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Abstract— This paper presents a tool for addressing a key
component in many algorithms for planning robot trajecto-
ries under uncertainty: evaluation of the safety of a robot
whose actions are governed by a closed-loop feedback policy
near a nominal planned trajectory. We describe an adaptive
importance sampling Monte Carlo framework that enables
the evaluation of a given control policy for satisfaction of a
probabilistic collision avoidance constraint which also provides
an associated certificate of accuracy. In particular this adaptive
technique is well-suited to addressing the complexities of rigid-
body collision checking applied to non-linear robot dynamics.
As a Monte Carlo method it is amenable to parallelization
for computational tractability, and is generally applicable to a
wide gamut of simulatable systems, including alternative noise
models. Numerical experiments demonstrating the effectiveness
of the adaptive importance sampling procedure are presented
and discussed.

I. INTRODUCTION

This paper addresses the problem of online planning of
robot trajectories under uncertainty and performance/safety
constraints. This problem has been recognized recently as
a critical component towards deploying autonomous robotic
systems (e.g., drones, self-driving cars, surgical robots,
autonomous spacecraft, etc.) in unstructured environments
[1], [2], [3], [4]. Conceptually, to enable an autonomous
system (AS) to plan its actions under uncertainty (e.g., with
respect to environment characterization), one needs to design
a strategy (i.e., closed-loop policy) for a decision maker
[5], a computationally expensive procedure in general [6].
Instead, a promising approach is to pose the decision-making
problem as an optimization over a simpler class of nominal
policies (or even open-loop action sequences), which are then
evaluated via closed-loop predictions under the assumption
that a local feedback control law strives to ensure nominal
behavior [3], [6], [7], [8].

To illustrate this concept, inspired by recent results within
the domain of Model Predictive Control (MPC) [9], and to
motivate our work, let the dynamics of a robot be given by

xt = f(xt−1,ut−1 + vut ) + vxt , zt = h(xt) + wt, (1)

where xt ∈ Rdx is the state, ut ∈ Rdu is the control input,
zt ∈ Rdz is the measurement, and vut , vxt , and wt represent
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Fig. 1. Four likely collision modes for an airplane tracking a nominal
trajectory (green) using a discrete time LQG controller. Tracking this
nominal trajectory incurs an obstacle collision probability of 0.4%, which
may be efficiently evaluated along with a tight associated confidence interval
using variance-reduced Monte Carlo techniques (for this example in under 2
seconds to high confidence, a fraction of the 13 second trajectory duration).

control and propagation (together, process) and measurement
noise, respectively. Let Xobs be the infeasible space (that is,
the set of states that violate a given set of constraints), so
that Xfeas := Rd\Xobs is the feasible space. Let Xgoal ⊂
Xfeas and x0 ∈ Xfeas be the goal region and initial state,
and let πt denote a feedback policy mapping the information
available up to time t (i.e., the history of measurements and
control actions) to a control action ut. Given a trajectory cost
measure c and letting x0, . . . ,xT denote the robot’s random
trajectory, the problem is

Closed-Loop Belief Space Planning:
min
{πt}t

E [c(x0, . . . ,xT )]

s.t. P (x0, . . . ,xT ∩ Xobs 6= ∅) ≤ α
P (xT ∈ Xgoal) ≥ 1− α
x0 ∼ N (xnom

0 , P0)

Equation (1).

(2)

Problem (2) is, generally, intractable as it requires op-
timizing over output-feedback policies (i.e., the policies
{πt}t) – a POMDP problem that, even for relatively small-
scale problems, might be not compatible with the tempo



of AS-environment interaction. According to our previous
discussion, the approach that we consider in this paper
(see, e.g., [3], [6], [7], [8]) is to optimize over a simpler
class of policies, e.g., obtained by combining a nominal
control sequence {u∗t }t (yielding a nominal trajectory {x∗t }t)
with a “feedback correction” term that strives to ensure
nominal behavior. For example, one can consider the set
of affine feedback policies ut := u∗t + ūt, where u∗t is
a nominal control action and ūt is a feedback correction
term minimizing deviations from {x∗t }t. The problem then
becomes,

Belief Space Planning with Closed-Loop predic-
tions:

min
{u∗
t }t

c(x∗0, . . . ,x
∗
T )

s.t. ut = u∗t + ūt

P (x0, . . . ,xT ∩ Xobs 6= ∅) ≤ α
P (xT ∈ Xgoal) ≥ 1− α
x0 ∼ N (xnom

0 , P0)

Equation (1).

(3)

Problem (3) is computationally much more tractable as
it only involves optimization over open-loop sequences (i.e.,
{u∗t }t), and represents a compromise between a POMDP for-
mulation involving a minimization over the class of output-
feedback control laws, and an open-loop formulation, in
which the state is assumed to evolve in an open loop (i.e.,
it is conservatively assumed that over the future horizon no
effort will be made to compensate for disturbances or new
events).

This approach, while very appealing from a computational
standpoint, poses a number of challenges, chiefly that of
quickly and reliably evaluating the probability of constraint
violation (henceforth, we will focus on collision avoidance
and refer to such probability as “collision probability” –
CP – with the understanding that the constraints in (3)
can also model performance or other safety requirements).
This problem is difficult as safety/performance constraints
do not usually possess an additive structure, i.e., they can
not be expressed as the expectation of a summation of a
set of random variables. This is typical, for example, for
chance constraints for obstacle avoidance as in Problem (3),
and a fortiori for more complex constraints (expressed, e.g.,
as logical formulas). The presence of non-linear dynamics
and the possible need of considering non-Gaussian noise
models further compounds the difficulty of the problem.
Within this context, the goal of this paper is to design an
algorithm for the the fast and reliable evaluation of collision
probabilities. We take particular consideration of non-linear
state space dynamics with full translational and rotational
rigid-body collision checking (as opposed to point-robot-
based projections of workspace obstacles into Xobs).

Related Work: Evaluating a controller’s chance of fulfilling
safety/performance constraints while guiding a robot along a
reference trajectory has hitherto primarily been considered in
an approximate fashion. As discussed in [6], most previous
methods essentially rely on two approaches. In the first
approach (see, e.g., [10], [11], [12], [13]), referred to as

the “additive approach,” a trajectory CP is approximately
evaluated by using Boole’s inequality (i.e., P (∪iAi) ≤∑
i P (Ai)) and summing pointwise CPs at a certain number

of waypoints along the reference trajectory. In contrast, in the
second approach (see, e.g., [3], [8], [14]), referred to as the
“multiplicative approach,” a trajectory CP is approximately
evaluated by multiplying the complement of pointwise CPs
at a certain number of waypoints along the reference tra-
jectory. In a nutshell, the additive approach treats waypoint
collisions as mutually exclusive, while the multiplicative
approach treats them as independent. Since neither mutual
exclusivity nor independence hold in general, nor is any
accounting made for continuous collision checking between
waypoints (although [8] does consider the case of general
collision geometries which in some cases may be amenable
to such discrete collision checking), such approaches can
be off by large multiples and hinder the computation of
feasible trajectories [6]. Even worse, it was shown in [6]
that such approaches are asymptotically tautological, i.e., as
the number of waypoints approaches infinity, a trajectory
CP is approximated with a number greater than or equal
to one, contrary to what one might expect from a refinement
procedure. (We note, however, that such approximations
would still be very useful in those cases where the prob-
lem is unconstrained and the sole objective is to optimize
safety/performance, as what is needed in such cases is the
characterization of relative CPs among trajectories. However,
in a constrained setting, one needs an accurate, absolute
measure of CP.) The work of [7] introduced a first-order
approximate correction to the independence assumption of
the multiplicative approach that appears empirically to miti-
gate its aforementioned drawbacks, but can still be off by a
considerable margin [6] and can both under-approximate or
over-approximate the true CP.

The limitations of the above approximation schemes mo-
tivated the approach in [6] to consider variance-reduced
Monte Carlo (MC) to estimate trajectory CPs. In theory,
the exact CP can be computed up to arbitrary accuracy by
simulating a large number of trajectories and counting the
number that violate a constraint. When the CP has a low
value (e.g., ≤ 1%), however, as is desired for most robotic
applications, an enormous number of Monte Carlo samples
may be required to achieve confidence in the estimate.
The work in [6] demonstrates statistical variance-reduction
techniques based on the methods of importance sampling (IS)
and control variates (CV) that reduce the required number of
samples to a few hundred per evaluation, amenable to real-
time implementation (notably, the samples may be processed
in parallel to achieve run times on the order of a few millisec-
onds [15]). However, these techniques were designed and
validated only for linear time-invariant point-robot systems
under the influence of Gaussian process and measurement
noise. As both assumptions do not always hold in practice,
one objective of this work is to extend the variance-reduced
method introduced in [6] to the case of non-linear dynamics
and rigid-body collision models. Furthermore, similar to
the approximation heuristics mentioned above, the mixture



importance sampling algorithm proposed in [6] may also
suffer in its ability to reduce variance as time discretization
approaches zero (although it will still provide an unbiased,
asymptotically-exact estimator) due to correlated mixture
terms corresponding to close potential collision points [16].

Statement of Contributions: We consider a discrete LQG
controller equipped with an EKF (as considered in [3], [7])
applied to the linearized dynamics and Gaussianized noise
(first-and-second moment-matching) of a general problem
setting as our closed-loop feedback policy. We consider state
space dynamics that map into an SE(3) (translation and
rotation) configuration space for collision checking in an
R3 workspace. We explicitly consider non-Gaussian noise
distributions at each time step by including a noise term that
acts directly on the controls.

The primary contribution of this paper is the demonstration
of an adaptive importance sampling framework (whereby the
sampling distribution is refined through the course of simu-
lating sample trajectories) which enables accelerated Monte
Carlo collision probability estimation in general, non-linear
problem settings with rigid-body collision checking that
admits a high degree of correlated collision modes. Unlike
any aforementioned approximate approach, this method al-
lows for certified error margins through confidence intervals
constructed using a standard error estimate accompanying
the CP estimate. We demonstrate its effectiveness on an 8-
state, 3-input airplane model where it uses fewer MC samples
than any alternative to accurately evaluate a policy with low
associated CP (0.4%). A single-threaded MC implementation
achieves usable estimates with certified accuracy within 1-2
seconds (< 500 samples). Other contributions of this paper
include an improved method for identifying likely collision
points based on a Newton method from [8] and a demon-
stration of why adaptive techniques are necessary for mixture
importance sampling for robot CP. Given the successes of [6]
in incorporating MC collision probability estimation within a
near-real-time safe motion planning algorithm, and especially
in light of this MC method’s parallelization potential [15],
we believe that the adaptive mixture importance sampling
algorithm described in this paper represents a tool worthy
for consideration in a wide variety of robotic applications
that plan with safety constraints in operation.

Organization: The remainder of this paper is organized
as follows: in Section II we review background material on
importance sampling relevant to robot collision probability
estimation including an adaptive technique, in Section III
we define the problem dynamics, LQG controller model,
and collision model. In Section IV we present how to
tailor adaptive mixture IS to CP computation, and present
a modified method of computing close obstacle points for
constructing likely collision modes. Section V provides il-
lustrative experiments with a rigid-body non-linear airplane
model for the algorithms detailed in the previous sections,
and Section VI contains conclusions and speculation on
possible directions of future research.

II. BACKGROUND MATERIAL

In this section we review the basics of importance sam-
pling, a technique for reducing the variance of a Monte
Carlo estimator, as well as an adaptive variant for mixture
importance sampling that frames the selection of mixture
weights as a convex optimization problem. Our discussion is
tailored to the problem of computing trajectory CPs, where
the high-dimensional nature of the noise (a joint distribution
spanning the entire length of a trajectory) increases the
challenge of selecting a good distribution.

A. Importance Sampling

Consider a random variable X ∈ Rn distributed according
to the probability density function (pdf) P : Rn → R≥0.
The expectation E [f(X)] =

∫
Rn

f(x)P (x) dx of a function
f(X) may be rewritten as

EP [f(X)] =

∫
Rn

f(x)P (x) dx

=

∫
Rn

(
f(x)

P (x)

Q(x)

)
Q(x) dx

= EQ
[
f(X)P (X)

Q(X)

]
,

(4)

where Q is an alternative pdf satisfying Q(x) > 0 for all
x ∈ Rn where f(x)P (x) 6= 0, and EP and EQ denote
expectations computed under the distributions X ∼ P and
X ∼ Q, respectively. The quantity w(x) = P (x)/Q(x) is
referred to as the likelihood ratio of the pdfs at x.

In the context of Monte Carlo estimation, the above
computation implies that given independent and identically
distributed (i.i.d.) samples {X(i)}mi=1 drawn from Q, the
expectation p := E [f(X)] may be estimated by

p̂Q :=
1

m

m∑
i=1

f(X(i))w(X(i)). (5)

The variance of the estimator p̂Q may be estimated by

V̂ Q :=
1

m2

m∑
i=1

(
f(X(i))w(X(i))− p̂Q

)2

. (6)

In this paper, X will denote a vector of noise samples that
act upon a robot at a sequence of discrete time increments,
and f(X) will denote the indicator function that the robot,
guided by a trajectory-tracking controller, collides into the
obstacle set given the trajectory noise sample X. The robot’s
collision probability is p = E [f(X)].

We see from (4) that p̂Q defined in (5) is an unbiased
estimator of the CP p, that is, as long as the support of Q
contains the support of P , the estimator p̂Q converges in
probability to p as m → ∞ regardless of the choice of Q.
Thus the selection criterion for the IS pdf Q is to minimize
the variance of p̂Q. This has the practical effect of reducing
the number of samples required before the estimator yields
a useable result, which, as argued in [6], is critical for real-
time accurate CP estimation for robotic applications with a
very low collision chance constraint. Motivated by the sum
in (5), we call VarQ

[
f(X)P (X)

Q(X)

]
the per-sample variance



contributed by each i.i.d. sample X(i) ∼ Q. Choosing Q
to minimize the per-sample variance is equivalent [17] to
minimizing the Rényi divergence

D2 (π∗‖Q) := log

∫
Rn

π∗(x)2

Q(x)
dx (7)

where π∗(x) := |f(x)|P (x)/
∫
Rn
|f(x)|P (x) dx is itself the

minimizer, provided the optimization is unconstrained.
Constructing and sampling from π∗ is usually not pos-

sible in practice (for positive f , the normalization factor
EP [f(X)] is precisely the quantity we wish to estimate),
but its form yields some insights. In the case that f is an
indicator function, π∗ has support on only the “important”
parts of P where f(x) = 1; for our purposes, to sample
from π∗ is to sample only noise trajectories that lead to
collision and weight them in the computation of p̂π

∗
by

their relative likelihood. This motivates the search for IS
distributions Q that artificially inflate the occurrence of the
rare event f(X) = 1, but this should be accomplished
while maintaining relative probability according to P lest
the likelihood ratio P/Q be very large for some likely
realization of the event, corresponding to a large value in
the variance integral (7). Mathematically, we attempt to
minimize D2 (π∗‖Qθ) over a family of distributions Q =
{Qθ | θ ∈ Θ}, described by a finite vector of parameters θ,
capable of capturing this aim.

B. Mixture Importance Sampling

As recognized in [6], there are typically multiple ways in
which a noise-perturbed robot trajectory can collide with its
surroundings. Although the noise pdf P is usually unimodal
(corresponding to a robot centered on the nominal trajectory),
an effective IS distribution may be multimodal (correspond-
ing to the many ways the robot can drift into obstacles). This
motivates the use of mixture IS distributions with pdfs of the
form

Q(α,η)(x) =

D∑
d=1

αdqd(x; ηd), (8)

parameterized by θ = (α, η); the αd are nonnegative mixture
weights such that

∑D
d=1 αd = 1 and the ηd are internal

parameters of the component densities qd. A special case
of mixture IS relevant to robotic applications is defensive
importance sampling, where the nominal distribution P is
selected as one of the component distributions. If the pdfs
qd are selected as noise likely to lead to certain collision
scenarios, including P serves as a catch-all to ensure that no
unforeseen collision mode, e.g., due to the complex evolution
of uncertainty distributions through non-linear dynamics, is
left out.

C. Adaptive Mixture Importance Sampling

For robot collision probability estimation, optimizing the
per-sample variance over a full family of distributions (8)
is in general computationally intractable, especially if the
component trajectory noise parameterization ηd is high-
dimensional. Thus we consider instead the problem of se-
lecting the weights αd for fixed components qd. As shown

in [17], the objective D2 (π∗‖Qα) is convex with respect to
α, and is therefore amenable to online stochastic optimiza-
tion methods with convergence guarantees. We reproduce
in Algorithm 1 a stochastic mirror descent procedure from
[17], designed for the simultaneous adaptation of mixture
distribution weights alongside IS estimation. Algorithm 1
performs stochastic gradient descent on a set of mirrored
variables α̃ in order to enforce the probability constraints∑D
d=1 αd = 1, αd ≥ 0 ∀d. We present here the self-

normalized versions of the final estimators, where in com-
puting p̂ we normalize by the sum of the sampled likelihood
ratios. This is an alternative to normalizing, as in (5), by the
reciprocal of the sample count 1/m. Self-normalized impor-
tance sampling yields an asymptotically unbiased estimator,
and in practice may further reduce variance when applying
importance sampling techniques. We note that normalizing
by the sample count m = k` would only change the form
of expressions in Alg. 1, Line 8.

Algorithm 1 Adaptive Mixture IS (Section 3.4.4, [17])
Require: Component densities q1(x), . . . , qD(x), initial

mixture weights α1, step size parameter C, batch size
k, number of iterations `

1: Set mirrored weights: α̃1 = log(α1)
2: for i = 1 : ` do
3: Sample {Xi,j}kj=1 from current IS distribution Qαi
4: Compute gradient:

gi = −1

k

k∑
j=1

(
f(Xi,j)

P (Xi,j)
Qαi (Xi,j)

)2

Qαi(Xi,j)

 q1(Xi,j)
...

qD(Xi,j)


5: Update mirrored weights: α̃i+1 = α̃i − (C/

√
i)gi

6: Set new mixture weights: αi+1 ∝ exp
(
α̃i+1

)
7: end for
8: return Estimator, estimated variance of estimator [18]:

p̂AIS =

∑`
i=1

∑k
j=1 f(Xi,j)

P (Xi,j)
Qαi (Xi,j)∑`

i=1

∑k
j=1

P (Xi,j)
Qαi (Xi,j)

V̂ AIS =
1

k`

∑`
i=1

∑k
j=1

(
P (Xi,j)
Qαi (Xi,j)

(f(Xi,j)− p̂AIS)
)2

(∑`
i=1

∑k
j=1

P (Xi,j)
Qαi (Xi,j)

)2

III. PROBLEM FORMULATION

A. State Space Dynamics

As in the introduction, let the state space dynamics of a
robot be given by

xt = f(xt−1,ut−1 + vut ) + vxt , zt = h(xt) + wt, (9)

where xt ∈ Rdx is the state, ut ∈ Rdu is the control input,
zt ∈ Rdz is the measurement, vt = [vut ;vxt ] is the process
noise (comprising an explicit control uncertainty vut ∼ Vu

t in
addition to a propagation uncertainty vxt ∼ Vx

t ), and wt ∼



Wt is the measurement noise at time t. We restrict our atten-
tion to independent noise distributions Vu

t , Vx
t , and Wt with

zero mean and finite second moments; we note that cases of
colored noise may be addressed through state augmentation.
Let V ut , V xt , and Wt denote the covariance matrices of Vu

t ,
Vx
t , and Wt, respectively. We are interested in estimating the

collision probability that arises from tracking a nominal path
P∗ = {x∗0,u∗0,x∗1,u∗1, . . . ,x∗T } where x∗t = f(x∗t−1,u

∗
t−1)

for t = 1, . . . , T . The true initial state x0 satisfies x0 =
x∗0 + p0, where the initial state uncertainty p0 ∼ P0 is
drawn from a distribution with zero mean and covariance
matrix P0, and the controller uses an understanding of the
dynamics and information from observations z1, · · · , zT to
choose actions u0, . . . ,uT−1 from which the true state xt
evolves according to (9).

Similar to [3] and [7] we consider an LQR state-feedback
controller equipped with an extended Kalman Filter for state
estimation (together, LQG control) to control the deviation of
a robot from a nominal trajectory. With deviation variables
from P∗ defined as x̄t = xt − x∗t , ūt = ut − u∗t , and
z̄t = zt − h(x∗t ), we linearize (9) according to:

x̄t = Atx̄t−1 +Btūt−1 + (Btv
u
t + vxt )

+O(‖x̄t−1‖2 + ‖ūt−1‖2),

z̄t = Htx̄t + wt +O(‖x̄t‖2),

(10)

where At = ∂f
∂x (x∗t−1,u

∗
t−1), Bt = ∂f

∂u (x∗t−1,u
∗
t−1), and

Ht = ∂h
∂x (x∗t ). The LQG controller maintains an estimate x̂t

of the true state deviation x̄t using an extended Kalman filter

x̂t = Ktz̄t + (I −KtHt)(Atx̂t−1 +Btūt−1),

where Kt is the Kalman gain matrix at time t corresponding
to the linearized system (10) with noise covariance matrices

P0, Vt =

[
BtV

u
t B

T
t 0

0 V xt

]
, and Wt [19]. Then at each time

t = 0, . . . , T − 1 the LQG controller applies the input ut =
u∗t + ūt with

ūt = u∗t + Lt+1x̂t,

where Lt is the finite time horizon LQR feedback gain matrix
corresponding to (10) with appropriately chosen state regu-
lation and control effort penalties for the robotic application.

We emphasize that when simulating trajectories in this
paper, we compute the exact state evolution (using an RK4
integration scheme) according to the true dynamics (9).
However, we note here that with yt =

[
x̄t; x̂t

]
we may

write down an approximate system with linearized dynamics
and Gaussian noise (moment-matched to the true noise up
to second order):

yt = Ftyt−1 +Gtqt, qt ∼ N (0, Qt), (11)

for appropriate choices of matrices Ft, Gt and Qt. See [3] for
a full derivation. In addition to evolving approximate state
trajectories, this system may be used to evolve approximate
pointwise uncertainty distributions of x̄t parameterized as
multivariate Gaussians, as in [3], [6], [7]. Let Σt denote the
a priori covariance of x̄t thus derived.

B. Configuration Space and Workspace Representations

In this work we consider rigid-body robots whose config-
uration qt = q(xt) ∈ SE(3), consisting of a 3D rotation
and translation, is a deterministic function of the state. We
represent both the robot, configured at q, and the static
obstacle set in the workspace as unions of convex compo-
nents R(q) =

⋃r
i=1Ri(q) ⊂ R3 and E =

⋃e
j=1 Ej ⊂ R3,

respectively. Then the state space obstacle set is Xobs = {x ∈
Rdx | R(q(x))

⋂
E 6= ∅}. For a given robot state x and

associated configuration q, we assume access to a distance
function di,j(q) measuring the Euclidean separation between
Ri(q) and Ej . In the case that Ri(q) intersects Ej , di,j(q)
returns a negative value corresponding to the maximum
extent of penetration. We also assume access to the distance
gradient ∂di,j(q)/∂q, either analytically or through finite
differencing. We may also compute ∂di,j(x)/∂x = ∂q

∂x
∂di,j
∂q .

C. Problem Statement

The problem we wish to solve in this paper is to devise an
accurate, computationally-efficient algorithm equipped with
an error estimate to estimate the CP

P (x0, . . . ,xT ∩ Xobs 6= ∅)

where x0, . . . ,xT denotes a continuous interpolation be-
tween states, and the state trajectory xt is controlled via the
control law ut = u∗t + ūt. As discussed in the introduction,
the primary motivation of this problem is to enable belief
space planning with closed-loop predictions for general non-
linear problems with possibly non-Gaussian noise models.

A few comments are in order. First, in this paper we
are not proposing a new planning algorithm, rather an
algorithm that addresses one of the key bottlenecks for
planning under uncertainty. Second, the method proposed
here can be used in combination with a variety of planning
frameworks, e.g., exhaustive evaluation of RRT plans [3],
[8] or meta-algorithms as in [6]. Third, although for clarity
Subsection III-B assumes an SE(3) configuration space and
R3 workspace, the methods in this paper may be readily
generalized to other rigid-body robots, e.g., manipulators [8].
Finally, in stark contrast with alternative methods (with the
exception of [6], which this work extends), we provide a
computable error estimate that can be used as a certificate
of accuracy for the trajectory’s estimated CP.

IV. ADAPTIVE IMPORTANCE SAMPLING FOR
COLLISION PROBABILITY ESTIMATION

In this section we present an algorithm for the accu-
rate, computationally-efficient estimation of a trajectory’s
tracking CP under non-linear dynamics and non-Gaussian
noise models. Our approach is to select importance sampling
distributions for CP estimation as a mixture of reparameter-
ized copies of the actual process and measurement noise,
corresponding to different modes of failure, similar to [6].
In the notation of Section II,

X = (p0,v
u
1 ,v

x
1 ,w1, . . . ,v

u
T ,v

x
T ,wT ) ,

P (x) = P0(p0) ·Vu
1 (vu1 ) · . . . ·WT (wT ),



Algorithm 2 Close Pairwise Xobs Point (adapted from [8])
Require: Nominal mean x∗ ∈ Rdx , covariance matrix

Σ ∈ Rdx×dx , workspace distance function di,j(q(x))
between robot/environment pair of convex components
Ri(q) and Ej , linesearch parameter γ, tolerance ε > 0

1: Set x0 = x∗, k = 0
2: repeat
3: Newton step (derivatives evaluated at xk,q(xk)):

xk+1 = xk−di,j(xk)Σ
∂di,j
∂x

(xk)

/(
∂di,j
∂x

(xk)T Σ
∂di,j
∂x

(xk)

)

4: k = k + 1
5: until ‖xk − xk−1‖ < ε
6: mk = (xk − x∗)TΣ−1(xk − x∗)
7: repeat
8: With g =

∂di,j
∂x (xk), compute search direction:

s = Σ−1g −
(
gTΣ−1(xk − x∗)

gTg

)
g

9: α = 1
10: repeat
11: xk+1 = projecti,j

(
xk − αγmks

sTΣ−1(xk−x∗)

)
12: mk+1 = (xk+1 − x∗)TΣ−1(xk+1 − x∗)
13: α = α/2
14: until mk+1 ≤ mk or ‖xk+1 − xk‖ < ε
15: k = k + 1
16: until mk ≥ mk−1 or ‖xk − xk−1‖ < ε
17: return xk with minimum corresponding mk

(where we have assumed the independence of the noise
distributions in the construction of this joint pdf) and f(X)
is the event that the noise random variable X gives rise to
a colliding trajectory under LQG control. We consider IS
distributions of the form

Q(α,η)(x) =

D∑
d=1

αdqd(x; ηd)

qd(x; ηd) = P0(p0; ηd) ·Vu
1 (vu1 ; ηd) · . . . ·WT (wT ; ηd)

where ηd encodes all of the parameters required to specify
the process and measurement noise distributions. For exam-
ple, in the case of Gaussian noise, ηd consists of (3T + 1)
mean vectors and covariance matrices: one pair for the initial
state uncertainty and for each process/measurement noise
distribution at each time step t = 1, . . . , T .

We choose each ηd to represent a likely tracking collision
mode (see Figure 1). In particular, as in [6], we consider
ηd derived as a shift in noise means resulting in an ex-
pected collision (under the linearized dynamics (11)) at an
obstacle point xobs ∈ Xobs close to x∗t , measured by the

Mahalanobis distance
√

(x∗t − xobs)TΣ−1
t (x∗t − xobs). The

problem of computing close obstacle points for a robot
consisting of convex rigid-body components was previously
considered in [8], which, for a pair (Ri, Ej), proposes a
Newton method for identifying a close point xobs satisfying

(a) (b)

(c) (d)

Fig. 2. The three most likely collision points, measured by Mahalanobis
distance, for the nominal trajectory displayed in Figure 1. Figure 2(a)
displays the high degree of correlation between the likely collisions 2(b)
wing strike at t = 82, 2(c) stabilizer strike at t = 83, and 2(d) wing strike
at t = 83. Convex robot components in collision are highlighted in blue.

di,j(q(xobs)) = 0. We apply that method in Algorithm 2
to first identify a feasible point satisfying the zero-distance
constraint, and then follow it with a standard non-linear
constrained minimization phase to find a local optimum in
Mahalanobis distance. This minimization phase employs a
linesearch with a constraint projection subroutine (projecti,j
Alg. 2, Line 11) to ensure di,j(q(xobs)) = 0; we use a
Newton method to implement that projection as well. In our
experiments we find that local optimization can reduce xobs
Mahalanobis distance by ∼ 5%. In order to select the mean
shifts for ηd corresponding to collision at xobs, we apply the
maximum likelihood method described in [6], which amounts
to a simple least-squares solve. We note that this choice
admits an alternative interpretation of minimizing D2 (P‖Q)
subject to the constraint that EQ [x̄t] = xobs − x∗t .

The mixture distribution Q(α,η) contains components cor-
responding to each of the top D − 1 most likely collisions
computed over tuples (xt,Ri, Ej), ordered by Mahalanobis
distance (we set the final term qD = P to enable defensive
importance sampling). The initial mixture weights α1 may be
set uniformly, or in proportion to the probability that a state
sampled from a Gaussian estimate of the marginal deviation
distribution at the relevant trajectory time step crosses a
half-space associated with each close obstacle point [7], [8].
Figure 2 illustrates why adaptive mixture IS, Algorithm 1,
is a necessary addition for refining these weights online
to achieve the highest degree of variance reduction. For
this plane trajectory, there is a high degree of correlation
between similar collision events at successive time steps, or
at the same time step between collisions involving different
robot components. Unlike any heuristic method to address
these correlations, which also grow worse with finer time
discretization, stochastically solving the convex optimization
problem of mixture weight selection is guaranteed to con-



verge to the optimal α∗ as the sample size m→∞.

V. NUMERICAL EXPERIMENTS

A. Dynamics and Noise Model

In this paper we consider discrete-time nominal dynamics
for an airplane integrated from a simple continuous-time
model [20] propagated under zero-order hold control inputs
with a time step ∆t. The continuous-time model is:

ẋ =



ẋ
ẏ
ż
v̇

ψ̇
γ̇

φ̇
α̇


=



v cos(ψ) cos(γ)
v sin(ψ) cos(γ)

v sin(γ)
ua − Fdrag(v, α)/m− g sin(γ)
−Flift(v, α) sin(φ)/(mv cos(γ))

Flift(v, α) cos(φ)/(mv)− g cos(γ)/v
uφ̇
uα̇


,

(12)
where x, y, z are position in a global frame, v is airspeed (we
assume zero wind, aside from isotropic gusts represented by
process noise), ψ is the course angle, γ is the flight path
angle, φ is the roll angle, and α is the angle of attack. The
control inputs u = (ua, uφ̇, uα̇) are longitudinal acceleration
(due to engine thrust), roll rate, and pitch rate respectively.
We assume a flat-plate airfoil model so that Flift = πρAv2α
and Fdrag = ρAv2(CD0

+4π2Kα2) [20] where gravity g, air
density ρ, wing area A, plane mass m, drag coefficient CD0

,
and induced drag factor K are all constants. Using the Euler
ZYX (yaw ψ, pitch θ, roll φ) rotation angle convention, the
mapping from state space to configuration space is given by
q(x) = (x, y, z, ψ, θ = α0 − α − γ, φ), where α0 is the
angle of attack at straight and level (zero pitch) flight. We
assume that the state is fully observed (i.e. h(xt) = xt)
up to the measurement noise wt, and in our experiments
we consider Gaussian noise distributions Vu

t , Vx
t , and Wt.

We note that the explicit consideration of control noise vut
ensures non-Gaussian uncertainty distributions at every time
step, in addition to those arising from non-linear propagation.

B. Performance of Adaptive Mixture Importance Sampling

We implemented Algorithms 1 and 2 in Julia [21] using the
Bullet physics engine [22] for continuous (swept) collision
checking, and ran experiments on a Linux system equipped
with a 3.0GHz 8-core Intel i7-5960X processor (although
we note that the implementation presented in this work is
only single-threaded). Figure 3 depicts estimation results for
applying adaptive mixture IS (Alg. 1, k = 20, ` = 100), non-
adaptive IS (Alg. 1, k = 2000, ` = 1), and naive MC (Q = P
in Equations (5) and (6)) to the nominal trajectory depicted in
Figure 1. For discrete LQG control, T = 100 and the time
discretization is ∆t = 0.129 s. Both importance sampling
methods use D = 10 mixture components, initialized with
uniform weight aside from q10 = P initialized with α1

10 =
0.5. Figure 3 is indicative of a problem that may arise from
poorly chosen mixture weights. Non-adaptive IS (in blue)
twice encounters positive collision samples with a very high
likelihood ratio, indicating poor proportional representation
by the IS distribution Q. The table in Figure 3 indicates that

Estimator means computed over 30 trials, m = 1000 samples
p̂AIS p̂IS p̂NMC V̂AIS V̂IS V̂NMV

0.436% 0.416% 0.471% 0.043% 0.048% 0.209%

Fig. 3. Example runs of Algorithm 1 with k = 20, ` = 100 (adaptive
mixture IS), with k = 2000, ` = 1 (non-adaptive IS), and naive Monte
Carlo for the nominal trajectory depicted in Figure 1. The dark lines
represent the evolution of the MC estimators p̂; the shadows around each
line represent a confidence interval of ±1 standard error, estimated as

√
V̂ .

Both IS methods are shifted by 0.28 s in the lower plot to reflect the time
required to derive the noise mean shifts η. Adaptive IS converges to an
estimate with a usable level of certification within 500 samples (2 s).

this type of event is relatively rare, as on average V̂IS is much
lower than V̂NMV (owing to the construction of a good η) and
near adaptive mixture IS in terms of error certificate.

On average both importance sampling methods process
1000 samples in ∼ 4.5 s (specifically, AIS: 4.46 ± 0.13 s,
IS: 4.51 ± 0.65 s). We can see from Figure 3, however,
that only a few hundred samples are required to get a
confident handle on trajectory CP, which we note may be
processed in far less time than the airplane takes to fly its
13 s trajectory. The equivalent timings for both versions of
IS are not surprising for the single-threaded implementation
featured in this work, as the computational effort required by
the stochastic mirror descent update is negligible compared
to integrating dynamics, collision checking, and computing
likelihood ratios. A parallel implementation might require
larger batch sizes k in order to overcome the communication
overhead inherent in coordinating adaptive IS and achieve the
expected parallel MC speedup (see, e.g., [15] which imple-
ments Monte Carlo certification of point-quadrotor trajectory
plans on a GPU with computation times on the order of
10 ms). Naive MC processes 1000 samples in 2.34± .04 s;
the additional importance sampling time is spent entirely in



TABLE I
MIXTURE WEIGHTS α DERIVED THROUGH ALGORITHM 1 COMPARED TO HALF-SPACE VIOLATION PROBABILITY.
ADAPTIVE IS BATCH SIZE k = 20, DEFENSIVE IMPORTANCE SAMPLING WEIGHT α10 LOWER-BOUNDED AT 10%.

Distribution component q1 q2 q3 q4 q5 q6 q7 q8 q9 q10 (= P )
Time step t 82 83 83 2 13 14 14 68 82 N/A
Plane component Wing Stabilizer Wing Tail Wing Wing Stabilizer Wing Body N/A
Half-space violation probability 0.177% 0.120% 0.111% 0.065% 0.041% 0.029% 0.026% 0.016% 0.012% N/A
Example α100 (m = 2000) 0.165 0.097 0.091 0.101 0.038 0.079 0.062 0.047 0.069 0.247
Example α1000 (m = 20000) 0.208 0.157 0.191 0.115 0.043 0.057 0.032 0.037 0.058 0.1

evaluating probability density functions.
Table I gives a description of the mixture components

used in importance sampling, as well as the final adaptive IS
mixture weights from Figure 3. We can see from the last two
rows that a few thousand samples is generally insufficient to
converge to the optimal weights, but already at m = 2000
samples the relationship between good weights and half-
space violation probability for the approximate marginal
distributions defies heuristic approximation.

VI. CONCLUSIONS

We have presented an adaptive mixture importance sam-
pling algorithm inspired by the statistics literature [17]
and demonstrated its success in quantifying CP (with tight
estimated error) for an LQG with EKF control policy ap-
plied to a non-linear system with a full rigid-body collision
model. In particular, we note that this procedure succeeds
in achieving a level of certifiable accuracy for which there
are no comparable existing methods other than naive, non-
variance-reduced, Monte Carlo. The adaptive nature of the
procedure has been demonstrated as essential for selecting
proper component weights for use in mixture IS, at negligi-
ble additional computational cost compared to non-adaptive
mixture IS.

While this work may in its current form see direct appli-
cation within a non-linear LQG control planner (for which
we stress that a parallel implementation would be a key
technology for enabling truly real-time use), we mention
here a number of other future research avenues. First, we
note that in this work a few thousand samples are sufficient
to learn improved mixture weights. With a budget of tens of
thousands of MC samples (possibly enabled by GPU), we
might attempt to adaptively improve the high-dimensional
distribution parameters η as well as the weights α. Second,
estimating CP for control policies departing from the LQG
approach of tracking a nominal trajectory (e.g., stochastic
extended LQR [23]) may be considered using the same mix-
ture IS techniques. Finally, we note that although the “rare
event” considered throughout this paper has been obstacle
collision, adaptive importance sampling as a Monte Carlo
variance reduction technique may be applied to estimate a
variety of other performance or safety requirements.

REFERENCES

[1] W. J. A. Dahm, “Technology Horizons: a Vision for Air Force Science
& Technology During 2010-2030,” USAF HQ, 2010.

[2] “Science and Technology Strategic Plan, C4ISR,” Office of Naval
Research, Tech. Rep., 2012, available at http://www.onr.navy.mil/
Science-Technology/Departments/Code-31.aspx.

[3] J. V. D. Berg, P. Abbeel, and K. Goldberg, “LQG-MP: Optimized
path planning for robots with motion uncertainty and imperfect state
information,” International Journal of Robotics Research, 2011.
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