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Abstract This paper considers the problem of routing and
rebalancing a shared fleet of autonomous (i.e., self-driving)
vehicles providing on-demand mobility within a capacitated
transportation network, where congestion might disrupt
throughput. We model the problem within a network flow
framework and show that under relatively mild assumptions
the rebalancing vehicles, if properly coordinated, do not lead
to an increase in congestion (in stark contrast to common
belief). From an algorithmic standpoint, such theoretical in-
sight suggests that the problem of routing customers and re-
balancing vehicles can be decoupled, which leads to a com-
putationally-efficient routing and rebalancing algorithm for
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the autonomous vehicles. Numerical experiments and case
studies corroborate our theoretical insights and show that
the proposed algorithm outperforms state-of-the-art point-
to-point methods by avoiding excess congestion on the road.
Collectively, this paper provides a rigorous approach to the
problem of congestion-aware, system-wide coordination of
autonomously driving vehicles, and to the characterization
of the sustainability of such robotic systems.
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1 Introduction

Autonomous (i.e., robotic, self-driving) vehicles are rapidly
becoming a reality and hold great promise for increasing
safety and enhancing mobility for those unable or unwill-
ing to drive (Mitchell et al, 2010; Urmson, 2014). A par-
ticularly attractive operational paradigm involves coordinat-
ing a fleet of autonomous vehicles to provide on-demand
service to customers, also called autonomous mobility-on-
demand (AMoD). An AMoD system may reduce the cost
of travel (Spieser et al, 2014) as well as provide additional
sustainability benefits such as increased overall vehicle uti-
lization, reduced demand for urban parking infrastructure,
and reduced pollution (with electric vehicles) (Mitchell et al,
2010). The key benefits of AMoD are realized through vehi-
cle sharing, where each vehicle, after servicing a customer,
drives itself to the location of the next customer or rebal-
ances itself throughout the city in anticipation of future cus-
tomer demand (Pavone et al, 2012).

In terms of traffic congestion, however, there has been
no consensus on whether autonomous vehicles in general,
and AMoD systems in particular, will ultimately be benefi-
cial or detrimental. It has been argued that by having faster
reaction times, autonomous vehicles may be able to drive
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faster and follow other vehicles at closer distances without
compromising safety, thereby effectively increasing the ca-
pacity of a road and reducing congestion . They may also be
able to interact with traffic lights to reduce full stops at in-
tersections (Pérez et al, 2010). On the downside, the process
of vehicle rebalancing (empty vehicle trips) increases the to-
tal number of vehicles on the road (assuming the number of
vehicles with customers stays the same). Indeed, it has been
argued that the presence of many rebalancing vehicles may
contribute to an increase in congestion (Templeton, 2010;
Barnard, 2016). These statements, however, do not take into
account that in an AMoD system the operator has control
over the actions (destination and routes) of the vehicles, and
may route vehicles intelligently to avoid increasing conges-
tion or perhaps even decrease it.

Accordingly, the goal of this paper is twofold. First, on
an engineering level, we aim to devise routing and rebal-
ancing algorithms for an autonomous vehicle fleet that seek
to minimize congestion. Second, on a socio-economic level,
we aim to rigorously address the concern that autonomous
cars may lead to increased congestion and thus disrupt cur-
rently congested transportation infrastructures.

Literature review: In this paper, we investigate the prob-
lem of controlling an AMoD system within a road network
in the presence of congestion effects. Previous work on AMoD
systems have primarily concentrated on the rebalancing prob-
lem (Pavone et al, 2012; Spieser et al, 2014), whereby one
strives to allocate empty vehicles throughout a city while
minimizing fuel costs or customer wait times. The rebalanc-
ing problem has been studied in (Pavone et al, 2012) using
a fluidic model and in (Zhang and Pavone, 2016) using a
queueing network model. An alternative formulation is the
one-to-one pickup and delivery problem (Berbeglia et al,
2010), where a fleet of vehicles service pickup and deliv-
ery requests within a given region. Combinatorial asymptot-
ically optimal algorithms for pickup and delivery problems
were presented in (Treleaven et al, 2011, 2013), and gener-
alized to road networks in (Treleaven et al, 2012). Almost
all current approaches assume point-to-point travel between
origins and destinations (no road network), and even rout-
ing problems on road networks (e.g. (Treleaven et al, 2012))
do not take into account vehicle-to-vehicle interactions that
would cause congestion and reduce system throughput.

On the other hand, traffic congestion has been studied in
economics and transportation for nearly a century. The first
congestion models (Wardrop, 1952; Lighthill and Whitham,
1955; Daganzo, 1994) sought to formalize the relationship
between vehicle speed, density, and flow. Since then, ap-
proaches to modeling congestion have included empirical
(Kerner, 2009), simulation-based (Treiber et al, 2000; Yang
and Koutsopoulos, 1996; Balmer et al, 2009; Fagnant and
Kockelman, 2014), queueing-theoretical (Osorio and Bier-
laire, 2009), and optimization (Peeta and Mahmassani, 1995;

Janson, 1991). While there have been many high fidelity
congestion models that can accurately predict traffic pat-
terns, the primary goal of congestion modeling has been the
analysis of traffic behavior. Efforts to control traffic have
been limited to the control of intersections (Le et al, 2015;
Xiao et al, 2015) and freeway on-ramps (Papageorgiou et al,
1991) because human drivers behave non-cooperatively. The
problem of cooperative, system-wide routing (a key benefit
of AMoD systems) is similar to the dynamic traffic assign-
ment problem (DTA) (Janson, 1991) and to (Wilkie et al,
2011, 2014) in the case of online routing. The key differ-
ence is that these approaches only optimize routes for pas-
senger vehicles while we seek to optimize the routes of both
passenger vehicles and empty rebalancing vehicles.

Statement of contributions: The contribution of this pa-
per is threefold. First, we model an AMoD system within
a network flow framework, whereby customer-carrying and
empty rebalancing vehicles are represented as flows over a
capacitated road network (in such model, when the flow
of vehicles along a road reaches a critical capacity value,
congestion effects occur). Within this model, we provide a
cut condition for the road graph that needs to be satisfied
for congestion-free customer and rebalancing flows to ex-
ist. Most importantly, under the assumption of a symmetric
road network, we investigate an existential result that leads
to two key conclusions: (1) rebalancing does not increase
congestion, and (2) for certain cost functions, the problems
of finding customer and rebalancing flows can be decou-
pled. Second, leveraging the theoretical insights, we propose
a computationally-efficient algorithm for congestion-aware
routing and rebalancing of an AMoD system that is broadly
applicable to time-varying, possibly asymmetric road net-
works. Third, through numerical studies on real-world traf-
fic data, we validate our assumptions and show that the pro-
posed real-time routing and rebalancing algorithm outper-
forms state-of-the-art point-to-point rebalancing algorithms
in terms of lower customer wait times by avoiding excess
congestion on the road.

Organization: The remainder of this paper is organized
as follows: in Section 2 we present a network flow model
of an AMoD system on a capacitated road network and for-
mulate the routing and rebalancing problem. In Section 3
we present key structural properties of the model includ-
ing fundamental limitations of performance and conditions
for the existence of feasible (in particular, congestion-free)
solutions. The insights from Section 3 are used to develop
a practical real-time routing and rebalancing algorithm in
Section 4. Numerical studies and simulation results are pre-
sented in Section 5, and in Section 6 we draw conclusions
and discuss directions for future work.
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2 Model Description and Problem Formulation

In this section we formulate a network flow model for an
AMoD system operating over a capacitated road network.
The model allows us to derive key structural insights into
the vehicle routing and rebalancing problem, and motivates
the design of real-time, congestion-aware algorithms for co-
ordinating the robotic vehicles. We start in Section 2.1 with
a discussion of our congestion model; then, in Section 2.2
we provide a detailed description of the overall AMoD sys-
tem model.

2.1 Congestion Model

We use a simplified congestion model consistent with clas-
sical traffic flow theory (Wardrop, 1952). In classical traffic
flow theory, at low vehicle densities on a road link, vehi-
cles travel at the free flow speed of the road (imposed by the
speed limit). This is referred to as the free flow phase of traf-
fic. In this phase, the free flow speed is approximately con-
stant (Kerner, 2009). The flow, or flow rate, is the number of
vehicles passing through the link per unit time, and is given
by the product of the speed and density of vehicles. When
the flow of vehicles reaches an empirically observed criti-
cal value, the flow reaches its maximum. Beyond the critical
flow rate, vehicle speeds are dramatically reduced and the
flow decreases, signaling the beginning of traffic congestion.
The maximum stationary flow rate is called the capacity of
the road link in the literature. In our approach, road capac-
ities are modeled as constraints on the flow of vehicles. In
this way, the model captures the behavior of vehicles up to
the onset of congestion.

This simplified congestion model is adequate for our
purposes because the goal is not to analyze the behavior
of vehicles in congested networks, but to control vehicles
in order to avoid the onset of congestion. We also do not
explicitly model delays at intersections, spillback behavior
due to congestion, or bottleneck behavior due to the reduc-
tion of the number of lanes on a road link. An extension to
our model that accommodates (limited) congestion on links
is presented in Section 5.2.

2.2 Network Flow Model of AMoD system

We consider a road network modeled as a directed graph
G = (V, E), where V denotes the node set and E ⊆ V × V
denotes the edge set. Figure 1 shows one such network. The
nodes v in V represent intersections and locations for trip
origins/destinations, and the edges (u, v) in E represent road
links. As discussed in Section 2.1, congestion is modeled by
imposing capacity constraints on the road links: each con-
straint represents the capacity of the road upon the onset of

congestion. Specifically, for each road link (u, v) ∈ E , we
denote by c(u, v) : E 7→ N>0 the capacity of that link. When
the flow rate on a road link is less than the capacity of the
link, all vehicles are assumed to travel at the free flow speed,
or the speed limit of the link. For each road link (u, v) ∈ E ,
we denote by t(u, v) : E 7→ R≥0 the corresponding free
flow time required to traverse road link (u, v). Conversely,
when the flow rate on a road link is larger than the capacity
of the link, the traversal time is assumed equal to∞ (we re-
iterate that our focus in this section is on avoiding the onset
of congestion).

We assume that the road network is capacity-symmetric
(or symmetric for short): for any cut1 (S, S̄) of G(V, E),
the overall capacity of the edges connecting nodes in S to
nodes in S̄ equals the overall capacity of the edges connect-
ing nodes in S̄ to nodes in S, that is∑
(u,v)∈E: u∈S, v∈S̄

c(u, v) =
∑

(v,u)∈E: u∈S, v∈S̄

c(v, u)

It is easy to verify that a network is capacity-symmetric if
and only if the overall capacity entering each node equals
the capacity exiting each node., i.e.∑
u∈V:(u,v)∈E

c(u, v) =
∑

w∈V:(v,w)∈E

c(v, w)

If all edges have symmetrical capacity, i.e., for all (u, v) ∈
E , c(u, v) = c(v, u), then the network is capacity-symmetric.
The converse statement, however, is not true in general.

Transportation requests are described by the tuple (s, t, λ),
where s ∈ V is the origin of the requests, t ∈ V is the des-
tination, and λ ∈ R>0 is the rate of requests, in customers
per unit time. Transportation requests are assumed to be sta-
tionary and deterministic, i.e., the rate of requests does not
change with time and is a deterministic quantity. The set of
transportation requests is denoted byM = {(sm, tm, λm)}m,
and its cardinality is denoted by M .

Single-occupancy vehicles travel within the network while
servicing the transportation requests. We denote fm(u, v) :

E 7→ R≥0, m = {1, . . . ,M}, as the customer flow for re-
questsm on edge (u, v), i.e., the amount of flow from origin
sm to destination tm that uses link (u, v). We also denote
fR(u, v) : E 7→ R≥0 as the rebalancing flow on edge (u, v),
i.e., the amount of rebalancing flow traversing edge (u, v)

needed to realign the vehicles with the asymmetric distribu-
tion of transportation requests.

2.3 The Routing Problem

The goal is to compute flows for the autonomous vehicles
that (i) transfer customers to their desired destinations in

1 For any subset of nodes S ⊆ V , we define a cut (S, S̄) ⊆ E as
the set of edges whose origin lies in S and whose destination lies in
S̄ = {V \ S}. Formally, (S, S̄) := {(u, v) ∈ E : u ∈ S, v ∈ S̄}.
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Fig. 1 A road network modeling Lower Manhattan and the Financial
District. Nodes (denoted by small black dots) model intersections; se-
lect nodes, denoted by colored circular and square markers, model pas-
senger trips’ origins and destinations. Different trip requests are de-
noted by different colors. Roads are modeled as edges; line thickness
is proportional to road capacity.

minimum time (customer-carrying trips) and (ii) rebalance
vehicles throughout the network to realign the vehicle fleet
with transportation demand (customer-empty trips). Specif-
ically, the Congestion-free Routing and Rebalancing Prob-
lem (CRRP) is formally defined as follows. Given a capac-
itated, symmetric network G(V, E), a set of transportation
requestsM = {(sm, tm, λm)}m, and a weight factor ρ > 0,
solve

minimize
fm(·,·),fR(·,·)

∑
m∈M

∑
(u,v)∈E

t(u, v)fm(u, v)

+ρ
∑

(u,v)∈E

t(u, v)fR(u, v) (1)

subject to
∑
u∈V

fm(u, sm) + λm =
∑
w∈V

fm(sm, w) ∀m ∈M

(2)∑
u∈V

fm(u, tm) = λm +
∑
w∈V

fm(tm, w) ∀m ∈M

(3)∑
u∈V

fm(u, v) =
∑
w∈V

fm(v, w)

∀m ∈M, v ∈ V \ {sm, tm} (4)∑
u∈V

fR(u, v) +
∑

m∈M
1v=tmλm

=
∑
w∈V

fR(v, w) +
∑

m∈M
1v=sm

λm ∀v ∈ V (5)

fR(u, v) +
∑

m∈M
fm(u, v) ≤ c(u, v) ∀(u, v) ∈ E

(6)

The cost function (1) is a weighted sum (with weight ρ)
of the overall duration of all passenger trips and the dura-
tion of rebalancing trips. Constraints (2), (3) and (4) enforce
continuity of each trip (i.e., flow conservation) across nodes.

Constraint (5) ensures that vehicles are rebalanced through-
out the road network to re-align vehicle distribution with
transportation requests, i.e. to ensure that every outbound
customer flow is matched by an inbound flow of rebalanc-
ing vehicles and vice versa. Finally, constraint (6) enforces
the capacity constraint on each link (function 1x denotes the
indicator function of the Boolean variable x = {true, false},
that is 1x equals one if x is true, and equals zero if x is
false). Note that the CRRP is a linear program and, in par-
ticular, a special instance of the fractional multi-commodity
flow problem (Ahuja et al, 1993).

We denote a customer flow {fm(u, v)}(u,v),m that sat-
isfies Equations (2), (3), (4) and (6) as a feasible customer
flow. For a given set of feasible customer flows
{fm(u, v)}(u,v),m, we denote a flow {fR(u, v)}(u,v) that
satisfies Equation (5) and such that the combined flows
{fm(u, v), fR(u, v)}(u,v),m satisfy Equation (6) as a fea-
sible rebalancing flow. We remark that a rebalancing flow
that is feasible with respect to a set of customer flows may
be infeasible for a different collection of customer flows.

For a given set of optimal flows {f∗m(u, v)}(u,v),m and
{f∗R(u, v)}(u,v), the minimum number of vehicles needed to
implement them is given by

Vmin =


∑
m∈M

∑
(u,v)∈E

t(u, v)
(
f∗m(u, v) + f∗R(u, v)

) .
This follows from a similar analysis done in (Pavone et al,

2012) for point-to-point networks. Hence, the cost function
(1) is aligned with the desire of minimizing the number of
vehicles needed to operate an AMoD system.

2.4 Discussion

A few comments are in order. First, we assume that trans-
portation requests are time invariant. This assumption is valid
when transportation requests change slowly with respect to
the average duration of a customer’s trip, which is often the
case in dense urban environments (Neuburger, 1971). Ad-
ditionally, in Section 4 we will present algorithmic tools
that allow one to extend the insights gained from the time-
invariant case to the time-varying counterpart. Second, the
assumption of single-occupancy for the vehicles models most
of the existing (human) one-way vehicle sharing systems
(where the driver is considered “part” of the vehicle), and
chiefly disallows the provision of ride-sharing or carpooling
service (this is an aspect left for future research). Third, as
also discussed in Section 2.1, our congestion model is sim-
pler and less accurate than typical congestion models used
in the transportation community. However, our model lends
itself to efficient real-time optimization and thus it is well-
suited to the control of fleets of autonomous vehicles. Ex-
isting high-fidelity congestion models should be regarded as
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complementary and could be used offline to identify the con-
gestion thresholds used in our model. Fourth, while we have
defined the CRRP in terms of fractional flows, an integer-
valued counterpart can be defined and (approximately) solved
to find optimal routes for each individual customer and vehi-
cle. Algorithmic aspects will be investigated in depth in Sec-
tion 4, with the goal of devising practical, real-time routing
and rebalancing algorithms. Fifth, trip requests are assumed
to be known. In practice, trip requests can be reserved in ad-
vance, estimated from historical data, or estimated in real
time. Finally, the assumption of capacity-symmetric road
networks indeed appears reasonable for a number of major
U.S. metropolitan areas (note that this assumption is much
less restrictive than assuming every individual road is capacity-
symmetric). In Section 5.1, by using OpenStreetMap data
(Haklay and Weber, 2008), we provide a rigorous character-
ization in terms of capacity symmetry of the road networks
of New York City, Chicago, Los Angeles and other major
U.S. cities. The results consistently show that urban road
networks are usually symmetric to a very high degree. Ad-
ditionally, several of our theoretical and algorithmic results
extend to the case where this assumption is lifted, as it will
be highlighted throughout the paper.

3 Structural Properties of the Network Flow Model

n this section we provide two key structural results for the
network flow model presented in Section 2.2. First, we pro-
vide a cut condition that needs to be satisfied for feasible
customer and rebalancing flows to exist. In other words, this
condition provides a fundamental limitation of performance
for congestion-free AMoD service in a given road network.
Second, we investigate an existential result (our main the-
oretical result) that is germane to two key conclusions: (1)
rebalancing does not increase congestion in symmetric road
networks, and (2) for certain cost functions, the problems of
finding customer and rebalancing flows can be decoupled –
an insight that will be heavily exploited in subsequent sec-
tions.

3.1 Fundamental Limitations

We start with a few definitions. For a given set of feasible
customer flows {fm(u, v)}(u,v),m, we denote by Fout(S, S̄)

the overall flow exiting a cut (S, S̄), i.e.,

Fout(S, S̄) :=
∑
m∈M

∑
u∈S,v∈S̄

fm(u, v).

Similarly, we denote by Cout(S, S̄) the capacity of the net-
work exiting S , i.e., Cout(S, S̄) =

∑
u∈S,v∈S̄ c(u, v). Anal-

ogously, Fin(S, S̄) denotes the overall flow entering S from

S̄, i.e., Fin(S, S̄) := Fout(S̄,S), and Cin(S, S̄) denotes the
capacity entering S from S̄, i.e., Cin(S, S̄) := Cout(S̄,S).
We highlight that the arguments leading to the main result of
this subsection (Theorem 1) do not require the assumption of
capacity symmetry; hence, Theorem 1 holds for asymmetric
road networks as well.

The next technical lemma shows that the net flow leav-
ing set S equals the difference between the flow originating
from the origins sm in S and the flow exiting through the
destinations tm in S, that is,

Lemma 1 (Net flow across a cut) Consider a set of feasi-
ble customer flows {fm(u, v)}(u,v),m. Then, for every cut
(S, S̄), the net flow leaving set S satisfies

Fout(S, S̄)−Fin(S, S̄) =
∑
m∈M

1sm∈Sλm−
∑
m∈M

1tm∈Sλm.

Proof (Proof of Lemma 1) We compute the sum over all cus-
tomer flows m ∈ M and over all nodes v ∈ V of the node
balance equation for flow m at node v (Equation (3) if node
v is the source of m, Equation (4) if node v is the sink of m,
or Equation (2) otherwise). We obtain

∑
v∈S

∑
m∈M

(∑
u∈V

fm(u, v) + 1v=smλm

)
=

∑
v∈S

∑
m∈M

(∑
w∈V

fm(v, w) + 1v=tmλm

)
.

For any edge (u, v) such that u, v ∈ S, the customer flow
fm(u, v) appears on both sides of the equation. Thus the
equation above simplifies to

∑
m∈M

∑
v∈S

∑
u∈S̄

fm(u, v) + 1v=smλm

 =

∑
m∈M

∑
v∈S

∑
w∈S̄

fm(v, w) + 1v=tmλm

 ,

which leads to the claim of the lemma

Fin(S, S̄)+
∑
m∈M

1sm∈Sλm = Fout(S, S̄)+
∑
m∈M

1tm∈Sλm.

ut

We now state two additional lemmas providing, respec-
tively, lower and upper bounds for the outflows Fout(S, S̄).

Lemma 2 (Lower bound for outflow) Consider a set of
feasible customer flows {fm(u, v)}(u,v),m. Then, for any cut
(S, S̄), the overall flow Fout(S, S̄) exiting cut (S, S̄) is lower
bounded according to∑
m∈M

1sm∈S,tm∈S̄λm ≤ Fout(S, S̄).
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Proof Adding Equations (2), (3) and (4) over all nodes in S
and over all flows whose origin is in S and whose destination
is in S̄, one obtains

∑
m:sm∈S,tm∈S̄

∑
v∈S

(∑
u∈V

fm(u, v) + 1v=smλm

)
=

∑
m:sm∈S,tm∈S̄

∑
v∈S

(∑
w∈V

fm(v, w)

)
.

Flows fm(u, v) such that both u and v are in S appear on
both sides of the equation. Simplifying, one obtains∑
m∈M

1sm∈S,tm∈S̄λm =

∑
m:sm∈S,tm∈S̄

 ∑
v∈S,w∈S̄

fm(v, w)−
∑

v∈S,u∈S̄

fm(u, v)


The first term on the right-hand side represents a lower bound
for Fout(S, S̄), since

Fout(S, S̄) =
∑
m∈M

∑
v∈S,w∈S̄

fm(v, w)

≥
∑

m:sm∈S,tm∈S̄

∑
v∈S,w∈S̄

fm(v, w).

Furthermore, the second term on the right-hand side is upper-
bounded by zero. The lemma follows. ut

Lemma 3 (Upper bound for outflow) Assume there exists
a set of feasible customer and rebalancing flows
{fm(u, v), fR(u, v)}(u,v),m. Then, for every cut (S, S̄),

1. Fout(S, S̄) ≤ Cout(S, S̄), and
2. Fout(S, S̄) ≤ Cin(S, S̄).

Proof The first condition follows trivially from equation (6).
As for the second condition, consider a cut (S, S̄). Anal-
ogously as for the definitions of Fin(S, S̄) and Fout(S, S̄),
let F reb

in (S, S̄) and F reb
out (S, S̄) denote, respectively, the over-

all rebalancing flow entering (exiting) cut (S, S̄). Summing
equation (5) over all nodes in S, one easily obtains

F reb
in (S, S̄)−F reb

out (S, S̄) =
∑
m∈M

1sm∈Sλm−
∑
m∈M

1tm∈Sλm.

Combining the above equation with Lemma 1, one obtains

F reb
in (S, S̄)− F reb

out (S, S̄) = Fout(S, S̄)− Fin(S, S̄),

in other words, rebalancing flows should make up the dif-
ference between the customer inflows and outflows across

cut (S, S̄). Accordingly, the total inflow of vehicles across
(S, S̄), F tot

in (S, S̄), satisfies the inequality

F tot
in (S, S̄) :=Fin(S, S̄) + F reb

in (S, S̄)

=Fin(S, S̄) + F reb
out (S, S̄) + Fout(S, S̄)

− Fin(S, S̄)

≥Fout(S, S̄).

Since the customer and rebalancing flows
{fm(u, v), fR(u, v)}(u,v),m are feasible, then, by equation
(6), F tot

in (S, S̄) ≤ Cin(S, S̄). Collecting the results, one ob-
tains the second condition. ut

We are now in a position to present a structural (i.e.,
flow-independent) necessary condition for the existence of
feasible customer and rebalancing flows.

Theorem 1 (Necessary condition for feasible flows) A nec-
essary condition for the existence of a set of feasible cus-
tomer and rebalancing flows {fm(u, v), fR(u, v)}(u,v),m,
is that, for every cut (S, S̄),

1.
∑
m∈M 1sm∈S,tm∈S̄λm ≤ Cout(S, S̄), and

2.
∑
m∈M 1sm∈S,tm∈S̄λm ≤ Cin(S, S̄).

Proof The theorem is a trivial consequence of Lemmas 2
and 3. ut

Theorem 1 essentially provides a structural fundamental
limitation of performance for a given road network: if the cut
conditions in Theorem 1 are not met, then there is no hope
of finding congestion-free customer and rebalancing flows.
We reiterate that Theorem 1 holds for both symmetric and
asymmetric networks (for a symmetric network, claim 2) in
Lemma 3 and condition 2) in Theorem 1 are redundant).

3.2 Existence of Congestion-Free Flows

In this section we address the following question: assuming
there exists a feasible customer flow, is it always possible to
find a feasible rebalancing flow? As we will see, the answer
to this question is affirmative and has both conceptual and
algorithmic implications.

Theorem 2 (Feasible rebalancing) Assume there exists a
set of feasible customer flows {fm(u, v)}(u,v),m. Then, it is
always possible to find a set of feasible rebalancing flows
{fR(u, v)}(u,v).

Proof We prove the theorem for the special case where no
node v ∈ V is associated with both an origin and a desti-
nation for the transportation requests inM. This is without
loss of generality, as the general case where a node v has
both an origin and a destination assigned can be reduced
to this special case, by associating with node v a “shadow”
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node so that (i) all destinations are assigned to the shadow
node and (ii) node v and its shadow node are mutually con-
nected via an infinite-capacity, zero-travel-time edge.

We start the proof by defining the concepts of partial
rebalancing flows and defective origins and destinations.
Specifically, a partial rebalancing flow, denoted as
{f̂R(u, v)}(u,v), is a set of mappings from E to R≥0 obeying
the following properties:

1. It satisfies constraint (5) at every node that is not an
origin nor a destination, that is ∀ v ∈ {V \ {{sm}m ∪
{tm}m}},∑
u∈V

f̂R(u, v) =
∑
w∈V

f̂R(v, w).

2. It violates constraint (5) in the “≤ direction” at every
node that is an origin, that is ∀ v ∈ V such that ∃m ∈
M : v = sm,∑
u∈V

f̂R(u, v) ≤
∑
w∈V

f̂R(v, w) +
∑
m∈M

1v=smλm.

3. It violates constraint (5) in the “≥ direction” at every
node that is a destination, that is ∀ v ∈ V such that ∃m ∈
M : v = tm,∑
u∈V

f̂R(u, v) +
∑
m∈M

1v=tmλm ≥
∑
w∈V

f̂R(v, w).

4. The combined customer and partial rebalancing flows
{fm(u, v), f̂R(u, v)}(u,v),m satisfy Equation (6) for ev-
ery edge (u, v) ∈ E .

Note that the trivial zero flow, that is f̂R(u, v) = 0 for all
(u, v) ∈ E , is a partial rebalancing flow (in other words,
the set of partial rebalancing flows in not empty). Clearly a
feasible rebalancing flow is also a partial rebalancing flow,
but the opposite is not necessarily true.

For a given partial rebalancing flow, we denote an origin
node, that is a node v ∈ V such that v = sm for some
m = 1, . . . ,M , as a defective origin if Equation (5) is not
satisfied at v = sm (in other words, the strict inequality <
holds). Analogously, we denote a destination node, that is
a node v ∈ V such that v = tm for some m = 1, . . . ,M ,
as a defective destination if Equation (5) is not satisfied at
v = tm (in other words, the strict inequality > holds). The
next lemma links the concepts of partial rebalancing flows
and defective origins/destinations.

Lemma 4 (Co-existence of defective origins/destinations)
For every partial rebalancing flow that is not a feasible re-
balancing flow, there exists at least one node u ∈ V that is
a defective origin, and one node v ∈ V that is a defective
destination.

Proof By contradiction. Since the flow {f̂R(u, v)}(u,v) is
not a feasible rebalancing flow, there exists at least one de-
fective origin or a defective destination. Assume that there
exists at least one defective destination, say a node t̂j where
Equation (5) is violated:∑
u∈V

f̂R(u, t̂j) +
∑
m∈M

1t̂j=tm
λm >

∑
w∈V

f̂R(t̂j , w),

Now, assume that there does not exist any defective origin.
By summing Equation (5) over all nodes v ∈ V and simpli-
fying all flows f̂R(u, v) (as they appear on both sides of the
resulting equation), one obtains∑
v∈V

∑
m∈M

1v=tmλm >
∑
v∈V

∑
m∈M

1v=smλm,

that is
∑
m∈M λm >

∑
m∈M λm, which is a contradic-

tion. Noticing that the symmetric case where we assume
that there exists at least one defective destination leads to
an analogous contradiction, the lemma follows. ut

For a given set of customer flows {fm(u, v)}(u,v),m and
partial rebalancing flows {f̂R(u, v)}(u,v), we call an edge
(u, v) ∈ E saturated if equation (6) holds with equality for
that edge. We call a path saturated if at least one of the
edges along the path is saturated. We now prove the exis-
tence of a special partial rebalancing flow where defective
destinations and defective origins are separated by a graph
cut formed exclusively by saturated edges (this result, and
its consequences, are illustrated in Figure 2).

Lemma 5 (Existence of partial rebalancing flows) Assume
there exists a set of feasible customer flows {fm(u, v)}(u,v),m,
but there does not exist a set of feasible rebalancing flows
{fR(u, v)}(u,v). Then, there exists a partial rebalancing flow
{f̂R(u, v)}(u,v) that induces a graph cut (S, S̄) with the fol-
lowing properties: (i) all defective destinations are in S, (ii)
all defective origins are in S̄, and (iii) all edges in (S, S̄) are
saturated.

Proof The proof is constructive and constructs the desired
partial rebalancing flow by starting with the trivial zero flow
f̂R(u, v) = 0 for all (u, v) ∈ E . Let Vor, def := {ŝ1, . . . ,

ŝ|Vor, def|} and Vdest, def := {t̂1, . . . , t̂|Vdest, def|} be the set of
defective origins and destinations, respectively, under such
flow. Then, the zero flow is iteratively updated according to
the following procedure:

1. Look for a path between a node in Vdest, def and a node
in Vor, def that is not saturated (note that for rebalancing
flows, paths go from destinations to origins). If no such
path exists, quit. Otherwise, go to Step 2.
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Fig. 2 A graphical representation of Lemma 5. If there exists a set of
feasible customer flows but there does not exist a set of feasible re-
balancing flows, one can find a partial rebalancing flow where all the
defective origins, represented as blue circles, are separated from all the
defective destinations, represented as blue squares, by a cut of saturated
edges (shown in red). Note that not all saturated edges necessarily be-
long to the cut. In the proof of Theorem 2 we show that the capacity of
such a cut (S, S̄) is asymmetric, i.e., Cout < Cin – a contradiction that
leads to the claim of Theorem 2.

2. Add the same amount of flow on all edges along the path
until either (i) one of the edges becomes saturated or (ii)
constraint (5) is fulfilled either at the defective origin or
at the defective destination. Note that the resulting flow
remains a partial rebalancing flow.

3. Update sets Vor, def and Vdest, def for the new partial rebal-
ancing flow and go to Step 1.

The algorithm terminates. To show this, we prove the in-
variant that if a node is no longer defective for the updated
partial rebalancing flow (in other words, Step 2 ends due to
condition (ii)), it will not become defective at a later stage.
Consider a defective destination node v that becomes non-
defective under the updated partial rebalancing flow (the proof
for defective origins is analogous). Then, at the subsequent
stage it cannot be considered as a destination in Step 1 (as
it is no longer in set Vdest, def). If a path that does not con-
tain v is selected, then v stays non-defective. Otherwise, if
a path that contains v is selected, then, after Step 2, both
the inbound flow (that is the flow into v) and the outbound
flow (that is the flow out of v) will be increased by the same
quantity, and the node will stay non-defective. An induc-
tion on the stages then proves the claim. As the number of
paths is finite, and sets Vor, def and Vdest, def cannot have any
nodes added, the algorithm terminates after a finite number
of stages.

The output of the algorithm (denoted, with a slight abuse
of notation, as {f̂R(u, v)}(u,v)) is a partial rebalancing flow
that is not feasible (as, by assumption, there does not exist
a set of feasible rebalancing flows). Therefore, by Lemma
4, such partial rebalancing flow has at least one defective
origin and at least one defective destination. Let us define
Ens := E \ {(u, v) : (u, v) is saturated} as the collection of

non-saturated edges under the flows {fm(u, v)}(u,v),m and
{f̂R(u, v)}(u,v). For any defective destination and any de-
fective origin, all paths connecting them contain at least one
saturated edge (due to the exit condition in Step 1). There-
fore, the graph Gns(V, Ens) has two properties: (i) it is dis-
connected (that is, it is not possible to find a direct path be-
tween every pair of nodes in V by using edges in Ens), and
(ii) a defective origin and a defective destination can not be
in the same strongly connected component (hence, graph
Gns(V, Ens) can be partitioned into at least two strongly
connected components).

We now find the cut (S, S̄) as follows. If a strongly con-
nected component of Gns contains defective destinations,
we assign its nodes to set S. If a strongly connected com-
ponent contains defective origins, we assign its nodes to set
S̄. If a strongly connected component contains neither de-
fective origins nor destinations, we assign its nodes to S
(one could also assign its nodes to S̄, but such choice is
immaterial for our purposes). By construction, (S, S̄) is a
cut, and its edges are all saturated. Furthermore, set S only
contains destination nodes, and set S̄ only contains origin
nodes, which concludes the proof. ut

We are now in a position to prove Theorem 2. The proof
is by contradiction. Assume that a set of feasible rebalancing
flows {fR(u, v)}(u,v) does not exist. Then Lemma 5 shows
that there exists a partial rebalancing flow {f̂R(u, v)}(u,v)

and a cut (S, S̄) such that all defective destinations under
{f̂R(u, v)}(u,v) belong to S and all defective origins belong
to S̄. Let us denote the sum of all partial rebalancing flows
across cut (S, S̄) as

F̂ reb
out (S, S̄) :=

∑
u∈S,v∈S̄

f̂R(u, v),

and, analogously, define F̂ reb
in (S, S̄) := F̂ reb

out (S̄,S). Since all
edges in the cut (S, S̄) are saturated under {f̂R(u, v)}(u,v),
one has, due to equation (6), the equality

Cout(S, S̄) = Fout(S, S̄) + F̂ reb
out (S, S̄).

Additionally, again due to equation (6), one has the inequal-
ity

Fin(S, S̄) + F̂ reb
in (S, S̄) ≤ Cin(S, S̄).

Combining the above equations, one obtains

Fin(S, S̄) + F̂ reb
in (S, S̄)− Fout(S, S̄)− F̂ reb

out (S, S̄)

≤ Cin(S, S̄)− Cout(S, S̄).

To compute F̂ reb
in (S, S̄)− F̂ reb

out (S, S̄), we follow a procedure
similar to the one used in Lemma 1. Summing equation (5)
over all nodes in S , one obtains,



Routing autonomous vehicles in congested transportation networks: structural properties and coordination algorithms 9

∑
v∈S

[∑
u∈V

f̂R(u, v) +
∑
m∈M

1v=tmλm

]

>
∑
v∈S

[∑
w∈V

f̂R(v, w) +
∑
m∈M

1v=smλm

]
.

The strict inequality is due to the fact that for a partial rebal-
ancing flow that is not feasible there exists at least one de-
fective destination (Lemma 4), which, by construction, must
belong to S. Simplifying those flows f̂R(u, v) for which
both u and v are in S (as such flows appear on both sides
of the above inequality), one obtains

F̂ reb
in (S, S̄)− F̂ reb

out (S, S̄) >
∑
m∈M

(1sm∈S − 1tm∈S)λm.

Also, by Lemma 1,

Fout(S, S̄)− Fin(S, S̄) =
∑
m∈M

(1sm∈S − 1tm∈S)λm.

Collecting all the results so far, we conclude that

0 < Fin(S, S̄) + F̂ reb
in (S, S̄)− Fout(S, S̄)− F̂ reb

out (S, S̄)

= Cin(S, S̄)− Cout(S, S̄).

Hence, we reached the conclusion that
Cin(S, S̄)−Cout(S, S̄) > 0, or, in other words, the capacity
of graph G(V, E) across cut (S, S̄) is not symmetric. This
contradicts the assumption that graph G(V, E) is capacity-
symmetric, and the claim follows. ut

The importance of Theorem 2 is twofold. First, perhaps
surprisingly, it shows that for symmetric road networks it is
always possible to rebalance the autonomous vehicles with-
out increasing congestion – in other words, the rebalancing
of autonomous vehicles in a symmetric road network does
not lead to an increase in congestion. Second, from an al-
gorithmic standpoint, if the cost function in the CRRP only
depends on the customer flows (that is, ρ = 0 and the goal
is to minimize the customers’ travel times), then the CRRP
problem can be decoupled and the customers and rebalanc-
ing flows can be solved separately without loss of optimality.
This insight will be instrumental in Section 4 to the design
of real-time algorithms for routing and rebalancing.

We conclude this section by noticing that the CRRP,
from a computational standpoint, can be reduced to an in-
stance of the Minimum-Cost Multi-Commodity Flow prob-
lem (Min-MCF), a classic problem in network flow theory
(Ahuja et al, 1993). The problem can be efficiently solved ei-
ther via linear programming (the size of the linear program
is |E|(M + 1)), or via specialized combinatorial algorithms
(Goldberg et al, 1990; Leighton et al, 1995; Goldberg et al,
1998). However, the solution to the CRRP provides static

fractional flows, which are not directly implementable for
the operation of actual AMoD systems. Practical algorithms
(inspired by the theoretical CRRP model) are presented in
the next section.

4 Real-time Congestion-Aware Routing and
Rebalancing

A natural approach to routing and rebalancing would be to
periodically resolve the CRRP within a receding-horizon,
batch-processing scheme (a common scheme for the control
of transportation networks (Seow et al, 2010; Pavone et al,
2012; Zhang et al, 2016)). This approach, however, is not di-
rectly implementable as the solution to the CRRP provides
fractional flows (as opposed to routes for the individual ve-
hicles). This shortcoming can be addressed by considering
an integral version of the CRRP (dubbed integral CRRP),
whereby the flows are integer-valued and can be thus easily
translated into routes for the individual vehicles, e.g. through
a flow decomposition algorithm (Ford and Fulkerson, 1962).
The integral CRRP, however, is an instance of the integral
Minimum-Cost Multi-Commodity Flow problem, which is
known to be NP-hard (Karp, 1975; Even et al, 1976). Naı̈ve
rounding techniques are inapplicable: rounding a solution
for the (non-integral) CRRP does not yield, in general, fea-
sible integral flows, and hence feasible routes. For example,
continuity of vehicles and customers can not be guaranteed,
and vehicles may appear and disappear along a route. In gen-
eral, to the best of our knowledge, there are no polynomial-
time approximation schemes for the integral Minimum-Cost
Multi-Commodity Flow problem.

On the positive side, the integral CRRP admits a decou-
pling result akin to Theorem 2: given a set of feasible, inte-
gral customer flows, one can always find a set of feasible,
integral rebalancing flows. (In fact, the proof of Theorem
2 does not exploit anywhere the property that the flows are
fractional, and thus the proof extends virtually unchanged to
the case where the flows are integer-valued). Our approach
is to leverage this insight (and more in general the theoreti-
cal results from Section 3) to design a heuristic, yet efficient
approximation to the integral CRRP that (i) scales to large-
scale systems, and (ii) is general, in the sense that can be
broadly applied to time-varying, asymmetric networks.

Specifically, we consider as objective the minimization
of the customers’ travel times, which, from Section 3 and
the aforementioned discussion about the generalization of
Theorem 2 to integral flows, suggests that customer routing
can be decoupled from vehicle rebalancing (strictly speak-
ing, this statement is only valid for static and symmetric net-
works – its generalization beyond these assumptions will be
addressed numerically in Section 5). Accordingly, to emu-
late the real-world operation of an AMoD system, we divide
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a given city into geographic regions (also referred to as “sta-
tions” in some formulations) (Pavone et al, 2012; Zhang and
Pavone, 2016), and each arriving customer is assigned the
closest vehicle within that region (vehicle imbalance across
regions is handled separately by the vehicle rebalancing al-
gorithm, discussed below). We apply a greedy, yet
computationally-efficient and congestion-aware approach for
customer routing where customers are routed to their desti-
nations using the shortest-time path as computed by an A∗

algorithm (Hart et al, 1968). The travel time along each edge
is computed using a heuristic delay function that is related to
the current volume of traffic on each edge. A popular heuris-
tic is the simple Bureau of Public Roads (BPR) delay model
(Bureau of Public Roads, 1964), which computes the travel
time on each edge (u, v) ∈ E as

td(u, v) := t(u, v)

(
1 + α

(
f(u, v)

c(u, v)

)β)
,

where f(u, v) :=
∑M
m=1 fm(u, v) + fR(u, v) is the total

flow on edge (u, v), and α and β are usually set to 0.15 and 4

respectively. Note that customer routing is event-based, i.e,
a routing choice is made as soon as a customer arrives.

Separately from customer routing, vehicle rebalancing
from one region to another is performed every thor > 0 time
units as a batch process (unlike customer routing, which is
an event-based process). Denote by vi(t) the number of ve-
hicles in region i at time t, and by vji(t) the number of ve-
hicles traveling from region j to i that will arrive in the next
tvicinity time units. Let vown

i (t) := vi(t) +
∑
j vji(t) be the

number of vehicles currently “owned” by region i (i.e., in
the vicinity of such region). Denote by vei (t) the number of
excess vehicles in region i, or the number of vehicles left af-
ter servicing the customers waiting within region i. From its
definition, vei (t) is given by vei (t) = vown

i (t) − ci(t), where
ci(t) is the number of customers within region i. Finally,
denote by vdi (t) the desired number of vehicles within re-
gion i. For example, for an even distribution of excess vehi-
cles, vdi (t) ∝

∑
i v
e
i (t)/N , where N is the number regions.

Note that the vdi (t)’s are rounded so they take on integer val-
ues. The set of origin regions (i.e., regions that should send
out vehicles), SR, and destination regions (i.e., regions that
should receive vehicles), TR, for the rebalancing vehicles
are then determined by comparing vei (t) and vdi (t), specifi-
cally,

if vei (t) > vdi (t), region i ∈ SR
if vei (t) < vdi (t), region i ∈ TR.

We assume the residual capacity cR(u, v) of an edge (u, v),
defined as the difference between its overall capacity c(u, v)

and the current number of vehicles along that edge, is known
and remains approximately constant over the rebalancing

time horizon. In case the overall rebalancing problem is not
feasible (i.e. it is not possible to move all excess vehicles to
regions that have a deficit of vehicles while satisfying the
congestion constraints), we define slack variables with cost
C that allow the optimizer to select a subset of vehicles and
rebalancing routes of maximum cardinality such that each
link does not become congested. The slack variables are de-
noted as dsi for each i ∈ SR, and dtj for each j ∈ TR.

Every thor time units, the rebalancing vehicle routes are
computed by solving the following integer linear program

minimize
fR(·,·),
{dsi},{dtj}

∑
(u,v)∈E

t(u, v) fR(u, v)

+
∑

i∈SR

Cdsi +
∑

i∈TR

Cdti

subject to
∑
u∈V

fR(u, v) + 1v∈SR
(vev(t)− vdv(t)− dsv)

=
∑
w∈V

fR(v, w) + 1v∈TR
(vdv(t)− vev(t)− dtv),

for all v ∈ V
fR(u, v) ≤ cR(u, v), for all (u, v) ∈ E
fR(u, v) ∈ N, for all (u, v) ∈ E
dsi, dtj ∈ N, for all i ∈ SR, j ∈ TR

The set of (integral) rebalancing flows {fR(u, v)}(u,v) is
then decomposed into a set of rebalancing paths via a flow
decomposition algorithm (Ford and Fulkerson, 1962). Each
rebalancing path connects one origin region with one des-
tination region: thus, rebalancing paths represent the set of
routes that excess vehicles should follow to rebalance to re-
gions with a deficit of vehicles.

The rebalancing optimization problem is an instance of
the Minimum Cost Flow problem. If all edge capacities are
integral, the linear relaxation of the Minimum Cost Flow
problem enjoys a totally unimodular constraint matrix (Ahuja
et al, 1993). Hence, the linear relaxation will necessarily
have an integer optimal solution, which will be a fortiori an
optimal solution to the original Minimum Cost Flow prob-
lem. It follows that an integer-valued solution to the rebal-
ancing optimization problem can be computed efficiently,
namely in polynomial time, e.g., via linear programming.
Several efficient combinatorial algorithms (Ahuja et al, 1993)
are also available, whose computational performance is typ-
ically significantly better.

The favorable computational properties of the routing
and rebalancing algorithm presented in this section enable
application to large-scale systems, as described next.

5 Numerical Experiments

In this section, we evaluate the validity of the capacity-sym-
metry assumption for several major U.S. cities (Section 5.1),
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Table 1 Average fractional capacity disparity for several major urban
centers in the United States.

Urban center Avg. frac. cap. disp. Std. dev.

Chicago, IL 1.2972 ·10−4 1.003 · 10−4

New York, NY 1.6556 ·10−4 1.304 · 10−4

Colorado Springs, CO 3.1772 ·10−4 2.308 · 10−4

Los Angeles, CA 0.9233 ·10−4 0.676 · 10−4

Mobile, AL 1.9368 ·10−4 1.452 · 10−4

Portland, OR 1.0769 ·10−4 0.778 · 10−4

characterize the effect of rebalancing on congestion in asym-
metric networks (Section 5.2), and explore the performance
of the algorithm presented in Section 4 on real-world road
topologies with real customer demands (Section 5.3).

5.1 Capacity Symmetry within Urban Centers in the US

The existential result in Section 3, namely Theorem 2, re-
lies on the assumption that the road network is capacity-
symmetric, i.e., for every cut (S, S̄), Cout(S, S̄) = Cin(S, S̄).
One may wonder whether this assumption is (approximately)
met in practice. From an intuitive standpoint, one might ar-
gue that transportation networks within urban centers are
indeed designed to be capacity symmetric, so as to avoid
accumulation of traffic flow in some directions. We corrob-
orate this intuition by computing the imbalance between the
outbound capacity (i.e., Cout) and the inbound capacity (i.e.,
Cin) for 1000 randomly-selected cuts within several urban
centers in the United States. For each edge (u, v) ∈ E , we
approximate its capacity as proportional to the product of
the speed limit vmax(u, v) on that edge and the number of
lanes L(u, v), that is, c(u, v) ∝ vmax(u, v) · L(u, v). The
road graph G(V, E), the speed limits, and the number of
lanes are obtained from OpenStreetMap data (Haklay and
Weber, 2008).

For a cut (S, S̄), we define its fractional capacity dispar-
ity D(S, S̄) as

D(S, S̄) := 2

∣∣Cout(S, S̄)− Cin(S, S̄)
∣∣

Cout(S, S̄) + Cin(S, S̄)
.

Table 1 shows the average fractional capacity disparity
(over 1000 samples) for several US urban centers. As ex-
pected, the road networks for such cities appear to posses a
very high degree of capacity-symmetry, which validates the
symmetry assumption made in Section 3.

5.2 Characterization of Congestion due to Rebalancing in
Asymmetric Networks

The theoretical results in Section 3 are proven for capacity-
symmetric networks, which are in general a reasonable model

for typical urban road networks (as shown in the previous
section). Nevertheless, it is of interest to characterize the ap-
plicability of our theoretical results (chiefly, the existential
result in Theorem 2) to road networks that significantly vi-
olate the capacity-symmetry property. In other words, we
investigate to what degree rebalancing might lead to an in-
crease in congestion if the network is asymmetric.

To this purpose, we compute solutions to the CRRP for
road networks with varying degrees of capacity asymme-
try and compare the corresponding travel times to those ob-
tained by computing optimal routes in the absence of re-
balancing (as would be the case, e.g., if the vehicles were
privately owned). We focus on the road network portrayed
in Figure 3, derived from OpenStreetMap data (Haklay and
Weber, 2008). With 1351 nodes and 3137 edges, the road
network captures all major streets and avenues in Manhat-
tan. Transportation requests are based on actual taxi rides in
New York City on March 1, 2012 from 6 to 8 p.m. (cour-
tesy of the New York Taxi and Limousine Commission).
We clustered all departures and arrivals into 100 stations
and considered only origin-destination pairs with more than
5 customers per hour on average (27,571 or 51.1% of all
trips). As in Section 5.1, we approximated the capacity of
each road as proportional to the product of the speed limit
vmax(u, v) and the number of lanes L(u, v). To ensure that
the flow induced by the trips would induce a small amount
of congestion before introducing any asymmetry, we scaled
down the capacities of all roads uniformly. Empirically, a
scaling factor of 0.041 (or 25× reduction) introduced suffi-
cient congestion, which is consistent with the observations
that (i) we only consider 51.1% of true customer flow due to
network filtering and (ii) taxis only constitute a fraction of
the vehicles in Manhattan.

To investigate the effects of network asymmetry, we in-
troduce an artificial capacity asymmetry into the baseline
Manhattan road network by progressively reducing the ca-
pacity of all northbound avenues. In order to quantify the
effect rebalancing has on congestion and travel times, we as-
sign slack variables δC(u, v), associated with a cost cc(u, v),
to each congestion constraint (6). The cost cc(u, v) is se-
lected such that the optimization algorithm selects a congestion-
free solution whenever one is available. Once a solution is
found, the actual travel time on each (possibly congested)
link is computed using the heuristic BPR delay model (Bu-
reau of Public Roads, 1964) presented in Section 4. This
approach maintains feasibility even in the congested traffic
regime, and hence it allows us to assess the impact of rebal-
ancing on congestion in asymmetric networks.

Table 2 summarizes the results of our simulations. In the
baseline case, no artificial capacity asymmetry is introduced,
i.e., the fractional capacity reduction of northbound avenues
is equal to 0%. Overall, the difference between the travel
times in the two cases is very small (approximately 1.16%),
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Fig. 3 Performance of the “real-time congestion-aware rebalancing al-
gorithm” as compared to the baseline algorithm in (Zhang and Pavone,
2016). The color of each road corresponds to the percent difference in
the number of vehicles traversing it between the congestion-aware and
baseline rebalancing algorithms–blue indicating a reduction in conges-
tion using the congestion-aware algorithm.

which is consistent with the fact that New York City’s road
graph has largely symmetric capacity, as shown in Section
5.1. Interestingly, even with a massive (60%) reduction in
northbound capacity, travel times with and without rebal-
ancing vehicles are practically equivalent (within 0.12%).
Collectively, these results show that the existential result in
Theorem 2, proven under the assumption of a symmetric
network, appears to extend (albeit approximately) to asym-
metric networks. In particular, it appears that vehicle rebal-
ancing does not lead to an appreciable increase in congestion
under very general conditions.

Table 2 Customer travel times with and without rebalancing for dif-
ferent levels of network asymmetry.

Average travel time [s]
Cap. reduction Without reb. With reb. Travel time increase

0% 58.00 58.67 1.16 %
10% 58.12 59.15 1.76 %
20% 58.49 59.67 2.02 %
30% 59.26 60.56 2.20 %
40% 60.65 61.78 1.86 %
50% 63.66 64.55 1.40 %
60% 72.04 72.13 0.12 %
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Fig. 4 Comparison of customer wait and service times from different
rebalancing and dispatching algorithms for low, medium, and high lev-
els of congestion. The congestion-aware algorithm recovers the asymp-
totic behavior of the baseline rebalancing algorithm for low levels of
congestion, and it outperforms both the baseline rebalancing algorithm
and the nearest-neighbor dispatch algorithm for high levels of conges-
tion.

5.3 Congestion-Aware Real-time Rebalancing

In this section we evaluate the performance of the real-time
routing and rebalancing algorithm presented in Section 4,
and compare it to a baseline approach that does not explic-
itly take congestion into account. We simulate 8,000 vehi-
cles providing service to approximately 480,000 actual taxi
requests over 24 hours on March 1, 2012, using the same
Manhattan road network as in the previous section (shown
in Figure 3).

We use the MATSim agent-based traffic simulator (Horni
et al, 2016) and modify its DVRP extension (Maciejewski
et al, 2017) to accommodate station-based dispatching and
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rebalancing of idle vehicles2. MATSim uses an agent-based,
microscopic traffic model where each road is abstracted as a
capacitated FIFO queue. Vehicles can enter a road link only
if that link has not reached its maximum capacity. Once a
vehicle enters a link, it can leave it after (i) the free-flow
travel time on the link has elapsed and (ii) it has reached the
head of the queue. Other delay factors such as traffic signals,
turning times, and pedestrian blocking are not simulated.

Taxi requests are clustered into 100 stations correspond-
ing to subsets of the nodes in the network. The 481,989 trip
requests from the same New York Taxi and Limousine Com-
mission data set used in Section 5.2 are simulated using a
time step of 1 second.

Three algorithms are evaluated, namely (i) a nearest-
neighbor dispatching algorithm that performs no rebalanc-
ing of idle vehicles, (ii) the congestion-aware routing and re-
balancing algorithm presented in Section 4, and (iii) a base-
line rebalancing algorithm. The baseline approach is derived
from the real-time rebalancing algorithm presented in (Zhang
and Pavone, 2016), which is a point-to-point algorithm that
computes rebalancing origins and destinations without con-
sidering the underlying road network. In the baseline ap-
proach, customer routes are computed in the same way as
in Section 4. For rebalancing, the origins and destinations
are first solved using the algorithm provided in (Zhang and
Pavone, 2016), then the routes are computed using the A∗

algorithm much like the customer routes.
In (Zhang et al, 2016), the authors show that, in the low-

congestion regime, the baseline algorithm offers near-optimal
performance and outperforms several state-of-the-art dispatch-
ing and rebalancing algorithms. However, the baseline al-
gorithm ignores the potential for additional congestion in-
duced by rebalancing vehicles, and thus, performs poorly
for highly congested networks. On the other hand, this per-
formance penalty is reflected in the nearest-neighbor rebal-
ancing algorithm, causing it to perform much better in high
congestion cases where this penalty outweighs the benefit of
pre-positioning empty vehicles.

IBM ILOG CPLEX was used to implement the congestion-
aware and baseline rebalancing algorithms. The computa-
tion time was (on average) under 0.5 s on commodity hard-
ware (Intel Core i7-5960, 64 GB RAM); the maximum com-
putation time was 4.52 s. To account for the computation
time, release of the rebalancing routes was delayed by 5 s in
the simulation framework.

For each algorithm, we simulated three scenarios corre-
sponding to low, medium and very high levels of congestion
(corresponding to a reduction of the road network’s nomi-
nal capacity of 70%, 75% and 80% respectively). Figure 4
presents a summary of the performance results. Note that the

2 The source code for the modified taxi extension is available at
https://github.com/StanfordASL/matsim-AMoD/

service time represents the total time a customer spends in
the system (waiting time plus traveling time).

For low levels of congestion, the performance of the
congestion-aware algorithm closely tracks the performance
of the baseline rebalancing algorithm. The nearest-neighbor
dispatch algorithm performs significantly worse than either
rebalancing algorithm in this regime. For medium and high
levels of congestion, performance of the baseline algorithm
is significantly degraded: as expected, rebalancing trips cause
significant congestion in the network, as exemplified in Fig-
ure 3. The nearest-neighbor dispatch algorithm offers better
performance than the baseline rebalancing algorithm in this
regime: when the road network is congested, not rebalancing
at all appears to be preferable to excessive rebalancing.

The congestion-aware algorithm recovers the performance
of the baseline rebalancing algorithm in the low-congestion
regime and the performance of the nearest-neighbor dispatcher
in the medium-congestion regime; in the high-congestion
regime, it outperforms both. By selectively rebalancing ve-
hicles where and when congestion is low, and by selecting
rebalancing routes that do not increase congestion, the algo-
rithm is able to mediate between the behavior of the base-
line rebalancing algorithm and the behavior of the nearest-
neighbor algorithm depending on the level of congestion:
this results in good performance both in terms of network
congestion and in terms of customer service times across a
wide range of congestion regimes.

6 Conclusions and Future Work

In this paper we presented a network flow model of an au-
tonomous mobility-on-demand system on a capacitated road
network. We formulated the routing and rebalancing prob-
lem and showed that on symmetric road networks, it is al-
ways possible to route rebalancing vehicles in a coordinated
way that does not increase traffic congestion. Using a model
road network of Manhattan, we showed that rebalancing did
not increase congestion even for moderate degrees of net-
work asymmetry. We leveraged the theoretical insights to
develop a computationally efficient real-time congestion-aware
routing and rebalancing algorithm and demonstrated its per-
formance over state-of-the-art point-to-point rebalancing al-
gorithms through simulation. This highlighted the impor-
tance of congestion awareness in the design and implemen-
tation of control strategies for a fleet of self-driving vehicles.

This work opens the field to many future avenues of
research. First, it is of interest to directly use the solution
to the integral CRRP as a practical real-time routing algo-
rithm to compute congestion-free routes for customer vehi-
cles and rebalancing vehicles alike. While the integral CRRP
is in general intractable, randomized algorithms (Raghavan
and Tompson, 1987; Srinivasan, 1999) may be used to com-
pute high-quality approximate solutions for large-scale sys-

https://github.com/StanfordASL/matsim-AMoD/
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tems. Second, from a modeling perspective, we would like
to study the inclusion of stochastic information (e.g., de-
mand prediction, travel time uncertainty) for the routing and
rebalancing problem, as well as a richer set of performance
metrics and constraints (e.g., time windows to pick up cus-
tomers). Third, it is worthwhile to study how our results give
intuition into business models for autonomous urban mobil-
ity (e.g. fleet sizes). Fourth, it is of interest to explore other
approaches that may reduce congestion, including ride-sharing,
demand staggering, and integration with public transit to
create an intermodal transportation network. Fifth, we plan
to study the deployment of large electric AMoD fleets and,
in particular, to characterize the interaction between such
fleets and the electric power network. Sixth, we would like
to explore decentralized architectures for cooperative rout-
ing and rebalancing. Finally, we would like to demonstrate
the real-world performance of the algorithms by implement-
ing them on real fleets of self-driving vehicles.
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