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Abstract

Autonomous Mobility-on-Demand systems (that is, fleets of self-driving cars offering on-demand

transportation) hold promise to reshape urban transportation by offering high quality of service at

lower cost compared to private vehicles. However, the impact of such systems on the infrastructure

of our cities (and in particular on traffic congestion and the electric power network) is an active

area of research. In particular, Autonomous Mobility-on-Demand (AMoD) systems could greatly

increase traffic congestion due to additional “rebalancing” trips required to re-align the distribution

of available vehicles with customer demand; furthermore, charging of large fleets of electric vehicles

can induce significantly stress in the electric power network, leading to high electricity prices and

potential network instability.

In this thesis, we build analytical tools and algorithms to model and control the interaction

between AMoD systems and our cities. We open our work by exploring the interaction between

AMoD systems and urban congestion. Leveraging the theory of network flows, we devise models

for AMoD systems that capture endogenous traffic congestion and are amenable to efficient opti-

mization. These models allow us to show the key theoretical result that, under mild assumptions

that are substantially verified for U.S. cities, AMoD systems do not increase congestion compared

to privately-owned vehicles for a given level of customer demand if empty-traveling vehicles are

properly routed. We leverage this insight to design a real-time congestion-aware routing algorithm

for empty vehicles; microscopic agent-based simulations with New York City taxi data show that

the algorithm significantly reduces congestion compared to a state-of-the-art congestion-agnostic

rebalancing algorithm, resulting in 22% lower wait times for AMoD customers. We then devise a

randomized congestion-aware routing algorithm for customer-carrying vehicles and prove rigorous

analytical bounds on its performance. Preliminary results based on New York City taxi data show

that the algorithm could yield a further reduction in congestion and, as a result, 5% lower service

times for AMoD customers.

We then turn our attention to the interaction between AMoD fleets with electric vehicles and

the power network. We extend the network flow model developed in the first part of the thesis to

capture the vehicles’ state-of-charge and their interaction with the power network (including charging
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and the ability to inject power in the network in exchange for a payment, denoted as “vehicle-to-

grid”). We devise an algorithmic procedure to losslessly reduce the size of the resulting model,

making it amenable to efficient optimization, and test our models and optimization algorithms

on a hypothetical deployment of an AMoD system in Dallas-Fort Worth, TX with the goal of

maximizing social welfare. Simulation results show that coordination between the AMoD system

and the power network can reduce electricity prices by over $180M/year, with savings of $120M/year

for local power network customers and $35M/year for the AMoD operator. In order to realize such

benefits, the transportation operator must cooperate with the power network: we prove that a

pricing scheme can be used to enforce the socially optimal solution as a general equilibrium, aligning

the interests of a self-interested transportation operator and self-interested power generators with

the goal of maximizing social welfare. We then design privacy-preserving algorithms to compute

such coordination-promoting prices in a distributed fashion. Finally, we propose a receding-horizon

implementation that trades off optimality for speed and demonstrate that it can be deployed in

real-time with microscopic simulations in Dallas-Fort Worth.

Collectively, these results lay the foundations for congestion-aware and power-aware control of

AMoD systems; in particular, the models and algorithms in this thesis provide tools that will enable

transportation network operators and urban planners to foster the positive externalities of AMoD

and avoid the negative ones, thus fully realizing the benefits of AMoD systems in our cities.
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Chapter 1

Introduction

This thesis studies the interaction between Autonomous Mobility-on-Demand systems and the built

environment, that is, our cities. Autonomous Mobility-on-Demand (AMoD) is a novel proposed

mode of urban transportation enabled by the two emerging technologies of autonomous driving and

one-way car-sharing. In an AMoD system, a fleet of centrally routed self-driving vehicles services

on-demand transportation requests in an urban environment. The key difference between current

mobility-on-demand systems (e.g. Uber, Lyft, or DiDi) and AMoD is that a self-driving fleet is

amenable to centralized control, enabling deployment of fleet-wide policies to match customers with

available vehicles, compute routes, and (in the case of electric vehicles) schedule charging; in addition,

AMoD systems offer lower operational costs compared to human-driven MoD systems.

AMoD systems hold promise to deliver a number of benefits to our cities, including increased

access to mobility for those unable or unwilling to drive, lower pollution (due both to massive electri-

fication and to shifting of pollution from the tailpipe to the chimney stack), a smaller overall number

of vehicles (with positive effects on the cost and pollution resulting from vehicle manufacturing and

disposal), and reduced need for parking spaces in city centers [Mitchell et al., 2010]. The potential

impact of AMoD systems on the electric power network is especially notable: fleets of electric ve-

hicles, in coordination with the power network, could significantly increase adoption of distributed

generation (e.g. rooftop solar) by synchronizing their charging activity with peaks in renewable

generation and, potentially, returning power to the network with vehicle-to-grid (V2G) schemes at

times of low demand for transportation and high demand for power [Mitchell et al., 2010].

Such benefits require coordination between AMoD systems and existing urban infrastructure.

Indeed, in absence of coordination, AMoD systems could impose significant negative externalities on

our cities! Studies have shown that mass adoption of electric vehicles (such as would be enabled by

AMoD systems) and uncoordinated charging could lead to massive increases in electricity prices and

power network instability [Hadley and Tsvetkova, 2009], which could only be mitigated with very sig-

nificant infrastructure investments. In addition, the shift from private mobility to AMoD could cause

1
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significant increases in traffic congestion due to “rebalancing” trips necessary to realign empty vehi-

cles with the distribution of customer demand [Levin et al., 2017, Maciejewski and Bischoff, 2017].

In this thesis, we lay the groundwork to address these issues by building models and optimiza-

tion algorithms that allow for the efficient, large-scale control of AMoD systems and account for

their interactions with the built environment. We focus our attention on two problems: (i) urban

congestion and (ii) the interaction between electric-powered AMoD systems and the electric power

network.

1.1 AMoD systems and the built environment

In this section, we formally define the problem of controlling an AMoD system and its interaction

with the built environment.

In the AMoD problem, a fleet of single-occupancy self-driving vehicles services transportation

requests on a road network. Vehicles travel along road links, modeled as edges, which are subject

to traffic congestion. Transportation requests arrive in the system according to a stochastic process;

each request originates and ends at a given location in the road network. The goal of the AMoD

operator is to service each request by (i) matching it with an available vehicle, (ii) routing the

vehicle to the request’s origin location for pickup, and (iii) routing the customer-carrying vehicle to

the request’s destination. Additionally, the AMoD operator preemptively rebalances empty vehicles

from customers’ destinations to areas of high demand in order to ensure good vehicle availability

and short wait times for future requests. If the autonomous vehicles are electric-powered, the AMoD

operator must also compute a charging schedule for the vehicles to ensure that they have sufficient

battery charge to perform trips.

Optimization objectives can include availability of vehicles upon customer arrival, average request

wait time, average request service time (i.e. the sum of the wait time and travel time), overall vehicle-

miles traveled, and fuel and energy cost.

In general, control of AMoD systems in isolation belongs to the class of networked, heteroge-

neous, stochastic decision problems with uncertain information [Pavone, 2015]. The interaction of

these systems with the built environment further increases the complexity of the problem by in-

troducing couplings between AMoD systems, urban congestion, and the operations of the electric

power network.

AMoD and urban congestion Large fleets of autonomous vehicles operating on-demand trans-

portation services can cause significant congestion due to additional vehicle-miles traveled

[Levin et al., 2016, Maciejewski and Bischoff, 2017]. Crucially, congestion is an endogenous phe-

nomenon for AMoD systems: centralized routing policies for large autonomous fleets can significantly

affect congestion patterns, which, in turn, affects travel times and therefore routing choices. Thus,
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on the one hand, routing policies that do not account for endogenous congestion effects can result

in poor performance both for the AMoD system and for all other users of the road network; on the

other hand, the AMoD operator can actively control and mitigate congestion with congestion-aware

routing (e.g. by adopting longer and less congested routes for empty vehicles), resulting in benefits

for both AMoD customers and other road users.

AMoD and the electric power network AMoD systems are especially well-suited for electric

vehicles (EVs). With individually-owned EVs, each vehicle must have an appropriate state of charge

for their owner’s desired travels; conversely, in AMoD systems, the fleet operator can match trans-

portation requests with any vehicle with an adequate state of charge. This additional signficant

degree of freedom can be leveraged to design fleet-wide smart charging policies that benefit both the

AMoD operator (in terms of high quality of service and lower electricity expenditure) and the electric

power network. At the distribution level, smart charging can reduce congestion in the power network

and thus enable increased penetration of distributed generation, e.g. rooftop solar; at the transmis-

sion level, shifting charging loads in time and space can flatten the demand for power, reducing use

of expensive “peaker” power plants and enabling increased adoption of renewable generation.

EVs equipped with inverters can also return power to the power network (a mode of operation

known as vehicle-to-grid, or V2G): this can further contribute to the control of the power network

and provide the AMoD operator with an additional revenue source.

1.2 Contribution

Currently unavailable control-theoretical tools are required in order to foster the positive externalities

that AMoD systems impose on the built environment and mitigate the negative ones. In this

thesis, we propose such tools, with particular attention to the problems of traffic congestion and the

interaction with the power network.

Our contribution is threefold. First, we propose models for AMoD systems that capture the

interaction between fleets of self-driving cars and the built environment. In particular, we focus on

the impact of AMoD systems on the road network (that is, the congestion problem), and on their

interaction with the power network (denoted as Power-in-the-loop AMoD, or P-AMoD). Second, we

propose control algorithms for these systems. In particular, we leverage optimization and model-

predictive control techniques to synthesise control algorithms that optimise the operations of the

AMoD system and account for their externalities; we also design pricing schemes to enforce socially-

optimal strategies in presence of self-interested transportation and power network operators, and we

provide privacy-preserving algorithms to compute such prices in a distributed fashion. Third, we

validate these models and algorithms with case studies. In particular, we study the impact of an

AMoD system on congestion in NYC, and the impact of a fleet of an electric AMoD fleet in Dallas
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Fort Worth on the Texas power network.

In detail, in Chapters 3 and 4, we explore the interaction between AMoD systems and traffic

congestion. In Chapter 3, we propose a network flow model that captures the operations of AMoD

systems and the effect of endogenous congestion, and is amenable to efficient optimization. We

study the structural properties of the model: our key theoretical result shows that, under mild

structural assumptions that are substantially verified for major U.S. cities, there always exists a way

of routing empty vehicles without increasing congestion compared to the case where only passenger-

carrying trips are performed . That is, in stark contrast with common belief, AMoD systems do

not increase congestion compared to private cars if properly routed, assuming that demand for

transportation remains constant. We leverage this insight to propose efficient algorithmic tools for

receding-horizon congestion-aware control of AMoD fleets (and in particular for congestion-aware

routing of empty vehicles), and we demonstrate the effectiveness of this approach with microscopic

agent-based simulations based on real-world taxi data in Manhattan. In Chapter 4, we further lever-

age the analytical insights from the congestion-aware AMoD model to design efficient randomized

algorithms for congestion-aware routing of customer-carrying vehicles. We provide rigorous bounds

on the expected performance of the proposed algorithm, and we assess its effectiveness with a case

study in Manhattan.

In Chapter 5, we turn our attention to the interaction between AMoD systems and the electric

power network. We propose a network flow model that captures the operations of the AMoD system,

the vehicles’ charge level and the effect of their charging schedule on the electric power network

(modeled through a DC model), the time-varying customer demand for transportation and power,

and traffic congestion. We propose algorithms that leverage the structural properties of the model

to losslessly reduce its size and make it amenable to efficient optimization. Jointly optimizing the

operations of a Power-in-the-loop AMoD system requires cooperation between the AMoD system

operator and the power network operator: we prove that any optimal solution to the P-AMoD

problem can also be enforced as a general equilibrium through pricing, and we show that a dual

decomposition algorithm can be used to compute the market-clearing prices in a distributed fashion

without requiring the transportation operator to disclose private information (e.g., transportation

requests). We then show, through large-scale numerical experiments based on real-world data in

Dallas-Fort Worth, TX, that cooperation between the AMoD system and the power network results

in considerable benefits (in terms of power prices) both for the transportation operator and for

the power network operator, with savings in the order of $180M/year shared between local power

network customers ($120M/year) and the AMoD operator ($35M/year), and no negative impact on

AMoD customers. Finally, we propose a receding-horizon P-AMoD controller and show that it is

able to realize many of the benefits of AMoD in a real-time setting through agent-based microscopic

simulations in Dallas-Fort Worth.
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1.3 Structure

The rest of this thesis is structured as follows.

In Chapter 2, we outline some tools that will be used in the rest of the thesis; in particular, we

focus on the theory of network flow algorithms and its application to modeling and control of AMoD

fleets.

In Chapters 3 and 4, we explore the interaction between AMoD systems and traffic congestion. In

Chapter 3, we propose a network flow model for congestion-aware control of AMoD systems, study its

fundamental properties, and propose a congestion-aware routing algorithm for rebalancing vehicles;

in Chapter 4, we further leverage the model to propose a congestion-aware routing algorithm for

customer-carrying as well as rebalancing vehicles.

In Chapter 5, we turn our attention to the interaction between AMoD systems and the electric

power network. We extend the network flow model to capture the interaction between AMoD

systems and the power network, propose a technique to losslessly reduce the size of the resulting

model, and devise pricing schemes to enforce the social optimum as a general equilibrium; we then

assess the impact of P-AMoD on a case study in Dallas-Fort Worth, TX, and propose a real-time

implementation.

Finally, in Chapter 6, we draw our conclusions and outline directions for future research.

The full text of this thesis along with supplementary material and errata is available online at

https://www.federico.io/dissertation.

https://www.federico.io/dissertation
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Chapter 2

Preliminaries: network flow models

In this thesis we leverage network flow models to model the operations of AMoD systems and their

interaction with the built environment. In this chapter, we give a brief overview of elements of

network flow theory and provide a high-level description of their use in modeling AMoD systems;

we also outline some of the disadvantages of such models (namely, their deterministic structure and

continuum approximation) and discuss possible tools to overcome them.

2.1 Network flow and multi-commodity flow problems

Consider a network G(V, E), where V is the node set and E is the edge set. Each edge (u, v) ∈ E has

a capacity c(u, v) denoting the maximum amount of flow that can traverse each edge.

A commodity must be transported from an origin locations to a destination location in the

network. The commodity is described by the tuple (s, t, λ), where s ∈ V is the origin node, t ∈ V
is the destination node, and λ ∈ R+ is the intensity (or demand) for the commodity, that is, the

amount of the commodity that must be transported.

A network flow is a function f : E 7→ R≥0 that satisfies the following equations [Ahuja et al., 1993]

∑
u:(u,v)∈E

f(u, v) + 1v=sλ =
∑

w:(v,w)∈E

f(v, w) + 1v=tλ, for all v ∈ V (continuity), (2.1a)

f(u, v) ≤ c(u, v), for all (u, v) ∈ E (capacity), (2.1b)

where 1x denotes the indicator function of the Boolean variable x = {true, false} (1x equals one if

x is true).

Equation (2.1a) ensures that the network flow originates at the commodity’s origin location,

arrives at the commodity’s destination, and is conserved at all other nodes; Equation (2.1b) ensures

7
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that no edge carries an amount of flow higher than its capacity.

The definition of network flows can readily be generalized to flows with multiple sources and sinks.

Consider a commodity with multiple origins {si}i with intensities {λi}i, and multiple destinations

{tj}j with intensities {λj}j . Then Equation (2.1a) is replaced by

∑
u:(u,v)∈E

f(u, v) +
∑
i

1v=siλi =
∑

w:(v,w)∈E

f(v, w) +
∑
j

1v=tjλj , for all v ∈ V. (2.2)

Note that Equation 2.2 can be satisfied at all nodes only if
∑
i λi =

∑
j λj , that is if the sum of

the intensities of all origins equals the sum of intensities of all destinations.

In the multi-commodity flow problem, a set of M commodities {(sm, tm, λm)}m∈M must be

delivered through the network. Each commodity is associated with a flow {fm(u, v)}(u,v), and flows

satisfy the constraints:

(2.2) for all m ∈M (2.3a)∑
m∈M

fm(u, v) ≤ c(u, v), for all (u, v) ∈ E (2.3b)

In a minimum cost multicommodity flow problem, each edge (u, v) ∈ E is associated with a cost

a(u, v), which denotes the expense required to send one unit of flow across the edge. The minimum

cost multicommodity flow problem entails finding a feasible flow that satisfies:

minimize
fm(·,·)

∑
(u,v)∈E

a(u, v)
∑
m∈M

fm(u, v) (2.4)

subject to (2.3).

2.1.1 Optimal solution of minimum-cost multi-commodity flow problems

Network flow models (and, in particular, minimum-cost multi-commodity flow problems in the form

of (2.4)) have linear structure: that is, Problem (2.4) can be cast as a linear program with O(M |E|)
variables. Interior point algorithms can solve the problem in O((M |E|)3.5) time [Karmarkar, 1984];

specialized combinatorial algorithms (e.g. [Goldberg et al., 1990, Leighton et al., 1995],

[Goldberg et al., 1998]) can also leverage the structure of the Min-MCF problem, often offering bet-

ter performance. For single-commodity flows, network simplex algorithms [Orlin, 1997, Tarjan, 1997]

can be employed to further reduce the computational complexity of the problem. In practical ap-

plications, multi-commodity flow problems with millions of variables can be solved efficiently on

commodity hardware [Mittelmann, 2016].
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2.2 Network flow problems for AMoD systems

In this thesis, we model AMoD systems in the framework of multi-commodity network flow problems.

In this section, we give a high-level description of the simple time-invariant model that will be used

in Chapters 3 and 4. A more detailed descriptions is presented in Section 3.2.2 (congestion-aware,

time-invariant model) and 5.2.1 (power-in-the-loop, congestion-aware, time-varying model).

We model a road network as a capacitated graph G(V, E). Nodes v ∈ V represent intersections

and locations for customer trip origins and destinations. Edges (u, v) ∈ E represent road links.

Congestion is modeled as a constraint on the vehicle flow that a road link can accommodate:

specifically, a function c(u, v) : E 7→ N≥0 denotes the capacity of each link (in vehicles per unit time).

All vehicles on a link are assumed to travel at the free-flow speed if the congestion constraint is sat-

isfied. The free-flow travel time across the road link is denoted by t(u, v) : E 7→ R>0. This threshold

congestion model represents a tradeoff between accuracy and amenability to efficient optimization.

In the rest of the thesis, we show that the model is very well-suited for synthesis of congestion-aware

control policies; detailed analysis models (including static models [Wardrop, 1952], queuing-based

models [Osorio and Bierlaire, 2009], and simulation-based models [Treiber et al., 2000]) are available

to validate the performance of the resulting policies.

Customer requests are denoted by the collection of tuples {(sm, tm, λm)}, where sm ∈ V is the

origin of the request, tm ∈ V is the destination of the request, and λm ∈ N>0 is the number of

passengers wishing to travel from sm to tm in one unit of time, henceforth called the intensity of

the request. Transportation requests are assumed to be stationary and deterministic, that is, λm

is constant in time. The set of transportation requests is denoted as M = {(sm, tm, λm)}m with

M = |M|.
We model customer routes and rebalancing routes as flows of customers and vehicles on the graph

G(V, E). Specifically, the set of customer routes for customer request m is modeled by a network

flow {fm(u, v)}(u,v)∈E .

Rebalancing routes realign the vehicle distribution with the distribution of passenger departures

by moving empty vehicles to passengers’ origins; accordingly, the rebalancing routes for empty vehi-

cles are modeled by a network flow {fR(u, v)}(u,v)∈E with origins corresponding to the destinations

of customer flows and destinations corresponding to the origins of customer flows.

2.2.1 Network flows and customer routes

Our goal is to provide tools for AMoD operators to control fleets of self-driving vehicles: to this end,

network flows must be converted to routes that individual vehicles can follow. A customer route is

an ordered list of edges {(sm, u), (u, v), . . . , (w, tm)} that forms a path connecting a customer origin

sm with a customer destination tm. Each customer route can be associated with an intensity λ cor-

responding to the rate of customers (or, equivalently, vehicles) traveling on the route. Analogously,
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a rebalancing route is a path connecting a customer destination tm with a customer origin sl (for

rebalancing paths, the origin and destination may belong to different customers), associated with a

rate of vehicles traveling on that route. Vehicles follow customer routes to transport customers from

their respective origins to their destinations; rebalancing routes realign the vehicle distribution with

the distribution of passenger departures by moving empty vehicles to passengers’ origins.

For a given origin s, destination t, and intensity λ, we define a path flow as a function fp(u, v) :

E 7→ R≥0 that satisfies Equation 2.3a and only assigns positive flow to edges belonging to a path p

going from s to t; in other words, there exists p = {(s, u), (u, v), . . . , (w, t)} such that fp(u, v) > 0⇔
(u, v) ∈ p. A customer or rebalancing route can be equivalently described as a path flow of intensity

λ = 1 by assigning value f(u, v) = 1 to the edges contained in the route and f(u, v) = 0 otherwise.

Hence, path flows equivalently represent customer and rebalancing routes, a fact we will extensively

leverage in this thesis.

Conversely, any network flow can be decomposed in a collection of path flows. Specifically, the

flow decomposition algorithm ([Ahuja et al., 1993], reported below as Algorithm 1) can be used to

decompose any network flow with no cycles (and, in particular, any network flow that is the solution

to a minimum-cost multi-commodity flow problem in the form of (2.4)) in a collection of path flows

such that the sum of the path flows’ intensities equals the intensity of the network flow.

This establishes a correspondence between network flows and vehicle paths: any vehicle path can

be represented as a network flow (specifically, a path flow), and any network flow can be represented

as a collection of vehicle paths, each associated with a vehicle rate.

Algorithm 1: Flow decomposition algorithm [Ahuja et al., 1993, Sec. 3.5].

Input: A network flow {fm(u, v)}(u,v)

A set O of origin nodes s ∈ O
A set D of destination nodes t ∈ D

Output: A list of paths {Pathi}i. Each entry Pathi is a collection of consecutive edges
{(s, u), (u, v), . . . (w, t)}.

A list of path intensities {λi}i
procedure FlowDecomposition({fm(u, v)}(u,v))

i=1;
while

∑
s∈O

∑
v∈V fm(s, v) > 0 do

Pathi ← a path from some s ∈ O to some t ∈ D containing only edges (u, v) with
fm(u, v) > 0

λi = min(u,v)∈Pathi
fm(u, v)

for all (u, v) ∈ Pathi do
fm(u, v) = fm(u, v)− λi

i = i+ 1

return the path flows {{Pathi}, {λi}}i
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2.2.2 Inclusion of additional constraints

The linear structure of network flow models makes them amenable to inclusion of additional con-

straints. In particular, these models can be extended to capture the interaction with other systems

with linear or convex structure (e.g. the power network). Furthermore, multi-origin and multi-

destination flows can be used to encode degrees of freedom such as variable departure times and

variable charge levels both for customer-carrying and empty trips. We extensively explore such

extensions in the context of the interaction with the power network in Section 5.2 .

2.3 Limitations of network flow models

2.3.1 Network flow models and stochasticity

Network flow models are fully deterministic: in particular, the demand for transportation services is

assumed to be known and deterministic. This is at odds with the mode of operation of AMoD sys-

tems, where customer requests are stochastic and not known in advance. To accommodate stochastic

and unknown customer demand, we employ model-predictive control [Borrelli et al., 2017]: a finite-

horizon optimization problem is periodically solved based on (i) currently available information and

(ii) expected estimate future demand, and the first time step of the proposed solution is implemented.

In addition, network flow models can often be shown to track the expectation of an underlying

stochastic process. In particular, in [Iglesias et al., 2016, Iglesias et al., 2017], the authors propose a

BCMP queuing-theoretical model of an AMoD system that captures the stochasticity of the customer

arrival process and of vehicle travel times; the authors shows that, if the AMoD system enjoys high

vehicle availability, optimizing the expectation of the BCMP model is equivalent to optimizing the

deterministic network flow model proposed in this chapter.

2.3.2 Continuum approximation

Network flow models approximate customers and vehicles as continuous commodities, akin to a

fluidic model. This property can make such model impractical for real-time control of AMoD systems,

where discrete control actions must be issued to the vehicles. While integral versions of the multi-

commodity flow problem exist, such problems are generally NP-hard (as discussed in Section 4.1.2).

Three approaches are available to overcome this difficulty:

• The single-commodity minimum-cost network flow problem is known to have totally unimod-

ular structure: that is, if the capacity of all road links and the intensities of all origins and

destinations are integral, then there exists an integral optimal solution to the problem. Such

an integral optimal solution can then be decomposed in integral vehicle routes through the

flow decomposition algorithm. We exploit this property to design an efficient controller for

congestion-aware routing of rebalancing vehicles in Chapter 3.
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• Randomized routing algorithms [Srinivasan, 1999] decompose and sample the solution of a

network flow problem to produce integral routes for the vehicles that recover the cost of the

continuous solution in expectation and offer probabilistic bounds on the probability of violating

the congestion constraints. The use of randomized routing algorithms is typically restricted to

multi-commodity flows where each commodity has a single origin and destination; in Chapter

4, we leverage the structural properties of the AMoD network flow model to employ these

algorithms in presence of a multi-origin, multi-destination rebalancing flow.

• Receding-horizon sampling can be used to obtain discrete control actions for the vehicles by

sampling the first time step of the optimal solution to a time-varying network flow problem.

While this approach is not guaranteed to recover the performance of the optimum solution in

expectation, it often exhibits good performance in practical applications. In Chapter 5, we

leverage a receding-horizon sampling approach to achieve real-time control of AMoD systems

in coordination with the power network.



Chapter 3

Routing autonomous vehicles in

congested transportation networks:

structural properties and

coordination algorithms

This chapter considers the problem of routing and rebalancing a shared fleet of autonomous (i.e., self-

driving) vehicles providing on-demand mobility within a capacitated transportation network, where

congestion might disrupt throughput. We model the problem within a network flow framework and

show that under relatively mild assumptions the rebalancing vehicles, if properly coordinated, do

not lead to an increase in congestion (in stark contrast to common belief). From an algorithmic

standpoint, such theoretical insight suggests that the problem of routing customers and rebalanc-

ing vehicles can be decoupled, which leads to a computationally-efficient routing and rebalancing

algorithm for the autonomous vehicles. Numerical experiments and case studies corroborate our

theoretical insights and show that the proposed algorithm outperforms state-of-the-art point-to-

point methods by avoiding excess congestion on the road. Collectively, this work provides a rigorous

approach to the problem of congestion-aware, system-wide coordination of autonomously driving

vehicles, and to the characterization of the sustainability of such robotic systems.

3.1 Introduction

Autonomous (i.e., robotic, self-driving) vehicles are rapidly becoming a reality and hold great

promise for increasing safety and enabling access to mobility for those unable or unwilling to drive

13
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[Mitchell et al., 2010, Urmson, 2014]. A particularly attractive operational paradigm involves coor-

dinating a fleet of autonomous vehicles to provide on-demand service to customers, also called au-

tonomous mobility-on-demand (AMoD). An AMoD system may reduce the cost of travel

[Spieser et al., 2014] as well as provide additional sustainability benefits such as increased overall

vehicle utilization, reduced demand for urban parking infrastructure, and reduced pollution (with

electric vehicles) [Mitchell et al., 2010]. The key benefits of AMoD are realized through vehicle shar-

ing, where each vehicle, after servicing a customer, drives itself to the location of the next customer or

rebalances itself throughout the city in anticipation of future customer demand [Pavone et al., 2012].

In terms of traffic congestion, however, there has been no consensus on whether autonomous

vehicles in general, and AMoD systems in particular, will ultimately be beneficial or detrimental.

It has been argued that by having faster reaction times, autonomous vehicles may be able to drive

faster and follow other vehicles at closer distances without compromising safety, thereby effectively

increasing the capacity of a road and reducing congestion [Maciejewski and Bischoff, 2017]. They

may also be able to interact with traffic lights to reduce full stops at intersections [Pérez et al., 2010].

On the downside, the process of vehicle rebalancing (empty vehicle trips) increases the total number

of vehicles on the road (assuming the number of vehicles with customers stays the same). Indeed,

it has been argued that the presence of many rebalancing vehicles may contribute to an increase in

congestion [Templeton, 2010, Barnard, 2016]. These statements, however, do not take into account

that in an AMoD system the operator has control over the actions (destination and routes) of the

vehicles, and may route vehicles intelligently to avoid increasing congestion or perhaps even decrease

it.

Accordingly, the goal of this chapter is twofold. First, on an engineering level, we aim to devise

routing and rebalancing algorithms for an autonomous vehicle fleet that seek to minimize congestion.

Second, on a socio-economic level, we aim to rigorously address the concern that autonomous cars

may lead to increased congestion and thus disrupt currently congested transportation infrastructures.

Literature review: In this section of the thesis, we investigate the problem of controlling an

AMoD system within a road network in the presence of congestion effects. Previous work on con-

trol of AMoD systems have primarily concentrated on the rebalancing problem [Pavone et al., 2012,

Spieser et al., 2014], whereby one strives to allocate empty vehicles throughout a city while minimiz-

ing fuel costs or customer wait times. The rebalancing problem has been studied in

[Pavone et al., 2012] using a fluidic model and in [Zhang and Pavone, 2016] using a queueing network

model. An alternative formulation is the one-to-one pickup and delivery problem

[Berbeglia et al., 2010], where a fleet of vehicles service pickup and delivery requests within a

given region. Combinatorial asymptotically optimal algorithms for pickup and delivery problems

were presented in [Treleaven et al., 2011, Treleaven et al., 2013], and generalized to road networks

in [Treleaven et al., 2012]. Almost all current approaches assume point-to-point travel between

origins and destinations (no road network), and even routing problems on road networks (e.g.
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[Treleaven et al., 2012]) do not take into account vehicle-to-vehicle interactions that would cause

congestion and reduce system throughput.

On the other hand, traffic congestion has been studied in economics and transportation for nearly

a century. The first congestion models [Wardrop, 1952, Lighthill and Whitham, 1955, Daganzo, 1994]

sought to formalize the relationship between vehicle speed, density, and flow. Since then, approaches

to modeling congestion have included empirical [Kerner, 2009], simulation-based [Treiber et al., 2000,

Yang and Koutsopoulos, 1996, Balmer et al., 2009, Fagnant and Kockelman, 2014, Levin et al., 2017],

queueing-theoretical [Osorio and Bierlaire, 2009], and optimization [Peeta and Mahmassani, 1995,

Janson, 1991]. While there have been many high fidelity congestion models that can accurately

predict traffic patterns, the primary goal of congestion modeling has been the analysis of traffic

behavior. Efforts to control traffic have been limited to the control of intersections [Le et al., 2015,

Xiao et al., 2015] and freeway on-ramps [Papageorgiou et al., 1991] because human drivers behave

non-cooperatively. The problem of cooperative, system-wide routing (a key benefit of AMoD sys-

tems) is similar to the dynamic traffic assignment problem (DTA) [Janson, 1991] and to

[Wilkie et al., 2011, Wilkie et al., 2014] in the case of online routing. The key difference is that

these approaches only optimize routes for passenger vehicles while we seek to optimize the routes of

both passenger vehicles and empty rebalancing vehicles.

Statement of contributions: The contribution of this chapter is threefold. First, we model an

AMoD system within a network flow framework, whereby customer-carrying and empty rebalancing

vehicles are represented as flows over a capacitated road network (in such model, when the flow

of vehicles along a road reaches a critical capacity value, congestion effects occur). Within this

model, we provide a cut condition for the road graph that needs to be satisfied for congestion-free

customer and rebalancing flows to exist. Most importantly, under the assumption of a symmetric

road network, we investigate an existential result that leads to two key conclusions: (1) rebalancing

does not increase congestion, and (2) for certain cost functions, the problems of finding customer

and rebalancing flows can be decoupled. Second, leveraging the theoretical insights, we propose a

computationally-efficient algorithm for congestion-aware routing and rebalancing of an AMoD sys-

tem that is broadly applicable to time-varying, possibly asymmetric road networks. Third, through

numerical studies on real-world traffic data, we validate our assumptions and show that the proposed

real-time routing and rebalancing algorithm outperforms state-of-the-art point-to-point rebalancing

algorithms in terms of lower customer wait times by avoiding excess congestion on the road.

Organization: The remainder of this chapter is organized as follows: in Section 3.2 we present a

network flow model of an AMoD system on a capacitated road network and formulate the routing

and rebalancing problem. In Section 3.3 we present key structural properties of the model including

fundamental limitations of performance and conditions for the existence of feasible (in particular,

congestion-free) solutions. The insights from Section 3.3 are used to develop a practical real-time

routing and rebalancing algorithm in Section 3.4. Numerical studies and simulation results are
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presented in Section 3.5, and in Section 3.6 we draw conclusions and discuss directions for future

work.

3.2 Model Description and Problem Formulation

In this section we formulate a network flow model for an AMoD system operating over a capacitated

road network. The model allows us to derive key structural insights into the vehicle routing and

rebalancing problem, and motivates the design of real-time, congestion-aware algorithms for coor-

dinating the robotic vehicles. We start in Section 3.2.1 with a discussion of our congestion model;

then, in Section 3.2.2 we provide a detailed description of the overall AMoD system model.

3.2.1 Congestion Model

We use a simplified congestion model consistent with classical traffic flow theory [Wardrop, 1952].

In classical traffic flow theory, at low vehicle densities on a road link, vehicles travel at the free flow

speed of the road (imposed by the speed limit). This is referred to as the free flow phase of traffic. In

this phase, the free flow speed is approximately constant [Kerner, 2009]. The flow, or flow rate, is the

number of vehicles passing through the link per unit time, and is given by the product of the speed

and density of vehicles. When the flow of vehicles reaches an empirically observed critical value, the

flow reaches its maximum. Beyond the critical flow rate, vehicle speeds are dramatically reduced and

the flow decreases, signaling the beginning of traffic congestion. The maximum stationary flow rate

is called the capacity of the road link in the literature. In our approach, road capacities are modeled

as constraints on the flow of vehicles. In this way, the model captures the behavior of vehicles up to

the onset of congestion.

This simplified congestion model is adequate for our purposes because the goal is not to analyze

the behavior of vehicles in congested networks, but to control vehicles in order to avoid the onset

of congestion. We also do not explicitly model delays at intersections, spillback behavior due to

congestion, or bottleneck behavior due to the reduction of the number of lanes on a road link. An

extension to our model that accommodates (limited) congestion on links is presented in Section

3.5.2.

3.2.2 Network Flow Model of AMoD system

We consider a road network modeled as a directed graph G = (V, E), where V denotes the node

set and E ⊆ V × V denotes the edge set. Figure 3.1 shows one such network. The nodes v in V
represent intersections and locations for trip origins/destinations, and the edges (u, v) in E represent

road links. As discussed in Section 3.2.1, congestion is modeled by imposing capacity constraints

on the road links: each constraint represents the capacity of the road upon the onset of congestion.
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Specifically, for each road link (u, v) ∈ E , we denote by c(u, v) : E 7→ N>0 the capacity of that link.

When the flow rate on a road link is less than the capacity of the link, all vehicles are assumed

to travel at the free flow speed, or the speed limit of the link. For each road link (u, v) ∈ E , we

denote by t(u, v) : E 7→ R≥0 the corresponding free flow time required to traverse road link (u, v).

Conversely, when the flow rate on a road link is larger than the capacity of the link, the traversal

time is assumed equal to ∞ (we reiterate that our focus in this section is on avoiding the onset of

congestion).

We assume that the road network is capacity-symmetric (or symmetric for short): for any cut1

(S, S̄) of G(V, E), the overall capacity of the edges connecting nodes in S to nodes in S̄ equals the

overall capacity of the edges connecting nodes in S̄ to nodes in S, that is

∑
(u,v)∈E: u∈S, v∈S̄

c(u, v) =
∑

(v,u)∈E: u∈S, v∈S̄

c(v, u)

It is easy to verify that a network is capacity-symmetric if and only if the overall capacity entering

each node equals the capacity exiting each node., i.e.

∑
u∈V:(u,v)∈E

c(u, v) =
∑

w∈V:(v,w)∈E

c(v, w) ∀v ∈ V

If all edges have symmetrical capacity, i.e., for all (u, v) ∈ E , c(u, v) = c(v, u), then the network is

capacity-symmetric. The converse statement, however, is not true in general.

Transportation requests are described by the tuple (s, t, λ), where s ∈ V is the origin of the

requests, t ∈ V is the destination, and λ ∈ R>0 is the rate of requests, in customers per unit time.

Transportation requests are assumed to be stationary and deterministic, i.e., the rate of requests

does not change with time and is a deterministic quantity. The set of transportation requests is

denoted by M = {(sm, tm, λm)}m, and its cardinality is denoted by M .

Single-occupancy vehicles travel within the network while servicing the transportation requests.

We denote fm(u, v) : E 7→ R≥0, m = {1, . . . ,M}, as the customer flow for requests m on edge

(u, v), i.e., the amount of flow from origin sm to destination tm that uses link (u, v). We also

denote fR(u, v) : E 7→ R≥0 as the rebalancing flow on edge (u, v), i.e., the amount of rebalanc-

ing flow traversing edge (u, v) needed to realign the vehicles with the asymmetric distribution of

transportation requests.

3.2.3 The Routing Problem

The goal is to compute flows for the autonomous vehicles that (i) transfer customers to their desired

destinations in minimum time (customer-carrying trips) and (ii) rebalance vehicles throughout the

1For any subset of nodes S ⊆ V, we define a cut (S, S̄) ⊆ E as the set of edges whose origin lies in S and whose
destination lies in S̄ = {V \ S}. Formally, (S, S̄) := {(u, v) ∈ E : u ∈ S, v ∈ S̄}.



18 CHAPTER 3. CONGESTION-AWARE AMOD

Figure 3.1: A road network modeling Lower Manhattan and the Financial District. Nodes (denoted
by small black dots) model intersections; select nodes, denoted by colored circular and square mark-
ers, model passenger trips’ origins and destinations. Different trip requests are denoted by different
colors. Roads are modeled as edges; line thickness is proportional to road capacity.

network to realign the vehicle fleet with transportation demand (customer-empty trips). Specifically,

the Congestion-free Routing and Rebalancing Problem (CRRP) is formally defined as follows. Given

a capacitated, symmetric network G(V, E), a set of transportation requests M = {(sm, tm, λm)}m,

and a weight factor ρ > 0, solve

minimize
fm(·,·),fR(·,·)

∑
m∈M

∑
(u,v)∈E

t(u, v)fm(u, v) + ρ
∑

(u,v)∈E

t(u, v)fR(u, v) (3.1a)

subject to
∑
u∈V

fm(u, sm) + λm =
∑
w∈V

fm(sm, w) ∀m ∈M (3.1b)

∑
u∈V

fm(u, tm) = λm +
∑
w∈V

fm(tm, w) ∀m ∈M (3.1c)

∑
u∈V

fm(u, v) =
∑
w∈V

fm(v, w) ∀m ∈M, v ∈ V \ {sm, tm} (3.1d)

∑
u∈V

fR(u, v) +
∑
m∈M

1v=tmλm =
∑
w∈V

fR(v, w) +
∑
m∈M

1v=smλm ∀v ∈ V (3.1e)

fR(u, v) +
∑
m∈M

fm(u, v) ≤ c(u, v) ∀(u, v) ∈ E (3.1f)

The cost function (3.1a) is a weighted sum (with weight ρ) of the overall duration of all passenger

trips and the duration of rebalancing trips. The weight ρ denotes the ratio between the cost per unit

time incurred by the customer-carrying vehicles (i.e., the sum of the customers’ value of time and of

the vehicles’ operating cost) and the cost per unit time incurred by the rebalancing vehicles (which

only captures the vehicles’ operating cost). Constraints (3.1b), (3.1c) and (3.1d) enforce continuity of

each trip (i.e., flow conservation) across nodes. Constraint (3.1e) ensures that vehicles are rebalanced
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throughout the road network to re-align vehicle distribution with transportation requests, i.e. to

ensure that every outbound customer flow is matched by an inbound flow of rebalancing vehicles

and vice versa. Finally, constraint (3.1f) enforces the capacity constraint on each link (function 1x

denotes the indicator function of the Boolean variable x = {true, false}, that is 1x equals one if x

is true, and equals zero if x is false). Note that the CRRP is a linear program and, in particular, a

special instance of the fractional multi-commodity flow problem [Ahuja et al., 1993].

We denote a customer flow {fm(u, v)}(u,v),m that satisfies Equations (3.1b), (3.1c), (3.1d) and

(3.1f) as a feasible customer flow. For a given set of feasible customer flows {fm(u, v)}(u,v),m,

we denote a flow {fR(u, v)}(u,v) that satisfies Equation (3.1e) and such that the combined flows

{fm(u, v), fR(u, v)}(u,v),m satisfy Equation (3.1f) as a feasible rebalancing flow. We remark that

a rebalancing flow that is feasible with respect to a set of customer flows may be infeasible for a

different collection of customer flows.

For a given set of optimal flows {f∗m(u, v)}(u,v),m and {f∗R(u, v)}(u,v), the minimum number of

vehicles needed to implement them is given by

Vmin =


∑

(u,v)∈E

t(u, v)

(
f∗R(u, v) +

∑
m∈M

f∗m(u, v)

) .
This follows from a similar analysis done in [Pavone et al., 2012] for point-to-point networks. Hence,

the cost function (3.1a) is aligned with the desire of minimizing the number of vehicles needed to

operate an AMoD system.

3.2.4 Discussion

A few comments are in order. First, we assume that transportation requests are time invariant.

This assumption is valid when transportation requests change slowly with respect to the average

duration of a customer’s trip, which is often the case in dense urban environments [Neuburger, 1971].

Additionally, in Section 3.4 we will present algorithmic tools that allow one to extend the insights

gained from the time-invariant case to the time-varying counterpart. Second, the assumption of

single-occupancy for the vehicles models most of the existing (human) one-way vehicle sharing

systems (where the driver is considered “part” of the vehicle), and chiefly disallows the provision

of ride-sharing or carpooling service (this is an aspect left for future research). Third, as also

discussed in Section 3.2.1, our congestion model is simpler and less accurate than typical congestion

models used in the transportation community. However, our model lends itself to efficient real-time

optimization and thus it is well-suited to the control of fleets of autonomous vehicles. Existing high-

fidelity congestion models should be regarded as complementary and could be used offline to identify

the congestion thresholds used in our model. Fourth, while we have defined the CRRP in terms

of fractional flows, an integer-valued counterpart can be defined and (approximately) solved to find

optimal routes for each individual customer and vehicle. Algorithmic aspects will be investigated in
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depth in Section 3.4, with the goal of devising practical, real-time routing and rebalancing algorithms.

Fifth, trip requests are assumed to be known. In practice, trip requests can be reserved in advance,

estimated from historical data, or estimated in real time. Finally, the assumption of capacity-

symmetric road networks indeed appears reasonable for a number of major U.S. metropolitan areas

(note that this assumption is much less restrictive than assuming every individual road is capacity-

symmetric). In Section 3.5.1, by using OpenStreetMap data [Haklay and Weber, 2008], we provide

a rigorous characterization in terms of capacity symmetry of the road networks of New York City,

Chicago, Los Angeles and other major U.S. cities. The results consistently show that urban road

networks are usually symmetric to a very high degree. Additionally, several of our theoretical and

algorithmic results extend to the case where this assumption is lifted, as it will be highlighted

throughout the chapter.

3.3 Structural Properties of the Network Flow Model

In this section we provide two key structural results for the network flow model presented in Section

3.2.2. First, we provide a cut condition that needs to be satisfied for feasible customer and rebalanc-

ing flows to exist. In other words, this condition provides a fundamental limitation of performance

for congestion-free AMoD service in a given road network. Second, we investigate an existential

result (our main theoretical result) that is germane to two key conclusions: (1) rebalancing does not

increase congestion in symmetric road networks, and (2) for certain cost functions, the problems of

finding customer and rebalancing flows can be decoupled – an insight that will be heavily exploited

in subsequent sections.

3.3.1 Fundamental Limitations

We start with a few definitions. For a given set of feasible customer flows {fm(u, v)}(u,v),m, we

denote by Fout(S, S̄) the overall flow exiting a cut (S, S̄), i.e.,

Fout(S, S̄) :=
∑
m∈M

∑
u∈S,v∈S̄

fm(u, v).

Similarly, we denote by Cout(S, S̄) the capacity of the network exiting S, i.e.,

Cout(S, S̄) =
∑
u∈S,v∈S̄ c(u, v). Analogously, Fin(S, S̄) denotes the overall flow entering S from S̄,

i.e., Fin(S, S̄) := Fout(S̄,S), and Cin(S, S̄) denotes the capacity entering S from S̄, i.e., Cin(S, S̄) :=

Cout(S̄,S). We highlight that the arguments leading to the main result of this subsection (The-

orem 3.3.4) do not require the assumption of capacity symmetry; hence, Theorem 3.3.4 holds for

asymmetric road networks as well.

The next technical lemma shows that the net flow leaving set S equals the difference between

the flow originating from the origins sm in S and the flow exiting through the destinations tm in S,
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that is,

Lemma 3.3.1 (Net flow across a cut). Consider a set of feasible customer flows {fm(u, v)}(u,v),m.

Then, for every cut (S, S̄), the net flow leaving set S satisfies

Fout(S, S̄)− Fin(S, S̄) =
∑
m∈M

1sm∈Sλm −
∑
m∈M

1tm∈Sλm.

Proof. We compute the sum over all customer flows m ∈ M and over all nodes v ∈ V of the node

balance equation for flow m at node v (Equation (3.1c) if node v is the source of m, Equation (3.1d)

if node v is the sink of m, or Equation (3.1b) otherwise). We obtain

∑
v∈S

∑
m∈M

(∑
u∈V

fm(u, v) + 1v=smλm

)
=
∑
v∈S

∑
m∈M

(∑
w∈V

fm(v, w) + 1v=tmλm

)
.

For any edge (u, v) such that u, v ∈ S, the customer flow fm(u, v) appears on both sides of the

equation. Thus the equation above simplifies to

∑
m∈M

∑
v∈S

∑
u∈S̄

fm(u, v) + 1v=smλm

 =
∑
m∈M

∑
v∈S

∑
w∈S̄

fm(v, w) + 1v=tmλm

 ,

which leads to the claim of the lemma

Fin(S, S̄) +
∑
m∈M

1sm∈Sλm = Fout(S, S̄) +
∑
m∈M

1tm∈Sλm.

We now state two additional lemmas providing, respectively, lower and upper bounds for the

outflows Fout(S, S̄).

Lemma 3.3.2 (Lower bound for outflow). Consider a set of feasible customer flows {fm(u, v)}(u,v),m.

Then, for any cut (S, S̄), the overall flow Fout(S, S̄) exiting cut (S, S̄) is lower bounded according to

∑
m∈M

1sm∈S,tm∈S̄λm ≤ Fout(S, S̄).

Proof. Adding Equations (3.1b), (3.1c) and (3.1d) over all nodes in S and over all flows whose origin

is in S and whose destination is in S̄, one obtains

∑
m:sm∈S,tm∈S̄

∑
v∈S

(∑
u∈V

fm(u, v) + 1v=smλm

)
=

∑
m:sm∈S,tm∈S̄

∑
v∈S

(∑
w∈V

fm(v, w)

)
.
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Flows fm(u, v) such that both u and v are in S appear on both sides of the equation. Simplifying,

one obtains

∑
m∈M

1sm∈S,tm∈S̄λm =
∑

m:sm∈S,tm∈S̄

 ∑
v∈S,w∈S̄

fm(v, w)−
∑

v∈S,u∈S̄

fm(u, v)


The first term on the right-hand side represents a lower bound for Fout(S, S̄), since

Fout(S, S̄) =
∑
m∈M

∑
v∈S,w∈S̄

fm(v, w) ≥
∑

m:sm∈S,tm∈S̄

∑
v∈S,w∈S̄

fm(v, w).

Furthermore, the second term on the right-hand side is upper-bounded by zero. The lemma follows.

Lemma 3.3.3 (Upper bound for outflow). Assume there exists a set of feasible customer and

rebalancing flows {fm(u, v), fR(u, v)}(u,v),m. Then, for every cut (S, S̄),

1. Fout(S, S̄) ≤ Cout(S, S̄), and

2. Fout(S, S̄) ≤ Cin(S, S̄).

Proof. The first condition follows trivially from equation (3.1f). As for the second condition, consider

a cut (S, S̄). Analogously as for the definitions of Fin(S, S̄) and Fout(S, S̄), let F reb
in (S, S̄) and

F reb
out (S, S̄) denote, respectively, the overall rebalancing flow entering (exiting) cut (S, S̄). Summing

equation (3.1e) over all nodes in S, one easily obtains

F reb
in (S, S̄)− F reb

out (S, S̄) =
∑
m∈M

1sm∈Sλm −
∑
m∈M

1tm∈Sλm.

Combining the above equation with Lemma 3.3.1, one obtains

F reb
in (S, S̄)− F reb

out (S, S̄) = Fout(S, S̄)− Fin(S, S̄),

in other words, rebalancing flows should make up the difference between the customer inflows and

outflows across cut (S, S̄). Accordingly, the total inflow of vehicles across (S, S̄), F tot
in (S, S̄), satisfies

the inequality

F tot
in (S, S̄) :=Fin(S, S̄) + F reb

in (S, S̄)

=Fin(S, S̄) + F reb
out (S, S̄) + Fout(S, S̄)− Fin(S, S̄)

≥Fout(S, S̄).

Since the customer and rebalancing flows {fm(u, v), fR(u, v)}(u,v),m are feasible, then, by equation
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(3.1f), F tot
in (S, S̄) ≤ Cin(S, S̄). Collecting the results, one obtains the second condition.

We are now in a position to present a structural (i.e., flow-independent) necessary condition for

the existence of feasible customer and rebalancing flows.

Theorem 3.3.4 (Necessary condition for feasible flows). A necessary condition for the existence

of a set of feasible customer and rebalancing flows {fm(u, v), fR(u, v)}(u,v),m, is that, for every cut

(S, S̄),

1.
∑
m∈M 1sm∈S,tm∈S̄λm ≤ Cout(S, S̄), and

2.
∑
m∈M 1sm∈S,tm∈S̄λm ≤ Cin(S, S̄).

Proof. The theorem is a trivial consequence of Lemmas 3.3.2 and 3.3.3.

Theorem 3.3.4 essentially provides a structural fundamental limitation of performance for a

given road network: if the cut conditions in Theorem 3.3.4 are not met, then there is no hope of

finding congestion-free customer and rebalancing flows. We reiterate that Theorem 3.3.4 holds for

both symmetric and asymmetric networks (for a symmetric network, claim 2) in Lemma 3.3.3 and

condition 2) in Theorem 3.3.4 are redundant).

3.3.2 Existence of Congestion-Free Flows

In this section we address the following question: assuming there exists a feasible customer flow, is

it always possible to find a feasible rebalancing flow? As we will see, the answer to this question is

affirmative and has both conceptual and algorithmic implications.

Theorem 3.3.5 (Feasible rebalancing). Assume there exists a set of feasible customer flows

{fm(u, v)}(u,v),m. Then, it is always possible to find a set of feasible rebalancing flows {fR(u, v)}(u,v).

Proof. We prove the theorem for the special case where no node v ∈ V is associated with both an

origin and a destination for the transportation requests in M. This is without loss of generality,

as the general case where a node v has both an origin and a destination assigned can be reduced

to this special case, by associating with node v a “shadow” node so that (i) all destinations are

assigned to the shadow node and (ii) node v and its shadow node are mutually connected via an

infinite-capacity, zero-travel-time edge.

We start the proof by defining the concepts of partial rebalancing flows and defective origins and

destinations. Specifically, a partial rebalancing flow, denoted as {f̂R(u, v)}(u,v), is a set of mappings

from E to R≥0 obeying the following properties:
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1. It satisfies constraint (3.1e) at every node that is not an origin nor a destination, that is

∀ v ∈ {V \ {{sm}m ∪ {tm}m}}, ∑
u∈V

f̂R(u, v) =
∑
w∈V

f̂R(v, w).

2. It may not satisfy constraint (3.1e) in the “≤ direction” at every node that is an origin, that

is ∀ v ∈ V such that ∃m ∈M : v = sm,

∑
u∈V

f̂R(u, v) ≤
∑
w∈V

f̂R(v, w) +
∑
m∈M

1v=smλm.

3. It may not satisfy constraint (3.1e) in the “≥ direction” at every node that is a destination,

that is ∀ v ∈ V such that ∃m ∈M : v = tm,

∑
u∈V

f̂R(u, v) +
∑
m∈M

1v=tmλm ≥
∑
w∈V

f̂R(v, w).

4. The combined customer and partial rebalancing flows {fm(u, v), f̂R(u, v)}(u,v),m satisfy Equa-

tion (3.1f) for every edge (u, v) ∈ E .

Note that the trivial zero flow, that is f̂R(u, v) = 0 for all (u, v) ∈ E , is a partial rebalancing flow (in

other words, the set of partial rebalancing flows in not empty). Clearly a feasible rebalancing flow

is also a partial rebalancing flow, but the opposite is not necessarily true.

For a given partial rebalancing flow, we denote an origin node, that is a node v ∈ V such that

v = sm for some m = 1, . . . ,M , as a defective origin if Equation (3.1e) is not satisfied at v = sm

(in other words, the strict inequality < holds). Analogously, we denote a destination node, that is

a node v ∈ V such that v = tm for some m = 1, . . . ,M , as a defective destination if Equation (3.1e)

is not satisfied at v = tm (in other words, the strict inequality > holds). The next lemma links the

concepts of partial rebalancing flows and defective origins/destinations.

Lemma 3.3.6 (Co-existence of defective origins/destinations). For every partial rebalancing flow

that is not a feasible rebalancing flow, there exists at least one node u ∈ V that is a defective origin,

and one node v ∈ V that is a defective destination.

Proof. By contradiction. Since the flow {f̂R(u, v)}(u,v) is not a feasible rebalancing flow, there exists

at least one defective origin or a defective destination. Assume that there exists at least one defective

destination, say a node t̂j where Equation (3.1e) is violated:

∑
u∈V

f̂R(u, t̂j) +
∑
m∈M

1t̂j=tm
λm >

∑
w∈V

f̂R(t̂j , w),
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Now, assume that there does not exist any defective origin. By summing Equation (3.1e) over

all nodes v ∈ V and simplifying all flows f̂R(u, v) (as they appear on both sides of the resulting

equation), one obtains

∑
v∈V

∑
m∈M

1v=tmλm >
∑
v∈V

∑
m∈M

1v=smλm,

that is
∑
m∈M λm >

∑
m∈M λm, which is a contradiction. Noticing that the symmetric case where

we assume that there exists at least one defective destination leads to an analogous contradiction,

the lemma follows.

For a given set of customer flows {fm(u, v)}(u,v),m and partial rebalancing flows {f̂R(u, v)}(u,v),

we call an edge (u, v) ∈ E saturated if equation (3.1f) holds with equality for that edge. We call a

path saturated if at least one of the edges along the path is saturated. We now prove the existence of

a special partial rebalancing flow where defective destinations and defective origins are separated by

a graph cut formed exclusively by saturated edges (this result, and its consequences, are illustrated

in Figure 3.2).

Lemma 3.3.7 (Existence of partial rebalancing flows). Assume there exists a set of feasible customer

flows {fm(u, v)}(u,v),m, but there does not exist a set of feasible rebalancing flows {fR(u, v)}(u,v).

Then, there exists a partial rebalancing flow {f̂R(u, v)}(u,v) that induces a graph cut (S, S̄) with the

following properties: (i) all defective destinations are in S, (ii) all defective origins are in S̄, and

(iii) all edges in (S, S̄) are saturated.

Proof. The proof is constructive and constructs the desired partial rebalancing flow by starting

with the trivial zero flow f̂R(u, v) = 0 for all (u, v) ∈ E . Let Vor, def := {ŝ1, . . . , ŝ|Vor, def|} and

Vdest, def := {t̂1, . . . , t̂|Vdest, def|} be the set of defective origins and destinations, respectively, under

such flow. Then, the zero flow is iteratively updated according to the following procedure:

1. Look for a path between a node in Vdest, def and a node in Vor, def that is not saturated (note

that for rebalancing flows, paths go from destinations to origins). If no such path exists, quit.

Otherwise, go to Step 2.

2. Add the same amount of flow on all edges along the path until either (i) one of the edges

becomes saturated or (ii) constraint (3.1e) is fulfilled either at the defective origin or at the

defective destination. Note that the resulting flow remains a partial rebalancing flow.

3. Update sets Vor, def and Vdest, def for the new partial rebalancing flow and go to Step 1.

The algorithm terminates. To show this, we prove the invariant that if a node is no longer

defective for the updated partial rebalancing flow (in other words, Step 2 ends due to condition

(ii)), it will not become defective at a later stage. Consider a defective destination node v that
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Figure 3.2: A graphical representation of Lemma 3.3.7. If there exists a set of feasible customer
flows but there does not exist a set of feasible rebalancing flows, one can find a partial rebalancing
flow where all the defective origins, represented as blue circles, are separated from all the defective
destinations, represented as blue squares, by a cut of saturated edges (shown in red). Note that not
all saturated edges necessarily belong to the cut. In the proof of Theorem 3.3.5 we show that the
capacity of such a cut (S, S̄) is asymmetric, i.e., Cout < Cin – a contradiction that leads to the claim
of Theorem 3.3.5.

becomes non-defective under the updated partial rebalancing flow (the proof for defective origins is

analogous). Then, at the subsequent stage it cannot be considered as a destination in Step 1 (as it is

no longer in set Vdest, def). If a path that does not contain v is selected, then v stays non-defective.

Otherwise, if a path that contains v is selected, then, after Step 2, both the inbound flow (that is

the flow into v) and the outbound flow (that is the flow out of v) will be increased by the same

quantity, and the node will stay non-defective. An induction on the stages then proves the claim.

As the number of paths is finite, and sets Vor, def and Vdest, def cannot have any nodes added, the

algorithm terminates after a finite number of stages.

The output of the algorithm (denoted, with a slight abuse of notation, as {f̂R(u, v)}(u,v)) is a

partial rebalancing flow that is not feasible (as, by assumption, there does not exist a set of feasible

rebalancing flows). Therefore, by Lemma 3.3.6, such partial rebalancing flow has at least one defec-

tive origin and at least one defective destination. Let us define Ens := E \{(u, v) : (u, v) is saturated}
as the collection of non-saturated edges under the flows {fm(u, v)}(u,v),m and {f̂R(u, v)}(u,v). For

any defective destination and any defective origin, all paths connecting them contain at least one

saturated edge (due to the exit condition in Step 1). Therefore, the graph Gns(V, Ens) has two

properties: (i) it is disconnected (that is, it is not possible to find a direct path between every pair

of nodes in V by using edges in Ens), and (ii) a defective origin and a defective destination can not

be in the same strongly connected component (hence, graph Gns(V, Ens) can be partitioned into at

least two strongly connected components).
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We now find the cut (S, S̄) as follows. If a strongly connected component of Gns contains

defective destinations, we assign its nodes to set S. If a strongly connected component contains

defective origins, we assign its nodes to set S̄. If a strongly connected component contains neither

defective origins nor destinations, we assign its nodes to S (one could also assign its nodes to S̄,

but such choice is immaterial for our purposes). By construction, (S, S̄) is a cut, and its edges are

all saturated. Furthermore, set S only contains destination nodes, and set S̄ only contains origin

nodes, which concludes the proof.

We are now in a position to prove Theorem 3.3.5. The proof is by contradiction. Assume that a

set of feasible rebalancing flows {fR(u, v)}(u,v) does not exist. Then Lemma 3.3.7 shows that there

exists a partial rebalancing flow {f̂R(u, v)}(u,v) and a cut (S, S̄) such that all defective destinations

under {f̂R(u, v)}(u,v) belong to S and all defective origins belong to S̄. Let us denote the sum of all

partial rebalancing flows across cut (S, S̄) as

F̂ reb
out (S, S̄) :=

∑
u∈S,v∈S̄

f̂R(u, v),

and, analogously, define F̂ reb
in (S, S̄) := F̂ reb

out (S̄,S). Since all edges in the cut (S, S̄) are saturated

under {f̂R(u, v)}(u,v), one has, due to equation (3.1f), the equality

Cout(S, S̄) = Fout(S, S̄) + F̂ reb
out (S, S̄).

Additionally, again due to equation (3.1f), one has the inequality

Fin(S, S̄) + F̂ reb
in (S, S̄) ≤ Cin(S, S̄).

Combining the above equations, one obtains

Fin(S, S̄) + F̂ reb
in (S, S̄)− Fout(S, S̄)− F̂ reb

out (S, S̄) ≤ Cin(S, S̄)− Cout(S, S̄).

To compute F̂ reb
in (S, S̄)− F̂ reb

out (S, S̄), we follow a procedure similar to the one used in Lemma 3.3.1.

Summing equation (3.1e) over all nodes in S, one obtains,

∑
v∈S

[∑
u∈V

f̂R(u, v) +
∑
m∈M

1v=tmλm

]
>
∑
v∈S

[∑
w∈V

f̂R(v, w) +
∑
m∈M

1v=smλm

]
.

The strict inequality is due to the fact that for a partial rebalancing flow that is not feasible there

exists at least one defective destination (Lemma 3.3.6), which, by construction, must belong to S.

Simplifying those flows f̂R(u, v) for which both u and v are in S (as such flows appear on both sides
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of the above inequality), one obtains

F̂ reb
in (S, S̄)− F̂ reb

out (S, S̄) >
∑
m∈M

(1sm∈S − 1tm∈S)λm.

Also, by Lemma 3.3.1,

Fout(S, S̄)− Fin(S, S̄) =
∑
m∈M

(1sm∈S − 1tm∈S)λm.

Collecting all the results so far, we conclude that

0 < Fin(S, S̄) + F̂ reb
in (S, S̄)− Fout(S, S̄)− F̂ reb

out (S, S̄)

= Cin(S, S̄)− Cout(S, S̄).

Hence, we reached the conclusion that Cin(S, S̄)−Cout(S, S̄) > 0, or, in other words, the capacity

of graph G(V, E) across cut (S, S̄) is not symmetric. This contradicts the assumption that graph

G(V, E) is capacity-symmetric, and the claim follows.

The importance of Theorem 3.3.5 is twofold. First, perhaps surprisingly, it shows that for sym-

metric road networks it is always possible to rebalance the autonomous vehicles without increasing

congestion – in other words, the rebalancing of autonomous vehicles in a symmetric road network

does not lead to an increase in congestion. Second, from an algorithmic standpoint, if the cost func-

tion in the CRRP only depends on the customer flows (that is, ρ = 0 and the goal is to minimize the

customers’ travel times), then the CRRP problem can be decoupled and the customers and rebal-

ancing flows can be solved separately without loss of optimality. This insight will be instrumental

in Section 3.4 to the design of real-time algorithms for routing and rebalancing.

We conclude this section by noticing that the CRRP, from a computational standpoint, can

be reduced to an instance of the Minimum-Cost Multi-Commodity Flow problem (Min-MCF), a

classic problem in network flow theory [Ahuja et al., 1993]. The problem can be efficiently solved

via linear programming: the number of variables of the linear program is |E|(M + 1), and an

interior point algorithm can solve the problem in O((|E|(M + 1))3.5) time [Karmarkar, 1984]. The

number of customer requests M admits an upper bound of |V|2, since each request is associated

with an origin node and a destination node; the complexity of the problem does not depend on the

number of customers or the number of autonomous vehicles. Specialized combinatorial algorithms

[Goldberg et al., 1990, Leighton et al., 1995, Goldberg et al., 1998] are also available to solve the

Min-MCF problem.

However, the solution to the CRRP provides static fractional flows, which are not directly imple-

mentable for the operation of actual AMoD systems. Practical algorithms (inspired by the theoretical

CRRP model) are presented in the next section.
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3.4 Real-time Congestion-Aware Routing and Rebalancing

A natural approach to routing and rebalancing would be to periodically resolve the CRRP within

a receding-horizon, batch-processing scheme (a common scheme for the control of transportation

networks [Seow et al., 2010, Pavone et al., 2012, Zhang et al., 2016]). This approach, however, is

not directly implementable as the solution to the CRRP provides fractional flows (as opposed to

routes for the individual vehicles). This shortcoming can be addressed by considering an integral

version of the CRRP (dubbed integral CRRP), whereby the flows are integer-valued and can be thus

easily translated into routes for the individual vehicles, e.g. through a flow decomposition algorithm

[Ford and Fulkerson, 1962]. The integral CRRP, however, is an instance of the integral Minimum-

Cost Multi-Commodity Flow problem, which is known to be NP-hard [Karp, 1975, Even et al., 1976].

Näıve rounding techniques are inapplicable: rounding a solution for the (non-integral) CRRP does

not yield, in general, feasible integral flows, and hence feasible routes. For example, continuity of

vehicles and customers can not be guaranteed, and vehicles may appear and disappear along a route.

In general, to the best of our knowledge, there are no polynomial-time approximation schemes for

the integral Minimum-Cost Multi-Commodity Flow problem.

On the positive side, the integral CRRP admits a decoupling result akin to Theorem 3.3.5: given

a set of feasible, integral customer flows, one can always find a set of feasible, integral rebalancing

flows. (In fact, the proof of Theorem 3.3.5 does not exploit anywhere the property that the flows are

fractional, and thus the proof extends virtually unchanged to the case where the flows are integer-

valued). Our approach is to leverage this insight (and more in general the theoretical results from

Section 3.3) to design a heuristic, yet efficient approximation to the integral CRRP that (i) scales

to large-scale systems, and (ii) is general, in the sense that can be broadly applied to time-varying,

asymmetric networks.

Specifically, we consider as objective the minimization of the customers’ travel times, which,

from Section 3.3 and the aforementioned discussion about the generalization of Theorem 3.3.5 to

integral flows, suggests that customer routing can be decoupled from vehicle rebalancing (strictly

speaking, this statement is only valid for static and symmetric networks – its generalization beyond

these assumptions will be addressed numerically in Section 3.5). Accordingly, to emulate the real-

world operation of an AMoD system, we divide a given city into geographic regions (also referred

to as “stations” in some formulations) [Pavone et al., 2012, Zhang and Pavone, 2016]. Each arriv-

ing customer is assigned the closest vehicle within that region (vehicle imbalance across regions is

handled separately by the vehicle rebalancing algorithm, discussed below). The problem of deter-

mining the partition of the city in regions is a special case of the stochastic facility location problem

[Cornuejols et al., 1990]; in our experiments, we select regions with k-means clustering of past de-

mand, as discussed in Section 3.5. Leveraging the decoupling result in Theorem 3.3.5, we focus on

optimizing the paths of the rebalancing vehicles in order to minimize congestion in the network:

accordingly, we apply a greedy, computationally efficient event-based approach for customer routing
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where customers are routed to their destinations using the shortest-time path as computed by an A∗

algorithm [Hart et al., 1968]. The travel time along each edge is computed using a heuristic delay

function that is related to the current volume of traffic on each edge. A popular heuristic is the

simple Bureau of Public Roads (BPR) delay model [Bureau of Public Roads, 1964], which computes

the travel time on each edge (u, v) ∈ E as

td(u, v) := t(u, v)

(
1 + α

(
f(u, v)

c(u, v)

)β)
,

where f(u, v) :=
∑M
m=1 fm(u, v) + fR(u, v) is the total flow on edge (u, v), and α and β are usually

set to 0.15 and 4 respectively.

Separately from customer routing, vehicle rebalancing from one region to another is performed

every thor > 0 time units as a batch process (unlike customer routing, which is an event-based pro-

cess). The rebalancing frequency thor is selected so as to smooth short-term fluctuations in customer

demand and, secondarily, to ensure that a rebalancing solution can be numerically computed within

one batch period. Denote by vi(t) the number of vehicles in region i at time t, and by vji(t) the

number of vehicles traveling from region j to i. Let vown
i (t) := vi(t) +

∑
j vji(t) be the number of

vehicles currently “owned” by region i (i.e., at or enroute to region i). Denote by vei (t) the number

of excess vehicles in region i, or the number of vehicles left after servicing the customers waiting

within region i. From its definition, vei (t) is given by vei (t) = vown
i (t) − ci(t), where ci(t) is the

number of customers within region i. Finally, denote by vdi (t) the desired number of vehicles within

region i. For example, for an even distribution of excess vehicles, vdi (t) ∝
∑
i v
e
i (t)/N , where N is

the number of regions. Note that the vdi (t)’s are rounded so they assume integer values. The set of

origin regions (i.e., regions that should send out vehicles), SR, and destination regions (i.e., regions

that should receive vehicles), TR, for the rebalancing vehicles are then determined by comparing

vei (t) and vdi (t), specifically,

if vei (t) > vdi (t), region i ∈ SR

if vei (t) < vdi (t), region i ∈ TR.

We assume the residual capacity cR(u, v) of an edge (u, v), defined as the difference between its

overall capacity c(u, v) and the current number of vehicles along that edge, is known and remains

approximately constant over the rebalancing time horizon. In case the overall rebalancing problem

is not feasible (i.e. it is not possible to move all excess vehicles to regions that have a deficit of

vehicles while satisfying the congestion constraints), we define slack variables with cost C that allow

the optimizer to select a subset of vehicles and rebalancing routes of maximum cardinality such that

each link does not become congested. The slack variables are denoted as dsi for each i ∈ SR, and

dtj for each j ∈ TR.



3.5. NUMERICAL EXPERIMENTS 31

Every thor time units, the rebalancing vehicle routes are computed by solving the following integer

linear program

minimize
fR(·,·),
{dsi},{dtj}

∑
(u,v)∈E

t(u, v) fR(u, v) +
∑
i∈SR

Cdsi +
∑
i∈TR

Cdti (3.2a)

subject to
∑
u∈V

fR(u, v) + 1v∈SR(vev(t)− vdv(t)− dsv) =
∑
w∈V

fR(v, w) + 1v∈TR(vdv(t)− vev(t)− dtv),

for all v ∈ V (3.2b)

fR(u, v) ≤ cR(u, v), for all (u, v) ∈ E (3.2c)

fR(u, v) ∈ N, for all (u, v) ∈ E (3.2d)

dsi, dtj ∈ N, for all i ∈ SR, j ∈ TR (3.2e)

The set of (integral) rebalancing flows {fR(u, v)}(u,v) is then decomposed into a set of rebalanc-

ing paths via a flow decomposition algorithm [Ford and Fulkerson, 1962]. Each rebalancing path

connects one origin region with one destination region: thus, rebalancing paths represent the set of

routes that excess vehicles should follow to rebalance to regions with a deficit of vehicles.

The rebalancing optimization problem is an instance of the Minimum Cost Flow problem. If all

edge capacities are integral, the linear relaxation of the Minimum Cost Flow problem enjoys a totally

unimodular constraint matrix [Ahuja et al., 1993]. Hence, the linear relaxation will necessarily have

an integer optimal solution, which will be a fortiori an optimal solution to the original Minimum Cost

Flow problem. It follows that an integer-valued solution to the rebalancing optimization problem

can be computed efficiently, namely in polynomial time, e.g., via linear programming.

The number of variables of Problem (3.2) is |E| + 2|M |: the problem size depends linearly on

the number of road links and on the number of transportation requests (which admits an upper

bound corresponding to the square of the number of regions). Remarkably, the problem size does

not depend on the number of customers or the number of vehicles present in the system. Thus,

the problem can be solved in O((|E|+ 2|M |)3.5) with an interior point algorithm [Karmarkar, 1984].

Several efficient combinatorial algorithms [Tardos, 1985, Ahuja et al., 1993] are also available, whose

computational performance is typically significantly better.

The favorable computational properties of the routing and rebalancing algorithm presented in

this section enable application to large-scale systems, as described next.

3.5 Numerical Experiments

In this section, we evaluate the validity of the capacity-symmetry assumption for several major U.S.

cities (Section 3.5.1), characterize the effect of rebalancing on congestion in asymmetric networks

(Section 3.5.2), and explore the performance of the algorithm presented in Section 3.4 on real-world
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Urban center Avg. frac. cap. disp. Std. dev.

Chicago, IL 1.2972 ·10−4 1.003 · 10−4

New York, NY 1.6556 ·10−4 1.304 · 10−4

Colorado Springs, CO 3.1772 ·10−4 2.308 · 10−4

Los Angeles, CA 0.9233 ·10−4 0.676 · 10−4

Mobile, AL 1.9368 ·10−4 1.452 · 10−4

Portland, OR 1.0769 ·10−4 0.778 · 10−4

Table 3.1: Average fractional capacity disparity for several major urban centers in the United States.

road topologies with real customer demands (Section 3.5.3).

3.5.1 Capacity Symmetry within Urban Centers in the US

The existential result in Section 3.3, namely Theorem 3.3.5, relies on the assumption that the road

network is capacity-symmetric, i.e., for every cut (S, S̄), Cout(S, S̄) = Cin(S, S̄). One may wonder

whether this assumption is (approximately) met in practice. From an intuitive standpoint, one

might argue that transportation networks within urban centers are indeed designed to be capacity

symmetric, so as to avoid accumulation of traffic flow in some directions. We corroborate this

intuition by computing the imbalance between the outbound capacity (i.e., Cout) and the inbound

capacity (i.e., Cin) for 1000 randomly-selected cuts within several urban centers in the United States.

For each edge (u, v) ∈ E , we approximate its capacity as proportional to the product of the speed

limit vmax(u, v) on that edge and the number of lanes L(u, v), that is, c(u, v) ∝ vmax(u, v) · L(u, v).

The road graph G(V, E), the speed limits, and the number of lanes are obtained from OpenStreetMap

data [Haklay and Weber, 2008].

For a cut (S, S̄), we define its fractional capacity disparity D(S, S̄) as

D(S, S̄) := 2

∣∣Cout(S, S̄)− Cin(S, S̄)
∣∣

Cout(S, S̄) + Cin(S, S̄)
.

Table 3.1 shows the average fractional capacity disparity (over 1000 samples) for several US

urban centers. As expected, the road networks for such cities appear to posses a very high degree

of capacity-symmetry, which validates the symmetry assumption made in Section 3.3.

3.5.2 Characterization of Congestion due to Rebalancing in Asymmetric

Networks

The theoretical results in Section 3.3 are proven for capacity-symmetric networks, which are in

general a reasonable model for typical urban road networks (as shown in the previous section).

Nevertheless, it is of interest to characterize the applicability of our theoretical results (chiefly, the
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existential result in Theorem 3.3.5) to road networks that significantly violate the capacity-symmetry

property. In other words, we investigate to what degree rebalancing might lead to an increase in

congestion if the network is asymmetric.

To this purpose, we compute solutions to the CRRP for road networks with varying degrees of

capacity asymmetry and compare the corresponding travel times to those obtained by computing

optimal routes in the absence of rebalancing (as would be the case, e.g., if the vehicles were privately

owned). We focus on the road network portrayed in Figure 3.3, derived from OpenStreetMap data

[Haklay and Weber, 2008]. With 1351 nodes and 3137 edges, the road network captures all major

streets and avenues in Manhattan. Transportation requests are based on actual taxi rides in New

York City on March 1, 2012 from 6 to 8 p.m. (courtesy of the New York Taxi and Limousine

Commission). We clustered all departures and arrivals into 100 stations and considered only origin-

destination pairs with more than 5 customers per hour on average (27,571 or 51.1% of all trips). As

in Section 3.5.1, we approximated the capacity of each road as proportional to the product of the

speed limit vmax(u, v) and the number of lanes L(u, v). To ensure that the flow induced by the trips

would induce a small amount of congestion before introducing any asymmetry, we scaled down the

capacities of all roads uniformly. Empirically, a scaling factor of 0.041 (or 25× reduction) introduced

sufficient congestion, which is consistent with the observations that (i) we only consider 51.1% of

true customer flow due to network filtering and (ii) taxis only constitute a fraction of the vehicles

in Manhattan.

To investigate the effects of network asymmetry, we introduce an artificial capacity asymmetry

into the baseline Manhattan road network by progressively reducing the capacity of all northbound

avenues. In order to quantify the effect rebalancing has on congestion and travel times, we assign

slack variables δC(u, v), associated with a cost cc(u, v), to each congestion constraint (3.1f). The cost

cc(u, v) is selected such that the optimization algorithm selects a congestion-free solution whenever

one is available. Once a solution is found, the actual travel time on each (possibly congested) link is

computed using the heuristic BPR delay model [Bureau of Public Roads, 1964] presented in Section

3.4. This approach maintains feasibility even in the congested traffic regime, and hence it allows us

to assess the impact of rebalancing on congestion in asymmetric networks.

Table 3.2 summarizes the results of our simulations. In the baseline case, no artificial capacity

asymmetry is introduced, i.e., the fractional capacity reduction of northbound avenues is equal to

0%. Overall, the difference between the travel times in the two cases is very small (approximately

1.16%), which is consistent with the fact that New York City’s road graph has largely symmetric

capacity, as shown in Section 3.5.1. Interestingly, even with a massive (60%) reduction in north-

bound capacity, travel times with and without rebalancing vehicles are practically equivalent (within

0.12%). Collectively, these results show that the existential result in Theorem 3.3.5, proven under

the assumption of a symmetric network, appears to extend (albeit approximately) to asymmetric

networks. In particular, it appears that vehicle rebalancing does not lead to an appreciable increase
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in congestion under very general conditions.

Average travel time [s]
Cap. reduction Without reb. With reb. Travel time increase

0% 58.00 58.67 1.16 %
10% 58.12 59.15 1.76 %
20% 58.49 59.67 2.02 %
30% 59.26 60.56 2.20 %
40% 60.65 61.78 1.86 %
50% 63.66 64.55 1.40 %
60% 72.04 72.13 0.12 %

Table 3.2: Customer travel times with and without rebalancing for different levels of network asym-
metry.

3.5.3 Congestion-Aware Real-time Rebalancing

In this section we evaluate the performance of the real-time routing and rebalancing algorithm pre-

sented in Section 3.4, and compare it to a baseline approach that does not explicitly take congestion

into account. We simulate 8,000 vehicles providing service to approximately 480,000 actual taxi

requests over 24 hours on March 1, 2012, using the same Manhattan road network as in the previous

section (shown in Figure 3.3).

We use the MATSim agent-based traffic simulator [Horni et al., 2016] and modify its DVRP

extension [Maciejewski et al., 2017] to accommodate station-based dispatching and rebalancing of

idle vehicles2. MATSim uses an agent-based, microscopic traffic model where each road is abstracted

as a capacitated FIFO queue. Vehicles can enter a road link only if that link has not reached its

maximum capacity. Once a vehicle enters a link, it can leave it after (i) the free-flow travel time on

the link has elapsed and (ii) it has reached the head of the queue. Other delay factors such as traffic

signals, turning times, and pedestrian blocking are not simulated.

Taxi requests are clustered into 100 stations corresponding to subsets of the nodes in the network.

The 481,989 trip requests from the same New York Taxi and Limousine Commission data set used

in Section 3.5.2 are simulated using a time step of 1 second.

Three algorithms are evaluated, namely (i) a nearest-neighbor dispatching algorithm that per-

forms no rebalancing of idle vehicles, (ii) the congestion-aware routing and rebalancing algorithm

presented in Section 3.4, and (iii) a baseline rebalancing algorithm. The baseline approach is de-

rived from the real-time rebalancing algorithm presented in [Zhang and Pavone, 2016], which is a

point-to-point algorithm that computes rebalancing origins and destinations without considering the

underlying road network. In the baseline approach, customer routes are computed in the same way

as in Section 3.4. For rebalancing, the origins and destinations are first solved using the algorithm

2The source code for the modified taxi extension is available at http://dx.doi.org/10.5281/zenodo.1048415

http://dx.doi.org/10.5281/zenodo.1048415


3.5. NUMERICAL EXPERIMENTS 35

100%

Relative traffic difference
(medium congestion, 8 to 9 p.m.)

80%

60%

40%

20%

0%

-100%

-80%

-60%

-40%

-20%

Figure 3.3: Left: Manhattan road network and partition of the city in regions. The roads’ speed
limit is determined by their type; the capacity of each road link is proportional to the speed limit and
to the number of lanes. Station locations are computed with k-means clustering of historical travel
demand; regions (shown in the background as colored areas) are a Voronoi partition with stations
as the seeds. Right: Performance of the “real-time congestion-aware rebalancing algorithm” as
compared to the baseline algorithm in [Zhang and Pavone, 2016]. The color of each road corresponds
to the percent difference in the number of vehicles traversing it between the congestion-aware and
baseline rebalancing algorithms–blue indicating a reduction in congestion using the congestion-aware
algorithm.

provided in [Zhang and Pavone, 2016], then the routes are computed using the A∗ algorithm much

like the customer routes.

In [Zhang et al., 2016], the authors show that, in the low-congestion regime, the baseline al-

gorithm offers near-optimal performance and outperforms several state-of-the-art dispatching and

rebalancing algorithms. However, the baseline algorithm ignores the potential for additional conges-

tion induced by rebalancing vehicles, and thus, performs poorly for highly congested networks. On

the other hand, this performance penalty is reflected in the nearest-neighbor rebalancing algorithm,

causing it to perform much better in high congestion cases where this penalty outweighs the benefit

of pre-positioning empty vehicles.

IBM ILOG CPLEX was used to implement the congestion-aware and baseline rebalancing al-

gorithms. The computation time was (on average) under 0.5 s on commodity hardware (Intel Core
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Figure 3.4: Comparison of customer wait and service times from different rebalancing and dispatch-
ing algorithms for low, medium, and high levels of congestion. The congestion-aware algorithm
recovers the asymptotic behavior of the baseline rebalancing algorithm for low levels of conges-
tion, and it outperforms both the baseline rebalancing algorithm and the nearest-neighbor dispatch
algorithm for high levels of congestion.



3.6. CONCLUSIONS AND FUTURE WORK 37

i7-5960, 64 GB RAM); the maximum computation time was 4.52 s. To account for the computation

time, release of the rebalancing routes was delayed by 5 s in the simulation framework.

For each algorithm, we simulated three scenarios corresponding to low, medium and very high

levels of congestion (corresponding to a reduction of the road network’s nominal capacity of 70%,

75% and 80% respectively). Figure 3.4 presents a summary of the performance results. Note that the

service time represents the total time a customer spends in the system (waiting time plus traveling

time).

For low levels of congestion, the performance of the congestion-aware algorithm closely tracks

the performance of the baseline rebalancing algorithm. The nearest-neighbor dispatch algorithm

performs significantly worse than either rebalancing algorithm in this regime. For medium and high

levels of congestion, performance of the baseline algorithm is significantly degraded: as expected,

rebalancing trips cause significant congestion in the network, as exemplified in Figure 3.3. The

nearest-neighbor dispatch algorithm offers better performance than the baseline rebalancing algo-

rithm in this regime: when the road network is congested, not rebalancing at all appears to be

preferable to excessive rebalancing.

The congestion-aware algorithm recovers the performance of the baseline rebalancing algorithm

in the low-congestion regime and the performance of the nearest-neighbor dispatcher in the medium-

congestion regime; in the high-congestion regime, it outperforms both. By selectively rebalancing

vehicles where and when congestion is low, and by selecting rebalancing routes that do not increase

congestion, the algorithm is able to mediate between the behavior of the baseline rebalancing algo-

rithm and the behavior of the nearest-neighbor algorithm depending on the level of congestion: this

results in good performance both in terms of network congestion and in terms of customer service

times across a wide range of congestion regimes.

3.6 Conclusions and Future Work

In this chapter we presented a network flow model of an autonomous mobility-on-demand system on

a capacitated road network. We formulated the routing and rebalancing problem and showed that on

capacity-symmetric road networks, it is always possible to route rebalancing vehicles in a coordinated

way that does not increase traffic congestion. Using a model road network of Manhattan, we showed

that rebalancing did not increase congestion even for moderate degrees of network asymmetry. We

leveraged the theoretical insights to develop a computationally efficient real-time congestion-aware

routing and rebalancing algorithm and demonstrated its superior performance compared to state-of-

the-art point-to-point rebalancing algorithms through simulation. This highlighted the importance

of congestion awareness in the design and implementation of control strategies for a fleet of self-

driving vehicles.

This work opens the field to many future avenues of research. First, it is of interest to directly use
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the solution to the integral CRRP as a practical real-time routing algorithm to compute congestion-

free routes for customer vehicles and rebalancing vehicles alike. While the integral CRRP is in

general intractable, in Chapter 4 we leverage randomized algorithms [Raghavan and Tompson, 1987,

Srinivasan, 1999] to compute high-quality approximate solutions for large-scale systems. Second,

from a modeling perspective, we would like to study the inclusion of stochastic information (e.g.,

demand prediction, travel time uncertainty) for the routing and rebalancing problem, as well as a

richer set of performance metrics and constraints (e.g., time windows to pick up customers). Third,

it is worthwhile to study how our results give intuition into business models for autonomous urban

mobility (e.g. fleet sizes). Fourth, it is of interest to explore other approaches that may reduce

congestion, including ride-sharing, demand staggering, and integration with public transit to create

an intermodal transportation network. Fifth, we plan to study the deployment of large electric

AMoD fleets and, in particular, to characterize the interaction between such fleets and the electric

power network. Sixth, we would like to explore decentralized architectures for cooperative routing

and rebalancing. Finally, we would like to demonstrate the real-world performance of the algorithms

by implementing them on real fleets of self-driving vehicles.



Chapter 4

Congestion-Aware Randomized

Routing in Autonomous

Mobility-on-Demand Systems

In this chapter we study the routing and rebalancing problem for a fleet of autonomous (i.e., self-

driving) vehicles providing on-demand transportation within a capacitated urban road network. In

Chapter 3, we designed a model for congestion-aware control of AMoD systems. However, the

real-time congestion-aware routing algorithm proposed in Section 3.4 only computes routes for re-

balancing (customer-empty) vehicles, whereas customer-carrying vehicles are routed according to

shortest-path heuristics. In this chapter, we extend real-time congestion-aware routing techniques

to customer-carrying as well as customer-empty vehicles.

We leverage a network flow model with integral flows, where unit flows represent individual vehicle

routes. We show that finding a congestion-free integral solution to the routing and rebalancing

problem is NP-hard. We thus provide a polynomial-time randomized algorithm which finds a low-

congestion solution that approximately minimizes the travel time of passengers. The algorithm

enjoys correctness guarantees in terms of (1) theoretical bounds on the probability of violating

the congestion constraints, and (2) approximation factor with respect to the minimum expected

passenger travel time that can be achieved with a congestion-free solution for road networks with

symmetric edges. We evaluate the performance of the algorithm on a high-fidelity model of the

Manhattan road network. We show that the proposed algorithm introduces a very small amount of

congestion, while offering travel times that are very close to (and sometimes better than) what is

achievable with a congestion-free solution.

Literature review: The problem of vehicle rebalancing has been studied for both carsharing

[Barth and Todd, 1999, Smith et al., 2013, Zhang and Pavone, 2015] and AMoD systems

39
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[Pavone et al., 2011, Zhang and Pavone, 2016] where the underlying network is a complete graph

(point-to-point routing). These approaches (i) seek to only optimize rebalancing routes, and (ii)

do not consider congestion effects caused by routing customers and rebalancing vehicles on a road

network. The routing and rebalancing problem we study in this chapter is similar to the one-to-

one pickup and delivery problem on a Euclidean plane [Treleaven et al., 2013] or on road networks

[Treleaven et al., 2012], for which polynomial-time, asymptotically-optimal algorithms exist. How-

ever, these formulations do not take into account congestion. In particular, for the case of AMoD,

the presence of empty-traveling rebalancing vehicles on the road was believed to have a negative

impact on congestion [Templeton, 2010, Levin et al., 2016]. Recent work, however, suggests that

with optimized routing this need not be the case, as shown in Chapter 3. The work in Chapter 3,

however, is limited to a macroscopic analysis of system behavior, and does not directly allow the

computation of individual vehicle routes. In contrast, in this chapter we focus on the computation of

individual routes for the vehicles. In a nutshell, this is achieved by modifying the model in Chapter

3 to accommodate integral flows.

In the field of transportation science, our problem is similar to the dynamic traffic assignment

(DTA) problem [Janson, 1991]. The two major differences between our problem and DTA approaches

are that (i) DTA only optimizes customer routes, not rebalancing routes, and (ii) most DTA methods

optimize for user equilibrium, where a decision by any vehicle to change routes would necessarily

lead to an increase in travel time. A key advantage of AMoD systems is that vehicles can be centrally

coordinated and optimally routed: accordingly, in this chapter we seek a system-optimal solution,

as opposed to a user equilibrium.

Finally, traffic congestion is a well-studied topic in transportation science. Existing congestion

models vary in degree of fidelity: from basic models establishing the relationship among speed, den-

sity, and flow [Lighthill and Whitham, 1955], to simulation-based microscopic car-following models

[Treiber et al., 2000]. However, for the most part, the purpose of traffic modeling has been the anal-

ysis of traffic patterns rather than the active coordination and control of traffic. In this chapter, we

leverage simple, yet efective traffic models that are amenable to tractable analysis and control.

Statement of contributions: Our goal is to efficiently find optimal customer-carrying and vehicle

rebalancing routes that minimize the overall travel times (or, equivalently, the overall number of

vehicles) in the presence of congestion effects. Our strategy is to design a polynomial-time approxi-

mation algorithm to the problem of congestion-free routing and rebalancing with minimum number

of vehicles (whereby congestion follows a simple threshold model based on road capacities). This

latter problem serves as a proxy for solving the general problem of minimizing travel times in the

presence of congestion effects, and allows us to avoid the use of sophisticated congestion models

for the computation of travel times (that would further compound the complexity of the routing

problem).
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Specifically, our contribution is threefold: First, we propose an approximate randomized al-

gorithm for the solution to the congestion-free routing and rebalancing problem. The algorithm

produces solutions that violate the capacity constraints by small amounts – a probabilistic charac-

terization of the degree of constraint violation is analytically derived for symmetric road networks.

Second, we provide a semi-analytical characterization of the algorithm’s approximation factor for

symmetric road networks. The approximation factor represents the ratio between the total customer

travel time needed with randomized routing under an empirical congestion model, and the optimal

congestion-free total customer travel time. Third, we validate the performance of the randomized

routing algorithm on a realistic road network with real-world customer demand. The randomized

technique provides a solution that compares very favorably with the optimal congestion-free one,

and, in general, allows one to route thousands of vehicles with minimal impact on the transportation

network.

Organization: The rest of the chapter is organized as follows: in Section 4.1 we introduce notation

and rigorously define the integer congestion-free routing and rebalancing problem. A randomized

approximation algorithm for such a problem is presented in Section 4.2, together with correctness

guarantees. Numerical results corroborating our analysis are provided in Section 4.3, while conclu-

sions and future directions are summarized in Section 4.4.

4.1 Model Description and Problem Formulation

We define the routing and rebalancing problem as a network flow problem on a capacitated road

network. The model we adopt is largely similar to the one presented in the previous chapter. The

key difference is our assumption that customer demands, network flows, and road capacities are

integral. This assumption is in line with our goal of solving for individual vehicle routes, which can

then be used as part of a practical real-time control algorithm for large vehicle fleets.

4.1.1 Congestion model

Two congestion models are adopted in this chapter. A simpler synthesis model is used to compute

vehicle routes in Sections 4.2.2 and 4.2.3, whereas a higher-fidelity analysis model is used to (a)

analytically characterize the performance of the approximate routing algorithm presented in Section

4.2.6 and (b) numerically evaluate algorithm’s performance with real-world customer demand in

Section 4.3.

Both models are consistent with classical traffic flow theory [Wardrop, 1952],

[Lighthill and Whitham, 1955]. In classical traffic flow theory, for a given road, vehicle speeds tend

to remain relatively constant at low vehicle densities (called the “free flow” speed) [Wardrop, 1952].

The flow rate (i.e., the number of vehicles traversing a road per unit time) grows with vehicle density

up to a critical value (referred to in the literature as the capacity of the road), at which point vehicle
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speeds and flow rate decrease significantly, signaling the onset of congestion. The capacity of the

road is reached when the flow rate is maximized.

The synthesis congestion model adopted in this chapter is a threshold model. The vehicle density

on each road is constrained to be no larger than the critical road density, which corresponds to the

road capacity. Every vehicle travels at the free flow speed. This model captures the behavior of

traffic up to the onset of congestion: furthermore, any set of vehicle routes that respects the capacity

constraints on every road is guaranteed to be congestion-free.

The analysis congestion model offers a characterization of the congested behavior of a road. We

assume that the travel time t̃ is strictly increasing in the flow rate f traversing the link; we place no

further assumptions on its shape. One such congestion model is the widely used Bureau of Public

Roads (BPR) link delay model [Bureau of Public Roads, 1964], which models the travel time on a

link as

t̃(f) = t0

(
1 + 0.15 (f/c)

4
)

(4.1)

where t̃ is the travel time associated with flow rate f , t0 is the free-flow travel time and c is the

capacity of the road.

4.1.2 Integral Congestion-free Routing and Rebalancing

The network flow model adopted in this section is very similar to the one presented in Chapter 2

and Section 3.2.2, but requires customer and rebalancing flows to be integral.

In this chapter, we assume that the road network is symmetric: (u, v) ∈ E ⇔ (v, u) ∈ E and

c(u, v) = c(v, u) ∀(u, v) ∈ E . We will relax this assumption in the numerical experiments presented

in Section 4.3.

The integral Congestion-free Routing and Rebalancing problem (i-CRRP) is defined as follows,

Definition 4.1.1 (i-CRRP). Given a network flow model of an AMoD system, compute a set of

routes that

(i) transfers customers to their desired destinations (customer-carrying trips),

(ii) rebalances vehicles throughout the network to realign the vehicle fleet with the customers’ de-

mands (customer-empty, or rebalancing trips),

(iii) does not cause congestion on any road link, and

(iv) minimizes the overall travel time of customer-carrying vehicles.

The i-CRRP can be cast as a mixed-integer linear program. We represent passenger routes for

passengers of class m ∈ M with the integral network flow {fm(u, v)}(u,v). Similarly, we represent

rebalancing routes with the integral network flow {fR(u, v)}(u,v). Given a capacitated network

G(V, E) and a set of transportation requests M = {(sm, tm, λm)}, the i-CRRP entails solving
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minimize
fm(·,·),fR(·,·)

∑
m∈M

∑
(u,v)∈E

t(u, v)fm(u, v) (4.2a)

subject to
∑
u∈V

fm(u, v) + 1v=smλm =
∑
w∈V

fm(v, w) + 1v=tmλm ∀m ∈M, v ∈ V (4.2b)

∑
u∈V

fR(u, v) +
∑
m∈M

1v=tmλm =
∑
w∈V

fR(v, w) +
∑
m∈M

1v=smλm ∀v ∈ V (4.2c)

fR(u, v) +
∑
m∈M

fm(u, v) ≤ c(u, v) ∀(u, v) ∈ E (4.2d)

fm(u, v) ∈ N≥0 ∀m ∈M, (u, v) ∈ E (4.2e)

fR(u, v) ∈ N≥0 ∀(u, v) ∈ E . (4.2f)

Equation 4.2a captures the goal of minimizing the number of vehicles on the road. Equations

4.2b and 4.2e ensure that each customer-carrying flow {fm(u, v)}(u,v),m is an integral network flow.

Equations 4.2c and 4.2f ensure that the rebalancing flow {fR(u, v)}(u,v) is an integral network flow.

Finally, Equation 4.2d enforces the capacity constraint for every link. One can easily recognize

that the i-CRRP is an instance of an integral minimum-cost multicommodity flow problem (Min-

MCF) where customers and rebalancing vehicles are interpreted as commodities. We leverage this

observation to characterize its complexity.

Theorem 4.1.2 (Complexity of the i-CRRP). The decision version of the i-CRRP is NP-complete.

Proof. We show that any instance of SAT can be reduced to an instance of two-customer i-CRRP

(the extension to k ≥ 3 customers is trivial).

The i-CRRP is an instance of the integral Minimum-Cost Multi-Commodity Flow (Min-MCF)

problem. However, in the i-CRRP, one of the commodities is always a a rebalancing commodity, i.e.

a commodity whose origin nodes and corresponding intensities coincide with the set of destination

nodes and intensities of the other commodities, and vice versa.

The decision version of the integral Min-MCF is known to be NP-complete [Karp, 1975],

[Even et al., 1976] in the general case. Theorem 3 in [Even et al., 1976] can be modified to also

hold for the special case of MCF problems with a rebalancing commodity. In [Even et al., 1976],

the authors show that any instance of k-SAT (with k ≥ 3) can be cast as an instance of integral

two-commodity flow: the first commodity (with intensity 1) ensures that every variable is either true

or false but not both, whereas the second commodity (with intensity k) models clause satisfaction.

Figure 4.1 shows a graphical depiction of the proof.

Note that, in the construction in [Even et al., 1976], no directed path exists from the destination

of commodities 1 and 2 to their origins. We modify the construction by introducing a directed edge

with capacity 1 from the destination of commodity 1 to its origin and a directed edge with capacity

k from the destination of commodity 2 to its origin. In order for a rebalancing network flow to exist,

both edges must be saturated; the rest of the graph is identical to the graph in [Even et al., 1976].
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Literal i

Clauses

Figure 4.1: Graphical depiction of the proof of Theorem 4.1.2. A network flow of intensity k from
s1 to t1 models clause satisfaction. A network flow of intensity 1 from s2 to t2 ensures that every
literal can be true or false, but not both. We introduce two directed edges (shown in red) from t1
to s1 (with capacity k) and from t2 to s2 (with unit capacity).

Thus, any instance of SAT can be reduced to an instance of (the decision version of) two-customer

i-CRRP. It follows that the decision version of i-CRRP is NP-hard. Since the i-CRRP problem can

be verified in polynomial time, the decision version of i-CRRP is NP-complete.

Any candidate solution to the i-CRRP can be verified in polynomial time: this proves that the

i-CRRP is NP-complete.

We re-emphasize that the i-CRRP serves as a proxy for solving the general problem of minimizing

travel times in the presence of congestion effects (without the complexity of dealing with sophisticated

congestion models).

4.2 A Randomized Routing algorithm

Theorem 4.1.2 shows that the i-CRRP can not be solved efficiently for large problem instances unless

P=NP. Furthermore, to the best of our knowledge, no polynomial-time approximation schemes are

known for the integral Min-MCF problem (of which, as mentioned before, i-CRRP is an instance).

Our strategy is then to focus on an approximate version of the i-CRRP, whereby capacity constraints

can be slightly violated, that is,

Definition 4.2.1 (Approximate i-CRRP). Given a network model of an AMoD system, compute a

set of routes that

(i) transfers customers to their desired destinations (customer-carrying trips),
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(ii) rebalances vehicles throughout the network to realign the vehicle fleet with the customers’ de-

mands (customer-empty, or rebalancing, trips),

(iii) with high probability, violates the capacity constraints on all road links by at most a small value

δ,

(iv) has bounded suboptimality (in terms of customer travel times) under the analysis congestion

model.

There exist randomized techniques for finding approximately optimal integral solutions for multi-

commodity flow problems, e.g., randomized routing [Srinivasan, 1999, Raghavan and Tompson, 1987].

However, these require that each commodity has a single source and a single sink. Thus, they cannot

be directly applied for the i-CRRP, since the rebalancing flow has multiple sources and sinks.

In Chapter 3, we show that the problems of routing passenger vehicles and routing rebalancing

vehicles in the i-CRRP can be decoupled on capacity-symmetric networks (symmetric networks

considered in this chapter fall under the class of capacity-symmetric networks). Specifically, for any

given set of feasible customer routes, there exists a feasible set of rebalancing routes. Following this

intuition, we exploit randomized techniques to find low-congestion routes for the customer-carrying

vehicles. The customer routes may violate some of the congestion constraints: thus, we modify the

road network so as to guarantee that a feasible rebalancing solution exists.

The procedure can be summarized as follows. First, a solution to the linear programing (LP)

relaxation of the i-CRRP is computed, which produces a set of customers’ network flows and a

rebalancing network flow (Section 4.2.1). Second, each customer’s network flow is “decomposed”

into a collection of path flows (Section 4.2.2), which fulfill the capacity constraint (4.2d) but may

violate the other constraints, namely (4.2b), (4.2c), (4.2e), and (4.2f). Third, a sampling procedure

adjusts the path flow intensities to yield customers’ path flows that satisfy Equations (4.2b), (4.2c),

(4.2e), and (4.2f) but may (slightly) violate some of the capacity constraints (Section 4.2.3) – such

path flows have intensity equal to 1 and are equivalent to customer routes (due to the equivalency

between path flows of unit intensity and routes). Fourth, the residual capacity of edges in the road

network are adjusted so as to guarantee that a feasible rebalancing flow exists; a rebalancing flow is

then found by solving a linear program (Section 4.2.4). Finally, the rebalancing flow is decomposed

into a collection of rebalancing flow with unit intensity, which are an equivalent representation for

rebalancing routes (Section 4.2.5). In Section (4.2.6) we characterize the probability of violating the

capacity constraints and the expected travel time of all customers under an empirical congestion

model.
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4.2.1 Step One: Linear Relaxation of the i-CRRP

The first step entails solving an LP relaxation of the i-CRRP, denoted as the fractional CRRP,

whereby Equations 4.2e and 4.2f are replaced by

fm(u, v) ∈ R≥0 ∀m ∈M, (u, v) ∈ E , (4.3a)

fR(u, v) ∈ R≥0 ∀(u, v) ∈ E . (4.3b)

Additionally, in order to reduce the size of the linear program, we bundle customer requests departing

from the same origin into a single network flow. Specifically, we replace the set of customer requests

leaving from a node s, {{sm, tm, λm}m : sm = s}, with a single customer request with origin s (with

intensity
∑
m:sm=s λm) and destinations {tm}m:sm=s, each with intensity λm.

The resulting fractional CRRP is an instance of the fractional Min-MCF problem, which can

be efficiently solved as a linear program of size |E|(S + 1) (where S is the number of distinct

origin nodes appearing in the customer requests) or via specialized combinatorial algorithms, e.g.,

[Goldberg et al., 1998].

4.2.2 Step Two: Flow Decomposition

The second step decomposes each customer network flow resulting from the relaxed LP into a collec-

tion of path flows, which can be later sampled and “adjusted” (in terms of their intensities) to ensure

that constraints (4.2b) and (4.2e) are satisfied. Specifically, we utilize the decomposition algorithm

in [Ahuja et al., 1993, Sec. 3.5] (also reported in Chapter 2 as Algorithm 1) – this algorithm de-

composes general network flows into a collection of path flows and cycles with complexity O(|V ||E|)
[Ahuja et al., 1993], and its output is a collection of path flows whose sum equals the input network

flow. Each path flow has a single origin and a single destination, corresponding to the origin and

one of the destinations in the corresponding network flow. Thus, each path flow corresponds to one

of the original customer requests. Importantly, in our case this decomposition step does not yield

any cycles: if a cycle was present, then removing it would result in a new solution with lower cost.

4.2.3 Step Three: Path Sampling

Step Two yields, for every customer m ∈M, a set Fm of path flows (the cardinality of each set Fm
is at most |E|). Step Three entails sampling path flows from each set Fm to obtain a set of customer

path flows that satisfy constraints (4.2b), (4.2c), (4.2e), and (4.2f). Specifically, we randomly and

independently sample one path flow from each set Fm, by using path flow intensities as probability

distribution (the intensities represent a valid probability distribution since for each customer m,

λm = 1 by assumption, and hence the path flow intensities must sum to one). We then set the

intensity of the sampled path flow, denoted as {f s
m(u, v)}(u,v), equal to one (i.e., intensity({f s

m}) =
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1). By construction, the set of path flows {f s
m}m satisfy Equations (4.2b) and (4.2e). Explicitly, for

each customer m, the path flow {f s
m} is a network flow with origin sm, destination tm, and intensity

1: thus, it satisfies Equation (4.2b). Path flows of intensity 1 have integral flow on every edge: thus,

the flows {f s
m}m satisfy Equation (4.2e).

In other words, the third step re-adjusts the intensities of the sampled path flows to ensure

satisfaction of continuity constraints (4.2b) and integrality constraints (4.2e), at the expense of the

capacity constraint (4.2d). Specifically, the expected (with respect to the randomization procedure)

customer network flow crossing every edge (u, v) ∈ E is upper-bounded by the capacity of that edge,

c(u, v), that is:

E

[∑
m

f s
m(u, v)

]
=
∑
m

fm(u, v) ≤
∑
m

fm(u, v) + fR(u, v) ≤ c(u, v),

where {fm}m and {fR} are the solutions from the LP relaxation in step one – the equality follows

from the fact that path flows and the rebalancing solution are sampled with probability equal to

their intensity. However, while the output of the algorithm satisfies the capacity constraints in

expectation, a given realization may violate them.

4.2.4 Step Four: Computing a Rebalancing Flow

For a given collection of customer path flows, we adjust the residual capacity of the road network

to ensure feasibility of the rebalancing flow. We define the augmented capacity of an edge as

c(u, v) = max

(
c(u, v),

∑
m

fsm(u, v),
∑
m

fsm(v, u)

)
.

We then compute the residual augmented capacity of an edge as

cR(u, v) = c(u, v)−
∑
m

fsm(u, v).

By construction, the sampled rebalancing flows are feasible solutions to the i-CRRP (and, in

particular, they satisfy constraint (4.2d)) for a capacitated road network G(V, E) with capacities

{c(u, v)}(u,v). Furthermore, c(u, v) = c(v, u), so such road network is symmetric. Therefore, in

accordance with 3.3.5, there exists a feasible rebalancing flow {fsR(u, v)}(u,v) for the road network

G(V, E) with capacities {c(u, v)}(u,v) and customer flows {fsm(u, v)}m,(u,v) (we use the superscript s

to denote the dependency of {fsR(u, v)}(u,v) on the sampled customer path flows {{fsm(u, v)}(u,v)}).

Such a rebalancing flow can be found by solving



48 CHAPTER 4. CONGESTION-AWARE RANDOMIZED ROUTING IN AMOD SYSTEMS

minimize
fsR(·,·)

∑
(u,v)∈E

t(u, v)fsR(u, v) (4.4a)

subject to
∑
u∈V

fsR(u, v) +
∑
m∈M

1v=tmλm =
∑
w∈V

fsR(v, w) +
∑
m∈M

1v=smλm ∀v ∈ V (4.4b)

fsR(u, v) ≤ cR(u, v) ∀(u, v) ∈ E (4.4c)

fsR(u, v) ∈ N≥0 ∀(u, v) ∈ E . (4.4d)

Problem (4.4) is an instance of a single-commodity flow problem and all the source flows, sink flows

and edge capacities are integral – as a result, the problem enjoys a totally unimodular structure and

can be exactly and efficiently solved as a linear program by replacing constraint (4.4d) with

fsR(u, v) ∈ R≥0, ∀(u, v) ∈ E . (4.5)

4.2.5 Step Five: Flow Decomposition of the Rebalancing Network Flow

In the fifth step, we decompose the rebalancing network flow into a collection of path flows of unit

intensity. In analogy with the customer path flow decomposition in Section 4.2.2, we decompose the

rebalancing network flow using the flow decomposition algorithm. The output of the flow decompo-

sition algorithm is a collection of path flows connecting every rebalancing origin (i.e., every customer

destination) with a rebalancing destination (i.e., customer origin). Since the rebalancing network

flow is integral, the flow decomposition algorithm returns integral path flows, i.e., path flows with

integral intensity. As before, the decomposition of the rebalancing network flow does not yield any

cycles.

4.2.6 Randomized Routing: Complexity and Performance

In this section, we characterize the complexity and performance of the randomized routing algorithm

in terms of probabability of capacity constraint violations and approximation factor. Algorithm 2

summarizes the procedure detailed in the previous subsections for finding a solution to the ap-

proximate i-CRRP (function FlowDecomposition represents the flow decomposition algorithm

[Ahuja et al., 1993, Sec. 3.5], reported in this thesis as Algorithm 1).

Complexity

Computational complexity is given by,

Theorem 4.2.2 (Complexity of randomized routing). The computational complexity of Algorithm

2 is polynomial in the size of the i-CRRP.
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Algorithm 2: Randomized routing algorithm

1: Input: An instance of the i-CRRP
2: Output: customer and rebalancing path flows, {f s

m} and {f s
RS}

3: {fm}m, {fR} ← solve LP relaxation of the i-CRRP
4: for all m ∈M do
5: {Fm} ← FlowDecomposition({fm})
6: {f s

m} ←SampleCustomerPaths({Fm}m)
7: c̄R = ResidualAugmentedCapacity({fsm})
8: {fsR} ← solve the LP relaxation of Problem 4.4
9: {f s

RS} ←FlowDecomposition({fsR})

Proof. Any linear program can be solved in time polynomial in the size of its inputs [Karmarkar, 1984].

In particular, the LP relaxation of the i-CRRP in line 3 and the linear relaxation of Problem 4.4 in

line 8 can be solved in polynomial time [Goldberg et al., 1998]. The computational complexity of

the flow decomposition algorithm is O(|V ||E|) [Ahuja et al., 1993]: the decomposition algorithm is

called S times in lines 4-5 and once in line 9. The sampling procedure on line 6 is carried out |M|
times and only involves trivial network flow manipulations. Finally, the residual augmented capacity

of the network is computed with |M ||E| operations. Hence, the overall complexity is polynomial in

the size of the i-CRRP.

Performance

In this section we characterize the performance of the randomized routing algorithm (Algorithm 2).

We first study the probability that a capacity constraint is violated (recall that Algorithm 2 ensures

satisfaction of the capacity constraints only in expectation).

Theorem 4.2.3 (Violation of capacity constraints). Assume max(u,v)∈E
√

3 log(|E|) /c(u, v) ≤ 1

and let α be the unique α ∈ (0, 1] such that

max
(u,v)∈E

√
3 log(|E|/α) /c(u, v) = 1.

Then, for any α ∈ [α, 1], with probability 1 − α, Algorithm 2 finds a solution to the approximate

i-CRRP such that the capacity constraint for each link (u, v) is violated at most by a multiplicative

factor (1 + δu,v), where

δu,v :=
√

3 log(|E|/α) /c(u, v), for all (u, v).

Proof of Theorem 4.2.3. The proof relies on a Chernoff bound for every congestion constraint and

on Boole’s inequality.
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Congestion on a single edge: We define the random variable X(u, v) as the number of cus-

tomer path flows selected by Algorithm 2 that cross any one edge (u, v). The mean of X(u, v)

is upper-bounded by the capacity of the edge c(u, v). The Bernoulli trials are not independent:

multiple flows from the same customer may cross edge (u, v), and exactly one is selected. How-

ever, the trials enjoy negative association [Dubhashi and Ranjan, 1996], therefore a Chernoff bound

[Mitzenmacher and Upfal, 2005] holds:

P (X(u, v) ≥ (1 + δ)c(u, v)) ≤ exp(−c(u, v)δ2/3) if 0 < δ ≤ 1

Congestion on all edges: Select δu,v on every edge such that c(u, v)δ2
u,v = c(w, t)δ2

w,t for every pair

of edges(u, v), (w, t) ∈ E . Then, by Boole’s inequality, the probability that at least one edge violates

the congestion constraint is upper-bounded by

P (∃(u, v) ∈ E : X(u, v) ≥ (1 + δu,v)c(u, v)) ≤ |E| exp(−c(u, v)δ2
u,v/3)

Let us call α = |E| exp(−c(u, v)δ2
u,v/3). Solving for δu,v proves that all customer path flows satisfy the

claim.

Rebalancing path flows The rebalancing network flow satisfies the property

fsC(u, v) + fsR(u, v) ≤ max (c(u, v), fsC(u, v), fsC(v, u))

where fsC is defined in Equation (4.6). For any realization of the customer path flows, if fsC(u, v)

and fsC(v, u) satisfy fsC(u, v) ≤ (1 + δu,v)c(u, v) and fsC(v, u) ≤ (1 + δv,u)c(v, u) respectively, then

fsC(u, v) + fsR(u, v) ≤ (1 + δv,u)c(u, v). This proves our claim.

Remark A similar result can be found in the general case where δu,v ∈ R>0 by exploiting a more

general version of the Chernoff bound.

A few comments are in order. Clarify, Theorem 4.2.3 relies on the assumption that

max(u,v)∈E
√

3 log(|E|) /c(u, v) ≤ 1. This assumption is quite mild: for typical routing maps,

|E| ∼ 10, 000 and c(u, v) ≥ 100, which leads to α ∼ 10−10. Second, when Theorem 4.2.3’s as-

sumption is met, the violation of a capacity constraint is at most 100% (since δu,v ≤ 1, always)

with probability 1 − α. Third, Theorem 4.2.3 relies on a Boole’s inequality argument, which may

lead to significant conservatism. A numerical characterization of the capacity constraint violations

is performed in Section 4.3.

We now turn our attention to the approximation factor of the randomized routing algorithm.

The Chernoff bound guarantees that any sampled solution yields a sampled customer traffic flow

(and therefore a level of congestion) very close to the average with high probability. The rebalancing

flow may add congestion: however, the overall vehicle flow on a link (u, v) is upper-bounded by the

maximum between the capacity of the link, the customer traffic flow on link (u, v), and the customer
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Figure 4.2: Overall customer travel time
on a link: fractional solution (dashed
green) and expected value of a sam-
pled solution (red). The BPR link delay
model is used.

traffic flow on link (v, u). As a result, the distribution of the customer travel time remains close to

the distribution of the travel time experienced by customers on a road with infinite capacity.

Figure 4.2 gives a graphical depiction of this intuition for a link where only customer flows are

present. We select t0 = 1, c = 100, 500 path flows each crossing the link with probability 1/5. We

use the BPR link delay model. In this example, the difference between the optimal fractional cost

and the expected cost of a sampled solution according to the BPR model is 0.34%.

To formalize this intuition, we first provide two lemmas characterizing the distribution of the

overall travel time and the per-vehicle travel time of customer-carrying vehicles on a link. We

then provide a lemma characterizing the effect of the rebalancing flow on the overall travel time of

customer-carrying vehicles. Finally, in Theorem 4.2.7 we provide a bound on the ratio of expected

customer travel time between Algorithm 2 and the fractional CRRP solution.

Let {f s
C(u, v)}(u,v) be the customer network flow induced by the output of Algorithm 2:

{f s
C(u, v)}(u,v) =

{∑
m

f s
m(u, v)

}
(u,v)

. (4.6)

We denote the expectation of fsC(u, v) as fC(u, v) := E [f s
C(u, v)]. Note that fC(u, v), is equal to the

total flow
∑
m fm(u, v) of customer-carrying vehicles on link (u, v) induced by the solution to the

LP relaxation of the i-CRRP (as discussed in Section 4.2.3).

Lemma 4.2.4 (Per-link approximation factor, no rebalancing). Consider a link (u, v) ∈ E. Let

t̃(u,v)(·) ∈ T be an analysis congestion model for link (u, v) and assume E [f sC(u, v)] > 0. Then, there

exists a function U : T × R 7→ R≥0, which can be numerically evaluated, such that

E
[
t̃(u,v)(f

s
C(u, v)) · f sC(u, v)

]
t̃(u,v)(fC(u, v)) · fC(u, v)

≤ U
(
t̃(u,v)(·), fC(u, v)

)
.



52 CHAPTER 4. CONGESTION-AWARE RANDOMIZED ROUTING IN AMOD SYSTEMS

Proof. Define the random variable

R :=
t̃(u,v)(f

s
C(u, v)) · f s

C(u, v)

t̃(u,v)(fC(u, v)) · fC(u, v)
.

The goal is to compute an upper bound on E[R].

The first step entails computing a Chernoff bound for the random variable f s
C(u, v). Since

paths are sampled independently and flows belonging to the same customer request enjoy negative

association, the following Chernoff bound holds [Dubhashi and Ranjan, 1996]:

P (fsC(u, v) ≤ (1 + δ)fC(u, v)) ≥1−
(

eδ

(1 + δ)(1+δ)

)fC(u,v)

The bound can be rewritten in a more familiar form as a bound on the cumulative distribution

function (CDF) of fsC(u, v). Define the function x 7→ g(x):

g(x) = (x/fC(u, v)− 1),

Then we have that

P (fsC(u, v) ≤ x) ≥1−
(

eg(x)

(1 + g(x))(1+g(x))

)fC(u,v)

We then define the bijective function y 7→ q(y):

q(y) =
t̃(u,v)(y) · y

t̃(u,v)(fC(u, v)) · fC(u, v)
,

whose inverse is denoted as q−1(·). Note that R = q(fsC(u, v)). Since q(·) is bijective, the Chernoff

bound for f s
C(u, v) can be transformed into a lower bound for the cumulative distribution function

of R:

fsC(u, v) ≤ x ⇔ R(fsC(u, v)) ≤ R(x).

Then the following bound on the CDF of R holds:

P (R(fsC(u, v)) ≤ R(x)) ≥1−
(

eg(x)

(1 + g(x))(1+g(x))

)fC(u,v)

. (4.7)

The expected value of R can be expressed as a function of its cumulative distribution function

CDFR:

E [R] =

∫ ∞
t=0

(1− CDFR(t)) dt (4.8)
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The CDF of R admits a lower bound:

P (R ≤ y) ≥1−

(
eg(q

−1(y))

(1 + g(q−1(y)))(1+g(q−1(y)))

)fC(u,v)

(4.9)

We now define the auxiliary random variable H with complementary cumulative distribution

function:

P (H ≤ h) = 1−

(
eg(q

−1(h))

(1 + g(q−1(h)))(1+g(q−1(h)))

)fC(u,v)

.

Note that E[H] depends only on the analysis congestion model t̃(u,v)(·) and the expected total

flow.

The CDF of H is a lower bound on the CDF of R by Equation 4.9; therefore, E(H) is indeed

an upper bound on E[R], according to Equation 4.8. Thus, U
(
t̃(u,v)(·), fC(u, v)

)
= E[H]. This

concludes the proof.

A very similar procedure can be used to provide an upper bound on the travel time on a link.

Lemma 4.2.5 (Per-link travel time, no rebalancing). Consider a link (u, v) ∈ E. Let t̃(u,v)(·) ∈ T
be an analysis congestion model for link (u, v) and assume E [f sC(u, v)] > 0. Then, there exists a

function V : T × R 7→ R≥0, which can be numerically evaluated, such that

E
[
t̃(u,v)(f

s
C(u, v))

]
t̃(u,v)(fC(u, v))

≤ V
(
t̃(u,v)(·), fC(u, v)

)
.

Proof sketch The proof of Lemma 4.2.5 is identical to the proof of Lemma 4.2.4.

We are now in a position to characterize the effect of the rebalancing flow on the overall travel

time of customer-carrying vehicles.

Lemma 4.2.6 (Per-link approximation factor). Consider a link (u, v) ∈ E. Let t̃(u,v)(·) ∈ T be an

analysis congestion model for link (u, v) and assume E [f sC(u, v)] > 0. Then, there exists a function

B : T × R 7→ R≥0, which can be numerically evaluated, such that

E
[
t̃(u,v)(f

s
C(u, v) + fsR(u, v)) · f sC(u, v)

]
t̃(u,v)(fC(u, v)) · fC(u, v)

≤ B
(
t̃(u,v)(·), fC(u, v)

)
.

Proof. Three cases may arise.

• fsC(u, v) ≤ c(u, v), fsC(v, u) ≤ c(v, u). The rebalancing flow on link (u, v) is fsR(u, v) ≤
c(u, v)−fsC(u, v). The resulting travel time is t̃(u,v)(f

s
C(u, v)+fsR(u, v)) ≤ t̃(u,v)(c(u, v)). Thus,

for any realization of fsC(u, v), the increase in travel time admits an upper bound of ∆tR,(u,v) :=

t̃(u,v)(c(u, v))/t̃(u,v)(0) - as a result, in this caseB(t̃(u,v), fC(u, v)) := ∆tR,(u,v)U(t̃(u,v), fC(u, v)).
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• fsC(u, v) ≥ c(u, v), fsC(u, c) ≥ fsC(v, u). The residual augmented capacity cR(u, v) is zero and

the rebalancing flow is fsR(u, v) = 0. The overall travel time of customer-carrying vehicles

on link (u, v) is unchanged by the presence of the rebalancing flow: B(t̃(u,v), fC(u, v)) :=

U(t̃(u,v), fC(u, v)).

• fsC(u, v) < fsC(v, u), fsC(v, u) ≥ c(v, u). The residual capacity on link (u, v) is cR(u, v) =

fsC(v, u) − fsC(u, v) and the overall flow on link (u, v) is fsC(u, v) + fsR(u, v) ≤ fsC(v, u). The

travel time is t̃(u,v)(f
s
C(u, v) + fsR(u, v)) ≤ t̃(u,v)(f

s
C(v, u)).

The sampled customer flows fsC(u, v) =
∑
m f

s
m(u, v) and fsC(v, u) =

∑
m f

s
m(v, u) are indepen-

dent. To see this, note that, for all customer flows ∈ M and for every edge (u, v) ∈ E , either

fm(u, v) = 0 or fm(v, u) = 0: if this was not the case, then subtracting min(fm(u, v), fm(v, u))

from both fm(u, v) and fm(v, u) would result in a feasible solution of lower cost. Therefore,

for every customer m, the path flow decomposition Fm contains path flows that may traverse

either (u, v) or (v, u), but not both. Path flows belonging to different customers are sampled

independently: as a result, fsC(u, v) and fsC(v, u) are independent.

Then, for all realizations of fsC(u, v), fsC(v, u) in this case,

E
[
t̃(u,v)(f

s
C(u, v) + fsR(u, v)) · fsC(u, v)

]
≤ E

[
t̃(u,v)(f

s
C(v, u)) · fsC(u, v)

]
= E

[
t̃(u,v)(f

s
C(v, u))

]
E [fsC(u, v)]

The upper bound in Lemma 4.2.5 can be used to bound E
[
t̃(u,v)(f

s
C(v, u))

]
:

E
[
t̃(u,v)(f

s
C(v, u))

]
E [fsC(u, v)] ≤ V (t̃(v,u)(·), fC(v, u))t̃(v,u)(fC(v, u))fC(u, v)

≤ V (t̃(v,u)(·), fC(v, u))t̃(v,u)(c(v, u))fC(u, v)

≤ V (t̃(v,u)(·), fC(v, u))∆tR,(u,v)t̃(v,u)(fC(u, v))fC(u, v)

In this case,

B(t̃(u,v), fC(u, v)) := V (t̃(v,u)(·), fC(v, u))∆tR,(u,v)

In conclusion,

B(t̃(u,v), fC(u, v)) := max
(
∆tR,(u,v)U(t̃(u,v), fC(u, v)), V (t̃(v,u)(·), fC(v, u))∆tR,(u,v)

)

Lemma 4.2.6 shows that the ratio between the expected overall travel time of customer-carrying

vehicles on link (u, v) under Algorithm 2 (i.e., E
[
t̃(u,v)(f

s
C(u, v)) · f s

C(u, v)
]
) and the overall travel

time on link (u, v) under the LP relaxation of the i-CRRP (i.e., t̃(u,v)(fC(u, v)) · fC(u, v)) is upper

bounded by a function that depends only on the analysis congestion model t̃(u,v)(·) and the expected
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Figure 4.3: Upper bound B on the frac-
tional increase in expected value of the
overall travel time of customer-carrying
vehicles on a link as a function of link
flow and link capacity. The BPR link
delay model is used.

total flow. Such a function can be numerically evaluated by computing E[H] (as defined in the proof

sketch of Lemma 4.2.4), given t̃(u,v)(·) and fC(u, v). As an example, consider the Bureau of Public

Roads (BPR) delay model presented in Section 4.1.1. Figure 4.3 shows the bound B as a function

of the capacity parameter (i.e., c in Equation (4.1)) and the total traffic flow. The bound is quite

tight, especially when the total traffic flow is close to link capacity – thus the routes computed with

Algorithm 2 appear to induce travel times on the road relatively close to the optimal congestion-free

number.

The per-link bound in Lemma 4.2.6 can be easily extended to a system-wide bound as follows.

Theorem 4.2.7 (System-wide approximation factor). Let t̃(u,v)(·) ∈ T be an analysis congestion

model for each link (u, v) ∈ E. Then, the ratio between the expected number of vehicles on the road

under Algorithm 2 and the number of vehicles on the road under the LP relaxation of the i-CRRP

is upper bounded by:

∑
(u,v)∈E B

(
t̃(u,v)(·), fC(u, v)

)
t̃(u,v)(fC(u, v)) · fC(u, v)∑

(u,v)∈E t̃(u,v)(fC(u, v)) · fC(u, v)
. (4.10)

Proof. The proof of this statement follows trivially from the linearity of expectation and Lemma

4.2.6.

4.3 Numerical Experiments

4.3.1 Performance of the randomized routing and rebalancing algorithm

We explore the performance of the randomized routing procedure described in Algorithm 2 on a

real-world, asymmetric road network with real customer demands. We consider a road network of

Manhattan with 3137 roads and 1351 intersections, derived from OpenStreetMap data and shown

in Fig. 3.3. Customer requests are derived from 55412 actual taxi rides in Manhattan on March 1,
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2012 from 6 to 8 p.m 1.

We adjust the capacities of the roads such that, on average, the flows induced by these trips are

close to the onset of congestion. In order to guarantee feasibility of the LP relaxation of the i-CRRP,

we relax the congestion constraints by introducing slack variables, each associated with a large cost.

Since the road network is not symmetric (and, in particular, some roads may be one-way streets), it is

not possible to compute augmented road capacities. To circumvent this, we associate slack variables

to the congestion constraints in the LP relaxation of Problem 4.4: the cost associated with each

slack variable is proportional to the effect that an increase in congestion would have on the overall

customer travel time. Intuitively, the algorithm is allowed to select the minimal relaxation of the

congestion constraints that guarantees feasibility of the rebalancing problem. We solve the i-CRRP

with Algorithm 2 and compare the overall travel time of customer-carrying vehicles of the solution

(computed with the BPR link delay function) with the optimal congestion-free overall travel time

of customer-carrying vehicles (computed with the CPLEX MILP solver). In the problem instance

considered in this experiment, the optimal travel time of customer-carrying vehicles coincide with

the optimal travel time under the LP relaxation. However, we stress that the linear relaxation does

not yield integral routes: thus, it is not suitable for real-time control of an AMoD system.

We consider 100 realizations of the randomized rounding algorithm. Table 4.1 summarizes our

results. Figure 4.4 shows the distribution of the ratio between the required number of vehicles of

the sampled solution and the required number of vehicles of the LP solution.

LP Rand. routing
Avg. cust. travel time [s] 91.552 91.716

Avg. num. congested edges 233 333.7
Avg. cong. (as a fraction of

36.5% 25.6%
link capacity) on congested edges

Table 4.1: Randomized congestion-aware routing: results of the numerical simulations. The perfor-
mance of the congestion-aware randomized routing algorithm is very close to the lower bound on
performance provided by the solution to the LP relaxation.

Interestingly, for some simulations with low congestion (not shown for brevity), we observed

that the overall customer travel time required by the sampled solution is sometimes smaller than

the customer travel time in the LP relaxation. This counterintuitive result is due to the fact that

the LP relaxation computes a congestion-free solution, even if this results in longer paths for the

customers. The randomized routing algorithm, on the other hand, sometimes samples shorter paths

that induce a small amount of congestion but, overall, result in smaller travel times.

The average execution time of Algorithm 2 on a commodity PC is 655 s; this time is dominated

by the time required to solve Problem 4.2. In contrast, the execution time of the MILP solver is 950

s. Thus, the algorithm finds a high-quality solution 45% faster than than the exact solver.

1Courtesy of the New York Taxi and Limousine Commission.
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Algorithm 2 is not, in general, guaranteed to be faster than the MILP solver (indeed we observed

that, for especially simple instances of the i-CRRP, performance of the MILP solver is comparable to

our algorithm). Nevertheless, for large-scale problems, the randomized routing algorithm guarantees

that the solution time will always be polynomial in the problem size (an especially relevant concern

for real-time control) and the value of the solution will be close to the optimal one.

4.3.2 Performance of a receding-horizon implementation

Algorithm 2 holds promise as a real-time algorithm for the control of fleets of AMoD vehicles. While

a receding-horizon implementation is beyond the scope of this work, we compare the performance

of Algorithm 2 with the performance of the receding-horizon rebalancing algorithm proposed in

Chapter 3 for a single problem instance. This instance can be seen as proxy for a single step of a

receding-horizon algorithm. We consider the same New York City road network discussed in Section

4.3.1; we randomly sample 1000 customer arrivals (approximately corresponding to the number of

customers arriving in two minutes in the original data set) and scale road capacity accordingly.

The receding-horizon algorithm in Chapter 3 only computes rebalancing routes; customer-carrying

vehicles are greedily routed along the fastest path.

We considered fifty realizations of the customer requests: on average, the overall travel time of

customer-carrying vehicles was 5.36 ± 0.62% lower with Algorithm 2. The computation time was

28.6± 5.7s on commodity hardware. Thus, the a receding-horizon implementation of the algorithm

holds promise for real-time control of city-scale AMoD systems.

4.4 Conclusions and Future Work

In this chapter we presented a randomized algorithm for simultaneously computing customer routes

and rebalancing routes on a capacitated road network in an autonomous mobility-on-demand system.

Our goal is to find a set of routes that minimize the total travel time of customer-carrying vehicles:
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since the problem is intractable for generic congestion models, we adopt a simple threshold congestion

model that yields congestion-free routes. We formulate the routing and rebalancing problem as an

integral Minimum-Cost Multi-Commodity Flow problem and, after showing that even this simple

problem is NP-hard, we develop a sampling technique that extends known randomized routing

algorithms to flows with multiple origins and destinations. The sampling technique may violate

some of the congestion constraints: nevertheless, we prove that the expected overall travel time of

customer-carrying vehicles produced by the randomized algorithm under a realistic congestion model

remains very close to the optimal congestion-free travel time (a proxy for the optimal travel time).

Numerical results on a realistic Manhattan road network show that the travel time of customers

required by our algorithm is very close to the optimal travel time required by a congestion-free

solution. Preliminary experiments show that a receding-horizon implementation of the algorithm

yields promising performance when compared with state-of-the-art rebalancing algorithms.

This work paves the way for the development of large-scale congestion-aware routing and re-

balancing algorithms for AMoD systems. Future work will explore a receding-horizon, closed-loop

implementation of the algorithm and integration with state-of-the-art traffic simulators such as

MATSIM and SUMO and characterize its performance in presence of stochastic fluctuations in the

demand, travel times, and routing distribution. Additionally we would like to study other ways of

reducing congestion such as staggering demands, ride-sharing, and integration with public trans-

portation.



Chapter 5

On the interaction between

Autonomous Mobility-on-Demand

systems and the power network:

models and coordination

algorithms

In this chapter, we study the interaction between an AMoD fleet and the electric power network.

We propose a joint model that captures the coupling between the two systems stemming from

the vehicles’ charging requirements. The model subsumes existing network flow models for AMoD

systems and DC models for the power network, and it captures time-varying customer demand

and power generation costs, road congestion, battery depreciation, and power transmission and

distribution constraints. We then leverage the model to jointly optimize the operation of both

systems. We devise an algorithmic procedure to losslessly reduce the problem size by bundling

customer requests, allowing it to be efficiently solved by off-the-shelf linear programming solvers.

Next, we show that the socially optimal solution to the coordination problem represents a general

equilibrium, and we provide a dual decomposition algorithm that allows the transportation and

power network operators to compute such equilibrium without sharing private information. We

assess the performance of the model and algorithms by studying the implementation of a hypothetical

electric-powered AMoD system in Dallas-Fort Worth, and its impact on the Texas power network.

We show that coordination between the AMoD system and the power network can reduce the overall

energy expenditure compared to the case where no cars are present (despite the increased demand

59
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for electricity) and yield savings of $182M/year compared to an uncoordinated scenario. Finally,

we provide a closed-loop receding-horizon implementation. Collectively, the results of this chapter

provide a first-of-a-kind characterization of the interaction between electric-powered AMoD systems

and the power network, and shed additional light on the economic and societal value of AMoD.

5.1 Introduction

Private vehicles are major contributors to urban pollution [OECD, 2014], which is estimated to

cause over seven million premature deaths worldwide every year [World Health Organization, 2014].

Plug-in electric vehicles (EVs) hold promise to significantly reduce urban pollution, both by reducing

carbon dioxide emissions from internal-combustion engine vehicles, and by enabling use of renewable

and low-polluting power generators as a source of energy for transportation services. However, at

present, adoption of EVs for private mobility has been significantly hampered by customers’ concerns

about limited range and availability of charging infrastructure [Evarts, 2013].

The emerging technology of self-driving vehicles might provide a solution to these challenges

and thus might represent a key enabler for the widespread adoption of EVs. Specifically, fleets

of self-driving vehicles providing on-demand transportation services (referred to as Autonomous

Mobility-on-Demand, or AMoD, systems) hold promise to replace personal transportation in large

cities by offering high quality of service at lower cost [Spieser et al., 2014] with positive effects on

safety, parking infrastructure, and congestion. Crucially, EVs are especially well-suited to AMoD

systems. On the one hand, short-range trips typical of urban mobility are well-suited to the current

generation of range-limited EVs; on the other hand, intelligent fleet-wide policies for rebalancing

and charging can ensure that vehicles with an adequate level of charge are available to customers,

virtually eliminating “range anxiety,” a major barrier to EV adoption [Evarts, 2013]. To fully realize

this vision, however, one needs currently unavailable tools to manage the complex couplings between

AMoD fleet management (e.g., for routing and charging the EVs) and the control of the power

network. Specifically, one should consider

1. Impact of transportation network on power network: Concurrent charging of large numbers of

EVs can have significant effects both on the stability of the power network and on the local

price of electricity (including at the charging stations) [Sioshansi, 2012, Alizadeh et al., 2017,

Hadley and Tsvetkova, 2009]. For example, [Hadley and Tsvetkova, 2009] shows that in Cali-

fornia a 25% market penetration of (non-autonomous) EVs with fast chargers, in the absence

of smart charging algorithms, would increase overall electricity demand in peak load by about

30%, and electricity prices by almost 200%.

2. Impact of power network on transportation network: Electricity prices can significantly affect

travel patterns for EVs. In [Alizadeh et al., 2017], the authors show that changes in electricity
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prices can radically alter the travel patterns and charging schedules of fleets of EVs in a

simplified model of the San Francisco Bay Area. This, in turn, would affect electricity prices

in a complex feedback loop.

The key idea behind this work is that, by intelligently routing fleets of autonomous EVs and, in

particular, by harnessing the flexibility offered by the routes and schedules for the empty-traveling ve-

hicles, one can actively control such complex couplings and guarantee high-performance for the over-

all system (e.g., high passenger throughput and lower electricity costs). Additionally, autonomous

EVs provide a unique opportunity for joint traffic and energy production management, as they could

act as mobile storage devices. That is, when not used for the fulfillment of trip requests, the vehicles

could be routed to target charging stations in order to either absorb excess generated energy at time

of low power demand (by charging) or inject power in the power network at times of high demand

(by discharging).

Literature review : The integration of non-autonomous EVs within the power network has been

addressed in three main lines of work. A first line of work addresses the problem of scheduling

charging of EVs (i.e., optimizing the charging profile in time) under the assumption that the ve-

hicles’ charging schedule has no appreciable effect on the power network [Rotering and Ilic, 2011,

Turitsyn et al., 2010, Tushar et al., 2012]. This assumption is also commonly made when selecting

the locations of charging stations (i.e., optimizing the charging profile in space)

[Goeke and Schneider, 2015, Pourazarm et al., 2016]. A high penetration of EVs would, however,

significantly affect the power network. Thus, a second line of work investigates the effects of

widespread adoption of EVs on key aspects such as wholesale prices and reserve margins, for

example in macroeconomic [Hadley and Tsvetkova, 2009] and game-theoretical [Sioshansi, 2012],

[Wang et al., 2010] settings. Accordingly, [Alizadeh et al., 2014, Alizadeh et al., 2017] investigate

joint models for EV routing and power generation/distribution aimed at driving the system to-

ward a socially-optimal solution. Finally, a third line of work investigates the potential of using

EVs to regulate the power network and satisfy short-term spikes in power demand. The macroe-

conomic impact of such schemes (generally referred to as Vehicle-To-Grid, or V2G) has been stud-

ied in [Kempton and Tomić, 2005], where it is shown that widespread adoption of EVs and V2G

technologies could foster significantly increased adoption of wind power. Going one step further,

[Khodayar et al., 2013] proposes a unified model for EV fleets and the power network, and de-

rives a joint dispatching and routing strategy that maximizes social welfare (i.e., it minimizes the

overall cost borne by all participants, as opposed to maximizing individual payoffs). However,

[Kempton and Tomić, 2005] does not capture the spatial component of the power and transporta-

tion networks, while [Khodayar et al., 2013] assumes that the vehicles’ schedules are fixed.

The objective of this chapter is to investigate the interaction between AMoD and electric power

systems (jointly referred to as Power-in-the-loop AMoD, or P-AMoD, systems) in terms of modeling

and algorithmic tools to effectively manage their couplings (Figure 5.1). In this context, our work
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improves upon the state of the art (in particular, [Alizadeh et al., 2014, Alizadeh et al., 2017]) along

three main dimensions: (i) it considers a fleet of shared and autonomous EVs, which offer significant

additional degrees of freedom for vehicle scheduling, routing, and charging; (ii) it provides efficient

algorithms that can solve large-scale problems; and (iii) it characterizes the vehicles’ ability to return

power to the power network through V2G schemes, and its economic benefits.

Charging demand
Energy storage

Electricity prices
 Energy provision

Controls: e.g., vehicle routes, charging schedules

Controls: e.g., prices, energy generation schedules
Power network

Transportation network

Figure 5.1: Couplings between AMoD and electric power systems. The system-level control of Power-
in-the-loop AMoD systems entails the coordinated selection of routes for the autonomous vehicles,
charging schedules, electricity prices, and energy generation schedules, among others.

Statement of contributions: Specifically, the contribution of this work is fivefold. First, we pro-

pose a joint linear model for P-AMoD systems. The model captures time-varying customer demand

and generation prices, congestion in the road network, vehicle battery depreciation, power trans-

mission constraints on the transmission lines, and transformer capacity constraints induced by the

distribution network. Second, we leverage the model to design tools that optimize the operations

of P-AMoD systems and, in particular, maximize social welfare. To this end, we propose an al-

gorithmic procedure to losslessly reduce the dimensionality of the P-AMoD model. The procedure

allows P-AMoD problems with hundreds of road links, time horizons of multiple hours, and any

number of customers and vehicles to be optimized on commodity hardware. Third, we show that

the socially-optimal solution to the P-AMoD problem is a general equilibrium, and we propose a

distributed privacy-preserving algorithm that the transportation and power network operators can

employ to compute the equilibrium without disclosing their private information.

Fourth, we apply the model and algorithms to a case study of a hypothetical deployment of an

AMoD system in Dallas-Fort Worth, TX. We show that coordination between the AMoD system

and the electric power network can have a significant positive impact on the price of electricity

(remarkably, the overall electricity expenditure in presence of the AMoD system can be lower than

in the case where no vehicles are present, despite the increased demand), while retaining all the

convenience and sustainability benefits of AMoD. This suggests that the societal value of AMoD

systems spans beyond mobility: properly coordinated, AMoD systems can deliver significant benefits

to the wider community by helping increase the efficiency of the power network. Finally, we present

a receding-horizon algorithm for P-AMoD that provides built-in closed-loop robustness and delivers

computation times in the order of seconds on commodity hardware at the price of some suboptimality.
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Organization: The remainder of this chapter is organized as follows. In the Model Description

and Problem Formulation section we present a linear model that captures the interaction between an

AMoD system and the power network. In the section on Solution Algorithms, we propose a procedure

to losslessly reduce the size of the linear model by bundling customer requests. In the Distributed

solution to the P-AMoD problem section, we show that the socially optimal solution to the P-

AMoD problem is a general equilibrium and propose a privacy-preserving distributed optimization

algorithm. In the Numerical Experiments section, we evaluate our model and algorithm on a case

study of Dallas-Fort Worth. In the section on A Receding-Horizon Algorithm for P-AMoD, we

propose a receding-horizon implementation. Finally, in the Conclusions, we draw conclusions and

discuss directions for future work.

5.2 Model Description and Problem Formulation

We propose a linear, flow-based model that captures the interaction between an AMoD system and

the power network. The model consists of two parts.

First, we extend the model in [Rossi et al., 2017] to a time-varying network flow model of an

AMoD system with EVs. We assume that a Transportation Service Operator (TSO) manages the

AMoD system in order to fulfill passenger trip requests within a given road network. The road links

are subject to congestion, and the trip requests arrive according to an exogenous dynamical process.

The TSO must not only compute the routes for the autonomous EVs (i.e. vehicle routing), but

also issue tasks and routes for empty vehicles in order to, for example, realign the fleet with the

asymmetric distribution of trip demand (i.e. vehicle rebalancing). Due to limited battery capacity,

the vehicles need to periodically charge at charging stations. The price of electricity varies between

charging stations – the charging schedule is determined by the TSO in order to minimize the fleet’s

operational cost.

The price of electricity itself is a result of the power system operation to balance supply and

demand, and varies across the power grid. Thus, we next review the linear (DC) power flow model

of the power network and the economic dispatch problem used to calculate market clearing prices for

electricity. The power transmission network comprises energy providers that are connected to load

buses through high-voltage transmission lines. Transmission capacities (dictated chiefly by thermal

considerations) limit the amount of power that can be transferred on each transmission line. Load

buses are connected to charging stations and other sources of power demand through the distribution

systems: this system induces constraints on the amount of power that can be served to each load

bus. Power demands other than those from charging stations are regarded as exogenous parameters

in this work. The power network is controlled by an Independent System Operator (ISO). The

ISO also determines prices at the load buses (and, consequently, at the charging stations) so as to

guarantee grid reliability while minimizing the overall generation cost (a problem known as economic
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dispatch).

The vehicles’ charging introduces a critical coupling between the transportation and the power

networks. The power demands due to charging influence the local price of electricity set by the ISO

– the prices, in turn, affect the optimal charging schedule computed by the TSO. Accordingly, we

conclude this section by describing the interaction between the two models, and we propose a joint

model for Power-in-the-loop AMoD.

5.2.1 Network Flow Model of an AMoD system

We consider a time-varying, finite-horizon model. The time horizon of the problem is discretized in

T time intervals; the battery charge level of the autonomous vehicles is similarly discretized in C

charge levels, each corresponding to an amount of energy denoted as JC .

Road network: The road network is modeled as a directed graph R = (VR, ER), where VR
denotes the node set and ER ⊆ VR × VR denotes the edge set. Nodes v ∈ VR denote either an

intersection, a charging station, or a trip origin/destination. Edges (v, w) ∈ ER denote the availability

of a road link connecting nodes v and w. Each edge (v, w) has an associated length d(v,w) ∈ R≥0,

traversal time t(v,w) ∈ {1, . . . , T}, energy requirement c(v,w) ∈ {−C, . . . , C}, and traffic capacity

fv,w ∈ R≥0. The length d(v,w) determines the mileage driven along the road link; the traversal time

t(v,w) characterizes the travel time on the road link in absence of congestion; the energy requirement

c(v,w) models the energy consumption (i.e., the number of charge levels) required to traverse the link

in absence of congestion; the capacity fv,w captures the maximum vehicle flow rate (i.e., the number

of vehicles per unit of time) that the road link can accommodate without experiencing congestion.

Vehicles traversing the road network can recharge and discharge their batteries at charging

stations, whose locations are modeled as a set of nodes S ⊂ VR. Each charging station s ∈ S
is characterized by a charging rate δc+s ∈ {1, . . . , C}, a discharging rate δc−s ∈ {−C, . . . ,−1}, a

time-varying charging price p+
s (t) ∈ R, a time-varying discharging price p−s (t) ∈ R, and a capacity

Ss ∈ N. The charging and discharging rates δc+s and δc−s correspond to the amount of energy (in

unit charge levels) that the charger can provide to a vehicle (or, conversely, that a vehicle can return

to the power grid) in one unit of time. For simplicity, we assume that the charging rates are fixed;

however, the model can be extended to accommodate variable charging rates. The charging and

discharging prices p+
s (t) and p−s (t) capture the cost of one discrete energy level energy (or, conversely,

the payment the vehicles receive for returning one unit of energy to the grid) at time t; in this work,

p+
s (t) = p−s (t). The capacity Ss models the maximum number of vehicles that can simultaneously

charge or discharge at station s. Charging and discharging (due both to driving activity and to

vehicle-to-grid power injection) causes wear in the vehicles’ batteries. The battery depreciation per

unit charge or discharge is denoted as dB . Battery depreciation captures the cost of replacing a

battery at the end of its useful life; note, however, that the vehicle’s battery capacity is assumed to

remain constant during the model’s finite horizon.
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Expanded AMoD network: We are now in a position to rigorously define the network flow

model for the AMoD system. We introduce an expanded AMoD network modeled as a directed

graph G = (V, E). The graph G captures the time-varying nature of the problem and tracks the

battery charge level of the autonomous vehicles. Specifically, nodes v ∈ V model physical locations

at a given time and charge level, while edges e ∈ E model road links and charging actions at a given

time and charge level. Formally, a node v ∈ V corresponds to a tuple v = (vv, tv, cv), where vv ∈ VR
is a node in the road network graph R; tv ∈ {1, . . . , T} is a discrete time; and cv ∈ {1, . . . , C} is a

discrete charge level. The edge set E is partitioned into two subsets, namely EL and ES , such that

EL ∪ ES = E and EL ∩ ES = ∅. Edges e ∈ EL represent road links, whereas edges e ∈ ES model

the charging/discharging process at the stations. An edge (v,w) belongs to EL when (i) an edge

(vv, vw) exists in the road network graph edge set ER, (ii) the link (vv, vw) ∈ ER can be traversed in

time tw−tv = t(vv,vw), and (iii) the battery charge required to traverse the link is cv−cw = c(vv,vw).

Conversely, an edge (v,w) represents a charging/discharging edge in ES when (i) vv = vw is the

location of a charging station in S and (ii) the charging/discharging rate at the charging location

vv is (cw − cv)/(tw − tv) = δc+vv (charging) or (cw − cv)/(tw − tv) = δc−vv (discharging). Figure 5.2

(left) shows a graphical depiction of the graph G.
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Figure 5.2: Augmented transportation and power networks. Nodes in the augmented transportation
network (left) represent a location along with a given charge level (each layer of the augmented
transportation network corresponds to a charge level). Dashed lines denote roads in the original
transportation network and are not part of the augmented network. As vehicles travel on road
links (modeled by black arrows in the augmented network), their charge level decreases. Blue nodes
represent charging stations: the flows on charging and discharging edges affect the load at the
corresponding nodes in the power network. For simplicity, only one time step is shown.

Customer and rebalancing routes: Transportation requests are represented by the set of

tuples {(vm, wm, tm, λm)}Mm=1, where vm ∈ VR is the request’s origin location, wm ∈ VR is the

request’s destination location, tm is the requested pickup time, and λm is the average customer

arrival rate (or simply customer rate) of request m at time interval tm. Transportation requests are

assumed to be known and deterministic.

The goal of the TSO is to compute a routing and recharging policy for the self-driving vehicles.

To achieve this, we model vehicle routes as network flows [Ahuja et al., 1993]. Network flows are
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an equivalent representation for routes. Indeed, any route can be represented as a network flow

assuming value 1 on edges belonging to the route and 0 elsewhere; conversely, all network flows

considered in this work can be represented as a collection of weighed routes [Ahuja et al., 1993,

Ch. 3]. This representation allows us to leverage the rich theory of network flow: in particular, in

the Solution Algorithms section we exploit this theory to losslessly reduce the dimensionality of the

optimization problem.

We denote the customer flow as the rate of customer-carrying vehicles belonging to a spe-

cific transportation request (vm, wm, tm, λm) traversing an edge e ∈ E . Formally, for request

m ∈ {1, . . . ,M}, the customer flow is a function fm(v,w) : E 7→ R≥0, that represents the rate of

customers belonging to request m traveling from location vv to location vw (or charging/discharging

at location vv = vw) from time tv to time tw, with an initial battery charge of cv and a final battery

charge of cw. Analogously, the rebalancing (or customer-empty) flow f0(v,w) : E 7→ R≥0 represents

the rate of empty vehicles traversing a road link or charging/discharging1. Customer flows must sat-

isfy a continuity condition: customer-carrying vehicles entering a node at a given time and charge

level must exit the same node at the same time and with the same charge level. Equation (5.1)

enforces this condition:

∑
u:(u,v)∈E

fm(u,v) + 1vv=vm1tv=tmλ
cv,in
m =

∑
w:(v,w)∈E

fm(v,w) + 1vv=wmλ
tv,cv,out
m , ∀v ∈ V,m ∈ {1, . . . ,M},

(5.1a)

C∑
c=1

λc,inm = λm,

T∑
t=1

C∑
c=1

λt,c,outm = λm, ∀m ∈ {1, . . . ,M}. (5.1b)

where the variable λc,inm denotes the customer rate departing with charge level c and the variable

λt,c,out
m denotes the customer rate reaching the destination at time t with charge level c; both

are optimization variables. Function 1x denotes the indicator function of the Boolean variable

x = {true, false}, that is 1x = 1 if x is true, and 1x = 0 if x is false.

Rebalancing flows must satisfy a continuity condition analogous to the one for the customer

flows. In addition, rebalancing flows must satisfy a consistency condition representing the fact that

a customer may only depart the origin location if an empty vehicle is available. Finally, the initial

position and charge level of the vehicles is fixed; the final position and charge level is an optimization

variable (possibly subject to constraints, e.g., on the minimum final charge level). The constraints

for the initial and final positions of the rebalancing vehicles at each node v ∈ V are captured by a

set of functions NI(v) and NF (v), respectively. Formally, NI(v), with tv = 0, denotes the number

of rebalancing vehicles entering the AMoD system at location vv at time tv with charge level cv.

Conversely, NF (v), with tv = T denotes the number of rebalancing vehicles at location vv at time tv

1Note that, in this chapter, we denote the rebalancing flow as f0 for brevity; in previous chapters, the rebalancing
flow is denoted as fR.



5.2. MODEL DESCRIPTION AND PROBLEM FORMULATION 67

with charge level cv. For tv 6= 0, NI(v) = 0; for tv 6= T , NF (v) = 0. The overall number of vehicles

in the network is
∑

v∈V NI(v). Equation (5.2) simultaneously enforces the rebalancing vehicles’

continuity condition, consistency condition, and the constraints on the initial and final locations:

∑
u:(u,v)∈E

f0(u,v) +

M∑
m=1

1vv=wmλ
tv,cv,out
m +NI(v) =

∑
w:(v,w)∈E

f0(v,w) +

M∑
m=1

1vv=vm1tv=tmλ
cv,in
m +NF (v), ∀v ∈ V. (5.2)

Congestion: We adopt a simple threshold model for congestion: the vehicle flow on each road

link is constrained to be smaller than the road link’s capacity. The model is analogous to the one

adopted in [Rossi et al., 2017] and is consistent with classical traffic flow theory [Wardrop, 1952].

This simplified congestion model is adequate for our goal of controlling the vehicles’ routes and

charging schedules, and ensures tractability of the resulting optimization problem; higher-fidelity

models can be used for the analysis of the AMoD system’s operations. Equation (5.3) enforces the

road congestion constraint:

C∑
cv=1

M∑
m=0

fm(v,w) ≤ f (vv,vw),∀(vv, vw) ∈ ER, tv ∈ {1, . . . , T}. (5.3)

Charging stations can simultaneously accommodate a limited number of vehicles. The station

capacity constraint is enforced with Equation (5.4):

∑
(v,w)∈ES :
vv=vw=v

M∑
m=0

fm(v,w) ≤ Svv , ∀v ∈ S, t ∈ {1, . . . , T}. (5.4)

Network flow model of an AMoD system: The travel time TM experienced by customers,

a proxy for customer welfare, and the overall mileage DV driven by (both customer-carrying and

empty) vehicles, a proxy for vehicle wear, are given by

TM =
∑

(v,w)∈E

tv,w

M∑
m=1

fm(v,w),

DV =
∑

(v,w)∈E

dvv,vw

M∑
m=0

fm(v,w),

Note that TM only includes the travel time of customer-carrying vehicles, whereas DV includes

the distance traveled by all vehicles. Also note that, for charging edges, dvv,vw = 0. The overall
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cost of electricity incurred by the vehicles (including any credit from selling electricity to the power

network) is

VE =
∑

(v,w)∈ES

M∑
m=0

fm(v,w)δcvvp(v,w),

where δcvv = δc+vv and p(v,w) = p+
vv if cw > cv, δcvv = δc−vv and p(v,w) = p−vv otherwise.

The overall battery depreciation due to charging and discharging is

VB =
∑

(v,w)∈ES

M∑
m=0

fm(v,w)|δcvv |dB .

A more general question about depreciation: we do not currently include it in the sims. We can

include it (a few days to redo the sims), keep the sims as is, or just do not talk about it and remove

these references. Opinions?

The goal of the TSO is to solve the Vehicle Routing and Charging problem, that is, to minimize

the aggregate societal cost borne by the AMoD users while satisfying all operational constraints.

We define the customers’ value of time (i.e., the monetary loss associated with traveling for one

unit of time) as VT and the operation cost per kilometer of the vehicles (including maintenance but

excluding electricity costs) as VD. The aggregate societal cost experienced by the AMoD users is

then defined as

VDDV + VE + VB + VTTM . (5.5)

We are now in a position to state the TSO’s Vehicle Routing and Charging problem:

minimize
fm,λ

c,in
m ,λ

t,c,out
m ,NF

(5.5), (5.6a)

subject to (5.1), (5.2), (5.3), and (5.4). (5.6b)

5.2.2 Linear model of power network

In this work, the power network is modeled according to the well-known DC model

[Kirschen and Strbac, 2004, Ch. 6], which, by assuming constant voltage magnitudes and deter-

mining the power flow on transmission lines solely based on voltage phase angles, represents an

approximation to the higher-fidelity AC flow model [Glover et al., 2011]. In analogy with the treat-

ment of the AMoD model, we discretize the time horizon of the problem in T time steps. The power

grid is modeled as an undirected graph P = (B, EP ), where B is the node set, commonly referred

to as buses in the power engineering literature, and EP ⊆ B × B is the edge set, representing the
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transmission lines. The subsets of buses representing generators and loads are defined as G ⊂ B and

L ⊂ B, respectively. Nodes that are neither loads nor generators are referred to as interconnects.

Generators produce power and deliver it to the network, while loads absorb power from the network.

Each generator g ∈ G is characterized by a maximum output power pg(t), a minimum output power

p
g
(t), a unit generation cost og(t), and maximum ramp-up and ramp-down rates p+

g (t) and p−g (t),

respectively. Transmission lines e ∈ EP are characterized by a reactance xe and a maximum allow-

able power flow pe (due chiefly to thermal constraints). The reactance and the maximum allowable

power flow do not vary with time. Each load node l ∈ L is characterized by a required power demand

dl(t). The distribution network is not modeled explicitly; however, thermal constraints due to the

distribution substation transformers are modeled by an upper bound dl(t) on the power that can be

delivered at each load node.

We define a generator power function p : (G, {1, . . . , T}) 7→ R≥0, and a phase angle function

θ : (B, {1, . . . , T}) 7→ R. The generation cost is defined as

CG =

T∑
t=1

∑
g∈G

og(t)p(g, t)

The Economic Dispatch problem entails minimizing the generation cost subject to a set of feasibility

constraints [Kirschen and Strbac, 2004], namely:

minimize
p,θ

CG (5.7a)

subject to
∑

(u,v)∈EP

θ(u, t)− θ(v, t)
xu,v

+ 1v∈Gp(v, t) = 1v∈Ldv(t) +
∑

(v,w)∈EP

θ(v, t)− θ(w, t)
xv,w

∀v ∈ B, t ∈ {1, . . . , T}, (5.7b)

− pb1,b2 ≤
θ(b1, t)− θ(b2, t)

xb1,b2
≤ pb1,b2 ∀(b1, b2) ∈ EP , t ∈ {1, . . . , T}, (5.7c)

p
g
(t) ≤ p(g, t) ≤ pg(t), ∀g ∈ G, t ∈ {1, . . . , T}, (5.7d)

− p−g (t) ≤ p(g, t+ 1)− p(g, t) ≤ p+g (t) ∀g ∈ G, t ∈ {1, . . . , T − 1}, (5.7e)

dl(t) ≤ dl(t), ∀l ∈ L, t ∈ {1, . . . , T}. (5.7f)

Equation (5.7b) enforces power balance at each bus based on the so-called DC power flow equa-

tions; Equation (5.7c) encodes the transmission lines’ thermal constraints; Equation (5.7d) encodes

the generation capacity constraints; Equation (5.7e) encodes the ramp-up and ramp-down con-

straints; and Equation (5.7f) encodes the thermal constraints of substation transformers at load

nodes.

The unit price of electricity at the load nodes is determined through a mechanism known as
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Locational Marginal Pricing (LMP) [Kirschen and Strbac, 2004, Liu et al., 2009]. The LMP at a

node is defined as the marginal cost of delivering one unit of power at the node while respecting all

the system constraints. Accordingly, in this work, the LMP at each bus equals the sum of the dual

variables (i.e., the shadow prices) corresponding to the power injection constraint (5.7b) and the

substation transformer thermal constraint (5.7f) at the same bus in the Economic Dispatch problem

(5.7).

5.2.3 Power-in-the-loop AMoD system

The vehicles’ charging requirements introduce a coupling between the AMoD system and the power

network, as shown in Figure 5.2. Specifically, the vehicles’ charging schedule produces a load on

the power network. Such a load on the power network affects the solution to the ISO’s Economic

Dispatch problem and, as a result, the LMPs. The change in LMPs, in turn, has an effect on the

TSO’s optimal charging schedule. In absence of coordination, this feedback loop can lead to system

instability, as shown for the case of privately-owned, non-autonomous EVs in [Alizadeh et al., 2017].

In this section, we formulate a joint model for the TSO’s Vehicle Routing and Charging problem

and the ISO’s Economic Dispatch problem. The goal of this model is to maximize the social welfare

by minimizing the total cost of mobility (a profit-maximizing formulation would be similar) and

the total cost of power generation and transmission. While the resulting solution is not directly

actionable (since it requires the TSO and the ISO to coordinate and share their private information),

pricing mechanisms can be designed to steer the system towards the optimum: we discuss such

mechanisms in the section on Distributed solution to the P-AMoD problem.

The coupling between the AMoD model and the electric power model is mediated by the charging

stations. A given charging station is represented both by a node v ∈ VR in the road network and

by a load node l ∈ L in the power network. To capture this correspondence, we define an auxiliary

function MP,R : L 7→ {VR ∪ ∅}. Given a load node b ∈ L, MP,R(b) denotes the node in VR (if

any) that represents a charging station connected to b. We then define two additional functions,

M+
P,G : (L, {1, . . . , T}) 7→ {ES ∪ ∅} and M−P,G : (L, {1, . . . , T}) 7→ {ES ∪ ∅}. The function M+

P,G

(resp. M−P,G) maps a load node l and a time t to the set of charge (resp. discharge) edges in G

corresponding to station MP,R(l) at time t. Formally,

M+
P,G(l, t) : {(v,w) ∈ ES |vv = vw, vv ∈MP,R(l), cv < cw, tv ≤ t < tw},

M−P,G(l, t) : {(v,w) ∈ ES |vv = vw, vv ∈MP,R(l), cv > cw, tv ≤ t < tw}.

The load at a load bus l can be expressed as the sum of two components: an exogenous demand

dl,e and the load due to the charger or chargers connected to that bus, quantitatively,
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dl(t) =dl,e(t) + JCδc
+
MP,R(l)

∑
(v,w)∈M+

P,G
(l,t)

M∑
m=0

fm(v,w)

+ JCδc
−
MP,R(l)

∑
(v,w)∈M−

P,G
(l,t)

M∑
m=0

fm(v,w), ∀l ∈ L, t ∈ {1, . . . , T}. (5.8)

We are now in a position to state the Power-in-the-loop AMoD (P-AMoD) problem:

minimize
fm,λ

c,in
m ,λ

t,c,out
m ,NF ,θ,p

VTTM + VDDv + VB + CG, (5.9a)

subject to (5.1), (5.2), (5.3), (5.4), (5.7), and (5.8). (5.9b)

5.2.4 Discussion

Some comments are in order. The model assumes that the TSO and the ISO share the goal of

maximizing social welfare and are willing to collaborate on a joint policy. This assumption is, in

general, not realistic: not only do the TSO and ISO have different goals, but they are also generally

reluctant to share the information required for successful coordination. However, once a socially

optimal strategy is found, efficient coordination mechanisms can be designed that steer rational

agents towards that strategy: in the section on Distributed solution to the P-AMoD problem, we

show that the social optimum is a general equilibrium for a self-interested TSO, self-interested

power generators, and a non-profit ISO acting as a market broker, and we propose a distributed

privacy-preserving mechanism that an ISO and a TSO can adopt to compute such equilibrium.

The network flow model has some well-known limitations: chiefly, it does not capture the stochas-

ticity of the customer arrival process, and it does not directly yield integral routes suitable for

real-time control of vehicles. Furthermore, in this work, customer requests are assumed to be deter-

ministic and known in advance, an assumption that is not consistent with the paradigm of on-demand

mobility. To overcome these limitation, we propose a receding-horizon implementation of Problem

(5.9) in the section on A Receding-Horizon Algorithm for P-AMoD. Moreover, future requests may

be interpreted as the expected number of future transportation requests (which may be learned from

historical data and demand models): accordingly, the model proposed in this section may be used

for planning on timescales of days and hours, akin to the Day-Ahead-Market already in use in the

electric power network [Kirschen and Strbac, 2004].

A spectrum of models to predict and control power flows are available, ranging from high-

fidelity nonlinear AC models, which fully capture the physical behavior of the network, to linear

DC models which assume constant voltage magnitudes, neglect reactive power and line resistances,
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and assume that the phase angle differences between buses are small [Glover et al., 2011]. While the

DC model has some shortcomings, chiefly the inability to handle voltage constraints [Hogan, 1996]

and system-dependent accuracy [Stott et al., 2009], it offers several benefits that have resulted in

its wide industry use. The DC model’s linearity makes it amenable to large-scale optimization and

easy to integrate within the economic theory upon which the transmission-oriented market design is

based on [Stott et al., 2009]. Most importantly, the DC model is used by ISOs to calculate locational

marginal prices for wholesale electricity transactions [Overbye et al., 2004]. Hence, the DC model is

appropriate for high-level synthesis of joint control policies such as those considered in this work.

5.3 Solution Algorithms

The number of variables of the P-AMoD problem (5.9) is (M+1)|E|+MC(T+1)+|VR|C+T (|G|+|B|).
The size of the edge set E is |E| = Θ((|ER|+ |S|)CT ), and the number of customer demands admits

an upper bound M = O(|VR|2T ), since each customer demand is associated with an origin, a

destination, and a departure time. The size of the problem is dominated by the customer flow

variables in the road network – the number of such variables is M |E| = O((|VR|2T )(|ER|+ |S|)CT ).

Consider a typical problem with 25 road nodes, 200 road links, 30 charge levels, and a horizon of 20

time steps. Such problem results in a number of variables on the order of 2 · 109, which can not be

solved even by state-of-the-art solvers on modern hardware [Mittelmann, 2016].

In this section, we propose a bundling procedure that collects multiple customer demands in a

single customer flow without loss of information. The procedure allows one to reduce the number

of network flows to O(|VR|): as a result, the size of the prototypical problem above is reduced to

4 · 106 variables, well within reach of modern solvers. The procedure relies on the notion of bundled

customer flow,

Definition 5.3.1 (Bundled customer flow). Consider the set of customer requests

{vm, wm, tm, λm}Mm=1. Denote the set of customer destinations as D := {∪Mm=1wm}. For a given

destination dB ∈ D, we define a bundled customer flow as a function fB,dB (u,v) : E 7→ R≥0 that

satisfies

∑
u:(u,v)∈E

fB,dB (u,v) +
∑

m∈{1,...,M}:
wm=dB

1vv=vm1tv=tmλ
cv,in
m =

∑
w:(v,w)∈E

fB,dB (v,w) +
∑

m∈{1,...,M}:
wm=dB

1vv=wmλ
tv,cv,out
m , ∀v ∈ V, (5.10a)

C∑
c=1

λc,inm = λm, ∀m ∈ {1, . . . ,M} : wm = dB , (5.10b)

T∑
t=1

C∑
c=1

λt,c,outm = λm, ∀m ∈ {1, . . . ,M} : wm = dB . (5.10c)
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Intuitively, the bundled customer flow for a given destination dB can be thought of as the sum of

customer flows (i.e., network flows satisfying Eq. (5.1)) for all customer requests whose destination

is node dB . A bundled customer flow is an equivalent representation for a set of customer flows

belonging to customer requests sharing the same destination. The next lemma formalizes this

intuition.

Lemma 5.3.2 (Equivalency between customer flows and bundled customer flows). Consider a

network G(V, E) and a set of customer requests {vm, wm, tm, λm}Mm=1. Assume there exists a bun-

dled customer flow {fB,dB (u,v)}(u,v)∈E that satisfies Equation (5.10) for a destination dB ∈ D.

Then, for each customer request {vm, dB , tm, λm} with destination dB, there exists a customer

flow fm(u,v) that satisfies Eq. (5.1). Furthermore, for each edge (u,v) ∈ E, fB,dB (u,v) =∑
m∈{1,...,M}:wm=dB

fm(u,v).

Proof sketch: The proof is constructive. Define as path flow a network flow that has a fixed

intensity on edges belonging to a path without cycles from the origin to the destination and zero

otherwise. The flow decomposition algorithm [Ahuja et al., 1993, Ch. 3.5] is used to decompose the

bundled customer flow into a collection of path flows, each with a single origin node v ∈ V and

destination node w ∈ V with vw = dB . The customer flow for customer request (vm, dB , t, λ) is then

obtained as the sum of path flows leaving origin nodes {v = (vm, tm, c)}Cc=1 with total intensity λm.

We can leverage the result in Lemma 5.3.2 to solve the P-AMoD problem in terms of bundled

customer flows, thus dramatically decreasing the problem size. The next theorem formalizes this

intuition.

Theorem 5.3.3 (P-AMoD with bundled customer flows). Consider the following problem, referred

to as the bundled P-AMoD problem:

minimize
f0,fB,dB

,λc,in
m ,

λt,c,out
m ,NF ,θ,p

VTTM + VDDv + VB + CG (5.11)

subject to (5.10) ∀dB ∈ D,

(5.2), (5.3), (5.4), (5.7), and (5.8),

where each instance of
∑M
m=1 fm in the cost function and in Equations (5.2), (5.3), (5.4), (5.7), and

(5.8) is replaced by
∑
dB∈D fB,dB . The bundled P-AMoD problem (5.11) admits a feasible solution

if and only if the P-AMoD problem (5.9) admits a solution. Furthermore, the optimal values of

Problem (5.9) and Problem (5.11) are equal.

Proof. (i) The bundled P-AMoD problem admits a solution if the P-AMoD problem admits a solu-

tion. Consider a solution to the P-AMoD problem. For each destination node, define the bundled
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flow as the sum of the customer flows for customers directed to that destination:

fB,dB =
∑

m:wm=dB

fm ∀dB ∈ B.

It is easy to verify that the resulting network flow satisfies Eq. (5.10). Also, the customer flows satisfy

Equations (5.2), (5.3), (5.4), (5.7), and (5.8) and, for every edge, by construction
∑
dB∈B fB,dB =∑

dB∈B
∑
m:wm=dB

fm =
∑
m fm. Therefore the set of bundled customer flows {fB,dB}dB∈D satisfies

Equations (5.2), (5.3), (5.4), (5.7), and (5.8) where each instance of
∑
m∈[1,M ] fm is replaced by∑

dB∈D fB,dB .

(ii) The P-AMoD problem admits a solution if the bundled P-AMoD problem admits a solution.

Lemma 1 shows that, if there exists a set of bundled flows that satisfy Problem (5.11), then there

exists a set of customer flows that satisfy Equation (5.1). Furthermore, for each edge,
∑
m fm =∑

dB∈B fB,dB . Since the bundled flows satisfies the modified version of Equations (5.2), (5.3), (5.4),

(5.7), and (5.8), the customer flows also satisfy them.

(iii) The bundled P-AMoD problem and the P-AMoD problem have the same cost. Due to Lemma

1,
∑
m fm =

∑
dB∈B fB,dB . The claim follows from the definition of the cost in Problem (5.11).

The optimization problem in (5.11) can be solved with a number of variables that is O((|VR|+
1)|E| + MC + |VR|C + T (|G| + |Ep| + |B|)). To see this, note that in Equation (5.10) the variables

{λt,c,out
m }{m,t,c} only appear as part of the sum

∑
m∈{1,...,M}:wm=dB

λt,c,out
m and therefore may be re-

placed by the smaller set of variables {λt,c,out
dB

}{dB ,t,c}, where λt,c,out
dB

:=
∑
m∈{1,...,M}:wm=dB

λt,c,out
m ,

without loss of generality. The number of variables grows quadratically with the number of nodes

in the road network, and grows linearly with the number of edges in the road network, the time

horizon, the number of charge levels, and the number of nodes, edges, and generators in the power

network. Crucially, the size of Problem (5.11) does not depend on the number of customer requests.

5.4 Distributed solution to the P-AMoD problem

The model and solution algorithms presented in the previous sections assume that the TSO and

the ISO both wish to maximize social welfare for given generation costs; also, in order to compute

the socially optimal solution to the P-AMoD problem, the TSO and the ISO must be willing to

share their private information (e.g. customer transportation requests and power generation costs).

In this section, we provide theoretical results and algorithmic tools to overcome these unrealistic

assumptions. In particular, we pose the P-AMoD problem as a perfectly competitive market where

self-interested power generator operators sell power to the power network, a self-interested TSO buys

and sells power from the power network, and a non-profit ISO acts as a market broker (similar to

the model in [Wang et al., 2012]). In this framework, we show that the socially optimal solution to

the P-AMoD problem is also a general equilibrium [Kirschen and Strbac, 2004] for the TSO and the
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power generator operators if the ISO sets the price of electricity through Locational Marginal Prices.

Next, we propose a distributed privacy-preserving algorithm that the TSO and the ISO can use to

compute the equilibrium prices without sharing private information on transportation demand or

generation costs.

5.4.1 A general equilibrium

Theorem 5.4.1 (The socially optimal solution of the P-AMoD problem is a general equilibrium).

Consider an optimal solution {f?m, λc,in?m , λt,c,out?m , N?
F , θ

?, p?} to the P-AMoD Problem (5.9). Also

consider a perfectly competitive market where a self-interested TSO solves the Vehicle Routing and

Charging problem (5.6) by selecting variables {fm, λc,inm , λt,c,outm , NF }, self-interested power generator

operators sell power to the network by determining the revenue-maximizing power generation schedule

{p}, and a non-profit ISO acts as a market broker by setting locational marginal prices and controlling

phase angles {θ}. Then ({f?m, λc,in?m , λt,c,out?m , N?
F }, {θ?}, {p?}) is a general equilibrium.

Proof. It is easy to show that the optimal solution to the P-AMoD problem also maximizes the

revenue of the power generator operators (see e.g. [Wang et al., 2012, Sec. 3]) if locational marginal

pricing is used. Thus, we focus on showing that the optimal solution to the P-AMoD problem is

also an optimal solution to the TSO’s problem (5.6).

The key insight in the proof is that that the term VE in the cost function of the Vehicle Routing

and Charging problem (5.6) captures the marginal cost imposed by the TSO on the power network,

aligning the TSO’s incentives with the social optimum.

For ease of notation, we rewrite Equations (5.1)-(5.2) and (5.3)-(5.4) as respectively

feq
TSO(fm, λ

c,in
m , λt,c,outm , NF ) = 0, (Eq. (5.1)-(5.2)), with dual variables λeq

TSO,

f ineq
TSO(fm, λ

c,in
m , λt,c,outm , NF ) ≤ 0, (Eq. (5.3)-(5.4)), with dual variables µineq

TSO.

Analogously, we rewrite Equation (5.7b) and Equations (5.7c)-(5.7f) as respectively

feq
ISO(fm, θ, p) = 0, (Eq. (5.7b)), with dual variables λeq

ISO,

f ineq
ISO (fm, θ, p) ≤ 0, (Eq. (5.7c)-(5.7f)), with dual variables µineq

ISO .

Note that Equations (5.7b) and (5.7f) are the only constraints that depend both on variables

controlled by the TSO (namely, {fm}, and specifically the charging and discharging schedule of the

electric vehicles) and on variables controlled by the ISO and the power generators (namely, {θ} and

{p}).
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The KKT stationarity conditions for the P-AMoD Problem (5.9) are

∂(VTTM + VDDV + VB)

∂fm(v,w)
+ λeq

TSO ·
∂feq

TSO

∂fm(v,w)
+ µineq

TSO ·
∂f ineq

TSO

∂fm(v,w)

+ λeq
ISO ·

∂feq
ISO

∂fm(v,w)
+ µineq

ISO ·
∂f ineq

ISO

∂fm(v,w)
= 0, ∀m ∈ {0, . . . ,M}, (v,w) ∈ E , (5.12a)

λeq
TSO ·

∂feq
TSO

∂λc,inm

= 0, ∀c ∈ {0, . . . , C},m ∈ {0, . . . ,M}, (5.12b)

λeq
TSO ·

∂feq
TSO

∂λt,c,outm

= 0, ∀c ∈ {0, . . . , C}, t ∈ {1, . . . , T},m ∈ {0, . . . ,M}, (5.12c)

λeq
TSO ·

∂feq
TSO

∂NF (v)
= 0, ∀v ∈ V, (5.12d)

λeq
ISO ·

∂feq
ISO

∂θ(v, t)
+ µineq

ISO ·
∂f ineq

ISO

∂θ(v, t)
= 0, ∀v ∈ B, t ∈ {1, . . . , T}, (5.12e)

∂CG
∂p(g, t)

+ λeq
ISO ·

∂feq
ISO

∂p(g, t)
+ µineq

ISO ·
∂f ineq

ISO

∂p(g, t)
= 0, ∀g ∈ G, t ∈ {1, . . . , T}. (5.12f)

We show that {f?m, λc,in?m , λt,c,out?
m , N?

F } is an optimal solution to the TSO’s Vehicle Routing and

Charging Problem (5.6) for fixed {θ?} and {p?}.

For a given set of variables {θ?} and {p?}, the KKT conditions for Problem (5.6) are

∂(VTTM + VDDV + VB)

∂fm(v,w)
+

∂(VE)

∂fm(v,w)
+ λeq

TSO ·
∂feq

TSO

∂fm(v,w)
+ µineq

TSO ·
∂f ineq

TSO

∂fm(v,w)
= 0,

∀m ∈ {0, . . . ,M}, (v,w) ∈ E , (5.13a)

λeq
TSO ·

∂feq
TSO

∂λc,inm

= 0, ∀c ∈ {0, . . . , C},m ∈ {0, . . . ,M}, (5.13b)

λeq
TSO ·

∂feq
TSO

∂λt,c,outm

= 0, ∀c ∈ {0, . . . , C}, t ∈ {1, . . . , T},m ∈ {0, . . . ,M}, (5.13c)

λeq
TSO ·

∂feq
TSO

∂NF (v)
= 0, ∀v ∈ V. (5.13d)

The second term in Eq. (5.13a) is

∂(VE)

∂fm(v,w)
= 1(v,w)∈ESp(v,w)δcvv

where δcvv = δc+vv if cw > cv and δcvv = δc−vv otherwise.

Leveraging Eq. (5.8), the last two terms in Eq. (5.12a) can be rewritten as
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λeq
ISO ·

∂feq
ISO

∂fm(v,w)
+ µineq

ISO ·
∂f ineq

ISO

∂fm(v,w)
=

∑
l∈B

T∑
t=1

λeq
ISO(l, t)JC

[
δc+MP,R(l)1(v,w)∈M+

P,G
(l,t)

+ δc−MP,R(l)1(v,w)∈M−
P,G

(l,t)

]
+

∑
l∈B

T∑
t=1

µineq
ISO (l, t)JC

[
δc+MP,R(l)1(v,w)∈M+

P,G
(l,t)

+ δc−MP,R(l)1(v,w)∈M−
P,G

(l,t)

]
=

JCδcvv
∑
l∈B

T∑
t=1

[(
1
(v,w)∈M+

P,G
(l,t)

+ 1
(v,w)∈M−

P,G
(l,t)

)(
λeq
ISO(l, t) + µineq

ISO (l, t)
)]
.

Every edge (v,w) ∈ ES corresponds to a single load node l ∈ B : vv = MP,R(l) at a single time

t = tv: thus, the expression above can be rewritten as

λeq
ISO ·

∂feq
ISO

∂fm(v,w)
+ µineq

ISO ·
∂f ineq

ISO

∂fm(v,w)
= JCδcvw

(
λeq
ISO(lvv , tv) + µineq

ISO (lvv , tv)
)
,

where lvv is such that vv =MP,R(lvv).

The vector (λeq
ISO +µineq

ISO ) denotes the locational marginal price of energy at each bus in the power

network, as discussed in the Linear model of power network section. That is,

p(v,w) = JC
(
λeq
ISO(lvv , tv) + µineq

ISO (lvv , tv)
)
, where lvv : vv =MP,R(lvv ).

(note that p(v,w) is the price per discrete energy level, whereas (λeq
ISO(l, t) + µineq

ISO (l, t)) is the price

per unit of energy). Therefore, Equations (5.13a) and (5.12a) are identical. As a result, the KKT

conditions for the TSO’s problem (5.6) are verified whenever the KKT conditions for the P-AMoD

problem (5.9) are verified, and {f?m, λc,in?m , λt,c,out?
m , N?

F } is an optimal solution to Problem (5.6) for

fixed {θ?} and {p?}.
In conclusion, {f?m, λc,in?m , λt,c,out?

m , N?
F } is the solution to the TSO’s VRCP (5.6) if the prices

are set according to LMPs. In addition, the generation schedule {p?} is the optimal (revenue-

maximizing) schedule for self-interested power generator operators if the prices are set according to

LMPs [Wang et al., 2012, Sec. 3].

That is, the set of variables ({f?m, λc,in?m , λt,c,out?
m , N?

F }, {θ?}, {p?}) is a general equilibrium for

a perfectly competitive market with a self-interested TSO, self-interested power generators, and a

non-profit ISO. This concludes the proof.

5.4.2 A distributed algorithm for the P-AMoD problem

Next, we show that the TSO and the ISO [Bertsekas, 1999, Ch. 6.4] can compute the socially

optimal solution (and thus the general equilibrium) without disclosing their private information.
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Our approach is similar to the one in [Alizadeh et al., 2017].

Consider a partial Lagrangian relaxation of Problem (5.9), i.e.

minimize
fm,λ

c,in
m ,λ

t,c,out
m ,NF ,θ,p

VTTM (fm) + VDDv(fm) + VB(fm) + CG(p) + λeq
ISOf

eq
ISO(fm, θ, p) + µineq

ISO f
ineq
ISO (fm, θ, p)

(5.14a)

subject to feq
TSO(fm, λ

c,in
m , λt,c,outm , NF ) = 0, (5.14b)

f ineq
TSO(fm) ≤ 0 (5.14c)

In the dual decomposition algorithm, the TSO and the ISO iteratively optimize Problem (5.14)

with respect to their own decision variables for a fixed value of the Lagrangian multipliers λeq
ISO and

µineq
ISO . Specifically, at step k of the iterative procedure, the TSO solves

minimize
fkm,λ

c,in,k
m ,λ

t,c,out,k
m ,Nk

F

VTTM (fkm) + VDDv(fkm) + VB(fkm) + λeq,k−1
ISO feq

ISO(fkm) + µineq,k−1
ISO f ineq

ISO (fkm), (5.15a)

subject to feq
TSO(fkm, λ

c,in,k
m , λt,c,out,km , Nk

F ) = 0, (5.15b)

f ineq
TSO(fkm) ≤ 0. (5.15c)

The discussion in the Section on A General Equilibrium shows that minimizing the last two terms

of Equation (5.15a) is equivalent to minimizing the cost of electricity VE with prices (λeq,k−1
ISO +

µineq,k−1
ISO ). Thus, Problem (5.15) is equivalent to the Vehicle Routing and Charging Problem (5.6).

Analogously, at step k the ISO solves

minimize
θk,pk

CG(pk) + λeq,k−1
ISO feq

ISO(θk, pk) + µineq,k−1
ISO f ineq

ISO (θk, pk) (5.16)

The Lagrangian multipliers are then updated by the ISO as

λeq,k
ISO = λeq,k−1

ISO + αk
(
feq
ISO(fkm, θ

k, pk)
)

µineq,k
ISO = max

(
0, µineq,k−1

ISO + αk
(
f ineq
ISO (fkm, θ

k, pk)
))

for an appropriately chosen step size αk (see Lemma 5.4.2 below), and the TSO is informed of the

new proposed price of electricity (i.e., the new value of the sum of the Lagrange multipliers).

Note that the ISO only needs to know the TSO’s proposed charging schedule to compute

f eq
ISO(fkm, θ

k, pk) and f ineq
ISO (fkm, θ

k, pk); in particular, the TSO does not need to disclose the cus-

tomers’ demand or the planned vehicle routes. Conversely, the ISO only needs to inform the TSO

of the proposed price of electricity: the generation costs and the power demands remain private.

The full dual decomposition algorithm is reported in Algorithm 3.

The next lemma proves that, if the step size αk is “small enough”, the algorithm converges.
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Algorithm 3: Dual decomposition distributed algorithm for the P-AMoD problem

k ← 1
ISO sets λeq,0

ISO , µ
ineq,0
ISO ← dual solution to Problem (5.7) with {dl} = {dl,e}.

repeat
ISO informs TSO of λeq,k−1

ISO + µineq,k−1
ISO

TSO sets {fkm, λc,in,km , λt,c,out,k
m , Nk

F } ←solution to Problem (5.6) with p(v,w) =

JC

(
λeq,k−1

ISO + µineq,k−1
ISO

)
ISO sets {θk, pk} ← solution to Problem (5.16)
TSO informs ISO of proposed charging schedule fkm.

ISO updates λeq,k
ISO ← λeq,k−1

ISO + αkf
eq
ISO(fkm, θ

k, pk)

ISO updates µineq,k
ISO ← max(0, µineq,k−1

ISO + αkf
ineq
ISO (fkm, θ

k, pk))
k ← k + 1

until ‖λeq,k
ISO − λ

eq,k−1
ISO ‖2 + ‖µineq,k

ISO − µineq,k−1
ISO ‖2 ≤ ε2

Lemma 5.4.2 (Convergence of Algorithm 3). If the step size αk is chosen so that

0 < αk <2 [− (VTTM (f?m) + VDDv(f
?
m) + VB(f?m) + CG(p?))

+
(
VTTM (fkm) + VDDv(f

k
m) + VB(fkm) + CG(pk)

)]
/
(
‖f eq

ISO(fkm, θ
k, pk)‖2 + ‖f ineq

ISO (fkm, θ
k, pk)‖2

)
, (5.17)

then Algorithm 3 converges to the optimal solution to Problem (5.9).

Proof. The proof follows immediately from Proposition 6.3.1 in [Bertsekas, 1999].

Note that the optimal value of Problem (5.9), (VTTM (f?m) + VDDv(f
?
m) + VB(f?m) + CG(p?)), is

not known. The optimal value of the dual to (5.9) at step k provides a lower bound to the optimal

value of the problem — however, neither the TSO nor the ISO can compute such value without access

to the other’s private information. In practical applications, a small, fixed αk and an appropriate

stopping criterion are used to ensure convergence.

5.5 Numerical Experiments

We study a hypothetical deployment of an AMoD system to satisfy medium-distance commut-

ing needs in the Dallas-Fort Worth metroplex, with the primary objective of investigating the in-

teraction between such system and the Texas power network. Specifically, we study a ten-hour

interval corresponding to one commuting cycle, from 5 a.m. to 3 p.m., with 30-minute resolu-

tion. Data on commuting patterns is collected from the Census Transportation Planning Prod-

ucts (CTPP) 2006-2010 Census Tract Flows, based on the American Communities Survey (ACS)

[Federal Highway Administration, 2014]. Departure times are gathered from ACS data
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[United States Census Bureau, 2017]. Census tracts in the metroplex are aggregated in 25 clus-

ters, as shown in Figure 5.3. We only consider trips starting and ending in different clusters: the

total number of customer requests is 400,532. The commuters’ value of time is set equal to $24.40/hr,

in accordance with DOT guidelines [U.S. Department of Transportation, 2015].

The road network, the road capacities, and the travel times are obtained from OpenStreetMap

data [Haklay and Weber, 2008, Boeing, 2017] and simplified. The resulting road network, containing

25 nodes and 147 road links, is shown in Figure 5.3.

Road links
Districts

Generators

Transmission lines

Figure 5.3: Left: Census tracts and simplified road network for Dallas-Fort Worth. Right: Texas
power network model (from [Illinois Center for a Smarter Electric Grid (ICSEG), 2016]). The ca-
pacity of each edge equals the overall capacity of roads connecting the start and end clusters. The
travel time between two nodes is the minimal travel time between the centroids of the corresponding
clusters.

The battery capacity and power consumption of the EVs are modeled after the 2017 Chevro-

let Bolt [Chevrolet, 2017]. The cost of operation of the vehicles, excluding electricity costs, is

48.6c/mile, in accordance with DOT guidelines [Bureau of Transportation Statistics, 2016]. The

fleet consists of 150,000 vehicles, i.e. 1 AMoD vehicle for every 2.67 customers, similar to the 2.6

ratio in [Spieser et al., 2014]. To represent the possibility that vehicles might not begin the day fully

charged, each EV starts the day with a 50% battery charge and is required to have the same level

of charge at the end of the simulation.

We adopt a synthetic model of the Texas power network provided in

[Illinois Center for a Smarter Electric Grid (ICSEG), 2016] and portrayed in Figure 5.3. The model

provided does not contain power generation costs: we labeled each generator according to its source

of power and assigned generation costs according to U.S. Energy Information Administration esti-

mates [EIA, 2017]. Furthermore, the model is time-invariant; to model the time evolution of power

loads and the availability of solar and wind power we used historical data from ERCOT, Texas’s

ISO [Electric Reliability Council of Texas (ERCOT), 2017], and we imposed ramp-up and ramp-

down constraints of 10%/hr and 40%/hr on the generation capability of nuclear and coal power

plants, respectively.

We compare the results of three simulation studies. In the baseline simulation study, no electric
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vehicles are present: we consider the power network in isolation subject only to exogenous loads. In

the P-AMoD simulation study, we solve Problem (5.11), which embodies the cooperation between

the TSO and the ISO. Finally, in the uncoordinated simulation study, we first solve the TSO’s Vehi-

cle Routing and Charging problem with fixed electricity prices obtained from the baseline simulation

study; we then compute the load on the power network resulting from the vehicles’ charging and

discharging, and solve the ISO’s Economic Dispatch problem with the updated loads. The uncoor-

dinated simulation study captures the scenario where the TSO attempts to minimize its passengers’

cost while disregarding the coupling with the power network.

Table 5.1 and Figure 5.4 show the results.

Baseline P-AMoD Uncoord.
Avg. cust. travel time [h] - 1.2532 1.2532

Tot. energy demand [GWh] 517.498 520.541 520.979

Tot. electricity expenditure [k$] 39,604.71 39,264.84 39,629.50
w.r.t. baseline [k$] -339.87 +24.79

Avg. price in DFW [$/MW] 78.68 75.79 77.47

TSO tot. elec. expenditure [k$] - 227.98 296.82

Table 5.1: P-AMoD simulation results (one commuting cycle, 10 hours).

The quality of service experienced by TSO customers, measured by the average travel time, is

virtually identical in the P-AMoD and in the uncoordinated case. The energy demand of the AMoD

system is also very similar in both cases. On the other hand, the effect of coordination on the overall

electricity expenditure is noticeable. Coordination between the TSO and the ISO causes a reduction

in the total expenditure for electricity of $339,870 per commuting cycle compared to the baseline

case, despite the increased demand! In other words, a P-AMoD system allows a TSO to deliver

on-demand transportation without an increase in overall electricity expenditure – a remarkable, and

perhaps surprising, finding. Instead, in the uncoordinated case, the total expenditure for electricity

is increased by $24,790. This corresponds to a difference of $364,066 between the P-AMoD case and

the uncoordinated case, which compounds to savings in electricity expenditure of $182M per year

(assuming two commuting cycles per day and 250 work days per year).

Who benefits from the reduction in energy expenditure? From the last two rows in Table 5.1,

one can see that the average price of electricity in the P-AMoD case is 2.16% lower than in the

uncoordinated case in Dallas-Fort Worth (corresponding to savings of $122.3M/year). The energy

expenditure of the TSO in the P-AMoD case is 23.5% lower than in the uncoordinated case (a

saving of $69,740 per commuting cycle, corresponding to close to $35M/year). Finally, electricity

customers outside of Dallas experience a small reduction of 0.75% in their energy expenditure. Thus,

the majority of the benefits of coordination are reaped by customers of the power network in the

region where the AMoD system is deployed; the TSO also benefits from a noticeable reduction in

its electricity expenditure.
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Figure 5.4: LMPs in Texas between 9 a.m. and 11:30 a.m. The presence of the AMoD fleet can
reduce locational marginal prices; coordination between the TSO and the ISO can yield a further
reduction.

Figure 5.4 shows this phenomenon in detail. The presence of the AMoD system results in a

decrease in the LMPs with respect to the baseline case (11-11:30 a.m.). As electricity prices increase,

empty vehicles travel to carefully chosen stations to sell their stored energy back to the network:

this results in reduced congestion and lower prices in the power network, even in the absence of

coordination. Crucially, coordination between the TSO and the ISO can result in further decreases

in the price of electricity with respect to the uncoordinated case (9-9:30 a.m.), significantly curtailing

the impact of the AMoD system on the power network. By leveraging their battery capacities and

acting as mobile storage units, the EVs are able to reduce congestion in the power transmission

network: this results in lower LMPs in the Dallas-Fort Worth region, and hence lower electricity

expenditure. Simulations were carried out on commodity hardware (Intel Core i7-5960, 64 GB

RAM) and used the MOSEK LP solver. The simulations required 3,923s for the P-AMoD scenario,

2,885s for the uncoordinated scenario, and 4.55s for the baseline scenario. While such computation

times could be improved by using high-performance computational hardware, in the next section

we present a receding-horizon algorithm for P-AMoD which, in addition to the intrinsic robustness

benefits of closed-loop control, can be solved in seconds on commodity hardware.

5.6 A Receding-Horizon Algorithm for P-AMoD

Leveraging the structural insights from the network flow optimization problem of the previous sec-

tions, along with a few mild assumptions, we next devise a receding-horizon algorithm that is robust

to the uncertainty in future demand. Additionally, this algorithm trades off some suboptimality,

which we characterize with simulations, for very fast computation times.
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To reduce the computational complexity of the optimization problem, we decouple the customer

routing process from the P-AMoD optimization. The key assumption is that customer-carrying trips

follow pre-computed routes and are never interrupted by a charging/discharging event. Formally,

customer trips from node i ∈ VR to node j ∈ VR follow a fixed route ri→j with an associated travel

time of ti→j and a required charge of ci→j . Thus, customer flows {fB,dB (u,v)}(u,v),dB are no longer

part of the optimization variables and Equation (5.10a) is redundant. However, the initial and

final charge of the customer-carrying vehicles {λc,inm } and {λt,c,out
m } remain optimization variables.

The following constraint ensures that charge is conserved along customer routes, that is, vehicles

traveling from i to j and departing at time t at charge level c arrive at time t + ti→j with charge

c− ci→j :

λt,c,outm =

λ
c+cvm→wm ,in
m if tm = t− tvm→wm

0 otherwise
(5.18)

for all t ∈ {1, . . . , T}, c ∈ {1, . . . , C},m ∈ {1, . . . ,M}.
The cost function is also modified to remove the customers’ travel times, and road congestion

constraints are adjusted to account for the traffic induced by customer-carrying vehicles. Specifically,

the congestion induced by customer-carrying vehicles is fixed for given customer demand, since

customers follow pre-defined routes. We denote the residual capacity of a road link (vv, vw) ∈ ER at

time t (i.e., the capacity of the road link one customer-carrying trips are accounted for) as f (vv,vw),t.

The congestion constraints on road links (5.3) becomes

C∑
cv=1

f0(v,w) ≤ f (vv,vw),tv , ∀(vv, vw) ∈ ER, tv ∈ {1, . . . , T}. (5.19)

Only rebalancing vehicles traverse the charging and discharging links: thus, the capacity con-

straint of the charging stations (5.4) and the coupling equation (5.8) are rewritten as

∑
(v,w)∈ES :
vv=vw=v

f0(v,w) ≤ Svv , ∀v ∈ S, t ∈ {1, . . . , T}. (5.20)

dl(t) = dl,e(t) + JCδc
+
MP,R(l)

∑
(v,w)∈
M+

P,G(l,t)

f0(v,w) + JCδc
−
MP,R(l)

∑
(v,w)∈
M−P,G(l,t)

f0(v,w),∀l ∈ L, t ∈ {1, . . . , T}.

(5.21)

In order to adapt the problem for use in a receding-horizon implementation, several further

modifications are required.
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Outstanding customers

In Problem (5.9), future customer demand is assumed to be perfectly known – conversely, in a real

implementation, unforeseen transportation requests may be submitted at any time. As a result,

some customers may not be assigned to a vehicle when they arrive at their departure node.

We denote the set of such waiting customers as outstanding requests. Outstanding requests are

assumed to wait at the departure station until a suitable vehicle is available. The departure time of

the outstanding request is an optimization variable; the goal is to service such requests as quickly

as possible.

Formally, outstanding requests are characterized as the set of Mo tuples {(vmo , wmo , λmo)}Mo

mo=1,

where vmo ∈ VR is the outstanding request’s origin location, wmo ∈ VR is the outstanding request’s

destination location, and λmo is the average arrival rate (i.e. the number of outstanding customers

divided by the duration of one time step).

For each outstanding request mo ∈ [1, . . . ,Mo], the set of variables {λt,c,inmo }c,t denotes the cus-

tomer rate departing at time t at charge level c; in analogy with customer requests, the set of

variables {λt,c,out
mo }t,c denotes the customer rate reaching the destination at time t with charge level

c. Both are optimization variables.

The following constraints ensure that outstanding requests are serviced within the optimization

horizon, in analogy with Eq. (5.10b), (5.10c) and (5.18) for regular customers:

T∑
t=1

C∑
c=1

λt,c,inmo = λmo , ∀mo ∈ {1, . . . ,Mo}, (5.22a)

T∑
t=1

C∑
c=1

λt,c,out
mo = λmo , ∀mo ∈ {1, . . . ,Mo}, (5.22b)

λt,c,out
mo = λ

t−tvmo→wmo ,c+cvmo→wmo ,in
mo ∀t ∈ {1, . . . , T}, c ∈ {1, . . . , C},

mo ∈ {1, . . . ,Mo}. (5.22c)

The overall wait time of oustanding customers can then be computed as

T oM =

Mo∑
mo=1

t

C∑
c=1

λt,c,inmo

Vehicle end charge

In order to achieve good closed-loop performance and trade off between servicing present demand

and ensuring vehicles are available for future customers, the final charge level of rebalancing vehicles
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is constrained to be higher than a given threshold CT :

f0(v,w) = 0 ∀(v,w) ∈ E : cw ≤ CT , tw = T (5.23)

Feasibility

Problem (5.9) is not guaranteed to admit a solution for arbitrary transportation requests and arbi-

trary numbers of vehicles. To ensure persistent feasibility of the receding-horizon controller, slack

variables (associated with a high cost) are introduced in Equations (5.10b), (5.10c), (5.22a), and

(5.22b), allowing customer requests to be dropped to preserve feasibility. As a result, so long as

the Economic Dispatch problem is feasible, the P-AMoD problem always admits a feasible solution

where no customers are transported and no vehicle moves, charges, or discharges, ensuring persistent

feasibility.

Fractional output

The output of Problem (5.9) is, in general, fractional: therefore it can not directly be used for control

of a P-AMoD system. To overcome this, control actions are computed by sampling the first time step

of the fractional optimal solution to the problem in a receding-horizon framework. For each customer

request, we sample the charge levels of the vehicles assigned to the request; charging/discharging

and rebalancing actions for customer-empty vehicles are also sampled. In detail,

• Customer requests: for each customer request m departing at time t = 1, the charge level

of the customer-carrying vehicles that will be assigned to the request is selected by drawing

dλme samples (that is, one sample per customer) according to the distribution of {λc,inm }c.
Analogously, the departure time and charge level of vehicles assigned to outstanding customer

request mo are computed by drawing dλmoe samples according to the distribution of {λt,c,inmo }t,c.

Customers are then assigned to vehicles with a charge level corresponding to the sampled

charge level. If no vehicles at the chosen charge level are available, a fall-back strategy is

adopted where customers are assigned to the closest vehicle with charge sufficient to complete

the trip.

• Idle vehicles: charging, discharging, and rebalancing actions are sampled from the distribution

of the rebalancing flow {f0(v,w)}(v,w). Specifically, for each node v ∈ VR and each charge level

c ∈ {1, . . . , C}, a number of edges (v,w) corresponding to the number of vehicles charging,

discharging, or rebalancing at node v at charge c and time t = 1 are sampled according the

distribution of f0(v,w) : vv = v, tv = 1, cv = c. If the sampling procedure selects an edge

corresponding to a charging link, a charging task is chosen; if an an edge corresponding to a

discharging link is sampled, a discharging task is chosen; if an edge corresponding to a road
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link is sampled, a rebalancing task to the destination of the road link is chosen. The chosen

tasks are then assigned to idle vehicles.

The sampling procedure for customer requests and idle vehicles is detailed in the RHController

procedure in Algorithm 4.

Algorithm 4: Real-time receding-horizon algorithm for the P-AMoD problem

procedure RHController(Customer requests, vehicle states)

{f0, λ
c,in
m , λt,c,out

m , λt,c,inmo , λt,c,out
mo } ← Solve Problem (5.24)

for all customer request m with tm = 1 do
CustCharge(vm, wm) ←Sample dλme charge levels from {λc,inm }c

for all outstanding customer request mo do
DepartureTimes(mo) ←Sample dλme departure times from {λt,c,inmo }t
for all DepartureTime ∈ DepartureTimes(mo) do

if DepartureTime = 1 then
co ← Sample charge level from {λt,c,inmo

}c
CustCharge(vmo , wmo) ← append co

for all node v ∈ VR do
for all charge level c ∈ [1, . . . , C] do

r ←
∑

(v,w):vv=v,tv=1,cv=c, f0(v,w)
for a = 1, . . . , r do

(v,w)← Sample edge according to distribution of f0(v,w) with v s.t. vv = v, tv =
1, cv = c

if (v,w) is a charging link then
Task ← Charge at v

else if (v,w) is a discharging link then
Task ← Discharge at v

else if (v,w) is a road link then
Task ← Rebalance from vv to vw

IdleTasks(v, c) ← Append Task
return CustCharge, OutCustCharge, IdleTasks

5.6.1 A receding-horizon controller

We are now in a position to present the receding-horizon controller.

We denote the distance traveled by the rebalancing vehicles as

D0
V =

∑
(v,w)∈E

dvv,vwf0(v,w),

and the depreciation of the rebalancing vehicles’ batteries as

V 0
B =

∑
(v,w)∈ES

f0(v,w)|δcvv |dB .
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We define the receding-horizon suboptimal P-AMoD problem as

minimize
f0,λ

c,in
m ,λt,c,out

m ,

λt,c,in
mo ,λt,c,out

mo ,NF ,θ,p

T oM + VDD
0
V + V 0

B + CG (5.24)

subject to (5.10b), (5.10c), (5.18), (5.2), (5.22), (5.19), (5.20), (5.23), (5.7), and (5.21).

Problem (5.24) has O(|E|+MC + |VR|C + T (|G|+ |Ep|+ |B|)) variables: compared to Problem

(5.11), the problem size does not depend on the product of |E| and |VR|, resulting in an order-of-

magnitude reduction in the overall number of required variables for prototypical problems.

We assess the performance of the receding-horizon P-AMoD controller with an agent-based sim-

ulation based on the same case study considered in the previous section. The receding-horizon

problem is solved every two minutes with a 2-hour lookahead and a 30-minute time step. The

performance of the algorithm is compared with an uncoordinated receding-horizon controller that

optimizes the AMoD system’s operations under the assumption that electricity prices stay constant.

In order to characterize the randomized nature of the controller, ten trials are performed for each

case. Table 5.2 shows the results.

P-AMoD Greedy
Avg. cust. travel time 36’30” 36’47”

Tot. electricity expenditure [k$] 40,434.17 40,583.98
Avg. price in DFW [$/MW] 81.93 82.61

TSO tot. elec. expenditure [k$] 229.05 260.89

Table 5.2: Real-time power-in-the-loop algorithm simulation results (one commuting cycle, 10 hours).
Average over ten realizations.

Coordination results in savings of approximately $150,000 per commuting cycle (corresponding

to almost $75M/year) with respect to the uncoordinated algorithm. In particular, cooperation

between the TSO and the ISO results in 0.88% lower electricity prices in the Dallas Fort-Worth

area. The TSO’s expense in the coordinated case is comparable with the expense computed in the

Numerical Experiments, which represents an upper bound on the performance of a receding-horizon

P-AMoD controller. On the other hand, the average price of electricity in Texas increases by 1.7%

compared to the baseline case studied in the Numerical Experiments. This is not unexpected, as

we use a short 2-hour lookahead. An important direction of future research is to perform a detailed

sensitivity analysis, and in particular to explore how the lookahead time affects the tradeoff between

computational complexity, economic savings, and robustness of the algorithm to inaccuracies in

demand forecasting.

The receding-horizon P-AMoD problem was solved in an average of 2.09s; thus, the algorithm is

amenable to closed-loop control of large-scale systems.
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5.7 Conclusions and Future Work

In this chapter we studied the interaction between an AMoD system and the electric power network.

The model we proposed subsumes earlier models for AMoD systems and for the power network;

critically, it captures the coupling between the two systems and allows for their joint optimization.

We also proposed a numerical procedure to losslessly reduce the dimensionality of the P-AMoD

optimization problem (Eq. (5.11)), making realistic problems amenable to efficient numerical op-

timization on commodity hardware. We showed that the jointly optimal solution to the P-AMoD

problem is a general equilibrium, and we proposed a distributed privacy-preserving algorithm that

allows agents to compute such equilibrium without sharing private information about customer re-

quests, generation costs, or power demands. We applied our model and algorithms to a case study of

an AMoD deployment in Dallas-Fort Worth, TX. The case study showed that coordination between

the TSO and the ISO can result in a reduction in the overall electricity expenditure (despite the

increase in demand), while having a negligible impact on the TSO’s quality of service. Finally, we

presented a receding-horizon algorithm for P-AMoD that delivers computation times in the order of

seconds on commodity hardware and provides built-in robustness to uncertainty in future demand

at the price of some suboptimality.

This work opens multiple avenues of research. First, we plan to capture the impact of cooperation

between the TSO and the ISO on the power distribution network by incorporating convex optimal

power flow models. Second, we will extend the AMoD model to capture other modes of provision

of service, including heterogeneous fleets where vehicles may differ in size, seating capacity, and

battery capacity, and ride-pooling mechanisms where multiple customers with similar origins and

destinations can travel in the same vehicle. Third, the model of the power network considered in

this work does not capture ancillary services such as regulation and spinning reserves. We will

extend our model to capture those and evaluate the feasibility of using coordinated fleets of EVs

to aid in short-term control of the power network. Fourth, we plan to expand the breadth of our

case studies to include scenarios where the area of service of the TSO and ISO are similar. In

particular, we will study the effect of deployment of AMoD systems in multiple cities in Texas on

the state’s power network, as well as smaller, isolated power network, e.g. Hawaii’s. Finally, we wish

to explore the effect of TSO-ISO coordination on penetration of renewable energy sources, and to

determine whether large-scale deployment of AMoD systems can increase the fraction of renewable

power sources in the generation power mix.
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Conclusions

6.1 Summary

AMoD systems can reshape the fabric of our cities, with positive effect on safety, access to mobility,

and demand for parking infrastructure. However, the impact that these systems will have on traffic

congestion and the electric power network remains an active area of research.

AMoD systems will increase vehicle-miles traveled compared to private cars due to empty “rebal-

ancing” trips. If these trips take place on already-congested road, they could further increase traffic

congestion. On the other hand, centralized control of AMoD fleets enables coordinated, congestion-

aware routing strategies that can minimize the impact of empty trips on traffic and reduce the

travel times of customer-carrying and empty vehicles alike. We propose a network flow model for

AMoD systems in congested road network and rigorously prove that, under mild assumptions that

are substantially satisfied in major U.S. cities, it is always possible to replace personal vehicles with

an AMoD system without causing an increase in congestion for a given level of customer demand.

This analytical insight inspires two algorithms for congestion-aware control of AMoD systems. First,

we propose a receding-horizon routing algorithm for rebalancing vehicles; microscopic simulations

based on real taxi data in Manhattan show that the algorithm provides superior performance (in

terms of customer wait times and congestion) compared to state-of-the-art congestion-agnostic algo-

rithms. Next, we turn our attention to customer-carrying vehicles: we further leverage the network

flow model to design a randomized congestion-aware routing policy for customer-carrying as well as

rebalancing vehicles, and show that the algorithm holds promise to further reduce wait times and

road congestion.

AMoD systems are uniquely positioned to drive mass adoption of electric vehicles by mitigating

the downsides of limited EV range through fleet-wide customer assignment and charging policies.

However, large-scale adoption of EVs could put significant strain on the power network, causing large

increases in power prices and network instability. To mitigate this, policies for control of AMoD

89
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systems that account for the interaction with the power network (denoted as Power-in-the-loop

AMoD) are needed. To this end, we design a network flow model for AMoD systems that captures the

interaction with the electric power network and the time-varying nature of the joint system; we also

develop algorithmic tools to losslessly reduce the size of the resulting model, making it amenable to

efficient numerical optimization. Socially-optimal policies for joint control of AMoD systems and the

power network require cooperation between AMoD operators and power network operators: we show

that such cooperation can be enforced as a general economic equilibrium with appropriate pricing

and that the equilibrium prices can be computed with a distributed privacy-preserving mechanism.

Simulation results on a case study in Dallas-Fort Worth show that coordination can result in savings

of hundreds of millions of dollars per year for power network customers and tens of millions per

year for the AMoD operator; a receding-horizon algorithm is able to realize many of these gains in

a real-time setting, trading off optimality for fast computation times.

All in all, these results show that, far from being a threat to our cities, AMoD systems can not

only deliver massive benefits in terms of access to mobility and better land usage, but also deliver

(i) virtually no negative impact to urban congestion and (ii) very positive impacts on the electric

power network.

6.2 Contribution

Specifically, this thesis makes the following contributions:

Models We devise novel network flow models that capture the interaction between AMoD systems,

urban congestion, and the electric power network. In particular, we develop a time-invariant network

flow model that captures the impact of AMoD on urban congestion (Section 3.2). We then extend

the model to also capture time-varying customer demand, the state of charge of autonomous electric

vehicles, and, crucially, their interaction with the power network (Section 5.2). These models are

amenable to efficient optimization and incorporate a number of operational constraints relevant to

AMoD systems; as discussed in the next section, they can be readily extended to accommodate

alternative cost functions and additional operational constraints. We leverage the structure of the

AMoD models to reduce the number of variables in the problem with no loss in accuracy, thus

enabling the efficient optimization of large-scale problems (Section 5.3).

Structural properties of AMoD We explore the structural properties of the network flow mod-

els to gain insight into the fundamental limitations of the congestion-aware AMoD problem. Doing

so, we prove a (perhaps surprising) existential result with significant policy implications: under mild

assumptions, for a given level of transportation demand, AMoD systems can replace private vehicles

with no increase in congestion (despite the increase in vehicle-miles traveled) if empty vehicles are

properly routed. We verify that the assumptions underlying this result are substantially verified
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for major U.S. cities, and leverage the existential result to design efficient congestion-aware control

algorithms.

Efficient control algorithms We leverage the network flow models to design efficient control

algorithms for operational control of AMoD systems. In particular, we design two model-predictive

control algorithms and show that they are amenable to a real-time implementation:

• In Section 3.4, we propose a receding-horizon, congestion-aware routing algorithm for rebal-

ancing vehicles. The algorithm exploits the totally unimodular structure of the rebalancing

problem to compute congestion-free routes for empty vehicles. Its execution time on a proto-

typical case study in Manhattan is under 0.5s.

• In Section 5.6, we design a receding-horizon control algorithm for Power-in-the-loop AMoD

systems. The algorithm computes routes and charging schedules for rebalancing vehicles in

an AMoD system and accounts for their interaction with the electric power network with

the goal of reducing generation costs (and, indirectly, electricity prices). By leveraging the

models presented in Section 5.2 and simplifications that trade a small amount of optimality

for performance, it achieves computation times of approximately 2s on a prototypical case

study in Dallas-Fort Worth, TX.

We also leverage randomized routing schemes to design congestion-aware routing algorithms for

customer-carrying as well as rebalancing vehicles, and rigorously prove that the resulting solution

has a very small degree of suboptimality (Section 4.2). A receding-horizon implementation is beyond

the scope of this work: however, preliminary results on a case study in Manhattan suggest that such

an implementation could reduce customer service times by an additional 5%.

Distributed pricing mechanisms for P-AMoD We rigorously show that the socially optimal

solution to the P-AMoD problem is also a general equilibrium for self-interested AMoD operators

and power generator operators if the price of electricity is set by the ISO according to locational

marginal pricing. Computing locational marginal prices requires the ISO to have access to private

information from both power generators and the AMoD system: while generator operators routinely

share such data with the ISO, it is unlikely that an AMoD operator would be willing to share

information on customer demand with a third party. To overcome this difficulty, in Section 5.4 we

propose a dual decomposition algorithm that the AMoD operator and the ISO can use to compute

market-clearing prices in a distributed fashion and without disclosing private information, extending

previous results in [Alizadeh et al., 2017].

Case studies We assess the impact of congestion-aware AMoD and power-in-the-loop AMoD

through two high-fidelity case studies based on real-world data. In Section 3.5.3, we test the
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congestion-aware routing algorithm through a 24-hour microscopic simulation based on 500 000

real taxi trips in Manhattan, and show that congestion-aware control of AMoD systems can result

in a 22% decrease in service times for AMoD customers and lower congestion throughout the trans-

portation network. In Section 5.5, we study the impact of P-AMoD on a hypothetical deployment of

an AMoD system in Dallas-Fort Worth. Our results show that coordination between the transporta-

tion and the power network can reduce electricity prices compared to the case where no vehicles are

present, despite the increased demand; this results in savings of hundreds of millions of dollars per

year shared between power network customers and the AMoD operator, with no adverse impact on

service times for AMoD customers.

6.3 Future Directions

The potential impact of AMoD systems on the built environment is deep and multi-faceted. While

this work focuses on exploring the interaction between AMoD systems, urban congestion, and the

power network, the results in this thesis suggest a number of promising directions for future research.

Impact of AMoD systems on pollution The models developed in Chapter 5 focus on reducing

the cost of electricity generation (and, indirectly, electricity prices) by harnessing the interaction

between electric self-driving cars and the power network. However, a number of alternative opti-

mization objectives can be readily incorporated in the model. The use of AMoD systems to reduce

pollution is especially interesting. The interaction between AMoD systems and the power network

can be harnessed to reduce the adverse effects of pollution by (i) shifting the geographic impact of

pollution from urban roads to power plants (which are often located away from city centers) and (ii)

enabling wider adoption of clean energy sources such as wind and solar using the vehicles’ batteries

as a buffer to counter intermittent availability of renewables. In order to capture the impact of

pollution on human health, power plant emission models and microscopic air quality models (e.g.

[Byun and Schere, 2006, US EPA Office of Research and Development, 2018a]) can be leveraged to

assess the spatial impact of individual power plants on pollution. Population data and available epi-

demiological models (e.g. [US EPA Office of Research and Development, 2018b]) can then be used

to model the impact of pollution on human health, capturing the effect of particulate, sulphur, and

NOx emissions from individual plants on air quality in cities and the resulting impact on public

health (see e.g. [Driscoll et al., 2015]). The public health effect of each individual power plant can

be included in the P-AMoD model as a cost, with the goal of minimizing the overall impact of

electric power generation and AMoD on pollution and the resulting health outcomes.

Interaction between AMoD systems and public transit Deployments of AMoD systems in

our cities will coexist with public transportation, in particular subway and light rail. Will self-driving

cars act as feeders for public transit (thus solving the last-mile problem and increasing ridership of



6.3. FUTURE DIRECTIONS 93

existing transit systems), or will they compete with it? The tools developed in this thesis can be

readily extended to model multi-modal transportation by representing different transportation modes

(e.g. AMoD, subways, buses, and walking) as different subgraphs; “interchange edges” connecting

the subgraphs can model the customers’ ability to switch modes of transportation. These models

can be used to compute socially-optimal multi-modal routes that optimize goals including system

throughput, customer travel times, and pollutant emissions.

Socially-optimal solutions are useful from a policy perspective but cannot be implemented di-

rectly: AMoD systems and public transit are generally managed by different entities, and customers

select their routes according to their own private value of time and their price sensitivity. However,

a socially-optimal solution can be enforced as a competitive equilibrium through appropriate pricing

(similarly to the results in Section 5.4); the simple, quasi-analytical structure of network flow mod-

els can be leveraged to design road tolls and pricing schemes for AMoD systems and public transit

which ensure that the decisions of selfish agents are aligned with the social optimum.

Population shifts, induced demand, and land value Increased access to mobility due to

AMoD systems will induce major shifts in the accessibility and desirability of housing and workplace

locations. This has the potential to drastically reshape our cities (akin to how private car ownership

enabled urban sprawl in the U.S.). From a societal perspective, AMoD will cause large population

shifts, enabling people to live and work in neighborhoods previously underserved by public transit;

from an economic perspective, the shift in residential property values could top $1 trillion in the

United States (and close to $280B in Los Angeles alone!) [Levin, 2018].

Network flow models do not directly capture the effect of AMoD on population shifts and induced

transportation demand. However, they can readily be used to provide inputs to economic models for

location choice and for land value (e.g. [Alonso, 1964, Capozza and Helsley, 1989]). These models,

in turn, can provide estimates of the shifts in demand for transportation induced by AMoD, which

can be fed back as inputs to the models developed in this thesis.

This multidisciplinary, closed-loop approach will enable policy-makers to assess the societal and

economic impact of the feedback loop between AMoD, housing, and labor. Critically, it will allow to

readily assess the impact of transportation, labor, and welfare policies, and enable the identification

of policies which ensure that the benefits of AMoD systems are shared across society.

High fidelity simulations A number of open-source microscopic agent-based transportation sim-

ulators are available (e.g. MATSim [Horni et al., 2016] and SUMO [Krajzewicz et al., 2012]). These

simulators faithfully capture multi-modal transportation, customer choice models, and urban con-

gestion. However, existing simulators do not capture the operations of AMoD systems and, in

particular, the vehicle rebalancing process; in addition, no existing simulator captures the feedback

interaction between fleets of electric vehicles and the electric power network.
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In Chapter 3 we briefly introduce an extension of the MATSim simulator that models the opera-

tions of AMoD systems. However, further development is needed to capture the interaction between

transportation and the built environment, and in particular the power transmission and distribution

network, in order to develop tools that allow the evaluation of the impact of AMoD on society with

microscopic simulations at the regional scale.

Real-world implementation Limited deployments of AMoD systems with human supervision

are already underway in several U.S. cities (e.g. Waymo in Phoenix, AZ [Waymo, 2018] and GM

Cruise in San Francisco, CA [Davies, 2017]); more systems are expected to come online and become

available to the general public in the next few years (e.g. GM Cruise [Etherington, 2017] and

nuTonomy [Reuters, 2017]). We plan to infuse our algorithms in such systems through collaborations

with industry partners. In addition, we are exploring the possibility of testing congestion-aware and

charging-aware rebalancing policies on centrally-routed, human-operated car-sharing systems.

Real-world testing of the performance of our algorithms offers a number of benefits that cannot

be realized through simulations alone:

• Validation Implementation on a real-world system will enable further validation of the as-

sumptions made in the models proposed in this paper and an assessment of the robustness of

our models and algorithms to violations of these assumptions.

• Data collection Real-world deployments will produce vast amounts of data on transportation

demand, customer preferences, and exogenous traffic congestion. This information can be

infused in the models proposed in this work, increasing their accuracy and predictive power.

• Real-world benefits The goal of this thesis is to build tools to manage the interaction between

AMoD systems and the built environment: implementing the results of this work on real-world

AMoD systems will allow us to achieve the ultimate goal of fostering the positive externalities

of AMoD and avoiding the negative ones, thus fully realizing the benefits of AMoD systems in

our cities.
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S. (1995). Fast approximation algorithms for multicommodity flow problems. Journal of Computer

and System Sciences, 50(2):228–243.

[Levin et al., 2017] Levin, M. W., Kockelman, K. M., Boyles, S. D., and Li, T. (2017). A general

framework for modeling shared autonomous vehicles with dynamic network-loading and dynamic

ride-sharing application. Computers, Environment and Urban Systems, 64:373 – 383.

[Levin et al., 2016] Levin, M. W., Li, T., Boyles, S. D., and Kockelman, K. M. (2016). A general

framework for modeling shared autonomous vehicles. In 95th Annual Meeting of the Transportation

Research Board.

[Levin, 2018] Levin, P. (2018). ˜$1 trillion of real estate is on

the move...here’s why. Available at https://medium.com/99-mph/

1-trillion-of-real-estate-is-on-the-move-heres-why-94ee9233e5eb. Retrieved on

March 3, 2018.

[Lighthill and Whitham, 1955] Lighthill, M. J. and Whitham, G. B. (1955). On kinematic waves.

II. a theory of traffic flow on long crowded roads. Proceedings of the Royal Society of London A:

Mathematical, Physical and Engineering Sciences, 229(1178):317–345.

[Liu et al., 2009] Liu, H., Tesfatsion, L., and A., C. A. (2009). Derivation of locational marginal

prices for restructured wholesale power markets. Journal of Energy Markets, 2(1):3–27.

[Maciejewski and Bischoff, 2017] Maciejewski, M. and Bischoff, J. (2017). Congestion effects of

autonomous taxi fleets. Transport.

[Maciejewski et al., 2017] Maciejewski, M., Bischoff, J., Hrl, S., and Nagel, K. (2017). Towards a

testbed for dynamic vehicle routing algorithms. In International Conference on Practical Appli-

cations of Agents and Multi-Agent Systems - Workshop on the application of agents to passenger

transport (PAAMS-TAAPS).

[Mitchell et al., 2010] Mitchell, W. J., Borroni-Bird, C. E., and Burns, L. D. (2010). Reinventing

the automobile: Personal urban mobility for the 21st century. MIT Press.

https://medium.com/99-mph/1-trillion-of-real-estate-is-on-the-move-heres-why-94ee9233e5eb
https://medium.com/99-mph/1-trillion-of-real-estate-is-on-the-move-heres-why-94ee9233e5eb


100 BIBLIOGRAPHY

[Mittelmann, 2016] Mittelmann, H. D. (2016). Decision tree for optimization software.

http://plato.asu.edu/guide.

[Mitzenmacher and Upfal, 2005] Mitzenmacher, M. and Upfal, E. (2005). Probability and computing:

Randomized algorithms and probabilistic analysis. Cambridge University Press.

[Neuburger, 1971] Neuburger, H. (1971). The economics of heavily congested roads. Transportation

Research, 5(4):283–293.

[OECD, 2014] OECD (2014). The cost of air pollution - health impacts of road transport. Technical

report, Organisation for Economic Co-operation and Development (OECD).

[Orlin, 1997] Orlin, J. B. (1997). A polynomial time primal network simplex algorithm for minimum

cost flows. Mathematical Programming, 78(2):109–129.

[Osorio and Bierlaire, 2009] Osorio, C. and Bierlaire, M. (2009). An analytic finite capacity queue-

ing network model capturing the propagation of congestion and blocking. European Journal of

Operational Research, 196(3):996–1007.

[Overbye et al., 2004] Overbye, T. J., Cheng, X., and Sun, Y. (2004). A comparison of the AC

and DC power flow models for LMP calculations. In Hawaii International Conference on System

Sciences.

[Papageorgiou et al., 1991] Papageorgiou, M., Hadj-Salem, H., and Blosseville, J.-M. (1991).

ALINEA: A local feedback control law for on-ramp metering. Transportation Research Record:

Journal of the Transportation Research Board, (1320):58–64.

[Pavone, 2015] Pavone, M. (2015). Autonomous Mobility-on-Demand systems for future urban mo-

bility. In Autonomes Fahren. Springer.

[Pavone et al., 2011] Pavone, M., Smith, S. L., Frazzoli, E., and Rus, D. (2011). Load balancing for

Mobility-on-Demand systems. In Robotics: Science and Systems.

[Pavone et al., 2012] Pavone, M., Smith, S. L., Frazzoli, E., and Rus, D. (2012). Robotic load

balancing for Mobility-on-Demand systems. Int. Journal of Robotics Research, 31(7):839–854.

[Peeta and Mahmassani, 1995] Peeta, S. and Mahmassani, H. S. (1995). System optimal and user

equilibrium time-dependent traffic assignment in congested networks. Annals of Operations Re-

search, 60(1):81–113.
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