
f cos(θ) sin(φ)

g − f cos(θ) cos(φ)

 , (57)

where g is the local gravitational acceleration, e3 = (0, 0, 1)T , and b̂z is the body-frame z-axis.
The dynamics of (τ, φ, θ, ψ) reduce trivially to first-order integrators. We impose the bounds:
(φ, θ) ∈ [−60◦, 60◦]2 and f ∈ (0.5, 2)g, sufficient for executing fairly aggressive maneuvers.

7.2.2 CCM Computation

Notice that yaw is completely decoupled from these equations of motion. Consider, then, the
following block partition model for W (x):

W (x) =

 W⊥ Wu 06×1

∗ W‖ 03×1

∗ ∗ Wψ

 ,
where W⊥ ∈ S>0

6 , W‖ ∈ S>0
3 , Wψ ∈ R>0 and Wu ∈ R3×3. Given B = [04×6 , I4]T , take B⊥ =

[I6 , 04×6]T . The weak Killing field condition in (28) requires that W⊥ is not a function of (f, φ, θ, ψ).
Further by noting the translational and yaw invariance of the dynamics, we only parametrizeWu and
W‖ as functions of (f, φ, θ) and pick W⊥ to be a constant positive definite matrix and Wψ a constant
positive scalar. Such a parameterization also reflects the intuition that differential stabilizability of
the quadrotor, as captured by the CCM, should be independent of the quadrotor’s position, velocity,
and yaw orientation. Given the block diagonal structure of W , we solve for the top left 9× 9 block
of the metric using the SOS formulation discussed in Section 4 and independently design Wψ. Once
again, the trigonometric terms in the dynamics were approximated using Chebyshev polynomial
expansions up to third order. Figure 10 plots the optimal curve for JCCM as a function of λ (for the
top left 9×9 block of W (x)), using the alternative objective given in Remark 4.1. The scaling matrix
Ws was chosen in order to prioritize the Euclidean error, and set as diag(15, 15, 15, 1, 1, 1, 1, 1, 1).

The optimal contraction rate can be seen to be λ = 1.29 and the corresponding dual metric
W (x) contained 35 unique monomials in (f, φ, θ). Assuming a cross-wind acting in any direction
with effective acceleration up to 0.1 m/s2, we used gridding to compute a value of 0.0432 for d̄. The
resulting projections of ellipsoid (22) onto the position coordinates corresponded roughly to a sphere
of radius ≈ 8.8 cm. The projection onto the thrust axis yielded the interval [−0.05, 0.05]g and the
projections in the (φ, θ) axes corresponded to the intervals [−11.1◦, 11.1◦] and [−7.45◦, 7.455◦] re-
spectively. Since the projection of the bound along the yaw axis is given by d̄

√
Wψ (see Remark 4.1),

we set Wψ = 17.3, yielding the interval [−10◦, 10◦]. The resulting tightened constraints are still
permissive of aggressive maneuvers within cluttered obstacle environments, as demonstrated next.
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alternative objective as a function of λ.

7.2.3 Simulation under Nominal Disturbances

To verify the controller performance, we randomly initialized obstacle environments for the quadro-
tor, an example is depicted in Figure 11. Trajectory planning was performed by first computing
a waypoint path using geometric FMT* (Janson et al., 2015a), and then smoothing this path us-
ing polynomial splines with the min-snap algorithm in (Richter et al., 2016). Finally, differential
flatness was leveraged to recover the open-loop state and control trajectories. Collision checking
was performed by leveraging the configuration space representation of the obstacles, i.e., polytopes,
inflated by the size of the quadrotor (approximated as a 20 cm radius ball) and the projection of
the tube bound onto position coordinates (a further 8.8 cm radius ball).

Figure 11: Randomly generated obstacle environment with towers and trees; initial position of the quadrotor is (0, 0, 1),
corresponding to the leftmost corner. The goal set is depicted as the light blue box.

Figure 12 shows an example of such a computed trajectory, along with the surrounding tube
margin. The maximum speed along this trajectory is 3.00 m/s and the maximum pitch angle

35



is approximately 21.5◦. The yaw trajectory was designed to follow the horizontal plane velocity.
Note that both these aspects of planning (waypoint generation using sampling-based planning and
polynomial smoothing) are real-time algorithms and therefore can be efficiently executed in receding
horizon fashion. Robustness is easily accounted for via inflating the obstacles by the tube margin.

Figure 13 illustrates the simulation results for the computed trajectory in Figure 12 for a variety
of disturbance time-series (sinusoidal varying and fixed direction signals with constant magnitude
set to w̄). The feedback controller is implemented using zero-order-hold at 250 Hz. All errors are
observed to respect the theoretically computed bounds.

(a) Isometric view. (b) Overhead view.

Figure 12: Computed nominal trajectory with attitude depicted using the body-fixed coordinate frame (forward: red, left: blue).
The trajectory itself is centered within the depicted invariant ellipsoidal tube (shown inflated by the size of the quadrotor).
The overhead view illustrates the tight margins near the beginning and end of the trajectory.

(a) Top: Euclidean norm of translational error (theoret-
ical bound: 8.7 cm); Bottom: Yaw tracking error (theo-
retical bound: [−10, 10]◦).

(b) Geodesic energy time-series; theoretical bound (d̄2)
illustrated by the flat horizontal line.

Figure 13: Time-series tracking error plots for 24 different disturbance time-series for the nominal trajectory in Figure 12. As
expected, all errors remain within the theoretically computed bounds, ensuring safe execution of the planned path.

7.2.4 Assessing Conservatism

Within this section, we empirically evaluate the conservatism in the computed tracking bounds
by planning trajectories assuming the disturbance bound of 0.1 m/s2 and increasing the actual
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disturbance level during simulation. We randomly generated 100 new trajectories similar to Fig-
ure 11 with varying obstacle placements. For each of the 100 nominal trajectories, we simulated
the 24 disturbance time-series from Figure 13 with w̄ ∈ {0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}
m/s2. Figure 14 plots the empirical cdf of the tracking errors for different simulation disturbance
thresholds. For reference, we also delineate the theoretical tracking bounds computed with the
simulation w̄ values. The conservatism evaluations, therefore, are: (i) gap between actual tracking
errors and the theoretical upper-bound, and (ii) extent of violation of a bound computed with a
lower w̄.

(a) Geodesic energy tracking error.

(b) Euclidean norm of translational tracking error.

Figure 14: Empirical cdfs (rotated 90◦ for clarity) of tracking errors with varying simulation disturbance thresholds. Each cdf
corresponds to data generated from 100 nominal trajectories and 24 disturbance time-series, for a total of approximately 4.1
million datapoints (equivalently, 4.5 hrs of simulation time) at each disturbance threshold. The horizontal lines indicate the
theoretical tracking bounds as a function of w̄, linked to the relevant cdfs via the vertical dotted lines. For clarity, the 0-1 range
for each cdf is only depicted for the lowest disturbance threshold.

It can be noted in Figure 14(a), that the gap between the largest geodesic energy tracking error
observed for a fixed disturbance threshold and the theoretical upper-bound is impressively tight.
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Indeed, this gap ranged between 1.56 – 30 % of the theoretical bounds. Additionally, in all cases,
the tracking errors crossed the theoretical bound computed using a value of w̄ that was 0.05 m/s2

smaller than the simulated level. Both these indicators validate that the analysis in Theorem 3.5
is in fact practically useful and not overly conservative. The larger gaps between the maximum
translational error and the theoretical bound, as observed in Figure 14(b), are to be expected since
the geodesic energy is a full state error measure.

8 Hardware Experiments

Finally, we illustrate the approach on an open-source quadrotor platform, shown in Figure 15. The
quadrotor consists of (i) a standard DJI F330 frame, (ii) Pixhawk autopilot running the estimator
and lower-level thrust and angular rate controllers, and (iii) a companion on-board ODROID-XU4
computer running a ROS node for computing the CCM controller (which generates the thrust and
angular rate setpoints for Pixhawk). The code for the ROS node is available for download at
https://github.com/ssingh19/asl_flight. There is also an Optitrack motion capture system
providing inertial position and yaw estimates at 120 Hz, which is fused with the onboard EKF on
the Pixhawk.

Figure 15: Quadrotor experimental platform, equipped with Pixhawk autopilot (PX-AP) for low-level (thrust and angular rate)
control, and ODROID companion computer for planning and CCM controller.

8.1 Controller Implementation

8.1.1 CCM Controller

During simulation it was often observed that the computed geodesics at each sampling instant
were nearly a straight line between x∗(t) and x(t). Therefore, to further improve the runtime
efficiency of the controller (i.e., avoid having to solve problem OPT γ on the embedded hardware),
we investigated the performance of the controller using the straight-line approximation of the
geodesic.

While it is theoretically possible to bound the numerical error resulting from this approximation
and the induced error within inequality (40) via bounding the Christoffel symbols associated with
M(x), such an error analysis is likely to be conservative. Instead, we extracted tuples of (x∗(t), x(t))
from the simulations in Section 7.2.4, and performed the following evaluations – see Figure 16:

• Compare E(γ) and E(csl), where csl(·, t) is the straight-line connecting x∗(t) and x(t).
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• Magnitude of the induced error (i.e., violation) in inequality (40) with ux set to the feedback
computed using csl. This is the main evaluation criterion, from a stability performance
perspective.

(a) Compare E(γ) and E(csl). The datapoints lie almost
perfectly along the E(csl) = E(γ) diagonal line.

-0.3 -0.2 -0.1 0 0.1 0.2
Violation

0

0.2

0.4

0.6

0.8

1

cd
f

(b) cdf of violation of inequality (40) with k set to the
feedback computed using csl.

Figure 16: Validating use of straight line approximation of geodesic to compute the online tracking controller. In the right
subfigure, a negative value indicates slack, while a positive value indicates violation of the stability inequality (40). The steep
saturation of the curve just past 0 indicates relatively inconsequential implications for the violation of the stability inequality.

From Figure 16(a), we observe that E(csl) almost perfectly matches E(γ), while Figure 16(b)
illustrates that the resulting violation in the stability inequality (40) is practically negligible. To
account for potential time-compounding effects of using the straight-line approximation (the eval-
uations in Figure 16 are pointwise in time), we repeated all simulations from Section 7.2.4 using
csl in place of the geodesic to compute the tracking controller. Figure 17 presents the resulting
tracking error cdfs. From Figure 17, one notices that the theoretical tracking bounds are indeed
violated due to the compounding effect of the error induced within the stability inequality (40).
However, the cdfs evaluated at the theoretical tracking bounds ranged from 0.999940 – 1.0. Equiv-
alently, the cumulative time spent in violation of the geodesic energy theoretical bound, over all
the simulations represented within Figure 17, was 7.044 s. Compared to the 40.71 hrs of simulation
time represented in this figure, this is equivalent to a proportional violation of 0.004%. The trans-
lational tracking error however, remained always below the theoretical upper bound. Therefore,
the straight-line approximation of the geodesic is a relatively mild simplification for this quadrotor
example.

8.1.2 Lower-Level Pixhawk Controller

The lower-level controller on the Pixhawk autopilot is tasked with tracking the thrust and angular
rate control setpoints generated by the CCM controller. The Euler rate commands from the CCM
controller are converted into desired body-rates onboard Pixhawk and fed into the existing PID
control loop. For thrust control, the commanded normalized thrust fc from the CCM controller
and the estimated inertial acceleration ˆ̈p (obtained via moving-average finite-differencing) are used
to first compute an error:

ef = (fc − ge3 · b̂z)− (− ˆ̈p · b̂z),
which is simply the difference in the desired and actual inertial accelerations, projected along the
instantaneous b̂z axis. This error is then converted into a normalized throttle command τ ∈ [0, 1]
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(a) Geodesic energy tracking error.

(b) Euclidean norm of translational tracking error.

Figure 17: Empirical cdfs (rotated 90◦ for clarity) of tracking errors with varying simulation disturbance thresholds, from using
a straight-line approximation of the geodesic for computing the tracking controller. As before, the horizontal lines indicate the
theoretical tracking bounds as a function of w̄, linked to the relevant cdfs via the vertical dotted lines.
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using the following discrete-time recursion:

τ(tk) = τ(tk−1) + kpef (tk),

where the time indices tk, k = 0, 1, 2, ... delineate the Pixhawk sampling times and kp is a constant
positive gain. The CCM controller on board the ODROID is run at 250 Hz, while the Pixhawk con-
trol loop runs between 350-400 Hz. The controller above is similar to the thrust controller proposed
in (Tal and Karaman, 2018), and corresponds to an iterative scheme where the proportional error
term is used to simply correct the previous throttle command, precluding the need to estimate the
complex mapping between desired thrust and throttle, or rely on the popular yet oversimplifying
quadratic model of this relationship.

8.2 Calibrating Disturbance Bound

The role of aerodynamic disturbance for experiments was played by the (neglected in eq. (57)) drag
force. To calibrate an upper bound for planning, we flew two calibration trajectories: a figure-
eight (presented in this section) and a “race-course” (similar to the one in the next section). We
describe the figure-eight trajectory here. The nominal trajectory was set as: px(t) = rx−rx cos(ωt),
py(t) = ry sin(2ωt), pz(t) = h, where we set rx = 1 m, ry = 0.7 m, ω = 2π/10, and a constant
altitude h = 1.5 m. The drag-force was estimated based on the following augmented translational
dynamics:

p̈ = ge3 − f b̂z +R (d0 −DRT ṗ)︸ ︷︷ ︸
:=fd

, (58)

where R is the rotation matrix, D = diag(µx, µy, 0), and d0 = (d0x , d0y , 0)T . Here d0 plays the role
of a fixed perturbing force stemming from propeller misalignment, and D models the linear velocity
drag coefficients, commonly accepted to be the dominant component of drag within the expected
flight regime; for instance, see (Kai et al., 2017; Faessler et al., 2018). As in (Faessler et al., 2018),
we neglect the body z component of drag.

To estimate the net body-frame drag fd, we leveraged a smoothed finite-differenced estimate of
p̈, the estimated rotation matrix R, and the commanded normalized thrust fc in place of f . This
last substitution is justified courtesy of the lower-level thrust controller presented in the preceding
section. Figure 18 shows a series of plots from the figure-eight experiment, including (a) XY
desired and actual traces, (b) translational tracking errors, (c) body-frame velocity, (d) estimated
body-frame drag, (e) Euclidean norm of net drag, and (f) geodesic energy.

Concatenating the data from the figure-eight and race-course trajectories, we used least-squares
to compute the following estimates: µx = 0.302, µy = 0.288, d0x = −0.008, d0y = −0.026. Figure 19
plots an overlap of the estimated and predicted drag for the figure-eight trajectory, and illustrates
good agreement. In the next section, we present additional plots of estimated and predicted drag
from the planning experiments to further validate the use of this drag model as a viable disturbance
model.
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(a) XY trace of desired vs actual trajectories. (b) Translational errors. Net (Euclidean norm) error
statistics: 7.66 cm RMS, 15.76 cm max.

(c) Velocity in body frame. (d) Estimated drag along body axes.

(e) Net (Euclidean norm) estimated body drag. (f) Geodesic energy, along with adjusted bound computed
using a max drag of 0.3 m/s2.

Figure 18: Experiment results for drag calibration flight using fixed-yaw figure-eight trajectory. The experiment was performed
by ramping up speed over two cycles; the plots shown correspond to three cycles at the final speed (period of 10s). In subplot
(f), corresponding to geodesic energy, the initial spike around 55 s corresponds to a jump in speed for the nominal (reference)
trajectory. Following the spike, the error stays below the (drag-adjusted) theoretical bound illustrated by the horizontal line.
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(a) Predicted and estimated drag in the body frame. (b) Net Euclidean norm of predicted and estimated drag.

Figure 19: Comparison of linear drag model predictions and estimated drag for the figure-eight calibration flight. Note that
the entire flight (including the cycles at slower speed) and the race-course trajectory were used for estimating the parameters
of the linear drag model.

Remark 8.1. In these experiments, the unknown but bounded perturbing force was taken to be
the linear drag model. However, given the recent advancements in leveraging drag models within
planning, for instance, as in (Faessler et al., 2018), one may also incorporate the learned drag model
within the nominal dynamics and compute a drag-compensated CCM. While this would necessitate
including coupled velocity and yaw dependence within the CCM, it would allow the separation of
drag from the unmodeled aerodynamic disturbances, thereby reserving the disturbance bound margin
for purely exogenous effects. For the purposes of illustrating the methodology in this paper, we
reserve this extension for future work.

8.3 Robust Planning

Equipped with a calibrated disturbance model, we ran the robust trajectory planner (geometric
FMT* plus polynomial spline smoothing) introduced in the simulation section on the “race-course”
test environment shown below in Figure 20. The computed trajectory was setup to create a chal-
lenging loop through the obstacle course through intermediate waypoints placed, for example, at
the center of gates and in between the poles. To ensure robustness with respect to the drag model,
a single constant was used to scale time (effectively, speed) along the trajectory such that the
drag-adjusted invariant tube was collision free. Importantly, the drag model was not re-estimated
for these test trajectories. The computed trajectory along with the invariant tube is shown in
Figure 21. Figure 22 plots the nominal body-frame velocity and expected drag.
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Figure 20: Quadrotor “race-course” test environment.

(a)

(b)

Figure 21: Computed nominal trajectory with attitude depicted using the body-fixed coordinate frame (forward: red, left:
blue). The trajectory itself is centered within the depicted invariant ellipsoidal tube. The views illustrate the tight margins
through the obstacles.
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Figure 22: Top: Body-frame and net velocity; Bottom: Predicted body-frame and net drag force, along nominal trajectory.
Maximum expected drag: 0.59 m/s2.

The maximum expected drag along the nominal trajectory is 0.59 m/s2, corresponding to a
top speed of 1.9 m/s. This results in an adjusted translation error bound of 52 cm and a geodesic
energy bound of d̄ 2 = 0.0648. The trajectory in Figure 21 was computed with a combined collision
margin of 52 cm plus an additional 27 cm to account for the size of the quadrotor (see Figure 15).

Following the computation of the nominal trajectory, the quadrotor was flown through the
obstacle loop three times, with a 25% increase in speed (respectively, decrease in lap time) with
each successive lap. A time-lapse6 during the fastest lap is shown in Figure 23.

(a) Time-lapse through the full obstacle course. (b) Time-lapse through the slalom maneuver past the poles.

Figure 23: Time-lapse of quadrotor through the obstacle course during the fastest lap. Top speed achieved: 3.81 m/s.

Note that the trajectory was not re-computed during the experiment since the purpose here
was to (i) illustrate that the theoretically computed tracking error bounds are indeed physically
meaningful and achievable on an actual hardware testbed, and (ii) evaluate the conservatism in
the tracking bounds via greater experienced disturbance than planned for. In particular, only
the first speed setting is theoretically robustly collision-free, in that the invariant tube computed
using the max expected drag is collision-free. The subsequent laps executed at higher speeds have
significantly higher expected drag and the resulting scaled tubes are not collision-free. Given the
simulation results presented in Figure 14(b) however, we anticipated (and observed) collision-free
execution at the higher speeds as well.

6Videos of the flights can be found at https://www.youtube.com/playlist?list=

PL8-2mtIlFIJo5n4J4wgP6zdtEGKYeTYO1.
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The experiment results for the three laps are presented in Figures 24– 26, and comprise (i) XY
desired and actual traces, (ii) translational and geodesic energy tracking errors, and (iii) estimated
and predicted body-frame and net drag. The statistics for the three laps are presented in Table 1.

Figure 24: XY Trace of desired and actual followed trajectories. Lap direction: counter-clockwise.

Flight Extremes Bounds Errors rms (max)

Speed Bank Drag E ‖p− p∗‖ E ‖p− p∗‖
[m/s] [deg] [m/s2] - [cm] - [cm]

Lap 1 1.91 11.46 0.59 0.0648 52 0.017 (0.044) 13.18 (25.4)
Lap 2 2.54 19.8 0.78 0.112 68 0.025 (0.074) 14.51 (30.17)
Lap 3 3.81 39.04 1.15 0.247 101 0.036 (0.124) 16.24 (38.91)

Table 1: Nominal trajectory extremes (max drag corresponds to the prediction from the linear drag model), drag-adjusted
bounds, and actual flight error statistics. All three laps respect the theoretical upper-bounds computed prior to the flights.
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(a) Lap 1 translational error. Error rms: 13.18 cm, max:
25.4 cm, bound: 52 cm.

(b) Lap 1 geodesic energy. Error rms: 0.017, max: 0.044,
bound: 0.0648.

(c) Lap 2 translational error. Error rms: 14.51 cm, max:
30.17 cm, bound: 68 cm.

(d) Lap 2 geodesic energy. Error rms: 0.025, max: 0.074,
bound: 0.112.

(e) Lap 3 translational error. Error rms: 16.24 cm, max:
38.91 cm, bound: 101 cm.

(f) Lap 3 geodesic energy. Error rms: 0.036, max: 0.124,
bound: 0.247.

Figure 25: Validation of translational (left column) and geodesic energy (right column) error upper-bounds.

47



(a) Lap 1 body-frame drag. (b) Lap 1 net drag.

(c) Lap 2 body-frame drag. (d) Lap 2 net drag.

(e) Lap 3 body-frame drag. (f) Lap 3 net drag.

Figure 26: Validation of predicted drag model with parameters fixed a priori to all laps.

The key takeaway from the preceding numbers and plots is that all theoretical (a priori) geodesic
energy and translational error tracking bounds computed using the calibrated drag model are
validated within all three flights. Additionally, we note the following interesting observations.
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First, the peaks in the geodesic energy curves line up quite well with the local peaks in aerodynamic
disturbance due to either drag model or ground/interaction effects. Indeed, as the video illustrates,
there are notable perturbations in the vicinity of the box (see also Figure 27), ground, and poles.
Second, on each successive lap, as the trajectory becomes more aggressive, the geodesic energy
tracking error becomes more concentrated at smaller fractions of the theoretical upper bounds.
This is potentially due to the fact that the min-norm formulation of the feedback controller in
Section 5.1 possesses a “minimally invasive” property akin to trigger or event-based control, in that,
the optimal feedback can be zero. However, for the faster trajectories, the feedback is non-zero
for a greater proportion of the time, thereby resulting in proportionally tighter tracking. Further,
we observe that the geodesic energy at higher velocities would violate the bounds generated for
lower velocities. This suggests that the bounds computed during CCM synthesis are not overly
conservative, which confirms the numerical results presented in Section 7.2.4.

Figure 27: Close-up of quad passing near the box obstacle and experiencing complex (unmodeled) aerodynamic disturbances
due to the downwash interaction.

Finally, we stress that the purpose of this experiment was to illustrate the feasibility of convert-
ing the rich theoretical analysis into a practical tool capable of running on modern hardware, and
obtain true validation of the complete planning methodology. Further performance improvements
may be obtained through incorporating richer dynamic models and leveraging higher rate dedicated
controllers.

9 Conclusions and Future Work

We presented a framework for robust motion planning for robots with nonlinear dynamics subject
to bounded disturbances, input constraints, and online state constraints. Our approach allows
one to generate certifiably safe trajectories online when faced with a priori unknown environment.
We leveraged recent advances in contraction theory in the form of CCMs to synthesize a tracking
feedback controller and an optimized invariant tube, valid for any dynamically feasible trajectory.
Such an invariant tube is consequently used as a robustness margin during online trajectory gen-
eration. Importantly, our approach is modular in the sense that we do not put any constraints
on the planner itself; indeed we demonstrated our approach using a variety of planning techniques
such as pseudospectral discretization with nonlinear programming and sampling-based planning
with polynomial spline smoothing. The two relevant components of the approach are the tracking
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feedback controller and the invariant tube – both of which can be interfaced with the vast majority
of planning techniques. We validated our approach in simulation and on a quadrotor hardware
testbed, and extensively tested the limits of performance of the synthesized controller to study
potential failure modes. This work introduces several promising future directions, discussed next.

Computation: The primary computational challenge stems from the offline synthesis of the CCM.
Computing CCMs requires solving a semi-infinite optimization problem (Hettich and Kortanek,
1993) – a daunting task. SOS programming allows us to obtain sufficient certificates for the infinite-
dimensional constraints but at a cost of scalability. The size of the equivalent SDP re-formulation
of a SOS constraint scales as O(nd) where n is the state-space dimension and 2d is the degree of the
polynomial. While there are some alternative relaxations available based on LP and SOCP (Ahmadi
and Majumdar, 2014), these are more conservative than the SDP re-formulation. Looking forward,
two interesting avenues of work involve: (i) leveraging non-polynomial SOS decompositions, and
(ii) leveraging sampling-based algorithms to obtain high probability asymptotic guarantees, e.g.,
as in (Zhang et al., 2010).

Conservatism: Our analysis is conservative due to the fact that we derive a globally valid invariant
tube, as opposed to the funnel library approach in which one computes bounds valid locally around
a trajectory. This issue was slightly tempered by the introduction of less conservative time-varying
tubes, used within a local receding-horizon re-planner as for the planar quadrotor example. A more
promising method for reducing the conservatism is to partition the state space into regions in which
CCMs are computed locally, while ensuring continuity/smoothness at the region boundaries. Such
a computational approach may also allow the use of lower-order polynomial expansions, thereby
reducing the size of the SOS programs.

A second limitation of the approach is that the invariant tubes are computed based on a worst-
case disturbance bound assumption. A less conservative solution may be achieved by decomposing
the disturbance term into an unknown constant (or slowly-varying) mean, estimated online, plus
zero-mean stochastic noise. In this way, one may leverage modern adaptive and disturbance esti-
mation techniques to counteract the constant disturbance term, and a stochastic modification of
CCM theory to obtain probabilistic invariance guarantees, e.g., based on super-martingale analy-
sis (Steinhardt and Tedrake, 2012).

Perception Uncertainty: In this work, we assumed full state knowledge and the ability to
perfectly sense obstacles in the neighborhood of the robot. In reality, noisy sensors inject uncertainty
into both these terms. In this case, providing almost sure guarantees is practically infeasible and
one must additionally incorporate perception/sensing uncertainty, for instance, in a Bayesian sense,
to obtain (at most) probabilistic guarantees. This is, however, a well-known open problem.

We believe that the modular approach presented herein for automatically synthesizing feedback
controllers that are optimized for robust performance, and accompanied by guarantees readily inte-
grable into existing planning algorithms, serves as a valuable tool for a practitioner to systematically
balance performance and safety.
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Carson III JM, Açikmeşe B, Murray RM and MacMartin DG (2013) A robust model predictive
control algorithm augmented with a reactive safety mode. Automatica 49(5): 1251–1260.

Charnes A and Cooper WW (1959) Chance-constrained programming. Management Science 6(1):
73–79.

Chen M, Herbert SL, Vashishtha MS, Bansal S and Tomlin CJ (2016) Decomposition of reachable
sets and tubes for a class of nonlinear systems. Available at https://arxiv.org/abs/1611.

00122.

Crouch PE and van der Schaft AJ (1987) Variational and Hamiltonian Control Systems. Springer.

Faessler M, Franchi A and Scaramuzza D (2018) Differential flatness of quadrotor dynamics subject
to rotor drag for accurate tracking of high-speed trajectories. IEEE Robotics and Automation
Letters 3(2): 620–626.

Farina M and Scattolini R (2012) Tube-based robust sampled-data MPC for linear continuous-time
systems. Automatica 48(7): 1473–1476.

Fleming J, Kouvaritakis B and Cannon M (2015) Robust tube MPC for linear systems with mul-
tiplicative uncertainty. IEEE Transactions on Automatic Control 60(4): 1087–1092.

Forni F and Sepulchre R (2014) A differential Lyapunov framework for contraction analysis. IEEE
Transactions on Automatic Control 3(59): 614–628.

Fridovich-Keil D, Herbert SL, Fisac JF, Deglurkar S and Tomlin CJ (2018) Planning, fast and slow:
A framework for adaptive real-time safe trajectory planning. In: Proc. IEEE Conf. on Robotics
and Automation.

Gillula JH, Huang H, Vitus MP and Tomlin CJ (2010) Design of guaranteed safe maneuvers using
reachable sets: Autonomous quadrotor aerobatics in theory and practice. In: Proc. IEEE Conf.
on Robotics and Automation.

Helwa MK, Heins A and Schoellig AP (2019) Provably robust learning-based approach for high-
accuracy tracking control of lagrangian systems. IEEE Robotics and Automation Letters 4(2):
1587–1594.

52

https://arxiv.org/abs/1611.00122
https://arxiv.org/abs/1611.00122


Herbert SL, Chen M, Han S, Bansal S, Fisac JF and Tomlin CJ (2017) FaSTrack: a modular
framework for fast and guaranteed safe motion planning. In: Proc. IEEE Conf. on Decision and
Control.

Hettich R and Kortanek KO (1993) Semi-infinite programming: Theory, methods, and applications.
SIAM Review 35(3): 380–429.

Iwasaki T and Hara S (2005) Generalized KYP lemma: unified frequency domain inequalities with
design applications. IEEE Transactions on Automatic Control 50(1): 41–59.

Janson L, Schmerling E, Clark A and Pavone M (2015a) Fast Marching Tree: a fast marching
sampling-based method for optimal motion planning in many dimensions. Int. Journal of Robotics
Research 34(7): 883–921.

Janson L, Schmerling E and Pavone M (2015b) Monte Carlo motion planning for robot trajectory
optimization under uncertainty. In: Int. Symp. on Robotics Research.

Jouffroy J (2003) A simple extension of contraction theory to study incremental stability properties.
In: European Control Conference.

Kaelbling LP, Littman ML and Cassandra AR (1998) Planning and acting in partially observable
stochastic domains. Artificial Intelligence 101(1-2): 99–134.

Kai JM, Allibert G, Hua MD and Hamel T (2017) Nonlinear feedback control of quadrotors ex-
ploiting first-order drag effects. In: IFAC World Congress.

Khalil HK (2002) Nonlinear Systems. Third edition. Prentice Hall.
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Zhang L, Wu SY and López MA (2010) A new exchange method for convex semi-infinite program-
ming. SIAM Journal on Optimization 20(6): 2959–2977.

Appendix A Technical Lemma

Proof of Lemma 5.1. Decompose ηz as ηzY + ηzY⊥ , where ηzY ∈ Col(Y T ) and ηzY⊥ ∈ N (Y ). Now

write ηzY = εη̂zY and ηzY⊥ = ε⊥η̂zY⊥ where ε, ε⊥ ≥ 0, ε2 + ε2⊥ ≤ 1, and η̂zY and η̂zY⊥ are (non-zero)

unit vectors contained in Col(Y T ) and N (Y ), respectively. Substituting these expressions into
inequality (44) above yields

θ

(
ε2η̂TzY Sη̂zY + ε2⊥η̂zY⊥Sη̂zY⊥ + 2εε⊥η̂

T
zY⊥

Sη̂zY

)
≤ 2δ̄uε‖Y η̂zY ‖. (59)

Now, if ηz ∈ N (Y ), i.e., ε = 0, then condition (42) is necessary and sufficient for inequality (44).
Thus, we consider the case where ε > 0. Notice that

max
η̂zY⊥

∈N (Y )
η̂TzY⊥

Sη̂zY = ‖Y T
⊥Sη̂zY ‖,

and by condition (42), η̂zY⊥Sη̂zY⊥ < 0. Thus, by upper-bounding the left hand side of the inequality
in (59) and rearranging, we obtain the following sufficient condition:(

ε
η̂TzY Sη̂zY
‖Y η̂zY ‖

+ 2ε⊥
‖Y T
⊥Sη̂zY ‖
‖Y η̂zY ‖

)
≤ 2δ̄u

θ
, (60)

for all η̂zY ∈ Col(Y T ), and ε, ε⊥. Now, given that the columns of Y are an orthonormal basis
for Col(Y T ), then η̂zY may be expressed as Y ηzY where ηzY ∈ S

m−1, the (m − 1)-unit sphere.
Substituting this expression into the inequality above yields the following sufficient condition for
inequality (44):

max
ηzY
∈Sm−1

ε,ε⊥≥0
ε2+ε2⊥≤1

ε
ηTzY SY ηzY
‖Y Y ηzY ‖

+ 2ε⊥
‖Y T
⊥SY ηzY ‖
‖Y Y ηzY ‖

≤ 2δu
θ
.

For fixed (ε, ε⊥), the maximization over ηzY ∈ S
m−1 above belongs to the class of sum-of-ratios

fractional programming and is in general, NP-complete. Recently in (Nguyen et al., 2016), the
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authors presented a two-stage algorithm using tight SDP relaxations of parameterized subproblems
for maximizing the sum of a generalized Rayleigh quotient and another Rayleigh quotient on the
unit sphere. For our purposes, we derive a simpler yet suboptimal approximation by decoupling
the maximization as

max
ε,ε⊥≥0
ε2+ε2⊥≤1

(
ε max
ηzY
∈Sm−1

ηTzY SY ηzY
‖Y Y ηzY ‖

+ 2ε⊥ max
ηzY
∈Sm−1

‖Y T
⊥SY ηzY ‖
‖Y Y ηzY ‖

)
.

The two inner maximizations may be further upper-bounded as:

max
ηzY
∈Sm−1

ηTzY SY ηzY
‖Y Y ηzY ‖

≤ λ̄(SY )

σ>0(Y Y )
and max

ηzY
∈Sm−1

‖Y T
⊥SY ηzY ‖
‖Y Y ηzY ‖

≤ σ̄(Y
T
⊥SY )

σ>0(Y Y )
.

Then, the outer maximization over (ε, ε⊥) is of an affine expression over a convex set:

max
ε,ε⊥≥0
ε2+ε2⊥≤1

ε
λ̄(SY )

σ>0(Y Y )
+ 2ε⊥

σ̄(Y
T
⊥SY )

σ>0(Y Y )
.

Now, since the coefficient of ε⊥ is nonnegative, the optimal (ε, ε⊥) is either (0, 1) (this occurs when
the coefficient of ε is nonpositive), or lies along the nonnegative quadrant of the circle ε2 + ε2⊥ = 1
with ε > 0. We can ignore the solution (0, 1) since this corresponds to the case where ηz ∈ N (Y ).
For the case ε > 0, the maximization above evaluates to√√√√( λ̄(SY )

σ>0(Y Y )

)2

+ 4

(
σ̄(Y

T
⊥SY )

σ>0(Y Y )

)2

.

Thus, we arrive at the sufficient condition stated in (43).
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