
A Congestion-aware Routing Scheme
for Autonomous Mobility-on-Demand Systems

Mauro Salazar1,2, Matthew Tsao2, Izabel Aguiar2, Maximilian Schiffer3 and Marco Pavone2

Abstract— We study route-planning for Autonomous
Mobility-on-Demand (AMoD) systems that accounts for the
impact of road traffic on travel time. Specifically, we develop
a congestion-aware routing scheme (CARS) that captures
road-utilization-dependent travel times at a mesoscopic level
via a piecewise affine approximation of the Bureau of Public
Roads (BPR) model. This approximation largely retains the
key features of the BPR model, while allowing the design
of a real-time, convex quadratic optimization algorithm to
determine congestion-aware routes for an AMoD fleet. Through
a real-world case study of Manhattan, we compare CARS to
existing routing approaches, namely a congestion-unaware and
a threshold congestion model. Numerical results show that
CARS significantly outperforms the other two approaches,
with improvements in terms of travel time and global cost in
the order of 20%.

I. INTRODUCTION

Congestion remains a central problem in today’s trans-
portation systems, especially in densely populated urban
areas. While congestion phenomena have been attenuated by
subsidiary modes of transportation (e.g., public transport) in
the past, in recent years congestion-related problems have
rapidly increased. Even mature cities are struggling with
these problems, with the sustainability of mobility systems
restricted by current infrastructure and space limitations.
Additionally, current societal trends increase congestion and
emphasize its negative impacts. First, steadily increasing
urbanization leads to higher population densities and thus
higher mobility demand in cities [1]. Second, commuters’
individual mobility needs and comfort preferences have led
to the decrease in the utilization of public transportation [2].
Third, mobility-on-demand services such as Uber and Lyft
are rapidly growing as an alternative to public transportation
and individual car ownership [3]. Consequently, (selfish)
traffic on roads is steadily growing and increases congestion
even further. Current transport key performance indicators
reflect this situation. According to [4] the annual delay per
commuter exceeds 42 hours and one third of commuter trips
are reported to have “extreme, severe, or heavy” congestion.
In New York City, the average speed in Manhattan decreased
from 6.5 mph to 4.7 mph between 2012 and 2017 [5].

Cities face spatial limitations in addressing the issue of
congestion as the available infrastructure (e.g., roads, traffic
signals, highways, train lines) and its capacities are largely
fixed. It is thus necessary to develop more efficient systems in
road transport to supplement existing public transportation.
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A. Recent Research

here comes the literature, bla bla bla - somebody has to
do it

B. Aims and Scope

As can be seen, no study on centrally operated intermodal
passenger transportation exists so far, especially with respect
to AMoD systems. Against this background, we provide
the first study that analyzes the benefit of such an inter-
modal transportation system from a mesoscopic point of
view. We develop an optimization approach that finds the
optimal control policy for this system under steady state
conditions. Herein, we incorporate different objectives that
consider either the total transportation time, or the generated
emissions, or both by incorporating a convexly combined
objective as well as a generalized cost function. We provide
a case study based on real-world data from Manhattan. Based
on the results for this study, we derive managerial insights
for both fleet operators and municipalities.

The contribution of our study is fourfold: First, we pro-
vide the first optimization framework for an intermodal
autonomous mobility-on-demand (I-AMoD) system, which
handles real-world data sets in short computational times
and delivers global optimality. Second, we provide a sound
case that is based on real-world data for Manhattan, an
urban area in which the need for a sustainable transportation
concept is more than urgent. Third, we present results that
are not limited to a single objective but include different
perspectives: i) the social welfare in monetary terms of value
of time and operational costs, and ii) the social welfare in
both monetary and environmental terms. Fourth, we derive
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managerial insights that, besides providing dedicated intu-
itions for single stakeholders, analyse the social optimum
that can be reached.

The remainder of this paper is structured as follows:
Section II presents the methodological background for our
studies. Section III derives a pricing scheme to steer self-
interested agents to the social optimum. Then, Section IV
details our case study and discusses our experiments and
results. Finally, Section V concludes the paper with a short
summary and an outlook on future research.

II. METHODOLOGY

This section presents the methodological background for
our studies. We aim at analyzing the benefit of AMoD
systems in an intermodal setting. Herein, we use a fluidic
optimization approach to determine the optimal equilibrium
for such a system. Within this approach, we consider

• the assignment of transportation requests to transport
flows,

• different modes of transportation,
• capacity limits which are specific to the transportation

mode, such as congestion and seats availability per unit
time on public transportation lines,

• and rebalancing flows for the AMoD system.
Section II-A describes such an optimization approach, as-
suming a globally controlled mobility system. Understanding

the unlikelihood of an intermodal system being globally
controlled, we derive a (Pigovian) pricing scheme that would
influence selfish actors to behave according to the social
optimum in Section III-B.

A. Multi Commodity Flow Based Optimization Approach

To represent the transportation system and its different
transportation modes, we use the (in)complete layered graph
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G = (V ,A ) shown in Fig. 1 with a set of vertices V
and a set of arcs A ✓ V ⇥V , comprising a road network
layer GR = (VR,AR), a subway layer GS = (VS,AS), and a
pedestrian layer GP = (VP,AP). The road layer represents
intersections i 2 VR and road links (i, j) 2 AR. The subway
layer comprises subway stops i 2 VS and the respective lines
(i, j) 2 AS, while the pedestrian layer represents walkable
streets (i, j) 2 AP in between intersections i 2 VP. Finally,
arcs out of set AC ✓VR⇥VP[VS⇥VP connect the pedestrian
layer to the road and to the subway layer, respectively,
such that V = VP [VR [VS, A = AP [AR [AS [AC and
VR \VS = /0 holds.

We use the following notation to describe characteristics
of G and define our optimization problem: Each arc has a
capacity ci j which denotes either the capacity of a certain
transportation mean (AR,AS) or remains as ci j = •, 8(i, j)2
AC,AP for transportation means without capacity limits,
i.e., walking. The travel time ti j denotes the average time
needed to traverse an arc (i, j). Times on arcs (i, j) 2 AC
represent switching times between or to reach a certain mean
of transportation. Let R be the set of all travel requests. A
request rm = (om,dm,am) 2 R is a triple composed by an
origin node om, a destination node dm and a request rate am
that denotes the amount of customers per unit time. Since
we identify different transportation modes by different arc
sets, we use only a single type of flow variables fm (i, j)
that denotes the flow on an arc (i, j) for a certain travel
request m 2 M = [1,M] ✓ N. Furthermore, f0 (i, j) denotes
the rebalancing flow of empty AMoD vehicles on the road
arcs (i, j) 2 AR.

With this notation, the I-AMoD optimization problem
holds as follows: For a given set of transportation demands
(om,dm,am) 2 R, we want to find the optimal customer and
rebalancing flows, fm (i, j) ,(i, j) 2 A and f0 (i, j) , (i, j) 2
AR, such that the objective costs (1a) are minimized. Herein,
customer flow conservation constraints (1b), conservation of
vehicles (1c), capacity constraints on road (1d), and public
transportation links (1e) must hold.
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A. Multi Commodity Flow Based Optimization Approach
To represent the transportation system and its different

transportation modes, we use the digraph G = (V ,A ) shown
in Fig. 1, which has a set of vertices V and a set of
arcs A ✓ V ⇥ V . The graph contains a road network
layer GR = (VR,AR), a subway layer GP = (VP,AP), and
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a pedestrian layer GW = (VW,AW). Herein, the road layer
represents intersections i 2 VR and road links (i, j) 2 AR.
The subway layer comprises subway stops i 2 VP connected
by arcs (i, j) 2 AP, while the pedestrian layer represents
walkable streets (i, j) 2 AW between intersections i 2 VW.
Finally, arcs out of set AC ✓ VR ⇥VW [VP ⇥VW connect
the pedestrian layer to the road and to the subway layer,
respectively. These arcs model the customer’s ability to
switch transportation modes, such that V = VW [VR [VP,
A = AW [AR [AP [AC and VR \VP = /0 holds.

To consider congestion we use a simplified threshold
model: Each arc (i, j) has a capacity ci j which denotes
the maximum flow of passengers or vehicles that the arc
can accommodate without encountering traffic congestion
((i, j) 2 AR) or overcrowding ((i, j) 2 AP). The capacity of
walking arcs remains as ci j = •, 8(i, j) 2 AC,AW. Travers-
ing an arc (i, j) takes on average ti j time units. Note herein,
that ti j8(i, j) 2 AC denotes the time necessary to switch
between two means of transportation. Given the threshold
modeling approach, we assume ti j to be constant if an arc’s
capacity constraint holds.

Let R be the set of all travel requests. A request rm =
(om,dm,am) 2 R is a triple of an origin node om 2 VW,
a destination node dm 2 VW, and a request rate am that
denotes the amount of customers per unit time for each
request. Note that om and dm lie on the pedestrian digraph.
Accounting for different transportation modes by separate
arc sets, fm (i, j) denotes the flow on arc (i, j) 2 A for a
certain travel request m 2 M = [1,M] ✓ N. To account for
rebalancing flows between a customer’s destination and the
next customer’s origin, f0 (i, j) denotes the flow of empty
vehicles on road arcs (i, j) 2 AR.

Given this notation, the I-AMoD optimization problem
holds as follows:

min
fm(i, j), f0(i, j)

C ( fm (i, j) , f0 (i, j)) (1a)

s.t.

Â
i:(i, j)2A

fm(i, j)+1 j=om ·am = Â
k:( j,k)2A

fm( j,k)+1 j=dm ·am

8m 2 M , j 2 V (1b)

Â
i:(i, j)2AR

 
f0 (i, j)+Â

m2M

fm(i, j)

!
=

Â
k:( j,k)2AR

 
( f0 ( j,k)+Â

m2M

fm( j,k)

!
8 j 2 VR (1c)

f0 (i, j)+Â
m2M

fm (i, j) cR
i j 8(i, j) 2 AR (1d)

Â
m2M

fm (i, j) cP
i j 8(i, j) 2 AP. (1e)

For a given set of transportation demands (om,dm,am)2R,
we minimize the objective cost C with the customer flows

fm (i, j) and rebalancing flows f0 (i, j) in Eq. (1a). The
constraint (1b) guarantees flow conservation for customers,
whereby 1 j=x is a boolean indicator function. We secure
further flow conservation for vehicles in Eq. (1c), and enforce
capacity limits for roads in Eq. (1d) and public transportation
links in Eq. (1e).

B. I-AMoD Objective

The generalized cost function (1a) can be used to address
different objectives. In our studies, we optimize the social
welfare by minimizing overall costs. Specifically, we define
commuting costs that depend on the customers’ value of
time VT and on operational costs for the AMoD fleet and the
subway. Herein, costs for the AMoD fleet comprise mileage
dependent ownership costs VD,R to account for maintenance
and depreciation as well as energy costs VE. For the subway
system, VD,P comprises all operational costs per passenger
kilometer. This way, we define the social cost as

CM ( fm (i, j) , f0 (i, j)) =VT ·Â
m2M ,(i, j)2A

ti j · fm (i, j)

+Â
(i, j)2AR

(VD,R ·di j +VE · eR,i j) ·
 

f0 (i, j)+Â
m2M

fm (i, j)

!

+VD,P ·Â
(i, j)2AP

di j ·Â
m2M

fm (i, j) .

(2)

Given the mesoscopic nature of our study, we estimate the
energy consumption of a single vehicle eR,i j > 0, (i, j) 2AR
assuming that road arcs are traversed at the constant speed
vi j =

di j
ti j

. Considering electric vehicles with full recuperation
capabilities and an overall tank-to-wheel efficiency hEV, the
energy consumption for a road arc is

eR,i j =
⇣ra

2
·Af · cd · v2

i j + cr ·mv ·g
⌘
·

di j

hEV

8(i, j) 2 AR. (3)

The first term in (3) represents the aerodynamic drag com-
posed by the air density ra, the frontal area Af, and the drag
coefficient cd, and the rolling friction computed combining
its coefficient cr with the mass of the vehicle mv and the
gravity g [22].

C. Discussion

A few comments are in order. First, we consider time-
invariant travel requests. This assumption is valid if requests
change slowly compared to the average travel time of an
individual trip, as is often the case in densely populated urban
environments [23]. Second, we adopt a threshold model for
congestion. The model is consistent with classical traffic flow
theory [24] and it is adequate for the goal of efficiently
optimizing customer and vehicle routes. Congestion models
offering higher accuracy can be used for the analysis of
specific control policies. Third, the model in this paper
represents customer and vehicle routes as fractional flows
and does not capture the stochastic nature of the customer
arrival process. These approximations are in line with the
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Fig. 1. The AMoD network. The colored dots represent intersections and
the black arrows denote road links or pedestrian pathways. The gray dotted
lines highlight geographically equivalent nodes connected by gray mode-
switching arcs.

Herein, Autonomous Mobility-on-Demand (AMoD) systems
represent a promising solution. An AMoD system consists of
a fleet of self-driving vehicles designed to carry passengers
from their origins to their destinations. As passengers request
trips, the central operator of the AMoD system assigns
each passenger to an empty vehicle. Once the passengers
are dropped off, the central operator computes an optimal
rebalancing route to assign the vehicle to the next request.
The central operator is thus in control of simultaneously
optimizing the routes for all vehicles in the system. As such,
AMoD can replace current forms of mobility-on-demand
(e.g., taxis and ride-hailing) while reducing the cost of
travel [6]. Furthermore, because the entire fleet of vehicles
in an AMoD system is centrally controlled, this form of
autonomous mobility can be operated in a system optimal
fashion.

The potential of AMoD systems to alleviate congestion in
cities depends on congestion-aware (CA) routing. CA routing
considers the natural capacities of roads and the effects of
vehicle flows on travel times through volume-delay functions.
CA routing is not a new idea: Navigation providers, such
as Google Maps and Waze, have incorporated features that
allow users to view how real-time and estimated traffic
congestion will impact the routes of their commutes [7], [8].
CA routing with conventional algorithms, however, can only
passively suggest the routing of a single vehicle to avoid
traffic, and furthermore only anticipate the traffic from other
selfish vehicles. Conversely, using CA routing in an AMoD
setting allows one to actively control the routes of all vehicles
in the fleet under complete system information. With the
aim to enable realistic CA routing for AMoD systems,
we develop and study the use of a volume-delay function
designed for convex optimization purposes. To set this work
apart from the status quo, we briefly review related literature
and state our aims and scope of the paper.



A. Related Literature

The most widely-used volume-delay function is the one
developed by the Bureau of Public Roads (BPR) [9], al-
though many other “BPR-type” functions exist [10]. In
related research work these functions have been used for
algorithmic approaches to dynamic estimation of congestion
on a network [11] and CA route planning in agent-based
models [12], [13]. Furthermore, CA route planning of AMoD
systems has been simulated in [14]–[18], and optimized for
dynamic traffic assignment in [19], [20]. These approaches
have provided CA routing analysis, but are limited to simula-
tions and lack control algorithms for both passenger requests
and vehicle rebalancing. Thus far, the CA control of AMoD
systems has been limited to thresholded approximations of
the BPR function [21]–[23]. In this approximation the time
required to travel on a road is defined through a thresholded
approach: The cars on a road are permitted to travel at
a free-flow speed if the capacity of the road has not yet
been reached. Additional cars beyond this capacity, however,
make this road impossible to traverse. Although this model
provides a conservative approach to capturing the effect
of congestion on travel time, it oversimplifies congestion
phenomena and may lead to suboptimal route patterns. To
the best of our knowledge, no algorithmic framework for
CA routing of AMoD systems currently exists that allows
one to simultaneously address a) the more precise BPR-
defined effects of congestion and b) system-optimal planning
of routing decisions for customer requests and rebalancing
vehicles.

B. Aims and Scope

To resolve the drawbacks outlined above, we propose
a congestion-aware routing scheme (CARS) that leverages
a piecewise-affine approximation of the BPR congestion
model [9]. In contrast to extensively studied approaches that
exploit a user equilibrium (e.g., cf. [24]), we exploit the
possibility to centrally control AMoD fleets in a system-
optimal fashion. We study the impact of such an algorithm in
a real-world case study of Manhattan. We compare CARS to
two different baselines, the first one congestion-unaware and
the second one capturing congestion via a threshold model.
We study CA traffic routing in Manhattan and show that
CARS significantly improves the state of the art with respect
to travel times and global cost, while featuring computation
times compatible with a real-time implementation. It should
be noted that, while the BPR function does not capture every
effect of congestion (e.g., spillback, heterogeneous vehicles
or intersection delays), it is a well-accepted model which
suits the aim of this paper, namely, not to perfectly capture
traffic dynamics, but to approximate them precisely enough
for optimization and control purposes.

C. Organization

The remainder of this paper is structured as follows: in
Section II we detail the methodology and develop CARS:
a flow-based optimization framework for CA routing of
AMoD systems. In Section III we numerically evaluate the
performance of CARS through a case study of AMoD traffic
routing in Manhattan. We conclude the paper in Section IV

with a discussion of our results and an outlook on future
research directions.

II. METHODOLOGY

This section provides the methodological foundation for
CARS. We introduce a multi-commodity flow model to
represent the physical constraints of the transportation system
and the AMoD fleet in Section II-A. In Section II-B we
specify an objective function for the model with the goal to
optimize social welfare.

We present an approximation of the BPR volume-delay
function to consider congestion while preserving model
convexity in Section II-C, and conclude in Section II-D with
a brief discussion.

A. Multi-commodity Flow Based Optimization Approach

Recall from Section I-B, that we aim to model a network
with two modes of transportation: walking and riding AMoD.
This transportation network can be modeled on a digraph
G = (V ,A ) representing the “supernetwork” [24] shown in
Fig. 1. The graph consists of a set of vertices V and a set of
arcs A ⊆ V ×V . To capture both modes of transportation,
G comprises a road network layer GR = (VR,AR) and a
walking layer GW = (VW,AW). The road network layer
represents intersections i ∈ VR and road links (i, j) ∈ AR,
while the pedestrian layer models walkable streets (i, j) ∈
AW in between intersections i ∈ VW. Whereas the locations
of nodes and arcs in GR and GW may coincide geographically,
we maintain a distinction between walking and riding in
an AMoD vehicle. Additionally, switching arcs out of set
AC ⊆ VR × VW connect the pedestrian layer to the road
network layer, and model the customer’s ability to switch
transportation modes by hailing an AMoD ride or exiting a
car. Collectively, it holds V = VW∪VR and A =AW∪AR∪
AC.

Each arc has a specific length di j and a constant nominal
travel time tN

i j denoting the walking time for arcs (i, j) ∈
AW, the time to hail or exit an AMoD vehicle for arcs
(i, j) ∈ AC, and the travel time under free-flow conditions
(without traffic) for arcs (i, j)∈AR. As in [22], we model the
energy consumption of AMoD vehicles, assuming a constant
nominal speed vi j =

di j

tN
i j

for each arc. Furthermore, we assume

the AMoD fleet to be composed of lightweight electric
vehicles with an overall efficiency ηEV and full recuperation
capabilities. Thus, the energy consumption per road arc is

ei j =
(

ρa

2
·Af · cd · v2

i j + cr ·mv ·g
)
·

di j

ηEV
∀(i, j) ∈AR, (1)

where the aerodynamic drag is determined by the air density
ρa, the frontal area Af; and the drag coefficient cd, and the
friction of the wheels on the road is determined by the rolling
friction coefficient cr, the mass of the vehicle mv, and the
gravitational acceleration g [25].

Each travel demand m ∈M = {1, . . . ,M} consists of an
origin destination pair (om,dm) on the walking digraph GW
and a demand rate αm that denotes the number of customers
that are requesting the same trip per unit time. To trace
customer flows, fm (i, j) denotes the flow of customers on arc
(i, j)∈A for demand m∈M . As AMoD vehicles may need



to relocate between two customer requests, f0 (i, j) denotes
the rebalancing flow of empty vehicles on (i, j) ∈AR.

This notation is sufficient to derive a basic multi-
commodity flow model for our planning problem at hand.
Consider the cost function J mapping the set of flows
{ fm (·, ·)}m, f0 (·, ·) into the set of non-negative real numbers
R≥0. We state the AMoD optimal routing problem as

min
{ fm(·,·)}m, f0(·,·)

J
(
{ fm (·, ·)}m, f0 (·, ·)

)
(2a)

s.t.

∑
i:(i, j)∈A

fm(i, j)+1 j=om ·αm = ∑
k:( j,k)∈A

fm( j,k)+1 j=dm ·αm

∀m ∈M , j ∈ V (2b)

∑
i:(i, j)∈AR

(
f0 (i, j)+ ∑

m∈M
fm(i, j)

)

= ∑
k:( j,k)∈AR

(
f0 ( j,k)+ ∑

m∈M
fm( j,k)

)
∀ j ∈ VR (2c)

fm (i, j)≥ 0 ∀(i, j) ∈A (2d)
f0 (i, j)≥ 0 ∀(i, j) ∈AR, (2e)

where 1x is a boolean indicator function. Linear con-
straints (2b) and (2c) ensure that the mass of customers
and vehicles, respectively, are conserved on every road node.
Inequality constraints (2d) and (2e) ensure that the customer
and rebalancing flows are non-negative.

B. AMoD Objective

We use the cost function (2a) to model the social cost
of serving the transportation requests in a similar fashion
as [22]. In particular, we aim to minimize the total travel
time and the operational costs of the AMoD system. We
assume customers to have the same value of time VT. We
separate the cost of operating the AMoD fleet into a distance-
dependent cost VD due to depreciation and maintenance, and
an energy-consumption-dependent cost VE. Collectively, the
cost function (2a) is

JM
(
{ fm (·, ·)}m, f0 (·, ·)

)
=VT · ∑

m∈M ,(i, j)∈A
ti j
(

f (i, j)
)
· fm (i, j)

+ ∑
(i, j)∈AR

(VD ·di j +VE · ei j) · f (i, j) ,

(3)
where f (i, j) = f0 (i, j)+∑m∈M fm (i, j) is the total flow on
arc (i, j). The travel time ti j on road arcs is modeled as a
function of road usage, while ti j = tN

i j gives the time to walk
or switch transportation layer. To model link-congestion on
road arcs we use the BPR volume-delay function [9]

ti j
(

f (i, j)
)
= tN

i j ·FBPR

(
f (i, j)+uR

i j

cR
i j

)
∀(i, j) ∈AR, (4)

where uR
i j is the exogenous road usage caused by, e.g., the

presence of private cars, cR
i j being the nominal road capacity,

and
FBPR(x) = 1+0.15 · x4. (5)

x

FBPR(x)

0 1 x
th

x
end

0

a

a+ b · (xend
− x

th)

Fig. 2. The BPR function FBPR(x) (black dotted), its congestion-unaware
approximation (green solid), the threshold model (red dashed) and its
piecewise affine fit (blue solid).

C. BPR Model Approximation

We aim to minimize (2a) subject to the constraints spec-
ified by (2b)-(2e). However, JM is a non-convex polyno-
mial of the decision variables, namely the vehicle flows
{ fm (·, ·)}m, f0 (·, ·). Hence this model is, in general, com-
putationally intractable, as there does not exist a known
algorithm to reliably and efficiently solve large-scale non-
convex polynomial optimization problems. To resolve this
non-convexity we discuss a piecewise affine approximation
to the BPR function.

The non-convexity arises from the product ti j ( f (i, j)) ·
fm (i, j). Hence we approximate this term with a convex
function to ensure scalability to large-size problem instances.
Specifically, we fit Eq. (5) using a piecewise affine approxi-
mation as shown in Fig. 2:

y =
{

a if x ∈
[
0,xth

]
a+b · (x− xth) if x ∈

(
xth,xmax

]
,

(6)

where a is the height of the horizontal line, b the slope of the
second line, xth is the non-smooth threshold in the piecewise
affine approximation, and xmax defines the approximation
window. This way we approximate the BPR function (4) as

ti j =


tN
i j ·a if f (i, j)≤ cR,th

i j −uR
i j

tN
i j ·

(
a+b ·

f (i, j)−cR,th
i j

cR
i j

)
if f (i, j)> cR,th

i j −uR
i j

=: t0
i j + τi j · ε (i, j) ,

(7)
where t0

i j = a ·tN
i j , τi j = b ·tN

i j/cR
i j, and the slack variable ε (i, j)

denotes how much the total flow on arc (i, j) ∈AR exceeds
its threshold capacity cR,th

i j = xth · cR
i j, that is,

ε (i, j) = max
{

0, f (i, j)+uR
i j− cR,th

i j

}
. (8)

Provided that J is an increasing function of ε (i, j), this
piecewise affine cost can be represented by the following
linear inequality constraints

ε (i, j)≥ f (i, j)+uR
i j− cR,th

i j

ε (i, j)≥ 0.
(9)

It follows that the average travel time on road arcs T R can



be expressed as

T R· ∑
m∈M

αm = ∑
(i, j)∈AR

ti j
(

f (i, j)
)
· ∑

m∈M
fm (i, j)

= ∑
(i, j)∈AR

t0
i j · ∑

m∈M
fm (i, j)

+ ∑
(i, j)∈AR

τi j · ε (i, j) · ∑
m∈M

fm (i, j)

= ∑
(i, j)∈AR

t0
i j · ∑

m∈M
fm (i, j)

+ ∑
(i, j)∈AR

τi j · ε (i, j) ·
(

ε (i, j)+ cR,th
i j −uR

i j− f0 (i, j)
)

≤ ∑
(i, j)∈AR

t0
i j · ∑

m∈M
fm (i, j)

+ ∑
(i, j)∈AR

τi j ·
(

ε (i, j)2 + ε (i, j) · (cR,th
i j −uR

i j)
)

=: T̂ R · ∑
m∈M

αm.

(10)
The average road trip time T R cannot easily be included
in the objective as it remains non-convex due to the bilin-
ear terms −ε (i, j) f0 (i, j), T R. Hence, we derive a convex
approximation of T R that can be included in the objective
function. Since ε (i, j) · f0 (i, j) ≥ 0, removing these bilinear
terms makes the expression larger, hence we have T R ≤ T̂ R.
Without the bilinear terms, T̂ R is a convex function of the
flow variables, which we include in the objective function
to penalize strategies with long trip times. Considering that
the number of rebalancing vehicles has a minor impact with
respect to road congestion and converges to zero for perfectly
symmetric demand distributions [21], T̂ R can be used as a
metric for the total travel time on road arcs. Specifically,
our empirical studies observed that |T R− T̂ R|/T R ≤ 0.03. In
doing so, we approximate the total cost function (2a) with
the quadratic bound (10) as

JQ
(
{ fm (·, ·)}m, f0 (·, ·)

)
=VT ·

(
∑

m∈M ,
(i, j)∈A

t0
i j · fm (i, j)

+ ∑
(i, j)∈AR

τi j ·
(

ε (i, j)2 + ε (i, j) · (cR,th
i j −uR

i j)
))

+ ∑
(i, j)∈AR

(VD ·di j +VE · ei j) · f (i, j) .

(11)

The AMoD optimal routing problem given by (2) with
J(·, ·)= JQ(·, ·) subject to (9) then remains a convex quadratic
program.

D. Discussion
A few comments are in order. First, we assume travel

requests to be time-invariant. This assumption is reflected
in densely populated urban environments where requests
often change slowly compared to the average time needed
to complete an individual trip [26]. Second, we use the
BPR function [9] to describe the impact of road usage on
travel time. While such a function does not perfectly capture
microscopic traffic phenomena such as queues and traffic
lights, it is a well-established model serving the purpose of
planning CA routes. In order to embed the BPR function

in a convex optimization framework, we approximate it in
a piecewise affine fashion reflecting a macroscopic flow
diagram approximation [27]. This approximation gives a
generalization of simple threshold models that are used in
classical traffic flow theory [28] and can allow for better
mobility service in congested situations, as discussed in the
remainder of the paper. Although a piecewise affine function
cannot closely approximate a quartic polynomial such as the
BPR function on its entire domain, this approximation only
needs to be accurate for realistic values of vehicle flows.
Furthermore, we relax the piecewise approximation and
implement it in the convex optimization framework through a
quadratic upper bound. Nevertheless, since the ratio of empty
vehicles to passenger-carrying vehicles is usually low, this
bound is tight enough, as shown in Section III. Third, CARS
captures customer and vehicle routes as fractional flows and
does not address the stochasticity of the exogenous traffic
and customer requests. Arguably, such approximations are
acceptable, given the mesoscopic perspective of our study.
On the topic of operational algorithms, CARS can be directly
extended to operate in real-time. Due to the computational
efficiency of the scheme, CARS can be run periodically
with updated real-time information about customer demand
to operate in a time-varying environment. Furthermore, ran-
domized rounding routing algorithms can compute near-
optimal integer-valued flows for individual customers starting
from the fractional solution computed by CARS [29]. The
operational implementation of CARS is further discussed in
Section IV. Fourth, we neglect the impact of our routing
decisions on the behaviour of the exogenous traffic base load,
assuming the exogenous vehicles to follow pre-defined or
habitual routes. We leave the game-theoretical problem of
optimizing routes accounting for reactive traffic patterns to
future research. Fifth, we assume vehicles to carry only a
single customer at a time. This mode of operation is in line
with current trends in mobility-on-demand systems such as
taxis, Lyft, and Uber. The extension to ride-sharing is an
interesting direction for future research [30]. Finally, for the
sake of simplicity, we assume all customers to value time
and travel comfort in the same way. However, CARS can
be extended to capture multiple classes of customers using
network flows which are distinct not only in the origin-
destination transportation request, but also in the customers’
preference profile.

III. COMPUTATIONAL STUDIES

The goal of this section is to assess CARS by evaluating
and comparing its performance in a case study to existing
routing approaches: a congestion-unaware scheme and a
threshold-congestion model as shown in Fig. 2. We begin in
Section III-A by describing the Manhattan-based case study
where we conduct computational studies. In Section III-
B, we compare the performance of CARS to that of a) a
congestion-unaware approach and b) a method that captures
congestion via a threshold model.

A. Manhattan Case Study
Our case study is based on the area of Manhattan in New

York City. For this area, we use real data from taxi rides that
occurred between 6:00PM and 8:00PM on March 1, 2012
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Fig. 3. Schematic representation of the comparison.

(courtesy of the New York Taxi and Limousine Commission).
In total this data set comprises 53,932 taxi rides. Although
this number of trips is quite large, it reflects only a fraction
of the travel demand between 6:00PM and 8:00PM. In
2017 ride-sharing vehicles used during this time period
outnumbered taxis by a ratio of 5:1 [31]. To reflect this, we
dilate the number of requests by a factor of six to emulate the
total demand for ride-hailing services in Manhattan during
this time window.

We derive the road network from Open Street Map
data [32] and set the nominal road capacities cR

i j proportional
to the number of lanes on a road, times its speed limit [21].
The walking network shows similar spatial characteristics to
the road network, but is complementary as all arcs are bi-
directional to allow for walking in both directions, even in
one-way streets. To account for exogenous privately owned
vehicles on the road, we run our simulations for different
values of road usage uR, denoting the fraction of a road’s
free-flow capacities used by private vehicles. Overall, the
supernetwork has 2974 nodes and 11163 arcs. For a more
detailed description of this case study and its parameters we
refer to [22].

B. Results

In the following section, we discuss the results of our
case study. We compare CARS to two baselines: a con-
trol algorithm using a simple threshold model in which
f (i, j)+uR

i j ≤ cR,th
i j is enforced (cf. [21], [22]), and a

congestion-unaware approach in which road utilization does
not affect travel times. We test the computed routes in
the BPR static function as shown in Fig. 3. For the first
two models we set cR,th

i j = xth · cR
i j, with xth = 1.2, and we

approximate the BPR function with xend = 2 (cf. Fig. 2). We
also compute the CARS Predicted Time, which is the average
trip time predicted using the piecewise affine function and
approximations discussed in Section II-C. For each of the
scenarios studied, the computation of the optimal solution
took less than four minutes on commodity hardware (Intel
Core i7, 16 GB RAM) using Gurobi 7.5.

We measure the quality of CARS with two performance
indicators: the average resulting trip time for each solution
computed by the BPR function, and the objective cost as
defined in (3). Figs. 4–6 summarize the results.

Focusing on these results, we identify different relation-
ships between the performance of all approaches depending
on the exogenous road usage. Additionally, the travel times
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Fig. 5. Relative deviation of the two baseline solutions compared to CARS.
The upper plot also shows the relative error of the CARS predicted time.

predicted by CARS are close to those computed by the BPR
model, as shown in Fig. 4 and 5.

For low levels of road usage (i.e., uR close to zero),
all control schemes show the same performance: In this
scenario roads have enough capacity for AMoD vehicles
in the absence of private vehicles. As the traffic level
increases, the congestion-unaware scheme performs worse
than the thresholded approach and CARS in terms of both
average travel time and operational cost. This shows that
the congestion-unaware approach, lacking information about
a street’s capacity, sends the cars on the spatially shortest
paths. As a consequence these paths become congested and
remain the spatially but not temporally shortest paths due to
increased travel times. Conversely, the threshold model and
CARS perform similarly better for this range.

For heavy levels of traffic CARS significantly outperforms
the other two approaches. Especially over 100% exogenous
road usage, CARS offers a more than 20% shorter average
trip time than the congestion-unaware approach and a more
than 35% shorter average trip time than the threshold ap-
proach, which converges to a walking-only solution, once
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Fig. 6. Modal share for the congestion-unaware approach, CARS and the
threshold model.

the value of uR exceeds cR,th as shown in Fig. 6. Note
that for heavy exogenous road usage, the threshold model
performs even worse than the congestion-unaware model.
This is because the threshold approach is not allowed to use
roads once the flow on it reaches cR,th. In this case, the only
other option is to send customer carrying vehicles on long
detours and increase walking distances. In reality, cR,th is
not a hard constraint and sending the car along a congested
road can still be faster than the aforementioned long detours.
Fig. 7 shows the congestion maps for this scenario and the
three routing approaches, where the shortcomings of the
congestion-unaware and the threshold scheme are highlighted
together with the balanced behaviour of CARS.

In summary, we find that the performance of the threshold
congestion model depends heavily on the level of exogenous
traffic. In situations of low to medium exogenous traffic,
an algorithm using the threshold model can perform much
better than a congestion-unaware model. However, under
heavy levels of traffic, the threshold model behaves too
conservatively, i.e., it underutilizes routes on main roads and
favors longer detours.

On the other hand, CARS improves the operational cost
and the travel time compared to both baseline approaches for

Congestion-unaware CARS Threshold

Fig. 7. Road congestion map for the congestion-unaware approach, CARS,
and the threshold model with a 100% exogenous road usage level.

all levels of exogenous road usage, as the error introduced
by the piecewise approximation (7) and the convex relax-
ation (10) is well bounded below 15%. In dire situations with
heavy traffic (when CA approaches are most needed) CARS
achieves improvements of exceeding 20% in terms of travel
time, striking an effective compromise between congesting
roads and detouring vehicles, as shown in Fig. 7.

To conclude, our experiments show that CARS can sig-
nificantly reduce both operational cost and the duration of
customer trips. On the other hand, although conservative
(thresholded) models of congestion offer a realistic evalua-
tion of travel constraints at low- to mid-levels of exogenous
traffic, at high-levels they perform worse than a congestion-
unaware approach that ignores congestion effects altogether.
Most significantly, the overconservative nature of the thresh-
old model leads to an increase of more than 0.50 USD per
trip. Conversely, the balanced nature of CARS leads to a
decrease of the same amount per trip. With more than half
a million trips occurring on average each day in NYC [33],
this efficiency could save over one hundred million dollars
over the course of one year.

IV. CONCLUSION

In this paper we studied the impact of congestion-aware
routing in Autonomous Mobility-on-Demand systems. By
leveraging an affine approximation to the Bureau of Public
Roads model, we derived a congestion-aware routing scheme
(CARS) that entails solving a computationally-efficient, con-
vex quadratic program. We applied CARS to a case study
of AMoD traffic routing in Manhattan and compared its
performance to two baselines: a congestion-unaware routing
approach and a scheme that considers congestion via a
threshold model. Our results show that CARS always out-
performs the status quo baselines and achieves an effective
balance between congesting roads and detouring vehicles,
thus achieving significant improvements, especially under
high-levels of traffic. Additionally, we showed that in cer-
tain cases threshold models may even worsen the system
performance compared to a congestion-unaware approach.
Whereas considering congestion as a hard constraint can
improve performance under low- to medium-levels of traffic,
it can be overconservative and therefore detrimental in terms
of travel time for high-levels of congestion.

This work opens several avenues for future research. Fore-
most, we would like to design an operational algorithm to
apply CARS at a microscopic level. We note that, because the
mesoscopic solutions presented here were computed in less
than four minutes, the extension to an operational algorithm



is completely attainable. Namely, CARS can feasibly become
operational by continually solving for optimal flows given
updated, real-time customer demands in a receding-horizon
model predictive fashion (cf. [34]–[36]). Furthermore, as
discussed in Section II-D, near-optimal integer-valued flows
for operational implementation can be achieved from the
fractional solutions computed with CARS via random sam-
pling algorithms [29]. Additional future research includes
coupling CARS with urban infrastructure, e.g., the power
grid [23] and public transit [22]; including stochastic effects,
e.g., of customer demand and road congestion [37]; and
adapting the cost function to include different metrics based
on customer preferences.
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