
HIGH-FIDELITY MODELING AND CONTROL SYSTEM SYNTHESIS FOR A DRAG-FREE
MICROSATELLITE

Sumeet Singh, Simone D’Amico, and Marco Pavone
Department of Aeronautics and Astronautics, Stanford University, Stanford CA 94305

{ssingh19, damicos, pavone} @stanford.edu

Abstract: A drag-free satellite is a spacecraft composed of an internal test mass shielded by an external
satellite that compensates all dominant disturbance forces encountered in the space environment such as
aerodynamic drag and solar radiation pressure. By minimizing all non-gravitational disturbances on the test
mass, the trajectory of the spacecraft is a near perfect geodesic. In concert with precise orbit determination
techniques, drag-free satellites allow us to investigate topics in geodesy, aeronomy, and gravitational physics
and conduct challenging experiments in low-disturbance environments to unprecedented accuracy. This
paper addresses the development of a high-fidelity simulator and control system design for the Modular
Gravitational Reference Sensor (MGRS) drag-free satellite. MGRS is a 100 kg microsatellite due to launch
in 2018 into a Sun-synchronous orbit with a mean altitude of 657 km that aims to demonstrate three-axis
drag-free operations with residual non-gravitational acceleration of a test mass under 10−12ms−2

/√
Hz

in the frequency range 0.01 to 1 Hz. The drag-free performance goal reflects a substantial improvement
upon past drag-free missions such as TRIAD I, GPB, and GOCE, and will be accomplished at a fraction
of the cost. Additionally, this mission represents a key technology demonstration within a larger research
endeavour that aims to develop a multi-purpose distributed drag-free architecture based on microsatellite
platforms. Our modeling framework allows us to gain a comprehensive insight into the range of expected
disturbances, derive sizing constraints for a suitable micropropulsion system, and formulate a preliminary
drag-free translational and attitude control system using H∞− control techniques.

Keywords: Drag-free satellite, satellite simulation, drag-free control, H∞− control.

1. Introduction

Since the introduction of drag-free satellites in [1], they have served as promising platforms for facilitating
precise experimental physics in areas such as geodesy, remote sensing and relativistic science [2, 3, 4, 5].
The first drag-free satellite Triad I [6] was flown in 1972 and achieved a proof mass residual acceleration of
5 · 10−11 ms−2 (RMS) averaged over three days. Since then there have been two more drag-free missions:
Gravity Probe B (GPB) [7], and the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE)
[8]. The GPB experiment was an attempt to validate two predictions of General Relativity: the geodetic
and frame-dragging effects. The mission achieved residual inertial accelerations for the test mass gyroscope
under 4 · 10−11 ms−2 along the roll axis and less than 2 · 10−10 ms−2 in the transverse axes, averaged
between 0.01-10 mHz [9]. GOCE studied the Earth’s gravitational field to unprecedented spatial resolution
and accuracy and yielded a new global model for the Earth’s geoid. The drag-free controller achieved a
residual linear acceleration noise floor in the along-track direction under 10−9 ms−2

/√
Hz between 5 mHz -

0.1 Hz [8]. The next generation of drag-free missions conducting ultra-precise relativistic experiments face
even more stringent requirements on the drag-free performance.

LISA Pathfinder (LPF) [10] is a joint ESA/NASA mission that will test critical technologies for the pro-
posed Laser Interferometric Space Antenna (LISA) gravitational wave detection mission [11]. Among other
objectives, LPF’s drag-free goal is to constrain the relative acceleration noise between a pair of cubic test
masses to be below:

3 · 10−14
[
1 +

(
f

3mHz

)2 ]
ms−2

/√
Hz,

over the frequency range 1 − 30 mHz. The CNES mission Microscope [12] will attempt to measure the
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weak equivalence principle to an accuracy of 10−15 and will require drag-free control with residual non-
gravitational acceleration below 10−12 ms−2

/√
Hz within the same frequency range.

The Modular Gravitational Reference Sensor (MGRS) satellite is a drag-free technology demonstration mis-
sion planned for launch in 2018 with three main objectives: (a) validate the performance of the Differential
Optical Shadow Sensor (DOSS) as a gravitational reference sensor [13, 14], (b) demonstrate three-axis
drag-free operation with residual acceleration of the test mass under 10−12 ms−2

/√
Hz within the science

frequency band B := [0.01, 1] Hz, and (c) demonstrate Precise Orbit and Gravity Determination (POGD)
capability at the centimeter level using multi-constellation Global Navigation Satellite System (GNSS) re-
ceivers [15, 16]. MGRS will be the second of a series of missions planned by the newly formed Center of
Excellence in Aeronautics and Astronautics (CEAA), a joint partnership between Stanford University, King
Abdulaziz City for Science and Technology (KACST), and NASA Ames. The first mission in this series,
UVLED, was launched in June 2014 and validated the use of UV LEDs for charge control of a test mass.
Missions beyond MGRS will test novel technological developments in areas such as precision timekeeping,
non-cooperative rendezvous, and cooperative drag-free formation flight, to conduct challenging experiments
in geodetic and relativistic science [17].

In addition to the drag-free performance objective, MGRS exemplifies the increasing proclivity towards
the use of smaller spacecraft such as nanosatellites (< 10 kg) and microsatellites (< 100 kg) in efforts to
reduce cost and development time [18, 19]. Among the several challenges that such a trend introduces (e.g.
miniaturization of power subsystems and scientific payloads), the key parameter of interest for drag-free
missions is actuation, i.e. micropropulsion. The ability to achieve an extremely low disturbance environment
for the test mass is strongly reliant on the performance abilities of a high precision micropropulsion system.
The need for such small thrusts stems from: (a) a low disturbance environment in space, and (b) miniscule
required corrections to the external satellite (on the order of µm) to maintain adequate separation between
the external satellite and the test mass. GPB had the advantage of having access to a large amount of Helium
gas for the on-board experiment. Consequently, the drag-free control system was able to use this gas as
propellant within a proportional control scheme [20]. GOCE, on account of its low orbit altitude of 235 km
experienced in-track forces large enough to be easily compensated by a 20 mN Kaufman-type ion thruster.
The lateral force and torque compensation however posed some difficulty due to lack of maturity in electric
propulsion technology at such low thrust levels [21].

MGRS is a 100 kg microsatellite modeled on the SaudiSat 4 satellite bus (see Figure 2). It consists of a
rectangular cuboid body with dimensions 670 × 572 × 550 mm with four deployable solar panels. The
satellite houses a free-floating 2.5 cm spherical BeCu test mass whose position with respect to the satellite is
measured by the DOSS assembly. Due to the satellite’s small size, the expected non-conservative disturbance
forces in Low Earth Orbit (LEO) are quite small. Indeed, at an altitude of 657 km, the radial disturbance
forces are estimated to be less than 1 µN. The lack of space to accommodate large quantities of propellant
(e.g. for a cold-gas micropropulsion system [22]) and limited power budget (< 160 W for the entire satellite)
make the selection of a suitable micropropulsion system quite challenging. In this paper we discuss the
development of a drag-free and attitude control system for MGRS that leverages existing technology, thereby
establishing the possibility of achieving extremely precise drag-free performance on a tightly constrained
platform.

In order to synthesize an appropriate control system for MGRS, it is essential to first obtain a detailed
characterization of all forces and torques on the satellite and test mass. This not only includes external
non-conservative forces such as aerodynamic drag, solar and Earth radiation pressure, but also the inter-
actions between the satellite and the test mass itself such as electromagnetic and self-gravity gradients.
Consequently, the contributions of this paper are as follows: first, we detail the modeling assumptions and
development of a high-fidelity simulation environment that provides insights into the range of expected dis-
turbances (both external and internal) for a near circular Sun-synchronous orbit at a mean altitude of 657
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km. Second, the disturbance simulation results are used to select a suitable micropropulsion system based
on a trade-study involving several options such as ion-engines, cold-gas and electrospray thrusters. Suitabil-
ity here is defined by two key characteristics: (a) satisfaction of the power, mass and volume constraints,
and (b) precision thrust controllability and sub-µN level noise. Third, we formalize the drag-free perfor-
mance objective and propulsion constraints within a translational and attitude control system framework. In
particular, we illustrate the nonlinear coupling between the translational and rotational dynamics induced
by the drag-free performance bounds, highlight fundamental limitations for control, and present a method
for decoupling the control design. Finally, we employ H∞−optimization based techniques to synthesise
the drag-free and attitude controllers and implement them within the high-fidelity simulator. Our results
demonstrate that the residual acceleration of the test mass is below the target bound of 10−12 ms−2

/√
Hz

with margin using existing micropropulsion technology, thereby establishing microsatellites as feasible plat-
forms for hosting precise experiments in space.

The rest of the paper is organized as follows: Section 2. introduces the notation that is used for the rest of
the paper; Sections 3., 4. and 5. detail the time and reference frame conventions, equations of motion, and
force and torque modeling for the high fidelity simulator, concluding with simulation results. In Section 6.,
we present our discussion on the selection of a micropropulsion system, formalize the drag-free and attitude
control problems, and formulate controllers using H∞−optimization. Section 7. validates the controllers
synthesized in Section 6. by implementing them within the full nonlinear simulation environment. Finally,
we present our conclusions in Section 8. with a discussion on future work that will explicitly account for
model uncertainties and utilize online disturbance estimation techniques within a robust, adaptive control
framework.

2. Notation

For vectors a, b ∈ R3, the dot and cross products are denoted as a · b and a × b respectively. Unit vectors
are denoted by an overhead (̂·), i.e. â := a/‖a‖2 where ‖ · ‖2 denotes the usual Euclidean norm. Let In
denote an n× n identity matrix. Given (possibly Multiple Input Multiple Output) transfer functions w1, w2

and w3, we define diag(w1, w2, w3) to denote a block diagonal matrix where the blocks are the individual
transfer functions. The singular values of a Multiple Input Multiple Output (MIMO) system w are denoted
by σ(w), and the maximum and minimum singular values are defined as σ̄(w) and

¯
σ(w) respectively. For a

vector b = [b1, b2, b3]
T , its skew-symmetric form Ω is defined as as:

Ω :=

 0 −b3 b2
b3 0 −b1
−b2 b1 0

 .
Let q̃ denote the amplitude spectral density (ASD) of the variable q. That is, if q has units ‘x’, q̃ has units
x
/√

Hz. Finally, in this paper we will clearly distinguish between vector and matrix equations. In particular,
any time-derivatives in vector equations will be referenced to an observer in the inertial or body frame by the
subscripts (·)I and (·)B respectively. Time-derivatives in matrix equations will always refer to the reference
frame in which the vector components are expressed. These reference frames are defined in the next section.

3. Time and Reference Frames

The primary Earth Centered Inertial (ECI) frame used in this paper is the Earth Mean Equator - Mean
Equinox Dynamical System of J2000 (EME2000). This frame coincides with the Geocentric Celestial
Reference Frame (GCRF) to within tens of milli-arcseconds [23]. The Earth Centered Earth Fixed (ECEF)
frame is the International Terrestrial Reference Frame (ITRF).

Transformation between the ECI and ECEF frames is done using the IAU-76/FK5 reduction utilizing the
IAU-76 Precession, IAU-80 Theory of Nutation, and IAU-82 Sidereal time models. The algorithm imple-
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mented is outlined in [23]. For a position vector rI in the ECI frame, the equivalent position in the ECEF
frame rE , is given by:

rE = Π(t)Θ(t)N(t)P (t)rI , (1)

where Π(t), Θ(t), N(t) and P (t) describe the polar motion, sidereal rotation, nutation1 and precession
transformation matrices respectively. The polar motion coefficients (xp, yp), time parameters ∆UT1 :=
UT1− UTC, ∆AT := TAI − UTC and LOD are obtained from the online International Earth Rotation
Service (IERS) database.

In addition to the ECI and ECEF frames, the Local Orbital Reference Frame (LORF) is defined in Figure 1.

Figure 1: Definition of the Local Orbital Reference Frame with basis vectors: îo: Cross-track, ĵo: In-track,
k̂o: Zenith (opposite radial).

As MGRS will serve as a stepping stone towards both Earth science and relativistic missions, we foresee
various attitude modes during drag-free operations such as inertially fixed or aligned with the LORF and
thus possessing a nominal spin equal to the satellite’s mean motion around the Earth. In this paper, we study
the second mode. The inertially fixed mode can be considered as a subset of the LORF mode by setting the
nominal spin to zero. The satellite body fixed frame and its alignment with respect to the LORF is shown in
Figure 2. Additional drawings of the satellite with dimensions are provided in Appendix 11.1.

Figure 2: Illustration of the satellite body fixed frame and its alignment with respect to LORF; x−axis:
Cross-track, y−axis: In-track, z−axis: Zenith.

As shown in Figure 2, the satellite’s x−axis is nominally aligned with the cross-track axis of the LORF.
Consequently, the satellite possesses a nominal spin about its x−axis equal to the mean motion of the
satellite around the orbit. To parametrize the satellite attitude with respect to the LORF, we define a set of

1Without the extra EOP corrections δ∆ε1980 and δ∆Ψ1980 as we are not referencing the GCRF frame.
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Euler angles: starting from the LORF in Figure 1, we use the rotation order: z−axis: Yaw (ψ), x−axis:
Pitch (θ), y−axis: Roll (φ).

4. Equations of Motion

Let the ECI position of the satellite center of mass and test mass be given by rs and rp respectively. The
equations of motion for the test mass and satellite are given by:

mpr̈pI = Fgp + Fsp + Fdp (2a)
msr̈sI = Fgs − Fsp + Fds + Fcs, (2b)

where Fgp and Fgs are the net external (i.e. due to the Earth, Moon, and Sun) gravitational forces on the
test mass and satellite respectively; Fsp is the disturbance force exerted by the satellite on the test mass
hereby denoted as the “stiffness” force; Fds and Fdp are direct disturbances on the test mass and satellite
respectively, and Fcs are the thruster control forces on the satellite. The mass of the satellite and test mass
are denoted by ms (≈ 100 kg) and mp (≈ 70 g) respectively. For the remainder of the paper, we will refer
to the normalized forces (accelerations) by the lowercase f and reserve F to denote actual forces2 .

The direct forces on the test mass fdp comprise of residual non-gravitational forces not shielded by the
external satellite (e.g. collision impacts from cosmic rays, differential pressure forces from satellite compo-
nent outgassing). As these forces are not dynamically coupled with the satellite, they cannot be mitigated
via control and therefore represent a fundamental lower bound on achievable drag-free performance. The
stiffness disturbance describes a coupling between the satellite and test mass that can be attributed to sev-
eral sources such as: magnetic field gradients, self-gravitational forces exerted by the satellite upon the test
mass, and electrical stiffness. The magnitudes of the various direct and stiffness disturbances are discussed
in detail in [24] for a variety of satellite/test mass configurations. For MGRS, the direct disturbance on the
test mass fdp is estimated to have a unilateral ASD less than 4 · 10−13 ms−2

/√
Hz in all three axes within

the MGRS science frequency band B. The stiffness coupling will be discussed in more detail later.

MGRS will be flown in “pure drag-free” mode where the external satellite is flown around the free-floating
test mass. This mode of operation differs from the “accelerometer drag-free” mode employed by GPB and
GOCE (and proposed for Microscope) where an electrostatic accelerometer is used to control the satellite
thrusters to minimize the suspension forces that keep the test mass centered within its housing.

The evolution of the displacement between the satellite and test mass center of mass is described by the
relative equation:

r̈spI = r̈pI − r̈sI , (3)

where rsp denotes the vector from the satellite center of mass to the test mass. For simulation, the satellite’s
dynamics are integrated in the ECI frame and the relative satellite/test mass dynamics are integrated in the
satellite body frame:

r̈spB = r̈spI −
(
ω̇ × rsp + 2ω × ṙspB + ω × (ω × rsp)

)
, (4)

where ω := [ωx, ωy, ωz]
T is the rotation rate of the satellite body frame with respect to inertial space and

(·)B signifies acceleration and velocity with respect to an observer rotating with the satellite.

The satellite angular velocityω and quaternion q with respect to inertial space are governed by the following
2The normalization for Fsp denoted by fsp is with respect to mp.

5



equations:

ω̇ = J−1
(
M − ω × Iω

)
(5a)

q̇ =
1

2

[
0
ω

]
� q, (5b)

where M is the sum of the disturbance (Md) and control (Mc) torques on the satellite, J is the satellite
moment of inertia matrix, and � denotes the quaternion product.

We now address the modeling of the various forces and torques on the satellite and test mass with the goal
of obtaining an accurate characterization of the expected disturbances, thereby allowing us to formulate the
drag-free and attitude control systems.

5. Force and Torque Modeling

This section details the contributions to the various forces and torques in Equations 2a, 2b and 5a for de-
veloping the high-fidelity simulator. The models discussed in Sections 5.1.-5.3. can be found in standard
spacecraft design literature and the reader may skip directly to Section 5.4. for simulation results without
loss in continuity; a short summary for these sections is provided in Table 1.

Modeled Effect Comments Relevant terms in
2a 2b and 5a

Gravity Aspherical harmonic expansion model for Earth fgs, fgp,Md

Solid Earth tidal effects
Third-body effects from the Sun and Moon
Gravity gradient disturbance torque

Environmental disturbances Aerodynamic force and torque fds,Md

Radiation force and torque (Solar and Earth radia-
tion pressure)
Magnetic disturbance torque

Stiffness disturbances Self-gravitational forces (mass-attraction) fsp
Electromagnetic forces

Control forces FEEP thrusters fc, fds
Table 1: Summary of Modeled effects

Due to the primarily stochastic nature of the direct disturbances on the test mass and the plethora of pos-
sible effects (see [24]), the disturbance fdp is modeled as band-limited noise with a unilateral ASD of
4 · 10−13 ms−2

/√
Hz up to 5 Hz.
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5.1. Gravity

5.1.1. Central Body

The aspherical gravitational potential function for the Earth at distance r and geocentric latitude and longi-
tude (φ, λ) is given by:

U =
µ⊕
r

[
1 +

Nmax∑
l=2

l∑
m=0

(
R⊕
r

)l
Pl,m(sin(φ)) [Cl,m cos(mλ) + Sl,m sin(mλ)]

]
, (6)

where µ⊕ is the Earth gravitational potential, R⊕ is the mean Earth radius, Pl,m are the associated Legendre
functions, and Cl,m and Sl,m are the degree l and order m unitless gravitational coefficients. The resulting
acceleration given by the gradient of the potential function was obtained by implementing the efficient
recursive algorithm derived in [25]. For our simulations we utilized the (tide-free) GRACE GGM001S
coefficients up to degree and order 120 (i.e. Nmax = 120). In addition, we also modeled solid Earth tidal
effects using the two step approach outlined in [26] up to degree four.

The gravity gradient torque on the satellite is modeled using a first order binomial expansion for the distance
from the Earth center to any given point on the satellite along with the Newtonian two-body gravity model
[27]:

Mgg =
3µ⊕
‖rs‖52

rs × Irs. (7)

5.1.2. Third Body

The acceleration of the satellite and test mass (formula given below for satellite) with respect to the Earth
due to the Sun and Moon is given by:

2∑
j=1

µj

(
rsj
‖rsj‖32

− rj
‖rj‖32

)
, (8)

where µj is the gravitational constant of the third body (j = 1: Sun, j = 2: Moon), rsj is the vector from
the satellite to the third body and rj is the position of the third body with respect to the Earth.

The positions of the Moon and Sun in the EME2000 frame were computed using the JPL Ephemeris DE405
and a frame-bias rotation matrix [23] that transforms the GCRF coordinates returned by the Ephemeris
software into the EME2000 frame.

5.1.3. Relativistic Corrections

The curvature and dragging of space-time due to Earth’s mass and rotation result in non-negligible post-
Newtonian correction terms to the satellite and test mass geodesic motion. Within the context of the various
forces defined earlier, these relativistic corrections are considered to be a part of the external gravitational
acceleration terms. The first order relativistic acceleration correction (given below for the satellite) is given
by [28]:

− µ⊕
‖rs‖22

[(
4µ⊕

c2‖rs‖2
−
(
‖ṙsI‖2
c

)2
)
r̂s + 4

(
‖ṙsI‖2
c

)2

(r̂s · ˆ̇rsI )ˆ̇rsI

]
, (9)

where c is the speed of light.
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5.2. Environmental Disturbances

Here we consider the dominant non-conservative perturbation forces on the satellite: aerodynamic drag,
radiation pressure, and magnetic torques.

5.2.1. Atmospheric Drag

Due to the highly rarefied atmosphere in LEO, the computation of aerodynamic forces differs from the stan-
dard continuum approach at aircraft flight altitudes [29]. For an altitude of 657 km, the flow regime is char-
acterized by a freestream Knudsen number >> 10 placing the spacecraft within the realm of free molecular
flow, specifically, sub-hyperthermal flow [29]. The discussion in [29] considers a variety of existing com-
putational approaches to spacecraft aerodynamics, most of which employ some form of the Maxwellian
gas surface interaction model. For MGRS, we implemented a simplified version of the Ray-Tracing Panel
(RTP) method by decomposing the satellite surface into discrete panels and treated the incoming flow as a
collimated beam of particles. That is, we do not account for multiple reflections or molecular collisions on
shielded (from free-stream flow) or aft-facing surfaces. The satellite’s bulk velocity with respect to the local
atmosphere is approximated as:

ṙsI,rel ≈ ṙsI − (ω⊕ × rsI + vw) ,

where ω⊕ represents the Earth’s average rotation rate and vw is an estimate for the neutral wind velocity.
Wind speeds are estimated using the Horizontal Wind Model ’933 which is an empirical model of the hor-
izontal neutral winds in the upper atmosphere based on data obtained from the AE-E and DE 2 satellites
[30]. A set of vector spherical harmonics are used to describe the zonal and meridional wind components,
including effects such as solar and geomagnetic activity. The force imparted on the ith surface panel of the
satellite with outward facing normal n̂i is given by:

Fdragi =
1

2
Aiρ‖ṙsI,rel‖

2
2

[
− Cpin̂i + Cτi τ̂i

]
, (10)

where Ai is the (un-shielded) area of the ith surface panel, ρ is the local atmospheric density, Cpi and Cτi
are the coefficients of pressure and shear stress respectively, and

τ̂i :=
(ˆ̇rsI,rel × n̂i)
‖(ˆ̇rsI,rel × n̂i‖2

× n̂i.

Note that the random thermal motion of the molecules is accounted for by the gas-surface interaction model
and a finite molecular speed ratio (≈ 5). Based on the plots for Cp and Cτ given in [29] for a variety of
molecular speed ratios, angles of incidence, and varying levels of diffuse and specular reflection using the
Schaaf and Chambre gas-surface interaction model [31], (10) can be simplified to the more familiar form:

Fdragi = −1

2
CdAiρ‖ṙsI,rel‖

2
2

(
n̂i · ˆ̇rsI,rel

)
ˆ̇rsI,rel ,

where Cd ≈ 3 is the effective drag-coefficient. The aerodynamic torque due to the ith surface is calculated
by taking the cross-product:

Mdragi = rsurfi × Fdragi ,

where rsurfi is the location of the centroid of the ith surface with respect to the satellite center of mass.
The net force and torque were found by summing over all unshielded surfaces as determined by the RTP
method. Atmospheric density was computed using the NRLMSISE 2000 atmosphere model. Efforts to

3Fortran code obtained from the NASA Goddard Space Flight Center online repository.
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maximize accuracy for the predicted density included incorporating the effects of the solar radio flux daily
(F10.7) and 81-day average (F10.7A) values, as well as the Ap geomagnetic index for a period up to 57 hours
before the current time. For an anticipated launch date in early 2018, future solar activity predictions suggest
an average 13-month smoothed F10.7 value < 100, and an Ap geomagnetic index value ≈ 20 [32, 33]. As
a conservative upper-bound, we reference the solar and geomagnetic activity recorded on April 12, 2014.
This corresponds to: F10.7A = 144.4, F10.7(Previous daily) = 136.9, and Ap(daily average) = 20.

5.2.2. Radiation Pressure

The net radiation pressure (RP) force on the satellite can be attributed to: (a) solar radiation pressure (SRP)
due to direct incidence from the Sun, and (b) Earth radiation pressure (ERP) due to reflected shortwave
radiation (albedo) and re-emitted longwave infrared radiation. The resulting force from each of these sources
was modeled as a sum of absorbed, specular and diffusely reflected components over all illuminated satellite
surfaces. The contribution due to direct radiation from the sun on the ith illuminated face is given as:

Fsrpi = −ν PsrpAi cos(φinci)

c

[
2
(crd

3
+ crs cos(φinci)

)
n̂i + (1− crs)ŝ

]
, (11)

where Psrp is the incident solar irradiance measured at the satellite position (assumed constant at 1367
Wm−2 [34]), c is the speed of light, Ai is the illuminated area for the ith satellite face (calculated using
the same RTP method as for aerodynamic drag) with outward normal vector n̂i, and φinci is the incidence
angle between n̂i and the satellite-to-sun unit vector ŝ. The specular (crs) and diffuse (crd) reflectivities are
assumed to be equal to the GRACE solar panel coefficients (0.05 and 0.3) [35]. The parameter ν ∈ [0, 1] is
the shadow coefficient treating Earth as the occulting body and is calculated using the algorithm in [28].

Earth radiation effects were computed using the algorithm outlined in [36] using a 5o grid. The net shortwave
(albedo) and longwave (infrared) irradiance incident at the satellite due to the jth Earth element is denoted
by Perpj with associated satellite-to-earth-element unit vector ŝj . To avoid having to compute the radiation
force due to each Earth element separately, we defined the following unit vector:

ŝerp :=

∑Nel
j=1 Perpj ŝj∑Nel
j=1 Perpj

,

where Nel is the total number of Earth elements in the grid. Thus, ŝerp is a weighted (by irradiance) average
of all satellite-to-Earth-element vectors incident at the satellite. The net ERP force on the ith surface Ferpi

was then calculated using (11), the net irradiance
∑Nel

j=1 Perpj , and the vector ŝerp. The associated torque
due to the ith surface is calculated as

Mrpi = rsurfi ×
(
Fsrpi + Ferpi

)
.

The net force and torque were found by summing over all illuminated surfaces.

5.2.3. Magnetic Torque

The magnetic field model is the World Magnetic Model 2010 (WMM 2010) which calculates the magnetic
field as the gradient of a spherical harmonic representation of the magnetic potential function. The WMM
2010 model is valid until January 1, 2015 and only models the long-wavelength portion of the Earth’s
internal magnetic field (generated in the conducting, fluid outer core) - which represents approximately 95%
of the observed magnetic field. Thus, contributions from Earth’s crustal field and other disturbance effects
from currents in the atmosphere are not represented. The disturbance torque on the satellite was calculated
as:

Mmag = µm ×B, (12)
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where µm is the residual magnetic moment vector, and B is the local Earth magnetic field vector. For
simulating worst case conditions, we assumed a residual magnetic moment magnitude of 0.1 Am2.

5.3. Stiffness Disturbance

In this section we detail the coupled disturbance forces between the satellite and test mass. The two primary
contributions to this disturbance stem from electromagnetic stiffness and mass attraction. The electromag-
netic stiffness acceleration fspem , is modeled as an unstable linear spring:

fspem = Kem (rsp − reqe) , (13)

where reqe defines an equilibrium point with respect to the satellite center of mass, and Kem is the electro-
magnetic gradient. As in [24], we assume that the equilibrium point for the model given in (13) is the center
of the DOSS cavity (this is a reasonable assumption for a spherical test mass contained within a symmetric
housing). That is, reqe is the vector from the center of mass of the satellite to the center of the DOSS cavity.
Additionally, since the test mass has a diameter of 2.5 cm and the internal dimensions of the DOSS cavity
correspond to a 5 cm cube, we have a housing gap on the order of 12.5 mm. A reasonable estimate for
Kem based on the calculations in [24] for this housing gap is given by 3 · 10−7I3 s−2. The off-diagonal
elements for Kem are expected to be negligible due to inherent symmetry of the spherical test mass and
caging environment.

The mass attraction disturbance is modeled more precisely by decomposing the satellite into a cuboid mesh.
The mesh is more coarse (order of 20 cm cubes) further away from the DOSS cavity and reduces down to 5
cm cubes near the cavity. The solar panels are treated as thin plates. The ith cuboid is assumed to be a block
with uniform density with mass mi and inertia matrix Ji (expressed in the satellite body frame), located
at a point rbi with respect to the satellite center of mass; for simplicity a symmetrical mass distribution
is assumed about the body x−axis. Given the position of the test mass with respect to the satellite center
of mass (rsp), the net gravitational potential at that location due to the satellite is given by the sum of the
gravitational potential due to each cuboid, computed using the generalization of MacCullagh’s 2nd order
formula [37, 38]:

U =

Nb∑
i=1

Gmi

‖rbpi‖2
+

G

2‖rbpi‖32

(
Trace(Ji)− 3r̂bpi · Jir̂bpi

)
, (14)

where Nb is the total number of cuboids in the mesh, and rbpi = rsp − rbi is the location of the test mass
with respect to the ith cuboid. The force is then given as the negative gradient of the above expression. The
contributions to the test mass and satellite accelerations were computed using an extension of the 3rd body
formula given in (8).

5.4. Simulation Results

We are now ready to compute the expected disturbance profile for the MGRS satellite aligned with the LORF
corresponding to a mean 657 km Sun-synchronous 0600 : 1800 dawn/dusk orbit.

The results of the disturbance simulations are presented in Figure 3.
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Figure 3: Environmental disturbances.

In Figure 3a, notice that the dominant disturbance is in the cross-track direction and is due to the direct SRP
force. This is expected since the Sun lies roughly normal to the plane of a dawn/dusk Sun-synchronous orbit
(particularly during periods where the Earth is crossing the Vernal Equinox axis as is the case near April).
The fluctuations in this force are due to cross-track aerodynamic drag as a result of a co-rotating atmosphere
and zonal atmospheric winds. The dominant disturbance in the in-track axis is atmospheric drag and varies
roughly between 2 − 8 µN. The radial axis experiences very little disturbance (< 1 µN) and primarily
consists of ERP forces.

Figure 3b shows the net disturbance torques due to all environmental sources. The dominant effect is
the magnetic disturbance torque; aerodynamic torques were less than 0.5 µNm about the yaw axis, and RP
torques were less than 0.5 µNm in roll and between±0.04 µNm in the yaw axis. The gravity gradient torque
was essentially negligible (under the assumption of small roll and pitch angles). The magnetic disturbance
torque was calculated based on a randomly generated direction for the magnetic dipole. A conservative
upper bound for this disturbance is given by the product of the dipole strength (< 0.1 Am2) with the worst
case magnetic intensity at this altitude (< 49 µT). This yields a worst case magnetic disturbance torque on
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the order of 4.9 µNm.

Using the environmental disturbance estimates, we can derive a control force and torque envelope required
for adequate drag-free and attitude control. In particular, the propulsion assembly should be able to generate
torques up to±10 µNm (based on a factor of safety of two with respect to the magnetic torques). For forces,
we require controllability in the ranges
• [−30, 10] µN for cross-track,
• [−20, 20] µN for in-track, and
• [−10, 10] µN for the radial axis.

For a stabilized (with respect to LORF) attitude, the force controllability ranges above coincide with the x, y
and z axes of the satellite. This force and torque envelope is used to generate a feasible configuration for the
propulsion assembly as discussed in Section 6.1. and Appendix 11.2.

Having obtained a comprehensive characterization of the expected force and torque disturbances for MGRS,
we are now ready to formalize the drag-free and attitude control problems.

6. Control Design

The drag-free and and attitude control design for MGRS must accomplish the following goals within the
science frequency band B:
• restrict the non-gravitational acceleration ASD on the proof-mass to be below 10−12 ms−2

/√
Hz,

• restrict the ASD for the Euler angles to be below 0.1 rad
/√

Hz,
• restrict the ASD for the Euler angular rates to be below 100 µrad s−1

/√
Hz, and

• restrict the ASD for the Euler angular accelerations to be below 0.4 µrad s−2
/√

Hz.

The derivation of the last three requirements above are detailed in the attitude control subsection. As the
spacecraft possesses a nominal spin (due to the LORF orientation), the drag-free and attitude control objec-
tives become coupled. We present a decoupled control approach where the drag-free controller is designed
first by assuming a stabilized three-axis attitude. The assumptions required to formulate this controller then
lead to performance bounds on the attitude control subsystem. The primary sensors for the control systems
are the DOSS, star-trackers, and a GNSS receiver (used to estimate the LORF). The actuator is a FEEP
micropropulsion system that provides full three-axis force and torque compensation. We do not use any
momentum or magnetic based attitude control during the drag-free operational mode to avoid introducing
additional disturbances on the test mass. The selection of this propulsion system is guided by the disturbance
envelope calculations and is detailed first.

6.1. Thruster Selection and Configuration

As mentioned earlier, the ability to generate a high precision drag-free environment for the test mass is
dependent on the quality of the micropropulsion system. For MGRS, a variety of propulsion options were
considered:
• Cold-gas: Both GPB and GAIA successfully used proportional cold-gas thrusters. The GAIA mi-

cropropulsion subsystem consists of 12 micro-thrusters each with closed-loop thrust control at 40 Hz,
thrust controllability between 1-1000 µN, thrust resolution of 0.1 µN, and thrust noise< 0.1 µN/

√
Hz

[22, 39]. These thrusters will also be flown on the upcoming LPF and CNES Microscope [12] mis-
sions. While these thrusters would be ideal for drag-free control, the low specific impulse (Isp) of cold
gas (< 65 s reported by GAIA) and gas leakage would severely limit mission lifetime. As MGRS is
a small microsatellite, it is unable to accommodate large propellant tanks. The use of on/off cold gas
thrusters within a bang-bang and bang-off-bang control scheme was also considered. This method

12



was eventually abandoned due to: (a) excessive actuation for small deadbands, and (b) unacceptable
drag-free performance when using a larger deadband (due to the stiffness coupling).
• Electric Propulsion: Low-thrust electric propulsion is characterized by average Isp > 2500 s, and

low mass and volume requirements. Several options were considered including the Giessen µN RIT
ion thrusters [40], Busek Electrospray thrusters [41], and ALTA FT-150 FEEP thrusters [42, 43].
Several other new electric propulsion technologies are reported in [44], however most are still in
early development phase. While electric propulsion certainly meets the propellant consumption and
volume restrictions, most current technologies require too much power. For instance, two Giessen µN
ion engines operating at 300 µN each would consume ≈ 100 W (including losses) [45]. This is the
primary reason a low altitude mission was declared infeasible for MGRS.

Recent communication with ALTA SpA on their FT-150 FEEP thrusters yielded the data given in Table 2.

Characteristic Comments Value

Power 4 thruster cluster at 100 µN/thruster < 40 W
Power Control Unit (PCU) < 10 W
Neutralizer < 4.5 W

Thrust range 0.1− 150 µN
Thrust resolution 0.1 µN
Isp 3000− 4500 s
Thrust noise 0.01-1 Hz < 0.1 µN/

√
Hz

Time response Rise time (31− 60 µN) < 80 ms
TRL 7

Table 2: ALTA FT-150 FEEP Characteristics

Additionally, the noise profile for each individual thruster is given in the following plot [46].
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Figure 4: Individual thrust noise unilateral ASD (including quantization error noise due to 0.1µN at 10 Hz).

The disturbance envelope calculated in Section 5.4. was used within a convex optimization algorithm to
obtain a feasible thruster configuration that guarantees the ability to counteract all expected disturbance
forces and torques. This procedure yielded a thruster configuration that utilizes 3 clusters with 3 thrusters
per cluster, operating at < 55 µN per thruster (see Appendix 11.2.). With a reduced number of thrusters per
cluster and smaller thrust load, the FT-150 FEEP thrusters are a promising choice for this mission. The rise
time reported in Table 2 corresponds to a fairly large step of 30 µN whereas smooth operation is anticipated.
Accordingly, the thrusters are modeled with first order dynamics having a rise time of 50 ms (time constant
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τt = 26 ms) with a steady state gain of unity:

ft(s) =
1

τts+ 1
. (15)

In future work, we will expand upon this model to include uncertainties in the steady-state error. To gener-
alize the individual thruster noise in terms of the net force and torque noise for each axis (thereby implicitly
accounting for cross effects), the noise curve in Figure 4 is scaled by the l1 norm of the corresponding row
in the configuration matrix (see Appendix 11.2.).

6.2. Drag-Free Control

The drag-free performance objective for MGRS is to achieve a residual acceleration noise floor for the test
mass less than 10−12 ms−2

/√
Hz within the science frequency band B. To help formalize this objective

within a control framework, consider the normalized version of (2a). The net non-gravitational normalized
force fng on the test mass can be written as

fng = fdp + fsp. (16)

As mentioned earlier, control feedback cannot mitigate the effect of the direct perturbations on the test mass
fdp. The dominant contributions to the stiffness disturbance fsp are electromagnetic and mass attraction
effects. While the non-linear summation in (14) is a reasonable approximation for simulating the mass
attraction disturbance, it is not in a convenient form for drag-free control design. Accordingly, we first
generalize the electromagnetic and mass attraction disturbances by defining a point req with respect to the
satellite center of mass, hereby referred to as the “control center,” and approximate fsp about this point as
follows:

fsp ≈
(
Kem +Kgg|eq

)
︸ ︷︷ ︸

:=K

(rsp − req) + f̄sp, (17)

where f̄sp is the residual bias due to the electromagnetic4 and self-gravitational forces at req, Kgg|eq is the
self-gravity gradient at req, andK is the net coupled force gradient. Note that req represents a design choice
whose selection is motivated by minimizing both the bias and the net gradient at this point. A similar design
philosophy is portrayed in [47] where the authors modify the satellite’s inertial properties to minimize the
self-gravity gradient at a given point. Guided by the same design objective as in [47], by testing a few
different points within the DOSS cavity, we selected the control center to be located 1.74 mm along the
negative x−axis with respect to the center of the DOSS cavity. Using the cuboid mesh described in Section
5.3., we deduce that req = [1.5, 0, 0]T cm, the net bias force f̄sp is [4.722 · 10−10; 0; 0] ms−2, and the
self-gravity gradient Kgg|eq was computed to be:

Kgg|eq ≈

3.987178 0 0
0 3.29246 0
0 0 3.35296

 · 10−7s−2,

where the off-diagonal terms are negligible (order 10−18). For control design, we used a more conservative
upper bound K = 10−6I3 s−2.

Note that the stiffness interactions between the satellite and test mass are in general quite difficult to predict
on ground and the design model described in (17) is an approximation only. The final bias and stiffness
gradients must be estimated online during on-orbit calibration [48].

4The residual electromagnetic bias force at req is equal to Kem (req − reqe) .

14



Let rc := rsp−req denote the position of the test mass with respect to the control center req, hereby referred
to as the “drag-free control error”. Using (17), the expression for the non-gravitational accelerations fng
becomes:

fng = fdp +Krc + f̄sp.

Given our upper bound for fdp (< 4·10−13 ms−2
/√

Hz in all axes), andK (< 10−6 s−2 along the diagonal),
the drag-free performance requirement can be equivalently re-stated as the following translational control
objective:

r̃c(f) < 10−7 m
/√

Hz, f ∈ B. (18)

Note that the above specification applies to all three directions. Using the definition of the control error, (4)
may be re-written as follows:

r̈cB = δfeq + δfc + δfg + δfsp + δfp + uT (19)

where,

δfeq := −
[
ω̇ × req + ω × (ω × req)

]
(20a)

δfc := −
[
ω̇ × rc + 2ω × ṙcB + ω × (ω × rc)

]
(20b)

δfg := fgp − fgs (20c)

δfsp :=

(
1 +

mb

ms

)
︸ ︷︷ ︸

:=m−1

fsp = m−1
(
Krc + f̄sp

)
(20d)

δfd := fdp − fds (20e)
uT := −fcs (20f)

Thus, δfeq and δfc act as “fictitious” disturbances due to the Coriolis and centrifugal accelerations from
req and rc, δfg and δfd are the differential gravity and direct perturbation disturbances respectively, and
uT is the normalized control thrust. It is important to note that the bias disturbance m−1f̄sp is unavoidable
in pure drag-free mode (as opposed to accelerometer drag-free mode [24]) and will lead to a steady state
perturbation of the overall satellite/test mass assembly. In order to use linear control design techniques and
decouple the attitude and translational control problems, the following simplifications are employed:
• Stabilized attitude: ω̇ ≈ 0, ω ≈ ω̄, where ω̄ is a constant assumed spin rate. For MGRS, this

corresponds to the satellite’s mean motion, i.e. ω̄ := [n̄, 0, 0]T , where n̄ is the mean motion of the
satellite.
• Neglect the term δfg: The differential gravitational acceleration due to a spherical Earth between two

points < 0.1 µm apart at an altitude of 657 km is in the order of 10−13 ms−2, and can be safely
neglected.

Leveraging the above simplifications, (19) can be re-written as a linear time invariant MIMO plant. Let Ω̄
be the skew-symmetric form for ω̄. Then, define the following state vector:

X :=

[
rc
ṙcB

]
.

Equation (19) can now be re-written as the following MIMO system:

Ẋ =

[
ṙcB
r̈cB

]
≈
[

O3 I3
m−1K − Ω̄2 −2Ω̄

]
︸ ︷︷ ︸

A

X +

[
O3

I3

]
︸ ︷︷ ︸
B

(
uT +m−1f̄sp + δfd + δfeq

)
,

rcB =
[
I3 O3

]︸ ︷︷ ︸
C

X + η,

(21)
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whereO3 is a 3×3 matrix of zeros, and η represents the measurement noise from the DOSS. From laboratory
experiments, the DOSS noise may be characterized by the ASD shown in Figure 5 [49].
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Figure 5: Single axis upper bound for the DOSS unilateral noise ASD; the other two axes are anticipated to
have the same upper bound.

In order to meet the objective given in (18) a variety of control methodologies were considered. For instance,
[1] discusses an on/off based limit cycle controller. The GOCE drag-free control design employs discrete
control techniques including an online disturbance estimator [21] . In [50, 51, 52], the authors upper bound
the disturbance ASDs and employ H∞− control techniques, and [53] presents a mixed µ−synthesis (see
[54]) approach by maximizing the performance weights subject to the structured singular value constraints
for robust stability and performance, thereby dispelling the need to fashion performance weights manually.
For obtaining a preliminary controller here using the disturbance, noise, and performance ASDs, we employ
the H∞− control design methodology [55].

To begin, note that the primary input disturbances in (21) stem from the direct disturbance forces on the
satellite, i.e. the component fds in δfd. This primarily consists of: thruster noise, aerodynamic drag, and
RP. Inspite of the clear periodic nature of the disturbances as seen in Figure 3a, in order to derive a controller
within a unified spectral density framework, we must model the disturbance as having a high noise amplitude
at low frequency as shown in Figure 6.
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(b) y− axis.
Figure 6: Unilateral ASDs for input disturbances; DC trend removed for Drag + RP curves and design
weight for y− axis shaped to capture resonance near orbital frequency.

Figure 6 shows that the thrust noise ASD dominates the environmental disturbance ASD for the x−axis
(the z−axis is very similar). This is expected since the disturbances in the x and z axes (primarily SRP
and ERP) do not show much variation over an orbit, and can be easily bounded by the low frequency
asymptote of the thrust noise ASD. For the y−axis however, we used the upper bound given by the green
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curve which also captures the resonance effects near the orbital frequency. Finally, we scaled the normalized
(by satellite mass) thrust noise curves in Figure 6 by an additional factor of two to also account for the
perturbation due to δfeq. This places an implicit bound on the rotational dynamics embedded within the
translational equations of motion and will be used to derive performance bounds for the attitude controller.
The generalized plant/drag-free controller feedback system is shown in Figure 7.

Figure 7: Drag-free control loop with normalized exogenous inputs d and n and performance variables ze
and zu.

In the figure above, Wd = diag(2wdx , 2wdy , 2wdz) where wdi is the normalized input disturbance weight
for the ith axis (Figure 6), Wn = diag(wn, wn, wn) where wn is the DOSS noise ASD (Figure 5), Kdf

is the drag-free controller, D = diag(dt, dt, dt) where dt is a first order Padé approximation of a 150
ms delay (50 ms effective sampling delay and 100 ms for one sample period hold for data processing,
thrust allocation, etc.), F = diag(ft, ft, ft) where ft is the first order model for the FEEP thrusters5, and
Wp = diag(wp, wp, wp) and Wu = diag(wu, wu, wu) model the inverse of the allowed spectral densities for
the drag-free error and control signals respectively. The exogenous inputs d and n represent the normalized
input disturbances and noise (i.e. white noise with a spectral density upper bounded by one), and the outputs
ze and zu represent the normalized ASDs for the drag-free error and control signals. Both wp and wu are
plotted in Figure 8.
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Figure 8: Performance weighting functions for drag-free control loop.

The closed-loop transfer functions from the normalized input disturbance and noise to the performance
5Note that we neglect differences between individual thruster time responses and model the net force in each axis to have the

same first order response.

17



outputs ze and zu are given by:

[
ze
zu

]
=


Wp (I +GFDKdf )−1︸ ︷︷ ︸

So

GWd −Wp SoGFDKdf︸ ︷︷ ︸
To

Wn

−Wu (I +KdfGFD)−1︸ ︷︷ ︸
SI

KdfGWd WuSIKdfWn


︸ ︷︷ ︸

:=N

[
d
n

]
, (22)

where So and To are the output sensitivity and complementary sensitivity functions respectively, and SI
is the input sensitivity. Note that the above definitions highlight the fact that the effective plant transfer
function is given by GFD. The stacked H∞ objective is now formalized as:

‖N‖∞ < 1, (23)

where ‖N‖∞ is defined as the maximum singular value ofN over all frequencies. The use of theH∞−norm
is justified in the sense that it ensures that the ASDs for the drag-free control error and control signal are
below the desired bounds (given by 1/wp and 1/wu) at all frequencies. The design of the performance
weighting functions was guided by some fundamental limitations in the generalized plant/controller struc-
ture shown in Figure 7.

At low frequencies where σ(So) << 1 and σ(To) ≈ 1, the control error performance is limited by the DOSS
noise which is why the performance weight wp is relaxed for frequencies below B. Within B itself, the jitter
from DOSS noise is negligible (on the order of 20 nm/

√
Hz). Here, the primary constraint stems from the

rejection of input disturbances, and wp within the science band is adjusted accordingly to reflect the control
objective given in (18). From Figure 7 we note that the open loop transfer function from the normalized
disturbance to the performance output ze is given by WpGWd. The frequency at which σ̄(WpGWd) crosses
one from above defines a lower bound on the closed-loop bandwidth for So (defined as the frequency at
which σ̄(So) = 1 from below), and is equal to 0.0571 Hz. Additionally, as the drag-free loop runs at 10
Hz (limited by thruster command rate) and accounting for an additional delay margin of 100 ms, we also
desire an upper bound (at most 1 Hz) on the control bandwidth. This is the purpose of the performance
weighting function Wu which aggressively penalizes control past 0.1 Hz. Fine tuning of the performance
weighting functions was accomplished by considering fundamental limitations on the weighted sensitivity
and complementary sensitivity peaks as given in [55]. The results of the H∞−optimization are summarized
in Figure 9 and the text thereafter.
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Figure 9: Closed-loop output sensitivity and complementary sensitivity singular values; closed-loop band-
width: 0.154 Hz.

Figure 9 shows the singular values of the closed-loop output sensitivity So and complementary sensitivity
To for the complete MIMO system; the closed-loop sensitivity bandwidth is 0.154 Hz. The optimization
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yielded the value ‖N‖∞ = 0.8919 < 1 which confirms that the controller meets the performance specifi-
cations dictated by the optimization objective in (23). This peak is located at 0.004 Hz which is below the
science band B; the small margin here can be attributed to the 1/f pink noise characteristic of the DOSS
measurements.

It is now instructive to consider some of the implications of the simplifications made in order to obtain (21).
In particular, we assumed a nominal spin (about the x−axis), negligible angular acceleration, and a nominal
value for the stiffness gradient K. In its full generality, the state matrix A in (21) should be[

O3 I3
m−1K − Ω2 − Ω̇ −2Ω

]
,

where Ω and Ω̇ are the skew-symmetric forms for ω and ω̇ respectively. By setting bounds on ‖ω − ω̄‖∞,
‖ω̇‖∞, and the diagonal entries of K, an uncertainty set for the nominal plant dynamics may be derived
using the techniques described in [56]. This decomposition allows the use of control synthesis techniques
such as µ−synthesis to yield a robust controller. However, it should be noted that the angular rate and
acceleration terms in the state matrix are time-varying. Thus, a rigorous stability and performance analysis
must leverage tools from Lyapunov stability theory for uncertain systems [57], and time-varying structural
perturbation techniques presented in [58]. For this preliminaryH∞ controller, we neglected the time-varying
characteristic and instead, ran a Monte Carlo simulation by sampling ω (‖ω − ω̄‖∞ < 4 · 10−3 rad/s), ω̇
(‖ω̇‖∞ < 4 · 10−3 rad/s2), and K (diagonal entries between [0.5, 1.5] · 10−6 s−2) and evaluated the closed-
loop stability properties and the performance measure ‖N‖∞. The closed-loop system was found to be
stable in all cases and satisfied the performance bound in (23). In future work, we will address the robust
stability and performance characteristics in more detail.

6.3. Attitude Control

Given the parametrization of the attitude with respect to the LORF in terms of the Euler angles (ψ, θ, φ), a
first order approximation for the angular velocity ω is given by:

ω ≈

 θ̇ + n̄

φ̇− n̄ψ
ψ̇ + n̄φ

 , (24)

where n̄ is the mean motion, and second order terms in the Euler angles and their rates are neglected.
Applying a first order approximation to the gravity gradient disturbance torque in (7), the Euler equations in
(5a) are rewritten as follows:

θ̈ + 3n̄2cθ =
1

Jx
(Mcx +Mdx) (25a)

φ̈+ 4an̄2φ+ n̄ψ̇(a− 1) =
1

Jy

(
Mcy +Mdy

)
(25b)

ψ̈ + bn̄2ψ + n̄φ̇(1− b) =
1

Jz
(Mcz +Mdz) , (25c)

where Jx, Jy and Jz are the principal moments of inertia (which coincide with the satellite body frame due
to symmetry in the mass distribution), and

c :=
Jy − Jz
Jx

= 0.02477

a :=
Jx − Jz
Jy

= −0.023925

b :=
Jx − Jy
Jz

= −0.04867.
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Prior to discussing the control objectives, notice the following observations:
• The pitch equation decouples from the other two axes and has pure oscillatory poles at a frequency of

0.23 · 10−3 rad/s which is quite close to the orbital frequency (1.073 · 10−3 rad/s).
• The roll and yaw coupled equations possess two sets of pure oscillatory poles at frequencies of
{1.032, 0.0762} · 10−3 rad/s, the first being quite close to the orbital frequency.

Both points above highlight the need for sufficient control authority near the orbital frequency, and thereby
motivate the design of the input disturbance weighting functions for H∞ control synthesis. The design of
the attitude controller was motivated by the following points:

Disturbances: Similar to the analysis for the drag-free controller, the ASDs due to environmental torques
are computed and compared with the net torque disturbance due to thruster noise. These results are shown in
Figure 10. The input weight used for design (shown in green) captures resonances near the orbital frequency
due to environmental effects and thruster noise at higher frequencies.
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Figure 10: Unilateral ASDs for input disturbances torques along Pitch axis (other axes are similar); DC
trend removed for environmental disturbance torques.

Noise: The Euler angles are estimated by differencing the inertial attitude given by the star-trackers and the
estimate of the LORF derived from GNSS navigation solutions. We assume that the GNSS solutions are
sampled at 1 Hz, and corrupted with Gaussian noise with standard deviation in position νr of 10 m, and in
velocity νv of 5 cm/s. The transformation matrix Ro from the ECI to LORF frame is defined as:

Ro =
[
îo ĵo k̂o

]T
=

[
rs × ṙsI
‖rs × ṙsI‖2

, k̂o × îo,
−rs
‖rs‖2

]T
.

Using the noise corrupted measurements, the estimate R̂o may be written as:

R̂o ≈ (I3×3 + ∆ε)Ro,

where ∆ε is the skew-symmetric form of the vector ε := [εx, εy, εz]
T , which represents infinitesimal rota-

tional errors about the nominal orbital frame axes. For a near-circular orbit, this vector may be approximated
as:

εxεy
εz

 ≈


δṙsI · k̂o
‖ṙsI‖2

+
δrs · ĵo
‖rs‖2

−δrs · îo
‖rs‖2

−δṙsI · îo
‖ṙsI‖2


,
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where δrs and δṙsI are the errors in absolute position and velocity. The star-tracker measurements are
sampled at 2 Hz and corrupted with Gaussian noise with standard deviation νs of 20” (0.00556o). Assuming
an on-board Extended Kalman Filter (EKF) running at 5 Hz, the net unilateral noise ASDs for the post-EKF
Euler angles estimates may be approximated as:

 θ̃(f)

φ̃(f)

ψ̃(f)

 ≈√2Tekf



√(
νv
‖ṙsI‖2

)2

+

(
νr
‖rsI‖2

)2

+ ν2s√(
νr
‖rsI‖2

)2

+ ν2s√(
νv
‖ṙsI‖2

)2

+ ν2s


≈

61.475
61.475
61.475

µrad/
√

Hz, f ≤ 2.5Hz,

(26)

where Tekf = 0.2 s is the sample time of the EKF. That is, we have assumed that the EKF yields a noise
level that is lower than the sum of the expected noise floors due to each individual source (< 9.6 µrad

/√
Hz

up to 0.5 Hz due to GNSS, and < 96.9 µrad
/√

Hz up to 1 Hz due to star-tracker).

Performance: Recall that in the drag-free control formulation, the normalized thrust noise curve was scaled
by a factor of two to account for the input disturbance term δfeq in the drag-free equations of motion. This
induces a performance bound for the closed-loop attitude dynamics that will guide the design of the attitude
controller. Given that req = [1.5 · 10−2, 0, 0]T m, the disturbance term δfeq is given by:

δfeq = −1.5

 0
10−2ω̇z
−10−2ω̇y

− 1.5

−10−2
(
ω2
y + ω2

z

)
10−2ωxωy
10−2ωxωz

 .
Within the MGRS science band B, the normalized thrust noise upper bound for each axis is less than 0.5 ·
10−8 ms−2

/√
Hz. Taking this as the upper bound for the noise floor due to δfeq (hence the factor of two),

and noting that ωx ≈ n̄ ≈ 10−3 rad/s, we obtain the following approximate bounds:

˜̇ωy(f), ˜̇ωz(f) < 0.1 µrad s−2
/√

Hz, ω̃y(f), ω̃z(f) < 100 µrad s−1
/√

Hz, f ∈ B.

Using the linearized approximation for ω given in (24), we obtain the following performance bounds on the
Euler angles and their time derivatives:

[
φ̃(f)

ψ̃(f)

]
<

[
10−1

10−1

]
rad
/√

Hz,


˜̇
θ(f)˜̇
φ(f)˜̇
ψ(f)

 <
100

100
100

µrad s−1
/√

Hz,

[˜̈
φ(f)˜̈
ψ(f)

]
<

[
0.1
0.1

]
µrad s−2

/√
Hz,

(27)
for f ∈ B. Note that an exact knowledge of req, which in turn requires knowledge of the center of mass of
the satellite, is not needed to derive the performance bounds above. The control center may be defined with
respect to the center of the DOSS cavity. However, as long as the center of mass of the satellite is close to
the control center, i.e. if there exists some small δ > 0 such that ‖req‖2 < δ we can use this bound to derive
analogous performance constraints on the Euler angles and their rates.

To construct the attitude control loop, we define the following functions in analogous fashion to the drag-
free control diagram: plant model Ga as derived from (25); attitude controller Ka; input disturbance
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weight Wda = diag(Mdx ,Mdy ,Mdz), where Mdi is the net input disturbance weight for the ith axis (Fig-
ure 10); noise weight Wna , diagonal matrix with constant noise 61.475 µrad

/√
Hz; FEEP first order re-

sponse model (identical to the response for net force); delay Da = diag(da, da, da), where da is a first
order Padé approximation for a delay of 300 ms (100 ms sampling delay due to control digitization at 5
Hz, and 200 ms for one sample period hold); diagonal performance weights Wpa = diag(wpa , wpa , wpa),
Wua = diag(wua , wua , wua), and Wṗa defined as

Wṗa =

[
0 wṗa 0
0 0 wṗa

]
,

with associated performance variables zea , zua , and zėa respectively. The control diagram is virtually identi-
cal to the one in Figure 7 and is omitted here for brevity. The main structural difference is the inclusion of the
additional performance weight Wṗa which enforces the angular acceleration bounds given in (27). Note that
by leveraging a more judicious choice for wpa and the acceleration weight function wṗa , we eliminated the
requirement for an additional weighting function for the performance bounds on the angular rates. All three
weighting functions wpa , wṗa , and wua are plotted below in Figure 11 and discussed in the text thereafter.
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Figure 11: Performance weighting functions for the attitude control loop.

The closed-loop equation from the normalized disturbances and noise inputs to the performance variables
zea , zėa and zua is given by:zeazėa

zua

 =

 WpaSoaGaWda −WpaToaWna

WṗaSoaGaWda −WṗaToaWna

−WuaSIaKaGaWda WuaSIaKaWna


︸ ︷︷ ︸

:=Na

[
da
na

]
, (28)

where Soa , SIa , Toa are defined analogously to (22), using instead, the systems Ga, Da and Ka. The perfor-
mance bounds in (27) introduce certain constraints on achievable performance and are summarized below.
• The input disturbance rejection constraints for minimizing the Euler angles are quite benign in the

sense that they impose lower bounds on the output sensitivity bandwidth to be greater than 3 mHz. The
primary limitation arises from the effect of the input disturbances on the control signal. In particular,
the transfer function from the input disturbances to the control torque u is given by SIaKaGa. At
low frequencies, the singular values of this transfer function will be close to one, resulting in perfect
transmission of the input disturbances to the control signal. For frequencies beyond about 0.01 Hz,
this would lead to overly aggressive control.
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• For the roll-yaw dynamics, the weighting function wṗa for frequencies below 1 Hz is simply s2 scaled
by the inverse of the acceleration noise bound. For frequencies below the closed-loop bandwidth
(i.e. where the singular values of Toa are approximately one), there is near perfect transmission from
the noise to the output Euler angles. Given the noise value derived in (26), a closed-loop bandwidth
(corresponding to the output complementary sensitivity) greater than 0.01 Hz would be infeasible
with respect to the desired acceleration upper bounds given in (27). As a result, the performance
requirements on the angular acceleration are relaxed to 0.4 µrad s−2

/√
Hz in an attempt to alleviate

the bandwidth restrictions.

The results of the H∞−optimization, conducted separately for the roll-yaw and pitch systems are summa-
rized in Figure 12.
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Figure 12: Closed-loop output sensitivity and complementary sensitivity singular values for the attitude
dynamics.

In addition to the H∞−norm for N , we also consider the singular values of the following system:

Nȧ := diag(s, s, s)
[
SoaGaWda −ToaWna

]
,

which represents the closed-loop transfer function from the normalized disturbances and noise to the Eu-
ler angular rate ASDs. The closed-loop sensitivity bandwidth is 5.14 mHz for pitch and 3.51 mHz for
the roll/yaw system (close to the predicted lower bound of 3 mHz), while the complementary sensitivity
bandwidth (defined by the frequency at which

¯
σ(To) crosses 1/

√
2 from above) is 0.0283 Hz for pitch and

0.012 Hz for the roll/yaw system, courtesy of relaxing the angular acceleration performance bounds. The
H∞−norms for N and Nȧ were calculated to be 0.6493< 1, and 9.53 · 10−6 respectively, which confirms
that the angular rate bounds are also satisfied. We are now ready to test our controllers in the full non-linear
setting.

7. Simulation Results

In this section we present simulation results from implementing the controllers formulated in the previous
section within the high-fidelity simulation environment discussed in Section 5. The controllers are first
digitized (at 10 Hz for drag-free and 5 Hz for attitude) using the Tustin method and augmented with one
sample period delay. All noise sources were simulated by shaping white noise with unity spectral density
by a low-pass filter and a shaping filter that approximates the expected bound on the noise source (see
for example, Figures 4 and 5). We assume a constant propellant mass flow rate given by the following
expression:

ṁs = −8
F̄

g0Īsp
,
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where F̄ = 30 µN is the average assumed thrust from 8 thrusters, Īsp = 4000 s is an estimate of the average
specific impulse, and g0 = 9.81 ms−2. This yields an average flow rate of about 0.022 g/hr. The propellant
is expelled evenly from the three cluster assemblies. This ensures that the center of mass of the satellite
with respect to the geometric center is fixed within the body frame, and therefore maintains consistency
with our earlier assumption of treating the vector req, a design variable, fixed with respect to the center
of mass. The time varying density is used to update the inertial properties of the satellite and the gravity
gradient calculations. Finally, in order to curb simulation time, the linear programming algorithm for thrust
allocation was tested a posteriori (see Appendix 11.2.).

Figures 13a and 13b show the drag-free control error rc (resolved in the satellite body frame) and Euler
angles (θ, φ, ψ) respectively. After an initial overshoot (< 225 nm in the x−axis), the test mass stays within
50 nm of the equilibrium point in the x−axis, and ±30 nm in the y and z axes. Similarly, after an initial
overshoot (< 0.007o in yaw), the pitch angle stays within ±0.004o, and the roll and yaw angles stay within
±0.006o.
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(a) Drag-free control error rc.
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Figure 13: Translational and Attitude control accuracy. At steady state, rc remains within 50 nm in x and
±30 nm in y and z axes, and pitch, roll and yaw angles stay within ±[0.004o, 0.006o, 0.006o].

Figures 14a and 14b show the commanded force and torques from the drag-free and attitude controllers
quantized in steps of 0.1 µN and 0.1 µNm respectively. Note that all commanded forces and torques are
within the envelope predicted in Section 5.4. To test the thruster allocation algorithm, the optimization
objective in Problem OPT (see Appendix 11.2.) was augmented by adding a term equal to the l1 norm of
the difference between the current and previous thrust allocation solution. This was done to avoid large step
changes in the individual thrust commands between sampling intervals. On average, all thrusters operated
below 10 µN, peak thrust across all thrusters was less than 28 µN, and the average solve time for the
optimization algorithm was on the order of 0.1 ms, which is well below the 100 ms delay margin.
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Figure 14: Net command force and torque.
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Finally, the ASD of the residual inertial acceleration of the proof mass given by the sum of fdp and fsp is
presented in Figure 15. The noise curves were obtained by implementing Welch’s spectral density estimation
algorithm using three 4-hour segments with 50% overlap and a Hamming window [59].
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Figure 15: Residual acceleration ASD along inertial X axis (Bias removed). The red line indicates the second
harmonic of the mean orbital frequency (≈ 0.342 mHz), and the black line indicates the performance upper
bound. The other two axes are very similar.

Figure 15 shows that the satellite achieves its target drag-free performance specification with a measurable
margin for error under “nominal” conditions. By “nominal” we specifically refer to the unity DC gain
assumption for the FEEP time response, and knowledge of the mass distribution which allows us to calculate
req and bound δfeq exactly. In future work, these assumptions will be relaxed and explicit plant uncertainty
sets for the drag-free and attitude dynamics will be constructed within a robust control design framework.

8. Conclusions

In this paper we first presented modeling assumptions and the development of a high-fidelity simulation
environment for the MGRS mission. Next, we used the envelope of expected disturbances computed by
the simulator to select a suitable micropropulsion system, subject to the mass, volume and power lim-
itations of the MGRS microsatellite bus. Finally, we designed drag-free and attitude controllers using
“nominal” parameters (e.g. expected spin rate and satellite inertial properties) by employing tools from
H∞−optimization. The controllers were discretized and implemented with delays within the full nonlinear
simulation environment and the resulting non-gravitational accelerations on the test mass were verified to
be under 10−12 ms−2

/√
Hz within the MGRS science frequency band B. These results lend credence to the

possibility of using microsatellites for conducting precise gravitational and relativistic science at a fraction
of the cost of most monolithic missions.

The robustness properties of the drag-free controller were discussed only in passing by conducting a Monte
Carlo simulation with respect to the uncertain parameters within the plant dynamics. In future work, we will
investigate the robust stability and performance characteristics of the drag-free and attitude controllers in
much more detail. In addition, we will also develop a full EKF for estimating the satellite attitude states and
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net disturbance forces and torques on the satellite which will enable aeronomic and geodetic data return.
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11. Appendix

11.1. Satellite Drawings

(a) Isometric view. (b) Front view.

(c) Top view.
Figure 16: Satellite external and DOSS cavity internal dimensions (in mm).

11.2. Thruster Configuration Design

Let T ∈ Rn be a vector representing the thrust levels for all n thrusters on board the spacecraft, and let
F̃ := [F T

c ,M
T
c ]T denote the commanded force and torque vector as dictated by the drag-free and attitude

control algorithms. Define A ∈ R6×n to be the configuration matrix such that the achieved force and torque
for a given set of positive thrusts T is given by:[

Fc
Mc

]
= AT .

The design objective then is to find a placement and orientation for a set of thrusters (i.e. find A) such that
the arrangement can produce all required force and torques as determined by the disturbance simulations
discussed in the main body of the paper, while respecting the lower and upper bound constraints on the
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thrust for each thruster. Given the disturbance calculations, we define F to be the following polytope:
−30
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−10
−10
−10

 � F̃ �


10
20
10
10
10
10

 ,

where the forces are in µN, torques are in µNm, and � denotes component-wise inequality.

Let V F be the 26 − 1 vertices of the polytope F . Then, for a given configuration matrix A, we define the
following convex optimization problem:

Thruster Allocation, OPT — For all F̃ ∈ V F , solve

min
T∈Rn

‖T ‖1

such that AT = F̃

T � 1n

T � Tmax1n

where 1n is a vector of 1s and Tmax is the desired maximum thrust per thruster (constrained to be <
100µN). If the above problem is feasible for all F̃ ∈ V F , then A is a feasible configuration matrix. That
is, for any F̃ ∈ F , there exists a feasible T that can achieve the desired force and torque specified by F̃ .
The search for (A, Tmax) itself is non-convex and infinite-dimensional. By manually enumerating various
configurations, we selected an arrangement with 9 thrusters grouped in 3 clusters of 3, with Tmax = 55µN.
This configuration is shown in Figure 17. Note that the feasibility problem is independent of the optimization
objective in problem OPT . In this scenario, we chose to minimize the 1-norm of T to minimize both fuel-
rate and power consumption.
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(a) Top View.

(b) Front view.
Figure 17: Thruster configuration for MGRS. Arrows indicate thruster plume directions.

32


	Introduction
	Notation
	Time and Reference Frames
	Equations of Motion
	Force and Torque Modeling
	Gravity
	Central Body
	Third Body
	Relativistic Corrections

	Environmental Disturbances
	Atmospheric Drag
	Radiation Pressure
	Magnetic Torque

	Stiffness Disturbance
	Simulation Results

	Control Design
	Thruster Selection and Configuration
	Drag-Free Control
	Attitude Control

	Simulation Results
	Conclusions
	Acknowledgements
	References
	Appendix
	Satellite Drawings
	Thruster Configuration Design


