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1 Synonyms

Trajectory planning, planning under differential constraints.

2 Definition

Kinodynamic planning concerns the task of driving a robot from an initial state to a
goal region while avoiding obstacles and obeying kinematic and dynamic—in short,
kinodynamic—constraints dictating the relationship between a robot’s controls and
its motion.

3 Overview

As a subfield of robot motion planning, kinodynamic planning is characterized by the
explicit consideration of a robot’s dynamics throughout the planning process. That
is, kinodynamic planning algorithms output guidance trajectories that are not only
collision-free with respect to a robot’s environment but also feasible with respect to
a representative model of the robot’s continuous-time dynamics. This model may
include kinematic constraints on the types of motion available to a robot (e.g., a robot
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car cannot translate laterally against the direction of its wheels), as well as dynamics
bounds on how those motions may be enacted over time (e.g., the momentum
of a free-floating space probe prevents its finite force thrusters from stopping its
motion instantaneously). Thesemotion constraints are typically expressed in terms of
differential equations governing the state of the robot; for this reason this field of study
is also referred to as planning under differential constraints. The additional degree
of modeling fidelity incorporated by kinodynamic planning algorithms makes them
particularly suitable for mobile robots including wheeled vehicles at high speeds,
multirotor and fixed wing aircraft, and even multi-link robots that must balance or
swing to achieve their goal.

Like other motion planning disciplines, a core task of any kinodynamic planning
algorithm is combinatorial search. The earliest works on kinodynamic planning
[1, 2] considered robots obeying double integrator dynamics, modeling the motion
of a point mass under controlled acceleration. The structure of these dynamics
enabled the planning problem to be formulated as a dynamic programming-based
search over a state transition graph defined on a fixed position-velocity grid. In
addition to capturing which directions a robot should maneuver around obstacles,
this representation also enabled decisions such as whether the robot should travel
down a long straight corridor where it may build momentum or stick to shorter yet
more tortuous paths with lower top speeds. This approach of using systematically
applied control inputs to achieve a structured, exhaustive search over the state space,
up to the lattice resolution, has been extended to other systems including robotic
manipulators and ground vehicles.

Despite their successes, alternatives to lattice constructions have been sought
due to their difficulty in generalizing to arbitrary state-space dynamics. Employing
a similar approach of constructing global solution trajectories as concatenations
of local connections between discrete states, modern sampling-based planners (cf.
Sampling-based Roadmap Planners, Sampling-based Tree Planners) use a represen-
tative set of probing samples to more efficiently explore trajectories through the free
state space.Work in this direction began with the application of the rapidly-exploring
random tree (RRT) algorithm to kinodynamic planning [3]; much recent research
has centered on sampling-based algorithms that guarantee solution near-optimality
in addition to feasibility. Two major research themes that manifest in nearly all
sampling-based kinodynamic planning algorithms are (1) how to efficiently eval-
uate distance between states under kinodynamic constraints, and (2) how to guide
exploration towards unvisited sampled states from the graph of visited states. This
latter challenge may be approached in an exact or approximate fashion; algorithms
that solve exact two-point boundary value problems (steering problems) connecting
start states to target states for graph expansion are known as steering-based planners
while algorithms that expand the graph through, e.g., sampling the robot’s control
space are known as forward-propagation-based planners.
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3.1 Problem Definition

Let X ⊆ R= and U ⊆ R< be the state space and control space, respectively, of a
robotic system, and let us assume the dynamics of the robot are given by

¤G(C) = 5 (G(C), D(C)), G(C) ∈ X, D(C) ∈ U. (1)

In kinodynamic planning contexts there are typically two additional spaces associated
with the robot’s state space: its configuration space and the workspace. The robot’s
configuration @, derivable from the full dynamic state G, encodes a notion of position
and contains all information necessary for checking collision with physical obstacles
(possibly including self-collision) at any time instant. This entails computing the
robot’s occupancy in the workspace, i.e., the 2D or 3D Euclidean space in which
the obstacles reside, and checking for intersections. In this way, we may project
real-world collision avoidance constraints into an obstacle region Xobs ⊂ X within
the state space (which may also include other constraints defined in terms of the
state or configuration variables, e.g., velocity limits or state restrictions to regions
of stability, enabling robust tracking control of the planned trajectories). Then, the
basic kinodynamic planning problem is similar to other robot motion planning
formulations, notably with the addition of the dynamics constraint: given an initial
state Ginit and a goal region Xgoal within the obstacle-free space Xfree = X \ Xobs,
one seeks state and control trajectories G : [0, )] → X, D : [0, )] → U that are
dynamically feasible in that they satisfy equation (1), collision free in that G(C) ∈ Xfree
for all C ∈ [0, )], and satisfy the boundary conditions G(0) = Ginit, G()) ∈ Xgoal.
As an alternative interpretation, at each point G, one may consider that the state
transition function 5 (G, D) provides a mapping from the control space to the set
of all local directions of motion available to the robot. In this sense, incorporating
robot dynamics into the planning problem may be thought of as adding additional
local motion constraints to the global state constraints posed by obstacle avoidance
considerations. Figure 1 depicts two basic examples of kinodynamic planning and
contrasts them with examples of planning without differential constraints, where
only collision avoidance constraints remain.

As in many motion planning contexts, both researchers and practitioners are often
concerned not only with solution feasibility for kinodynamic planning problems, but
solution quality as well. As early as the coining of the term kinodynamic planning
[1], algorithms have been designed to find (near-)optimal plans with respect to
a trajectory cost functional 2(G(·), D(·), )). This cost is typically chosen to reflect
system design goals includingminimum-time, minimum-energy (i.e., control effort),
maximum safety, or some weighted combination thereof. Much literature from the
past decade in particular has focused on optimal kinodynamic planning; key research
findings will be surveyed in Section 4.
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(a) Geometric Planning (b) Planning with Dubins Car
Dynamics

(c) Geometric Planning (d) Planning with Simplified
Quadrotor Dynamics

Fig. 1: Examples of sampling-based kinodynamic motion planning. Obstacles are
depicted in red, trees of motions considered by a sampling-based planning algorithm
are rendered in gray, and solution trajectories output by the algorithm are highlighted
in blue. All examples share the same configuration space, namely SE(2), the space of
planar translations and rotations. In each row, although the robots start and end in the
same configuration, the addition of differential constraints in the right-hand figures
greatly restricts the robots’ available motions, complicating the planning problem.
In the top row, obeying Dubins car dynamics means that the car is no longer able
to slide laterally as it does in the corresponding geometric planning example. In the
bottom row, accounting for momentum when planning with simplified quadrotor
dynamics results in a smoother, comparatively circuitous solution trajectory.

3.2 Context

Kinodynamic planning, in its full generality, subsumes the problem scopes of a
number of other planning domains and runs parallel to still others. Here we briefly
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outline the key distinctions and relationships with these related fields to help clarify
how and when kinodynamic planning techniques should be used.
Geometric Planning. (cf. Path/Motion Planning) Though certainly every physically-
embodied robot obeys some notion of dynamics, in many cases these considerations
may be abstracted away before the motion planning process. Indeed, this decoupling
approach—in which the planning problem is decomposed in steps of computing
a collision-free geometric path (neglecting the differential constraints), and then
smoothing/reparameterizing the trajectory so that the robot can execute it—is of-
ten practical for slow-moving or otherwise highly maneuverable robots. Geometric
planning is also advisable when the problem’s search complexity arises simply from
a high dimensional configuration space, as opposed to any dynamics considerations,
e.g., when jointly planning the motions of many simple robots. In contrast, kinody-
namic planning refers to solving the problem in one shot, avoiding any suboptimality
or even solution infeasibility thatmight arise from not directly considering the system
dynamics.
Kinematic Planning. Kinematic constraints restrict the local directions of motion
available to a robot from a given configuration, i.e., they represent constraints on a
robot’s velocity in the configuration space. These constraints need not be associated
with full continuous-time dynamics; indeed many simple car models including the
Dubins [4] and Reeds-Shepp [5] cars and other mobile multi-link wheeled robots
are often discussed within the kinodynamic planning literature but in actuality their
path geometry may be planned purely in terms of respecting kinematic constraints.
Problems containing only nonintegrable kinematic constraints are often referred to
as nonholonomic planning problems in the motion planning literature [6].

The study of manifold-constrained planning (cf. Planning under Manifold Con-
straints) is similar to both kinematic and kinodynamic planning in that robots’ local
directions of motion are limited to constraint sets. A major distinction, however,
is that for kinodynamic planning these motions are explicitly parameterized by the
dynamics equation (1), while manifold constraints are often more naturally specified
implicitly, e.g., through algebraic or differential algebraic equations.
Trajectory Optimization. When appropriately applied, kinodynamic planning and
trajectory optimization algorithms (cf. Optimization-based Planners) serve comple-
mentary roles in a robot’s control stack. While it is true that motion planning may be
regarded as a special case of optimal control where the main distinguishing element
is a (typically highly non-convex) collision-avoidance constraint on the robot’s state
trajectory, the global combinatorial search necessitated by this non-convex constraint
is truly the hallmark of a motion planning problem. For sufficiently simple planning
scenarios, e.g., if the planning horizon of a robot spans only a few upcoming obsta-
cles, the combinatorial search over possible solution trajectories may be elided into a
local optimization around an initial guess trajectory. The benefit of such an approach
is that it can produce high-quality plans extremely quickly. In general, however,
these trajectory optimization algorithms are only able to achieve local optima, and
may not even reliably return feasible trajectories if their initialization is too poor.
A more robust approach is to combine global motion planning with local trajectory
optimization. That is, practitioners may opt to take the output of a kinodynamic
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planning algorithm as a near-optimal, dynamically feasible solution in the correct
homotopy class (i.e., incorporating the correct combinatorial decisions in navigating
the obstacle-free space), and further post-process it using local optimizationmethods
before enacting the planned trajectory.

4 Key Research Findings

This section outlines a selection of recent theoretical and practical advances from
the kinodynamic planning literature. In light of the context overviewed in Sec-
tion 3.2, we restrict the present discussion to approaches that frame the problem
of planning continuous dynamically feasible trajectories as the construction of and
search over a motion graph with discrete states as nodes connected by trajectory
segments as edges. In this way the trajectory planning problem may be reduced to
a graph traversal problem; solutions connecting the initial state to the goal region
are constructed by concatenating the local edges to form collision-free trajectories
on a global scale. Though there do exist planning algorithms that account for the
continuous-time aspect of trajectory planning directly, e.g., those based on varia-
tional methods, differential dynamic programming, or, more generally, full solutions
of an appropriately defined Hamilton-Jacobi-Bellman partial differential equation
[7], these approaches are more typically discussed in the context of trajectory opti-
mization (cf. Optimization-based Planners).

4.1 Lattice-based Kinodynamic Motion Planning

The earliest, and arguably most natural, formulations of kinodynamic planning as a
discrete search problem involve construction of a lattice of states repeated at regular
intervals, connected locally by a fixed set of control trajectories [2, 8]. Lattice-
based approaches are popular especially for mobile robots where the dynamics are
translation-invariant in the spatial state dimensions, and thus regular lattices are
practical to devise. The power of these methods comes from their decoupling of
dynamics constraints, which depend only on the properties of the robotic system,
with collision-avoidance constraints that depend on the particular environmental
conditions a robot encounters during its operation. That is, the lattice and associated
control trajectories used to traverse it encode a motion graph representation of the
robot’s dynamics. The graph, which may be computed offline, represents a discrete
search space in which differential constraints have been abstracted away so that
planning in the presence of obstacles may be reduced to graph search with only
edge costs computed online. Modern implementations of lattice-based planning
algorithms, e.g., [9], have proven the computational benefits of maintaining an
implicit representation of the motion graph and using a heuristic search, e.g., A∗ or
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D∗ (for planning applications where rapid replanning is desired), to decide which
lattice edges to traverse.

4.2 Sampling-based Kinodynamic Motion Planning

Similar to lattice-based approaches, sampling-based motion planning (SBMP) algo-
rithms build a representation of the free state space, and feasible motions within, as
a collection of local connections between discrete state samples. These connections
are added to a graph of possible motions (where nodes are states and edges are
trajectories connecting them) if a collision checking routine verifies that the con-
nection avoids obstacles. Unlike lattices which are typically computed offline and
then applied to the planning problem at hand, sampling-based planning algorithms
typically include graph construction, including computation of new edges, as part
of their online operation. This enables the graph to be tailored to information dis-
covered during the planning process, either explicitly or implicitly as a consequence
of randomization in the way that the planning algorithm selects the state samples.1
The explicit incorporation of graph construction also facilitates analysis of asymp-
totic completeness and optimality, the focus of much recent research activity in
sampling-based kinodynamic planning.

Many sampling-based planning algorithms originally designed for geometric mo-
tion planning (cf. Sampling-based Roadmap Planners, Sampling-based Tree Plan-
ners) extend naturally to kinodynamic planning applications as well. The algorithm
pseudocodemay be similar, or even identical, but differences arise in the implementa-
tion of each planner subroutine, including methods for state sampling, near-neighbor
computation, and edge construction (i.e., graph extension). Moreover, in the theo-
retical analysis of these algorithm adaptations, quantification of the reachable set of
states from a graph node is critical—unlike geometric planning where local robot
motions are unconstrained, kinodynamic planning algorithms must appropriately
compensate for the restrictions brought on by dynamic constraints and widen their
exploration strategies lest they insufficiently cover the search space.

We organize our discussion of specific SBMP algorithms according to a key
distinction in how they extend motion graphs: whether state sampling is part of edge
construction, in which case new edges are extended out from existing graph nodes
with the endpoint state unknown beforehand (forward-propagation-based planners,
Section 4.2.1), or whether edges are constructed to connect pairs of previously
sampled states (steering-based planners, Section 4.2.2).

1 We note that lattice-based planning algorithmsmay also be categorized as deterministic sampling-
based planners.
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4.2.1 Forward-propagation-based SBMP Algorithms

For the most general formulations of robot dynamics, solving an exact steering
problem driving a robot from a start state to a target state can be notoriously compu-
tationally expensive and require numerical methods from nonlinear optimal control
[10], additional collision-avoidance constraints in the context of motion planning
notwithstanding. Since the introduction of the rapidly-exploring random tree (RRT)
[3] and expansive space tree (EST) [11] algorithms for kinodynamic planning in the
early 2000s, researchers have grown a family of planning algorithms that employ
only forward dynamics propagation to explore the free state space. In [12] the au-
thors rigorously establish the probabilistic completeness of a variant of RRT under
differential constraints, which expands the motion graph by propagating random
control steps for random durations, subject to a minimal regularity assumption that
the robot dynamics are Lipschitz continuous in both arguments. It was discovered
by [13] that judicious pruning of the RRT throughout construction, resulting in the
Stable-Sparse-RRT (SST) and SST∗ algorithms, achieves efficient asymptotic near-
optimality and optimality respectively for Lipschitz-continuous cost functions under
the same system assumptions. An alternative avenue to asymptotic optimality has
been recently proposed as the AO-x meta-algorithm [14], which converts an optimal
planning problem into a feasibility problem (to which any probabilistically complete
kinodynamic planners, including RRT and EST, may be applied) by augmenting the
state space with an addition dimension tracking accumulated cost on which upper
bound constraints are considered.

In the absence of targeted steering, devising strategies for biasing the exploration
of forward-propagation-based planning algorithms towards unexplored regions of
state space has been another area of active research. The Path-Directed Subdivision
Tree (PDST) [15] and Kinodynamic Motion Planning by Interior-Exterior Cell Ex-
ploration (KPIECE) [16] planners maintain cell decompositions of the state space
with the purpose of heuristically identifying the most promising cell at each algo-
rithm step to explore further. In particular KPIECE defines a notion of exterior cells
(compared to interior cells) from which random forward control propagation may be
best expected to improve coverage of the state space. Applying exploration heuristics
of this type may substantially reduce the runtime required to plan from the start state
to the goal by ensuring that as little computation as possible is wasted on previously
explored areas.

4.2.2 Steering-based SBMP Algorithms

For robotic systems where efficient online steering subroutines exist, kinodynamic
planning algorithmsmay take advantage of this domain knowledge to more explicitly
guide state space exploration.Many adaptations of algorithms originally proposed for
geometric planning (cf. Asymptotically Optimal Sampling-based Planners), where
the steering subroutine is trivial, to planning under differential constraints fall into
this category, including kinodynamic extensions of the asymptotically optimal RRT∗,
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probabilistic roadmap (PRM∗), and fast marching tree (FMT∗) algorithms [17, 18,
19, 20]. A key parameter for these algorithms is the size of the local neighborhood
in which steering connections between states should be considered—too small and
the algorithms will not be considering enough connections to approach optimality,
too large and far more steering connections will be computed than are necessary
negatively impacting planner efficiency. Generalizing results for their geometric
planning counterparts, those works derive the appropriate scaling for the connection
radius A: in terms of sample count : in order to guarantee asymptotic optimality,
assuming uniform random sampling:

A: ∝
(
Volume(Xfree)

(
log :
:

))1/�

where � is a constant, depending only on the robot dynamics and trajectory cost
function and typically distinct from the state space dimension =, such that the A: -
bounded-cost forward/backward reachable sets froma state contain on average log(:)
other states (though it is noted by, e.g., [19, 20] that this is not a sufficient condition
in itself). In order to make this radius selection practical, however, there is a need for
methods to identify near states, according to the steering metric, without computing
all pairwise steering connections. Recent work [21] has investigated the application
of :-d trees, spatial partitioning data structures designed for efficient near-neighbor
lookups, for this purpose.

5 Examples of Application

Lattice-based planning methods have seen particular success in the field applied to
trajectory planning problems for wheeled robots. In addition to driving prototypes
for extraterrestrial research rovers [9], lattice-based planners were employed by
many competitors in the DARPA Grand Challenge and DARPA Urban Challenge
for autonomous vehicles in the mid-2000s, including the winning CMU [22] and
runner-up Stanford [23] Urban Challenge teams.

Due to their relative computational expense, sampling-based algorithms for kin-
odynamic planning have hitherto largely been limited to simulation-based planning
applications, but there are some notable practical deployments. The MIT team in the
DARPA Urban Challenge employed a variant of the kinodynamic RRT algorithm,
propagating the closed-loop dynamics of the car with a stabilizing controller and
employing situation-specific biased sampling for improved computational efficiency
[24]. Real-time sampling-based motion planning has also been deployed to guide
quadrotor flight in cluttered environments [25].
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6 Future Directions for Research

Despite sustained research interest in their theoretical properties and a limited de-
gree of practical deployment in mobile robot planning applications, the dominant
research challenge in developing kinodynamic planning algorithms remains how to
achieve truly real-time performance for general robotic systems in complex obstacle
environments. Ongoing work in fusing motion planning and trajectory optimization
(cf. Optimization-based Planners) targets that goal. Researchers have also begun
to incorporate machine learning into kinodynamic planning algorithms in order to
benefit from prior experience (beyond trajectory replanning in the immediate sense).
Data-driven heuristics hold promise in accelerating sampling-based planning algo-
rithms by biasing sampling distributions towards critical areas of the state space
and providing faster learned approximations of algorithm subroutines such as near-
neighbor computation and collision-checking that may be used to optimistically
speed up exploration.

References

1. J. Canny, B. Donald, J. Reif, and P. Xavier, “On the complexity of kinodynamic planning,” in
IEEE Symp. on Foundations of Computer Science, 1988.

2. B. Donald, P. Xavier, J. Canny, and J. Reif, “Kinodynamic motion planning,” Journal of the
Association for Computing Machinery, vol. 40, no. 5, pp. 1048–1066, 1993.

3. S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning,” Int. Journal of Robotics
Research, vol. 20, no. 5, pp. 378–400, 2001.

4. L. E. Dubins, “On curves of minimal length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents,” American Journal of Mathematics,
vol. 79, no. 3, pp. 497–516, 1957.

5. J. Reeds and R. Shepp, “Optimal paths for a car that goes both forwards and backwards,”
Pacific Journal of Mathematics, vol. 145, no. 2, 1990.

6. S. M. LaValle, Planning Algorithms. Cambridge Univ. Press, 2006.
7. R. Takei and R. Tsai, “Optimal trajectories of curvature constrained motion in the Hamilton-

Jacobi formulation,” SIAM Journal on Scientific Computing, vol. 54, no. 2-3, pp. 622–644,
2013.

8. B. Donald and P. Xavier, “Provably good approximation algorithms for optimal kinodynamic
planning: Robots with decoupled dynamics bounds,” Algorithmica, vol. 14, no. 6, pp. 443–479,
1995.

9. M. Pivtoraiko, R. A. Knepper, and A. Kelly, “Differentially constrained mobile robot motion
planning in state lattices,” Journal of Field Robotics, vol. 26, no. 3, pp. 308–333, 2009.

10. D. E. Kirk, Optimal control theory: an introduction. Courier Corporation, 2012.
11. D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic motion planning

with moving obstacles,” Int. Journal of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.
12. M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin, “Probabilistic com-

pleteness of RRT for geometric and kinodynamic planning with forward propagation,” IEEE
Robotics and Automation Letters, vol. 4, no. 2, 2019.

13. Y. Li, Z. Littlefield, and K. E. Bekris, “Asymptotically optimal sampling-based kinodynamic
planning,” Int. Journal of Robotics Research, vol. 35, no. 5, p. 528–564, 2016.

14. K. Hauser and Y. Zhou, “Asymptotically optimal planning by feasible kinodynamic planning
in a state-cost space,” IEEE Transactions on Robotics, vol. 32, no. 6, 2016.



Kinodynamic Planning 11

15. A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of state space for robots with
dynamics,” in Workshop on Algorithmic Foundations of Robotics, 2005.

16. I. A. Şucan and L. E. Kavraki, “A sampling-based tree planner for systems with complex
dynamics,” IEEE Transactions on Robotics, vol. 28, no. 1, pp. 116–131, 2012.

17. S. Karaman and E. Frazzoli, “Sampling-based optimal motion planning for non-holonomic
dynamical systems,” in Proc. IEEE Conf. on Robotics and Automation, 2013.

18. D. J. Webb and J. van den Berg, “Kinodynamic RRT*: Optimal motion planning for systems
with linear differential constraints,” in Proc. IEEE Conf. on Robotics and Automation, 2013.

19. E. Schmerling, L. Janson, and M. Pavone, “Optimal sampling-based motion planning under
differential constraints: the driftless case,” in Proc. IEEE Conf. on Robotics and Automation,
2015, Extended version available at http://arxiv.org/abs/1403.2483/.

20. ——, “Optimal sampling-based motion planning under differential constraints: the drift case
with linear affine dynamics,” in Proc. IEEE Conf. on Decision and Control, 2015.

21. V. Varricchio, B. Paden, D. Yershov, and E. Frazzoli, “Efficient nearest-neighbor search for
dynamical systems with nonholonomic constraints,” inWorkshop on Algorithmic Foundations
of Robotics, 2016.

22. C. Urmson, J. Anhalt, D. Bagnell, C. Baker, R. Bittner, M. N. Clark, J. Dolan, D. Duggins,
T. Galatali, C. Geyer,M.Gittleman, S. Harbaugh,M.Hebert, T.M.Howard, S. Kolski, A. Kelly,
M. Likhachev, M. McNaughton, N. Miller, K. Peterson, B. Pilnick, R. Rajkumar, P. Rybski,
B. Salesky, Y. Woo Seo, S. Singh, J. Snider, A. Stentz, W. Whittaker, Z. Wolkowicki, J. Ziglar,
H. Bae, T. Brown, D. Demitrish, B. Litkouhi, J. Nickolaou, V. Sadekar, W. Zhang, J. Struble,
M. Taylor, M. Darms, and D. Ferguson, “Autonomous driving in urban environments: Boss
and the Urban Challenge,” Journal of Field Robotics, vol. 25, no. 8, 2008.

23. D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel, “Path planning for autonomous vehicles
in unknown semi-structured environments,” Int. Journal of Robotics Research, vol. 29, no. 5,
pp. 485–501, 2010.

24. J. Leonard, J. How, S. Teller, M. Berger, S. Campbell, G. Fiore, L. Fletcher, E. Frazzoli,
A. Huang, S. Karaman, O. Koch, Y. Kuwata, D. Moore, E. Olson, S. Peters, J. Teo, R. Truax,
M. Walter, D. Barrett, A. Epstein, K. Maheloni, K. Moyer, T. Jones, R. Buckley, M. Antone,
R.Galejs, S.Krishnamurthy, and J.Williams, “Aperception-driven autonomous urban vehicle,”
Journal of Field Robotics, vol. 25, no. 10, 2008.

25. R.Allen andM. Pavone, “A real-time framework for kinodynamic planning in dynamic environ-
ments with application to quadrotor obstacle avoidance,” Robotics and Autonomous Systems,
vol. 115, pp. 174–193, 2019.


