
Decentralized decision-making on robotic
networks with hybrid performance metrics

Federico Rossi Marco Pavone

Abstract— The past decade has witnessed a rapidly growing
interest in distributed algorithms for collective decision-making.
For a large variety of settings algorithms are now known
that either minimize time complexity (i.e., convergence time)
or optimize communication complexity (i.e., number and size
of exchanged messages). Yet, little attention has beed paid
to the problem of studying the inherent trade off between
time and communication complexity. Generally speaking, the
optimization of the time complexity metric leads to fast and
robust distributed algorithms; however, such algorithms often
require a massive amount of messages to be exchanged and,
consequently, might lead to unacceptable energy requirements
for message transmission. On the other hand, the communi-
cation complexity metric leads to distributed algorithms that
are very economical in terms of exchanged messages, but are
extremely sensitive to link failures and converge too slowly
in practical scenarios. In this paper we bridge this gap by
designing and rigorously analyzing a tunable algorithm that
solves a general version of the distributed consensus problem
(that includes voting and mediation), on undirected network
topologies and in the presence of infrequent link failures. The
tuning parameter allows to gracefully transition from time-
optimal to byte-optimal performance (hence, it allows to achieve
hybrid performance metrics), and determines the algorithm’s
robustness, measured as either the number of single points
of failure or the time required to recover from a failure.
Our results leverage a novel connection between the consensus
problem and the theory of gamma synchronizers. Simulation
experiments that corroborate our findings are presented and
discussed.

I. INTRODUCTION

Distributed decision-making in robotic networks is an
ubiquitous problem, with applications as diverse as state
estimation [1], formation control [2], and cooperative task
allocation [3]. In particular, the consensus problem, where
the robots in the network have to agree on some common
value, has seen a resurgence of interest in the last decade
following the paper from Jadbabaie, Lin and Morse [4].
Most recent efforts in the control community have pri-
marily focused on studying the properties and fundamental
limitations of average-based consensus, a subclass of the
consensus problem in which nodes average their status with
their neighbors at each (continuous or discrete) time step
[5]. In these works, the dominant performance metric is
time complexity, i.e., the convergence time. The computer
science community has, instead, focused the attention on the
communication complexity, and “communication-optimal”
algorithms for consensus problems are now known.

Despite the large interest on consensus problems in the
last decade, little attention has been devoted to the problem

Federico Rossi and Marco Pavone are with the Department of Aeronautics
and Astronautics, Stanford University, Stanford, CA, 94305, {frossi2,
pavone}@stanford.edu

of studying the inherent trade off between time and commu-
nication complexity. Generally speaking, the optimization of
the time complexity metric leads to fast and robust distributed
algorithms; however, such algorithms often require a massive
amount of messages to be exchanged and, consequently,
might lead to unacceptable energy requirements for message
transmission. In this paper we bridge this gap by designing
and rigorously analyzing a tunable algorithm that solves
in finite time a general version of the distributed consen-
sus problem, specifically the convex consensus problem,
where the robots have to agree on a convex combination
of their initial conditions. The convex consensus problem
models decision-making problems as diverse as average
consensus, leader election, collective data fusion, voting,
and mediation. We consider settings where the underlying
network topology is undirected and failures are infrequent.
The tuning parameter allows to gracefully transition from
time-optimal to byte-optimal performance (hence, it allows
to achieve hybrid performance metrics), and determines the
algorithm’s robustness, measured as either the number of
single points of failure or the time required to recover from a
failure. Our results leverage a novel connection between the
consensus problem and the theory of gamma synchronizers.
The algorithm allows to achieve tradeoffs between time and
communication (or byte) complexity, thus allowing to fulfill
hybrid performance requirements.

This paper is structured as follows. After introducing some
useful concepts in section II and presenting the problem
in section III, in section IV we outline our algorithm’s
structure. Worst-case complexity is analyzed in section V
and numerical simulations on random geometric graphs are
presented in section VI. Potential applications and future
research directions are discussed in section VII.

II. PRELIMINARIES

In this section we first discuss the network model that we
will consider in this paper and relevant performance metrics.
Then, we will briefly overview the algorithms that are known
to be either time or communication optimal.

A. Model for asynchronous robotic networks with infrequent
failures

An asynchronous robotic sensor network with n agents
is modeled as a connected, undirected graph G = (V,E),
where the node set V = {1, . . . , n} corresponds to the n
agents, and the edge set E ⊂ V × V is a set of unordered
node pairs modeling the availability of a communication
channel. Henceforth, we will refer to nodes and agents
interchangeably. Two nodes i and j are neighbors if (i, j) ∈

E. The neighborhood set of node i ∈ V , Ni, is the set of
nodes j ∈ V neighbors of node i.

Each node is internally modeled as a input/output (I/O)
automaton, which is essentially a labeled state transition
system commonly used to model reactive systems (we refer
the reader to [6, ch. 8] for a formal definition). All nodes
are identical except, possibly, a unique identifier (UID). The
following key assumptions characterize the time evolution of
each node in the graph G:
• Fairness [6, ch. 8]: the order in which transitions happen

and messages are delivered is not fixed a priori. How-
ever, any enabled transition will eventually happen.

• Non-blocking [6, ch. 8]: every transition is activated
within l time units of being enabled and every message
is delivered within d time units of being dispatched.

Communication channels may experience stopping fail-
ures, modeled by deletion of the corresponding edge in G.
Links may go offline but not come back: messages across
the link at the time of failure are dropped. Agents on both
sides of the link are notified of the failure immediately.

We assume that new links can not be added to the network
during execution, hence, the network is static. Finally, we
assume that each agent knows at least an upper bound n̄, with
n+ t ≥ n̄ ≥ n, on the number of nodes in the network. The
role of the parameter t will be made clearer in section IV.
This hypothesis is natural in many engineering applications,
where the initial number of sensors or vehicles is known but
a small number of nodes may fail during deployment.

B. Time, communication, and byte complexity

Let P be a problem to be solved by the nodes in G; more
formally, P represents the task of computing a computable
function of the initial values of the I/O automata in the
network G. Let A be the set of algorithms implementable on
the I/O automata in G, let G be a set of graphs with node set
V = {1, . . . , n}, let K(G) be the set of initial conditions for
the I/O automata for a given graph G ∈ G (independent of
algorithm), and let F(a, k,G) be the set of fair executions
for a ∈ A, k ∈ K(G), and G ∈ G.

The following definitions naturally capture the notions
of time complexity, communication complexity, and byte
complexity and are widely used in the theory of distributed
algorithms [6, ch. 8].

1) Time complexity: Time complexity is defined as the
infimum worst-case (over initial values and fair executions)
completion time of an algorithm. Rigorously, the time com-
plexity for a given problem P with respect to the class of
graphs G is

TC(P,G) = inf
a∈A

sup
G∈G

sup
k∈K(G)

sup
α∈F(a,k,G)

T (a, k, α,G),

where T (a, k, α,G) is the first time when all nodes have
computed the correct value for problem P and have stopped.
The order of the inf-sup operands in the above expression is
naturally induced by our definition. By dropping the leading
infa∈A, one recovers the complexity of a given algorithm a.

For synchronous algorithms, time complexity is typically
expressed in rounds; in an asynchronous setting, we express

time complexity in multiples of l+d, defined in section II-A.
We will henceforth refer to (l + d) as a time unit.

2) Byte complexity: In many instances, message size plays
an important role in the energy needed for information
transmission. The number of messages exchanged fails to
capture this effect. To address this issue, one defines the
byte as the infimum worst-case (over initial values and fair
executions) overall size (in bytes) of all messages exchanged
by an algorithm before its completion. Rigorously, the byte
complexity for a given problem P with respect to the class
of graphs G is

BC(P,G) = inf
a∈A

sup
G∈G

sup
k∈K(G)

sup
α∈F(a,k,G)

B(a, k, α,G),

where B(a, k, α,G) is the overall size (in bytes) of all
messages exchanged between the initial time and T (a, k, α).

In this paper we are specifically interested in the asymp-
totic growth of TCand BC; accordingly, we briefly review
some useful notation for asymptotic performance. For f, g :
N → R, f ∈ O(g) (respectively, f ∈ Ω(g)) if there exist
N0 ∈ N and k ∈ R>0 such that |f(N)| ≤ k|g(N)| for all
N ≥ N0 (respectively, |f(N)| ≥ k|g(N)| for all N ≥ N0).
If f ∈ O(g) and f ∈ Ω(g), then the notation f ∈ Θ(g) is
used.

C. Discussion of complexity measures for communication
Energy consumption is a limiting factor for a variety of

cyber-physical systems, for example robotic swarms and
wireless sensor networks, and wireless communication is
often one of the main contributors to battery depletion. Yet,
most of the research on distributed algorithms for robotic
networks focuses on time complexity, with little attention to
the energy required for their execution.

Our work strives to explore the “energy complexity” of
the distributed consensus problem. Byte complexity is a
reasonable proxy for the energy cost of a problem in settings
where:
• the energy cost of a message is independent of the

receiver’s distance (although the neighborhood of the
sender typically is a function of the range of the
communication equipment).

• the cost of a message linearly depends on the payload
size.

• the cost of sending the same piece of information to k
agents is k times the cost of a single message (which
is in general not true for broadcast communication
models).

Linear dependence of the cost on payload size holds
true for lightweight protocols whose handshakes, headers
and acknowledgements are small with respect to the actual
payload.

We remark that, if the energy cost of a message is
independent of the message size, message complexity, i.e.
the overall number of messages exchanged, is an appropriate
proxy for energy cost. This may be the case whenever the
cost of the message is dominated by the fixed cost to establish
the connection, handshake, exchange connection parameters,
and frame the payload.

Throughout this work, we will focus on byte complexity.

We remark that the exclusion of broadcast protocols is
compatible with the presence of efficient narrow-band, high-
gain mechanically or electronically steerable antennas on the
agents participating in the process, or with use of a network
protocol that does not implement broadcasts. The proper
modeling of “energy complexity” for broadcast models is
beyond the scope of this paper and is left for future research.

D. Time-optimal and byte-optimal algorithms for the con-
sensus problem

If the consensus function depends on all nodes’ initial
values, Diam(G) represents a trivial lower bound on the
number of time units required by any consensus algorithm. A
simple flooding algorithm achieves this lower bound; in fact,
one can easily show that the time complexity of flooding is
Diam(G) time units. Hence, flooding is time-optimal. On the
other hand, one can also show that the byte complexity is
O(|E|nb), where b is the size in bytes of one agent’s initial
value. Both of them are very large and limit the applicability
of flooding algorithms (average-consensus algorithms belong
to the family of flooding algorithms).

The GHS distributed minimum spanning tree algorithm,
proposed by Gallager, Humblet and Spira [7], allows to build
a rooted minimum spanning tree (MST) on synchronous and
asynchronous static networks with O(n log(n)) time and
O((n log(n) + |E|) log n) byte complexity. Once a rooted
spanning tree is in place, the root can collect information
from all nodes using the tree and compute any consensus
function with O(n) messages of size O(log n). Message
size depends on the nature of the consensus function under
consideration. Improved versions of the GHS algorithm such
as [8] can yield a time complexity of O(n) with no degra-
dation in byte complexity. Under some mild assumptions,
the improved GHS algorithm can be shown to be message-
optimal [8]; if messages carry a sender or receiver ID,
byte optimality follows. Its time-complexity, however, is
significantly higher than that of the time-optimal flooding
algorithms; furthermore, GHS-like algorithms are very frag-
ile with respect to link failures.

III. PROBLEM FORMULATION

In this paper we focus on finding distributed algorithms
to solve convex consensus problems on hierarchically com-
putable functions, which fulfill hybrid time/communication
performance requirements. In this section, we first rigorously
define the notion of convex consensus. Then we define
the class of hierarchically computable functions. Finally we
formally state the problem we wish to solve.

A. Convex consensus

The convex consensus problem is defined as follows:
Definition 3.1 (Convex consensus): Consider n nodes in-

dexed by {1, . . . , n} arranged in an undirected graph and
capable of exchanging information according to the asyn-
chronous network model presented in Section II-A. Each
node is equipped with an initial value ki ∈ Rn (representing,
e.g., a local measurement of an environmental phenomenon).
The goal is for all nodes to agree in a finite number of steps
on a common value k̄ lying within the convex hull of the

initial values ki, i = 1, . . . , n; in other words, k̄ can be
represented as a convex combination of the initial values
ki’s, i.e.:

k̄ :=

n∑
i=1

ci ki, where ci ∈ [0, 1], and
n∑
i=1

ci = 1,

where the weights ci, i = 1, . . . , n, are problem-dependent .
In other words, the vector of weights [ci]i parameterizes the
convex consensus problem. The weights might be unknown
to the agents.

The convex consensus problem models a variety of deci-
sion problems of interest for robotic sensor networks. Some
examples include:
• Computation of maxi ki (equivalently, mini ki), e.g.,

for leader election. This problem can be represented
with the weight choice (assuming there exists a unique
maximum or minimum): ci = 1 if ki = maxj(kj)
(equivalently, ki = minj(kj)) and ci = 0 otherwise.

• Average consensus, which can be employed to solve
problems as diverse as distributed sensing and filtering
[1], formation control [4], rendezvous [9] and coverage
control [10]. This problem can be represented with the
weight choice: ci = 1/n.

• Weighed average consensus, which can be employed
for data fusion when information about the confidence
of several measurements is available. This problem can
be represented with the weight choice: ci = 1/

(
σi ·∑

j(1/σj)
)

, where σi is the uncertainty of each mea-
surement.

• Any logical operation whose outcome lies within the
convex hull of the nodes’ initial “opinions” for the
policy to follow. If policies are mutually exclusive,
this problem can be represented with the weight choice
(assuming only one agent proposes the selected policy)
ci = 1 if i is the selected policy, ci = 0 otherwise.
If the problem admits a notion of mediation between
different policies, ci can assume problem-dependent
values between 0 and 1.

It is important to note three key differences with respect to
“standard” average-based models for consensus problems: (i)
convex consensus provides a generalization of average-based
consensus, (ii) a solution should be provided in finite time
(as opposed to asymptotically converging algorithms), and
(iii) an algorithm is not restricted to evolve according to a
(possibly discontinuous) differential equation, but can also
perform logic operations, establish hierarchical relationship,
route messages and, in general, make complex decisions,
better exploiting the possibilities offered by the on-board
processing capabilities.

B. Hierarchically computable functions
Hierarchically computable functions (related to the sensi-

tively decomposable functions as defined in [8]) are defined
as follows:

Definition 3.2 (Hierarchically computable function): A
hierarchically computable function obeys the following
property: given the value of a function on a number of

disjoint sets of nodes, it is possible to (i) compute the
function on the union of these sets, and (ii) store the result
in a string of the same order of magnitude as the size of
the string needed to represent a single argument.

Average and weighed average are examples of hierarchi-
cally computable functions: given a subset of nodes, their
contribution to the consensus value can be represented by
their (weighed) average and the associated weight. Majority
voting on a limited number of options is also hierarchically
computable: it is sufficient to store the number of votes
obtained by each option. Other examples of hierarchically
computable functions include maximum and minimum. The
name is inspired by the observation that hierarchically com-
putable functions can be computed with messages of small
size on a hierarchical structure such as a tree.

C. Problem formulation

In this paper, we wish to present an algorithm that solves
the consensus problem and achieves tradeoffs between exe-
cution time and energy consumption (as measured by byte
complexity according to our discussion in Section II-C).
Accordingly, the problem statement reads as follows:

Parametrized convex consensus problem: — Let
G be the set of all graphs with node set V . Find
an algorithm a(τ) parametrized by τ ∈ [0, 1]
that solves the convex consensus problem P with
optimal order of growth of TC(P,G, a(τ)) =
TC(P,G) for τ = 0, optimal order of growth of
BC(P,G, a(τ)) = BC(P,G) for τ = 1, and or-
ders of growth TC(P,G, a(τ)) < TC(P,G, a(τ =
1)) and BC(P,G, a(τ)) < BC(P,G, a(τ = 0))
for τ ∈ (0, 1).

IV. A HYBRID ALGORITHM FOR CONVEX CONSENSUS

In this section we present a hybrid, semi-hierarchical
algorithm that solves the Problem defined in Section III-
C. The algorithm is analyzed in Section V. Our algorithm
is inspired by the Gamma synchronizers proposed by B.
Awerbuch in [11].

A. High-level description

Our algorithm operates in four nominal phases com-
pounded by two error recovery routines.

Phase 1 starts by building a forest of minimum weight
trees (shown in Figure 1a) of height O(n/m). The value
of m is the algorithm’s tuning parameter. All nodes run
a modified version of the GHS algorithm [7]. The GHS
algorithm builds a minimum spanning tree in stages: it grows
a forest of minimum weight trees by incrementally merging
clusters until they span the entire network. At each stage,
nodes belonging to a cluster collectively identify the cluster’s
minimum weight outgoing edge; the cluster then absorbs
the edge and merges with the tree across it. The algorithm
terminates when the tree root is unable to identify a minimum
weight outgoing edge because all nodes belong to the same
cluster: it then informs all descendants, which stop.

We modify the GHS’s stopping criterion. At each stage,
the root keeps track of the number of nodes in its cluster:

when the cluster size exceeds bn/mc, the root stops the tree-
building phase and informs its descendants. At this point,
other smaller groups may try and join the cluster: they are
allowed to do so immediately, at which point they inherit the
cluster’s identity and they are notified that the tree-building
phase is complete. When a node discovers that Phase 1 is
over, it contacts all its neighbors, excluding its father and
children, to inquire whether they are done. When all have
replied, it switches to Phase 2.

In Phase 2, tree height is upper-bounded by splitting
overgrown clusters while enforcing a lower bound on tree
size. This phase of the algorithm starts at the leaves of
each tree. Each node recursively counts the number of its
descendants moving towards the root; agents with more than
bn/mc offspring create a new cluster, of which they become
the root, and cut the connection with their fathers. The tree
containing the original root may be left with too few nodes:
the root can undo one cut to guarantee that all clusters
contain a minimum number of nodes.

In Phase 3, each tree establishes a “certain” number of
connections with neighbor clusters, as shown in Figure 1b.

When a node switches to Phase 3, it contacts all neighbors
except for its father and children, inquiring about their cluster
ID. Upon reception of an inquiry, a node replies as soon as
it enters Phase 3 (and is therefore sure of its cluster ID).
Information is then convergecast on the tree, starting from
the leaves: each node informs the father about which clusters
it is connected to (either directly or through its children) and
how many connections per cluster are available.

Roots also exploit the tree structure to compute their clus-
ter’s consensus function after convergecasting information
from their offspring; when they have received information
from all offspring, they switch to Phase 4.

In Phase 4, cluster roots communicate with each other
through the connections discovered in the previous stage.
Conceptually, this phase of the algorithm is simply flooding
across clusters. Each root sends a message containing its
cluster’s consensus function to each neighbor tree through
the connections built in Phase 3. Each message is replicated
a few times as a protection against link failures. When a root
learns new information, it forwards it once to its neighbor
clusters (sender excluded) via the same mechanism.

If a link failure breaks one of the trees (as in fig. 1d),
the two halves evaluate their size. If either of the two halves
is too small, it initiates a search for its minimum weight
outgoing edge and rejoins the cluster across it; a splitting
procedure guarantees that tree height stays bounded. After
the failure, all nodes in the affected cluster contact their
neighbors to update their routing tables.

When a link outside a tree fails, nodes on the two sides of
the failure update their routing tables and notify their fathers,
who do the same until the information reaches the root.
Note that up to k − 1 simultaneous, adversarial failures can
occur while the algorithm updates its routing tables without
disrupting cluster flooding

B. Detail description
As discussed in Section IV-A, the algorithm involves four

phases, plus one phase (named Phase F), in case of intra-

(a) Phase 1 and 2: forest build-
ing

(b) Phase 3: establishment of
inter-cluster links

(c) Phase 4: inter-cluster flood-
ing

(d) Phase F: recovery from fail-
ure

Fig. 1: Schematic representation of the algorithm behavior.

tree link failures and one phase (named Phase OF) to handle
inter-tree failures. In the following, we discuss each phase
in detail and show its correctness.

1) Phase 1: tree building: The proof of correctness relies
on three preliminary lemmas.

Lemma 4.1 (Minimum weight tree structure): At the end
of Phase 1, each cluster is a tree and contains only edges
belonging to the graph’s minimum spanning tree.

Proof: The claims follows from the correctness of
the Awerbuch’s algorithm [8], which eventually produces a
minimum spanning tree, and from the observation that the
algorithm never removes edges. Therefore, (i) at no point in
time any of the clusters contains a cycle, and (ii) at any given
time, only edges belonging to the graph’s MST are present
in any of the clusters.

Lemma 4.2 (Cluster size): At the end of Phase 1, all
clusters contain at least bn/mc nodes.

Proof: The algorithm only terminates if either the size
of the cluster is larger than bn/mc or there are no outgoing
edges left. In the latter case, the cluster includes all nodes
and its size is n.

Lemma 4.3 (Participation): All nodes eventually join a
cluster.

Proof: Once a node wakes up, it declares itself as
root of an unary tree and executes the algorithm until either
the size of the cluster is greater than or equal to bn/mc
or there are no outgoing edges left. Nodes wake up either
spontaneously or when they receive a message from another
node. At the end of Phase 1, each node contacts all of its
neighbors (except its father and children, who are known
to be awake). The network is connected: it follows that, as
long as at one agent wakes up spontaneously, all agents are
eventually contacted and therefore wake up.

We can now state the correctness claim for Phase 1.
Lemma 4.4 (Termination of Phase 1): All nodes are

eventually informed of the end of Phase 1.

Proof: The algorithm terminates when the size of a
cluster is greater than or equal to bn/mc. When this happens,
the root of the cluster informs all of its offspring. Until then,
each cluster at least doubles its size at each stage unless
all nodes belong to the same cluster [8], [7]. Cluster size
therefore monotonically increases until it exceeds bn/mc.

The trees obtained in Phase 1 are guaranteed to be strictly
larger than bn/mc. Yet this is not sufficient: we wish to
bound the number of clusters and the height of each tree. De-
spite this being a good heuristic, the stopping criterion does
not offer worst-case guarantees: one can produce examples
(in terms of network topologies and weight distributions) that
give rise to a single tree spanning the whole network. This
motivates the next phase of the algorithm.

2) Phase 2: tree splitting: Before executing Phase 2 of
the algorithm, each node waits to be sure that all neighbors
(excluding his father and children) are in Phase 2. Leaves
(childless nodes) then send a message to their fathers. The
algorithm proceeds recursively from here: once a node has
heard from all of its children and made sure that its neighbors
are in Phase 2, it can correctly compute the number of its
offspring from received reports. It then sends this information
to its father. If a node learns that it has more than bn/mc
offspring, it cuts the connection with its father after letting
him know and tentatively declares itself as root (but waits
before notifying its offspring). The (former) father makes a
local note of this. Information about the cut which removed
the least number of children (i.e., the new root UID, the
father’s UID, and the number of removed children) is relayed
towards the root during the counting process.

The procedure eventually reaches the cluster’s original
root. If the number of remaining offspring is higher than
a lower bound t < n/m, t = Θ(n/m), the root switches to
Phase 3 and informs its offspring. These, in turn, approve
tentative cuts by sending a message to former children who
had severed the connection, then switch to Phase 3 and
inform all other children of this. Removed children (now
bona fide roots) do the same with their offspring. Each child
records the UID of its tree’s root, which is used as the
cluster’s identifier.

If, on the other hand, the tree containing the original root
is smaller than t, the root asks its offspring to undo the cut
that removed the least number of children (identified by the
UIDs of father and children), then switches to Phase 3. The
father of the cut to be undone asks the relevant child to do
so and switches to Phase 3. The child notifies its offspring;
all other nodes behave as in the previous case.

Correctness: The proof of correctness relies on two pre-
liminary lemmas.

Lemma 4.5 (Cluster height): At the end of Phase 2, trees
all have height lower than (bn/mc+ t) + 2 = Θ(n/m).

Proof: It is easy to see that the procedure outlined
in the previous paragraphs correctly counts the number of
descendants of each node as long as cuts are not mended.
When a node’s offspring exceeds bn/mc, the node cuts the
connection with its father: all children of a node therefore
have fewer than bn/mc offspring. The height of a tree is
upper bounded by the number of nodes in the tree: the height

of any tree before cuts are mended is lower than bn/mc+1.
A cut can only be mended if the root agent determines that
it has fewer than t offspring. The mending procedure joins
a tree counting fewer than t + 1 nodes to a tree of height
lower than bn/mc + 1: the resulting tree is no taller than
t+ bn/mc+ 2.

Lemma 4.6 (Number of clusters): At the end of Phase 2,
there are at most n/t = O(m) clusters.

Proof: The splitting procedure guarantees that all
trees but one per original cluster are larger than bn/mc.
If the remaining tree is smaller than t, it rejoins another
cluster. Therefore no tree can be smaller than t. It follows
that, at the end of Phase 2, there are no more than (n/t)
trees.Furthermore, t = Θ(n/m): therefore the number of
trees is O(n/t) = O(m).

We can now state the correctness claim for Phase 2.
Lemma 4.7 (Termination of Ph. 2): All nodes are eventu-

ally notified of the end of Phase 2.
Proof: In Phase 2, each node sends a message to its

father, either to inform it of the number of children or to cut
the connection, as soon as it has received reports from all
children and has confirmed that all neighbors are in Phase
2. All nodes eventually enter Phase 2 by Lemma 4.4: the
algorithm behaves like a convergecast [6, par. 15.3].

Then each node, starting from the root, contacts its chil-
dren to (i) announce the Cluster ID, (ii) confirm that a cut
survives or (iii) ask to undo it. All three messages cause
the child to switch to Phase 3. For termination purposes, the
algorithm is a broadcast and terminates by [6, par 15.3].

3) Phase 3: inter-cluster links: Each node waits until
it has heard from all children (if any) and all neighbors
before informing its father. Nodes maintain two local routing
tables: one (the neighbor routing table) relates non-tree
neighbors and their cluster, whereas the other (the children
routing table) records which clusters each child is connected
to (directly or indirectly) and how many connections are
available per cluster. When informing its father, a node
makes no distinction between direct and children-mediated
connections.

Correctness: The proof of correctness is provided in the
following lemma.

Lemma 4.8 (Termination of Phase 3): Each node is even-
tually informed of the correct number of neighbor clusters
connected either to it or to its offspring.

Proof: Consider an execution α of the algorithm where
(i) no node contacts its neighbors until all nodes are in
Phase 3, and (ii) the convergecast of routing information does
not start until all nodes have learned their direct neighbors’
ClusterIDs. It is easy to see that any execution of Phase 3
of the algorithm is similar to execution α: two time units
after the last node enters Phase 3, the neighbor routing table
of each node is identical to the corresponding table in α
for any execution; moreover, r + 2 time units after the last
node enters Phase 3, the children routing table of any node
closer than r to the farthest leave among their offspring is
identical to the corresponding table in α for any execution.
The correctness of execution α is easy to verify: discovery
of neighbors’ Cluster IDs is trivial if all nodes are in Phase

3 and correctness of children routing tables follows from the
correctness of the convergecast algorithm [6, par. 15.3].

4) Phase 4: inter-cluster flooding: The root of each tree
generates a message for each of its neighbor clusters with
the value of its cluster’s consensus function. Each message
is replicated k times, where k is a user-defined parameter.
The root then sends as many copies of each message as
possible through its direct connections, stored in its neighbor
routing table. Unsent copies of the message are distributed
to children proportionally to the number of links available,
stored in the children routing table. Children do the same:
when required to forward a message to a cluster, they send
as many copies as possible through their direct connections
and divide the rest among their own children according to
the number of connections available. When a node receives
a message for its cluster, it checks whether it has already
received this information, either from a non-cluster neighbor
or from a child. If this is not the case, it forwards the
message up the tree; otherwise, it discards it. The first time
the root hears new information, it broadcasts it to neighbor
clusters via the same mechanism as above, forwarding k
copies of a new message with the new information and
the origin cluster’s ID. Roots include the number of their
children in their cluster’s information. When a root has heard
from n − t + 1 nodes, it terminates: after forwarding new
information one last time, it computes the consensus value
and informs its offspring.

Correctness: The proof of correctness relies on a prelim-
inary lemma.

Lemma 4.9 (Diffusion of information): In absence of fail-
ures, all clusters eventually hear from each other.

Proof: Let us abstract Phase 4 by building a network
Gc containing one node for each of the existing clusters
in G. Nodes in Gc are connected if the corresponding
clusters are “neighbors”, as discovered in Phase 3. Now,
thanks to the correctness of the routing tables (Lemma 4.8)
Phase 4 of the algorithm reduces to flooding on Gc, whose
correctness follows from [6, par. 4.1]. Certain messages may
not be forwarded if (i) a node has already forwarded the
same information to its root in the past, or (ii) a node has
previously seen the information as a part of a message from
its root to a neighbor. In both cases, the cluster root already
holds the discarded information.

We can now state the correctness claim for Phase 4.
Lemma 4.10 (Termination of Phase 4): Phase 4 of the al-

gorithm eventually terminates.
Proof: By Lemma 4.9, the roots of all cluster even-

tually hear from each other. By Lemma 4.6, no tree is
smaller than t. Messages from one cluster to another carry
the number of nodes in the cluster at the time of dispatch:
It follows that, once a tree has heard from n− t+ 1 nodes,
it must have heard from all clusters.

We are now ready to prove correctness of our algorithm.
Theorem 4.11 (Correctness of the hybrid algorithm):

Every node correctly computes the consensus function.
Proof: By Lemma 4.7, the network is partitioned in

rooted trees: it is easy to see that a convergecast allows the
root to correctly compute its cluster’s consensus function.
Lemmas 4.9 and 4.10 show that every root is eventually

informed of all clusters’ consensus function. It follows that,
at the end of Phase 4, every root is able to correctly compute
the consensus function on the initial values of all nodes.
Every nonroot node is then informed of the result with a
broadcast.

5) Phase F (recovery from in-tree failure): Upon being
notified of a severed connection with a child, a node notifies
its root. Conversely, a node losing a connection with its
father declares itself a root. If either root has fewer than
t offspring, it sends them a unique cut identifier and initiates
a search for the cluster’s minimum weight outgoing edge. If
the number of offspring is high enough, the root just sends to
the offspring the cut identifier, which includes the old cluster
ID and the IDs of the two nodes immediately upstream and
downstream of the cut.

The presence of a failure complicates the search for a
minimum weight outgoing edge: nodes downstream of the
cut, which receive a new Cluster ID, may mistakenly accept
a connection with a node in the same cluster if the latter does
not know about the cut yet. To avoid this, nodes disclose the
unique cut identifier when looking for the minimum weight
outgoing edge: if a node sports the old Cluster ID but does
not hold the cut identifier, it delays the reply until it is
informed of the cut. Once a small cluster finds its minimum
weight outgoing edge, it rejoins the cluster on the other side.
A splitting procedure, akin to the one outlined in Phase 2, is
then initiated to maintain tree height bounded. The procedure
is initiated by the node rejoining the cluster and proceeds up
to the root: nodes outside this path see no change in the
number of their offspring.

As nodes learn their final Cluster ID, they inform all non-
cluster neighbors. Neighbors, in turn, update their routing
tables and inform their fathers, as in Phase 3. When an
unaffected node is contacted by a non-cluster neighbor, it
does not immediately notify its father to avoid a multitude
of expensive incremental updates: the node waits to hear
from all offspring that were connected to the affected cluster
(recorded in the children routing table) before updating its
father. This way, routing tables are updated in a convergecast.
When a root learns about a variation in the topology of
neighbor clusters (either because a new cluster is formed
or because the number of connections to an existing cluster
decreases) it crafts a message with all information it holds
and sends it to the modfied clusters as in Phase 4. The roots
of clusters born or modified after the cut collect information
from their children and craft messages for all their neighbors,
too.

Correctness: The proof of correctness relies on three
preliminary lemmas.

Lemma 4.12 (Cluster height): At the end of Phase F, trees
all have height lower than (bn/mc+ t+ 2) = Θ(n/m).

Proof: The proof is identical to that of Lemma 4.5
and follows from the correctness of the splitting procedure.

Lemma 4.13 (Number of clusters): At the end of Phase F,
there are at most n/t = O(m) clusters.

Proof: The proof is identical to that of Lemma 4.6
and follows from the lower bound imposed by the splitting
procedure on the size of each tree.

Lemma 4.14: All nodes in the tree affected by the cut
eventually learn about the cut.

Proof: Nodes below the failure are informed of the
cut via a simple broadcast. The node above the cut informs
its father, which does the same until the message reaches the
root. The root then proceeds with a broadcast. The lemma
therefore follows from the correctness of broadcast.
We can now state the correctness claim for Phase F.

Lemma 4.15 (Inter-cluster connections): Each node is
eventually informed of the correct number of neighbor clus-
ters connected to it either directly or through its offspring.

Proof: Before a failure occurs, routing tables are
correct by Lemma 4.8. When a failure occurs, nodes in
the affected cluster are informed by Lemma 4.14. Once
informed, nodes in the affected cluster contact all their
neighbors at once. These, in turn, update their routing tables
with a convergecast. Nodes formerly belonging to the broken
cluster rebuild their routing tables ex novo: the correctness
of the procedure follows from Lemma 4.8.

6) Phase OF (recovery from out-of-tree failure): The
proof of correctness relies on a preliminary lemma.

Lemma 4.16 (Termination of Phase OF): At the end of
Phase OF, all nodes’ routing tables are correct.

Proof: The proof is identical to that of Lemma 4.8.

We can now state the correctness claim for Phase OF.
Lemma 4.17 (Resilience to inter-cluster failures): Phase

4 of the algorithm correctly terminates even in presence of
k − 1 simultaneous adversarial failures.

Proof: Phase 4’s routing strategy ensures that, if two
clusters are connected by at least k edges, any message
among the two clusters will be sent across k distinct edges.
Up to k − 1 failures of inter-cluster links can therefore
occur without invalidating the similarity between Phase 4
and flooding outlined in Lemma 4.9.

V. COMPLEXITY ANALYSIS

The overall time and byte complexity of the proposed
algorithm are reported in Table I. The complexity of byte-
optimal GHS and time-optimal flooding are reported in Table
II. We first give proofs of these results, and then we present
a discussion.

TABLE I: Time, message and byte complexity of the pro-
posed hybrid algorithm

Time Byte
Phase 1 O(n log(n/m)) O(|E| logn)
Phase 2 O(2n) O(2n logn)
Phase 3 O(n/m) O(2|E| logn+ nm logn)
Phase 4 O(Diam(Gc)n/m) O(m(n+ k|Ec|) logn)
Phase F O(n/m) O(|E| logn+ nm logn)

Phase OF O(n/m) O(2n/m logn)

TABLE II: Time, message and byte complexity of flooding
and GHS

Time Byte
Flooding O(Diam(G)) O(|E|nb)

GHS O(n logn) O[(n logn+ |E|) logn]

A. Complexity analysis

Complexity of Phase 1:
Time complexity: The GHS algorithm proceeds in

stages, each requiring at most O(n) time units. At each
phase, the size of the smaller cluster at least doubles. Phase
1 terminates when every cluster is larger than n/m: its time
complexity is therefore upper bounded by (n log n/m).

Byte complexity: At each stage, communication within
the clusters require O(n) messages. Furthermore, 2n test-
accept messages are sent at each stage: each node accepts
exactly one connection. Each edge is also rejected at most
once during the algorithm. The overall number of messages
exchanged is therefore O(n log n/m+ |E|). Messages carry
one cluster ID (which can be represented with log n bytes)
at most; hence, their size is upper bounded by log n.

Complexity of Phase 2:
Time complexity: The algorithm proceeds from the

leaves of the trees formed in Phase 1 to their roots and vice
versa, akin to a convergecast followed by a broadcast. The
time complexity is therefore upper bounded by twice the
height of the trees formed in Phase 1, which is itself upper
bounded by 2n.

Byte complexity: Each non-root node sends exactly one
message to its father, either to notify it of the number of
its children or to sever the connection. It receives exactly
one message to notify that Phase 2 is over, authorize a cut
or revert it. The number of messages exchanged is therefore
upper bounded by 2n.

Messages contain numbers of offspring and/or cluster IDs.
The message size in Phase 2 is therefore upper bounded by
O(log n). The resulting byte complexity is O(2n log n).

Complexity of Phase 3:
Time complexity: Once all nodes are in Phase 3, nodes

discover their neighbors’ clusters in two time units at most:
one to send inquiries on all non root-channels, one to collect
replies. The subsequent convergecast requires as many time
units as the height of the tree, which is upper bounded
by bn/mc + t. The overall time complexity is therefore
O(bn/mc+ t+ 2) = O(n/m).

Byte complexity: Each non-tree edge is crossed by two
messages: an inquiry about the cluster ID and a reply. Each
edge belonging to a tree is charged with one convergecast
message. The overall number of messages exchanged is
therefore upper bounded by 2(|E| − n) (inter-cluster) + n
(intra-cluster).

Inquiries on non-tree edges have constant size and replies,
which carry a cluster’s ID, have size log n. Messages relayed
over the tree carry the number of connections with each
neighbor cluster: their size is therefore upper bounded by
m log n. The byte complexity of Phase 3 is O(2(|E| −
n) log n+ nm log n).

Complexity of Phase 4:
Time complexity: Let us abstract Phase 4 by building

an artificial network Gc composed of O(m) nodes, each
corresponding to one of the existing clusters in G and labeled
accordingly. Nodes in Gc are connected if at least one
edge exists among the corresponding clusters in G. Let us
also define a stage time complexity as the time required

for information to travel from the root of one cluster to
the root of its neighbor. Phase 4 is simply flooding on
Gc: the algorithm is therefore guaranteed to terminate in
Diam(Gc) stages. Note that Diam(Gc) = O(Diam(G)) and
Diam(Gc) = O(m). The time complexity of one stage is
upper bounded by 2(bn/mc+ t)+1: in each stage, informa-
tion travels away from the root across the cluster, then hops
from a cluster to the next one and is finally convergecast to
the root. The overall time complexity of Phase 4 is therefore
Diam(Gc)(2(bn/mc+ t) + 1)=O(Diam(G)(n/m)).

Byte complexity: In absence of failures, each of the
O(n) edges belonging to a tree is crossed by information
about one cluster at most twice: once when the cluster
learns about the information, once when information is
relayed to neighbors. The overall byte complexity of intra-
cluster messages in Phase 4 is therefore upper bounded by
(2mn log n): information about each of the m clusters is
stored in log n bits. Each of the k|Ec| inter-cluster connec-
tions is also crossed by information about each cluster once:
clusters send new information once after they receive it. The
associated byte complexity is (k|Ec|m log n). The overall
byte complexity is therefore O(m(n+ k|Ec|) log n).

Complexity of Phase F:
Time complexity: All nodes within a tree are informed

of a link failure within 2(bn/mc + t) time units of the
failure. The node downstream of the failure broadcasts the
information to its offspring directly, whereas the upstream
node informs the root which, in turn, broadcasts information
to other nodes. If a tree is found to be too small, a search
for the minimum weight outgoing edge is initiated. Any node
can be rejected by O(t) other nodes in the same group at
most; furthermore, the first reply may be delayed by as much
as (bn/mc+t−1) time units as nodes are informed of the cut.
The time complexity of splitting is upper bounded by twice
the height of the tree, as in Phase 2. In Phase F, the maximum
height of a tree is (bn/mc+ 2t): before the failure, no tree
can be taller than (bn/mc + t) and only trees smaller than
t perform a minimum weight outer edge (MWOE) search.
Once the tree has been reformed, it updates its neighbors
about its cluster ID and rebuilds the internal routing tables.
Neighbors update their own routing tables, too. As in Phase
3, the time complexity is upper bounded by O(n/m).

Byte complexity: The number of messages required to
inform all nodes in a broken cluster of a failure is O(n):
one message is charged to each node in the cluster, and
cluster size (as opposed to cluster height) has a trivial upper
bound. The corresponding byte complexity is O(n log n):
messages carry a unique Cut ID containing two node IDs
and one cluster ID. If a MWOE search is initiated, each of
the O(t) nodes is rejected by at most t − 2 siblings and
accepted by one neighbor: O(t2) messages are exchanged.
The subsequent convergecast requires O(t) messages. The
splitting procedure requires up to 2n messages, i.e., twice the
size of a cluster. Finally, exploring connections with neighbor
clusters can require up to 2|E| messages (which dominates
the message complexity of Phase F) and updating routing
tables requires up to n messages with a convergecast.

Messages informing nodes of a failure and exploring
neighbor clusters carry a cluster ID and a unique cut identi-

fier. Nodes unaffected by the failure must update their routing
tables by adding or removing information about three clusters
at most: the original cluster may disappear and its two halves
may join two existing trees. The size of all these messages
is therefore O(log n).

On the other hand, clusters containing nodes affected
by the failure must update their routing tables thoroughly:
connections to many clusters may have been lost in the cut
and, if nodes join an existing tree, their ancestors must be
notified of newly available connections. Up to n messages
of size m log n may therefore be sent.

If nodes are performing multiple consensus rounds (e.g.
to track a time-varying quantity), no further messages are
required: once the routing tables have been restored, the
newly formed clusters just wait until the next round of
consensus. If, on the other hand, consensus on a single, static
value is to be performed, neighbor clusters have to update
new or mutilated clusters, who may have lost messages
because of the failure: the corresponding byte complexity
is the same as Phase 4 of the algorithm.

Complexity of Phase OF:
Time complexity: When an inter-cluster link failure

occurs, nodes on both sides of the failure update their
routing table and inform their fathers, which do the same
until the information reaches the root. The associated time
complexity is upper bounded by the height of a tree, i.e.,
bn/mc+ t = O(n/m). Note that cluster flooding (Phase 4)
does not stop while Phase OF is executed unless more than
k − 1 failures occur while routing tables are being updated.

Byte complexity: Each node along the path between
the nodes next to the failure and their roots send exactly
one message to its father. The overall message complexity
is therefore upper bounded by 2(bn/mc + t) = O(2n/m).
Each message carries updated information about one cluster:
message size is therefore O(log n) and the associated byte
complexity is O(n/m log n).

B. Discussion

The theoretical analysis shows that (i) the worst-case time
and byte performance of our algorithm is intermediate with
respect to GHS and flooding and (ii) the algorithm has the
same byte complexity as GHS for m = 1 and the same time
complexity as flooding for m = n. The algorithm therefore
solves the parametrized convex consensus problem.

Time complexity: The time complexity of our algorithm
is dominated by Phase 1 and Phase 4.
• Phase 1, which only needs to be executed once, sports

time complexity lower than GHS by O(n logm).
• The time complexity of Phase 4 is worse than flooding’s

by a factor of (n/m). It is also upper bounded by O(n),
since Diam(Gc) = O(m).
Byte complexity: The byte complexity of our algo-

rithm is dominated by the cost of Phase 4, with O(m(n +
k|Ec|) log n) bytes exchanged.
• Flooding can require as many as O[n|E| log n] bytes:

our algorithm’s byte complexity is lower than flooding’s
by a factor of n/(mk) at least.

• Our algorithm’s worst-case byte complexity is at
least m/ log n times higher than GHS, which requires
O[(n log n+ |E|) log n] bytes.

• The recurring byte cost of consensus on GHS, once a
tree has been established, is O(2n log n): our algorithm,
on the other hand, requires O(m(n+k|Ec|) log n) bytes
for each agreement, over m times more than consensus,
even after a structure has been established.
Robustness: Our algorithm also exhibits robustness

intermediate between GHS and flooding.
• Recovery from an intra-tree failure can be achieved in
O(n/m) time steps. The same failure recovery protocol
requires Ω(h) time units on the spanning tree that GHS
builds: all nodes must be informed before new edges
are added to ensure that no cycles are created. Flooding
does not require any reconfiguration after edge failures.

• Each of the n− 1 edges belonging to the tree built by
GHS is a single point of failure (SPF); in our hybrid
algorithm, edge trees (and therefore SPFs) are n−m.
Message complexity: We remark that our algorithm’s

message complexity can be higher than flooding’s. Our algo-
rithm is therefore unsuitable whenever message complexity,
as opposed to byte complexity, is a good proxy for energy
cost. Design of a tunable algorithm achieving time-optimal
and message-optimal behavior will be the object a future
paper.

VI. NUMERICAL SIMULATIONS ON RANDOM GEOMETRIC
GRAPHS

Performance of our algorithm on random geometric graphs
in a synchronous setting was numerically evaluated and
compared to GHS and flooding. Results are shown in figure
2. Simulations confirm our theoretical results: our algorithm
achieves time and byte complexity intermediate between the
time-optimal and the byte-optimal algorithm; performance
varies smoothly as the tuning parameter is modified. Figure
3 shows the Pareto front formed by the executions of our
algorithm for different tuning parameters.

Our hybrid algorithm, GHS and flooding were executed
on random geometric graphs counting 10 to 750 nodes, in
increments of 10. For each number of nodes, 100 execu-
tions on randomly generated networks were considered. The
hybrid algorithm, GHS and flooding were executed on the
same networks to ensure consistency of results. The hybrid
algorithm was executed with four different values for m,
decreasing from m = n/10 to m = 3 through m = n/ log n
and m = log n.

VII. CONCLUSION

Our hybrid algorithm distributedly builds a semi-
hierarchical structure to obtain intermediate performance
between time optimality and byte optimality. A tuning pa-
rameter allows to achieve tradeoffs between execution time,
energy consumption and robustness; time-optimal or byte-
optimal behavior can also be recovered.

The algorithm allows to meet hybrid performance metrics
on robotic networks of stationary or slow-moving agents. The
consensus functions under consideration go beyond simple
averaging and include voting and mediation.

0 100 200 300 400 500 600 700 800
10

0

10
1

10
2

10
3

10
4

agents

#
 r

o
u

n
d

s

(a) Rounds to completion

0 100 200 300 400 500 600 700 800
10

2

10
3

10
4

10
5

10
6

10
7

10
8

agents

B
y
te

s
 e

x
c
h

.

(b) Bytes exchanged

0 100 200 300 400 500 600 700 800
10

2

10
3

10
4

10
5

10
6

agents

#
 m

e
s
s
a

g
e

s

(c) Messages exchanged

Flooding

GHS

Hybrid (m=3)

Hybrid (m=log n)

Hybrid (m=n/log n)

Hybrid (m=0.1n)

Fig. 2: Time, byte and message complexity of our hybrid
algorithm, GHS and flooding.

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

rounds

B
y
te

s
 e

x
c
h

.

Flooding

GHS

Hybrid (m=5)

Hybrid (m=log n)

Hybrid (m=n/log n)

Hybrid (m=0.1 n)

Fig. 3: Pareto front formed by executions of our algorithm
for different values of m, GHS and flooding.

Future research will focus on extension of our results
to fast-moving networks with frequent edge insertions and
deletions, and on algorithms that meet hybrid performance
parameters on broadcast robotic networks.

REFERENCES

[1] R. Olfati-Saber, “Distributed kalman filtering for sensor networks,” in
Decision and Control, 2007 46th IEEE Conference on, dec. 2007, pp.
5492 –5498.

[2] W. Ren, R. Beard, and E. Atkins, “Information consensus in multive-
hicle cooperative control,” Control Systems, IEEE, vol. 27, no. 2, pp.
71 –82, april 2007.

[3] M. de Weerdt and B. Clement, “Introduction to planning in multiagent
systems,” Multiagent and Grid Systems, vol. 5, no. 4, pp. 345–355,
2009.

[4] A. Jadbabaie, J. Lin, and A. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” Automatic Control,
IEEE Transactions on, vol. 48, no. 6, pp. 988 – 1001, june 2003.

[5] A. Olshevsky, “Efficient information aggregation strategies for dis-
tributed control and signal processing,” Ph.D. dissertation, MIT - De-
partment of Electrical Engineering and Computer Science, September
2010.

[6] N. A. Lynch, Distributed Algorithms. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 1996.

[7] R. Gallager, P. Humblet, and P. Spira, “A distributed algorithm for
minimum-weight spanning trees,” ACM Transactions on Programming
Languages and systems (TOPLAS), vol. 5, no. 1, pp. 66–77, 1983.

[8] B. Awerbuch, “Optimal distributed algorithms for minimum weight
spanning tree, counting, leader election, and related problems,” in
Proceedings of the nineteenth annual ACM symposium on Theory of
computing. ACM, 1987, pp. 230–240.

[9] J. Cortes, S. Martinez, and F. Bullo, “Robust rendezvous for mobile
autonomous agents via proximity graphs in arbitrary dimensions,”
Automatic Control, IEEE Transactions on, vol. 51, no. 8, pp. 1289
–1298, aug. 2006.

[10] C. Gao, J. Cortés, and F. Bullo, “Notes on averaging over acyclic
digraphs and discrete coverage control,” Automatica, vol. 44, no. 8,
pp. 2120 – 2127, 2008.

[11] B. Awerbuch, “Complexity of network synchronization,” Journal of
the ACM (JACM), vol. 32, no. 4, pp. 804–823, 1985.

