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On the interaction between Autonomous Mobility-on-Demand
systems and the power network: models and coordination algorithms

Federico Rossi, Ramon Iglesias, Mahnoosh Alizadeh and Marco Pavone∗

Abstract—We study the interaction between a fleet of electric,
self-driving vehicles servicing on-demand transportation requests
(referred to as Autonomous Mobility-on-Demand, or AMoD,
system) and the electric power network. We propose a joint model
that captures the coupling between the two systems stemming
from the vehicles’ charging requirements. The model captures
time-varying customer demand and power generation costs, road
congestion, battery depreciation, and power transmission and
distribution constraints. We then leverage the model to jointly
optimize the operation of both systems. We devise an algorithmic
procedure to losslessly reduce the problem size by bundling
customer requests, allowing it to be efficiently solved by off-
the-shelf linear programming solvers. Next, we show that the
socially optimal solution to the joint problem can be enforced
as a general equilibrium, and we provide a dual decomposition
algorithm that allows the transportation and power network
operators to compute the market clearing prices without sharing
private information. We assess the performance of the model and
algorithms by studying a hypothetical electric-powered AMoD
system in Dallas-Fort Worth and its impact on the Texas power
network. Lack of coordination between the AMoD system and
the power network would cause a 4.4% increase in the price
of electricity in Dallas-Fort Worth; conversely, depending on
the maturity of battery technology, coordination between the
AMoD system and the power network would reduce the total
electricity expenditure compared to the case where no cars are
present (despite the increased demand for electricity) and yield
savings of up to $147M/year for local power network customers.
Agent-based simulations with receding-horizon versions of the
algorithms further corroborate these findings. Collectively, the
results of this paper provide a first-of-a-kind characterization of
the interaction between electric-powered AMoD systems and the
power network, and shed additional light on the economic and
societal value of AMoD.

I. INTRODUCTION

Private vehicles are major contributors to urban pollution,
which is estimated to cause over seven million premature
deaths worldwide every year [1]. Plug-in electric vehicles
(EVs) hold promise to significantly reduce urban pollution,
both by reducing carbon dioxide emissions from internal-
combustion engine vehicles, and by enabling use of renewable
and low-polluting power generators as a source of energy
for transportation services. However, at present, adoption of
EVs for private mobility has been significantly hampered by
customers’ concerns about limited range and availability of
charging infrastructure.
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The emerging technology of self-driving vehicles might
provide a solution to these challenges and thus might represent
a key enabler for the widespread adoption of EVs. Specifically,
fleets of self-driving vehicles providing on-demand trans-
portation services (referred to as Autonomous Mobility-on-
Demand, or AMoD, systems) hold promise to replace personal
transportation in large cities by offering high quality of service
at lower cost [2] with positive effects on safety, parking
infrastructure, and congestion. Crucially, EVs are especially
well-suited to AMoD systems. On the one hand, short-range
trips typical of urban mobility are well-suited to the current
generation of range-limited EVs; on the other hand, intelligent
fleet-wide policies for rebalancing and charging can ensure
that vehicles with an adequate level of charge are available
to customers, virtually eliminating “range anxiety,” a major
barrier to EV adoption. To fully realize this vision, however,
one needs currently unavailable tools to manage the complex
couplings between AMoD fleet management (e.g., for routing
and charging the EVs) and the control of the power network.
Specifically, one should consider

1) Impact of transportation network on power network:
Concurrent charging of large numbers of EVs can have
significant effects both on the stability of the power
network and on the local price of electricity (including
at the charging stations) [3], [4], [5]. For example, [5]
shows that in California a 25% market penetration of
(non-autonomous) EVs with fast chargers, in the absence
of smart charging algorithms, would increase overall
electricity demand in peak load by about 30%, and
electricity prices by almost 200%.

2) Impact of power network on transportation network:
Electricity prices can significantly affect travel patterns
for EVs. [4] shows that changes in electricity prices can
radically alter the travel patterns and charging schedules
of fleets of EVs in a simplified model of the San Fran-
cisco Bay Area. This, in turn, would affect electricity
prices in a complex feedback loop.

The key idea behind this paper is that, by intelligently
routing fleets of autonomous EVs and, in particular, by har-
nessing the flexibility offered by the routes and schedules
for the empty-traveling vehicles, one can actively control
such complex couplings and guarantee high-performance for
the overall system (e.g., high passenger throughput, lower
electricity costs, and increased integration of renewable energy
sources). Additionally, autonomous EVs provide a unique op-
portunity for joint traffic and energy production management,
as they could act as mobile storage devices. That is, when
not used for the fulfillment of trip requests, the vehicles could
be routed to target charging stations in order to either absorb
excess generated energy at time of low power demand (by
charging) or inject power in the power network at times of
high demand (by discharging).

Literature review: Control of AMoD systems has been
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addressed in multiple lines of work, including queuing-
theoretical approaches [6], [7], network flow approaches [8],
[9], integer linear programming and model-predictive control
approaches [10], [11], and simulation-based approaches [12],
[13]. However, throughout these works, AMoD systems are
assumed to have no impact on the electric power network.

The integration of non-autonomous EVs within the power
network has been addressed in three main lines of work.
A first line of work addresses the problem of scheduling
charging of EVs (i.e., optimizing the charging profile in time)
under the assumption that the vehicles’ charging schedule has
no appreciable effect on the power network [14], [15], [16].
This assumption is also commonly made when selecting the
locations of charging stations (i.e., optimizing the charging
profile in space) [17], [18]. A high penetration of EVs would,
however, significantly affect the power network. Thus, a
second line of work investigates the effects of widespread
adoption of EVs on key aspects such as wholesale prices
and reserve margins, for example in macroeconomic [5] and
game-theoretical [3], [19] settings. Accordingly, [4] investigate
joint models for EV routing and power generation/distribution
aimed at driving the system toward a socially-optimal solution.
Finally, a third line of work investigates the potential of using
EVs to regulate the power network and satisfy short-term
spikes in power demand. The macroeconomic impact of such
schemes (generally referred to as Vehicle-To-Grid, or V2G)
has been studied in [20], where it is shown that widespread
adoption of EVs and V2G could foster significantly increased
adoption of wind power. Going one step further, [21] proposes
a unified model for EV fleets and the power network, and
derives a joint dispatching and routing strategy that maximizes
social welfare (i.e., it minimizes the overall cost borne by all
participants, as opposed to maximizing individual payoffs).
However, [20] does not capture the spatial component of the
power and transportation networks, while [21] assumes that
the vehicles’ schedules are fixed.

The objective of this paper is to investigate the interaction
between AMoD and the electric power network (jointly re-
ferred to as Power-in-the-loop AMoD, or P-AMoD, systems)
in terms of modeling and algorithmic tools to effectively
manage their couplings. Our work improves upon the state of
the art (in particular, [4]) along three main dimensions: (i) it
provides rigorous models for a fleet of shared and autonomous
EVs; (ii) it provides efficient algorithms that can scale to large-
scale instances; and (iii) it characterizes the vehicles’ ability
to return power to the power network through vehicle-to-grid
(V2G) schemes, and its economic benefits.

Statement of contributions: First, we propose a joint model
for P-AMoD systems. The model subsumes existing network
flow models for AMoD systems and DC models for the power
network, and it captures time-varying customer demand and
electricity generation costs, congestion in the road network,
vehicle battery depreciation, power transmission constraints
on the transmission lines, and transformer capacity constraints
induced by the distribution network. Second, we leverage the
model to design tools that optimize the operations of P-AMoD
systems and, in particular, maximize social welfare. To this
end, we propose an algorithmic procedure to losslessly reduce
the dimensionality of the P-AMoD model. The procedure
allows P-AMoD problems with hundreds of road links, time
horizons of multiple hours, and any number of customers
and vehicles to be optimized on commodity hardware. Third,

we show that the socially-optimal solution to the P-AMoD
problem can be enforced as a general equilibrium through
pricing, and we propose a distributed privacy-preserving al-
gorithm that the transportation and power network operators
can employ to compute the efficient (market clearing) prices
without disclosing their private information. Fourth, we apply
the model and algorithms to a case study of a hypothetical
deployment of an AMoD system in Dallas-Fort Worth, TX.
We show that coordination between the AMoD system and the
electric power network can have a significant positive impact
on the price of electricity (remarkably, the overall electricity
expenditure in presence of the AMoD system can be lower
than in the case where no vehicles are present, despite the
increased demand), while retaining all the convenience and
sustainability benefits of AMoD. This suggests that the societal
value of AMoD systems spans beyond mobility: properly
coordinated, AMoD systems can deliver significant benefits
to the wider community by helping increase the efficiency of
the power network. Agent-based simulations with receding-
horizon versions of the algorithms show that, in absence of
coordination, large-scale adoption of electric AMoD can cause
widespread blackouts and increase electricity prices by almost
50%; conversely, the receding-horizon P-AMoD algorithm
is able to maintain electricity prices constant, despite the
substantial increase in power demand.

A preliminary version of this paper was presented at the
2018 Robotics: Science and Systems conference. In this re-
vised and extended version, we provide as additional contribu-
tions (i) a rigorous proof that the socially-optimal solution can
be enforced as a general equilibrium, (ii) a privacy-preserving
distributed optimization algorithm, (iii) additional numerical
results, and (iv) proofs of all theorems.

Organization: The remainder of this paper is organized as
follows. In Section II we present a linear model that captures
the interaction between an AMoD system and the power
network. In Section III, we propose a procedure to losslessly
reduce the size of the model by bundling customer requests. In
Section IV, we show that the socially optimal solution to the
P-AMoD problem can be enforced as a general equilibrium
and propose a privacy-preserving distributed optimization al-
gorithm. In Section V, we evaluate our model and algorithm
on a case study of Dallas-Fort Worth. In Section VI, we draw
conclusions and discuss directions for future work. Finally, in
the Appendix, we present agent-based simulations and proofs
of all theorems.

II. MODEL DESCRIPTION AND PROBLEM FORMULATION

We propose a linear, flow-based model that captures the
interaction between an AMoD system and the power network.
The model consists of two parts.

First, we extend the model in [9] to a time-varying, charge-
aware network flow model of an AMoD system with EVs.
We assume that a Transportation Service Operator (TSO)
manages the AMoD system in order to fulfill passenger trip
requests within a given road network. Road links are subject to
congestion, and trip requests arrive according to an exogenous
dynamical process. The TSO must not only compute the routes
for the autonomous EVs (i.e. vehicle routing), but also issue
tasks and routes for empty vehicles in order to realign the
fleet with the asymmetric distribution of trip demand (i.e.
vehicle rebalancing). Due to limited battery capacity, the EVs
need to periodically charge at charging stations. The price
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of electricity varies between charging stations – the charging
schedule is determined by the TSO in order to minimize the
fleet’s operational cost.

The price of electricity itself is a result of the power
network operation to balance supply and demand, and varies
across the power grid. Thus, we next review the linear (DC)
power flow model of the power network and the economic
dispatch problem used to calculate market clearing prices
for electricity. The power transmission network comprises
spatially-distributed energy providers that are connected to
spatially-distributed power network users through high-voltage
transmission lines. Transmission capacities (dictated chiefly
by thermal considerations) limit the amount of power that
can be transferred on each transmission line. Load buses are
connected to charging stations and other sources of power
demand through the distribution systems: these systems induce
constraints on the amount of power that can be served to
each load bus. Power demands other than those from charging
stations are regarded as exogenous parameters in this paper.
The power network is controlled by an Independent System
Operator (ISO). The ISO also determines prices at the load
buses (and, consequently, at the charging stations) so as to
guarantee grid reliability while minimizing the overall gener-
ation cost (a problem known as economic dispatch).

The vehicles’ charging introduces a coupling between the
transportation and the power networks. The power demands
due to charging influence the local price of electricity set
by the ISO – the prices, in turn, affect the optimal charging
schedule computed by the TSO. Accordingly, we conclude this
section by describing the interaction between the two models,
and we propose a joint model for Power-in-the-loop AMoD.

A. Network Flow Model of an AMoD system

We consider a time-varying, finite-horizon model. The time
horizon of the problem is discretized in T time intervals,
each corresponding to TS seconds; the battery charge level of
the vehicles is similarly discretized in C charge levels, each
corresponding to JC joules.

Road network: The road network is modeled as a directed
graph R = (VR, ER), where VR denotes the node set and
ER ⊆ VR × VR denotes the edge set. Nodes v ∈ VR
denote either an intersection, a charging station, or a trip
origin/destination. Edges (v, w) ∈ ER denote the availability
of a road link connecting nodes v and w. For each edge, the
length d(v,w) ∈ R≥0 determines the mileage driven along the
road link; the traversal time t(v,w) ∈ {1, . . . , T} characterizes
the travel time on the road link in absence of congestion; the
energy requirement c(v,w) ∈ {−C, . . . , C} models the energy
consumption (i.e., the number of charge levels) required to
traverse the link in absence of congestion; and the capacity
fv,w ∈ R≥0 captures the maximum vehicle flow rate (i.e.,
the number of vehicles per unit of time) that the road link can
accommodate on top of exogenous traffic without experiencing
congestion.

Vehicles traversing the road network can recharge and
discharge their batteries at charging stations, whose locations
are modeled as a set of nodes S ⊂ VR. Each charging station
s ∈ S is characterized by a charging rate δc+s ∈ {1, . . . , C},
a discharging rate δc−s ∈ {−C, . . . ,−1}, a time-varying
charging price p+s (t) ∈ R, a time-varying discharging price
p−s (t) ∈ R, and vehicle capacity Ss ∈ N. The charging
and discharging rates δc+s , δc

−
s ∈ {1, . . . , C} correspond to

the amount of energy (in charge levels) that the charger can
provide to a vehicle (or, conversely, that a vehicle can return
to the power grid) in one unit of time. For simplicity, we
assume that the charging rates are fixed; however, the model
can be extended to accommodate variable charging rates. The
charging and discharging prices p+s (t) and p−s (t) capture the
cost of one discrete unit charge level (or, conversely, the
payment the vehicles receive for returning one unit charge
level to the grid) at time t; in this paper, we assume that
p+s (t) = p−s (t) (in accordance with the assumption of an
arbitrage-free market). The vehicle capacity Ss models the
maximum number of vehicles that can simultaneously charge
or discharge at station s. Charging and discharging (due both to
driving activity and to vehicle-to-grid power injection) cause
wear in the vehicles’ batteries. The battery depreciation per
unit charge or discharge is denoted as dB . Battery depreciation
captures the cost of replacing a battery at the end of its
useful life; note, however, that the vehicle’s battery capacity is
assumed to remain constant during the model’s finite horizon.

Expanded AMoD network: We are now in a position
to rigorously define the network flow model for the AMoD
system. We introduce an expanded AMoD network modeled as
a directed graph G = (V, E). The graph G captures the time-
varying nature of the problem and tracks the battery charge
level of the autonomous vehicles. Specifically, nodes v ∈ V
model physical locations at a given time and charge level,
while edges e ∈ E model road links and charging actions
at a given time and charge level. Formally, a node v ∈ V
corresponds to a tuple v = (vv, tv, cv), where vv ∈ VR is
a node in the road network graph R; tv ∈ {1, . . . , T} is a
discrete time; and cv ∈ {1, . . . , C} is a discrete charge level.
The edge set E is partitioned into two subsets, namely EL
and ES , such that EL ∪ ES = E and EL ∩ ES = ∅. Edges
e ∈ EL represent road links, whereas edges e ∈ ES model the
charging/discharging process at the stations. An edge (v,w)
belongs to EL when (i) an edge (vv, vw) exists in the road
network graph edge set ER, (ii) the link (vv, vw) ∈ ER can be
traversed in time tw−tv = t(vv,vw), and (iii) the battery charge
required to traverse the link is cv−cw = c(vv,vw). Conversely,
an edge (v,w) represents a charging/discharging edge in ES
when (i) vv = vw is the location of a charging station
in S and (ii) the charging/discharging rate at the charging
location vv is (cw − cv)/(tw − tv) = δc+vv (charging) or
(cw − cv)/(tw − tv) = δc−vv (discharging). Figure 1 (left)
shows a graphical depiction of the graph G.
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Fig. 1. Augmented transportation and power networks. As vehicles travel
on road links (modeled by solid black arrows), their charge level decreases.
Blue nodes represent charging stations: the flows on charging and discharging
edges affect the load at the corresponding nodes in the power network. For
simplicity, only one time step is shown.

Customer and rebalancing routes: Transportation requests
are represented by the set of tuples {(vm, wm, tm, λm)}Mm=1,
where vm ∈ VR is the request’s origin location, wm ∈ VR
is the request’s destination location, tm is the requested
pickup time, and λm is the average customer arrival rate
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(or simply customer rate) of request m within time interval
tm. Transportation requests are assumed to be known and
deterministic.

The goal of the TSO is to compute a routing and recharging
policy for the self-driving vehicles. To achieve this, we model
vehicle routes as network flows [22]. Network flows are an
equivalent representation for routes. Indeed, any route can
be represented as a network flow assuming value 1 on edges
belonging to the route and 0 elsewhere; conversely, all network
flows considered in this paper can be represented as a collec-
tion of weighed routes [22, Ch. 3]. This representation allows
us to leverage the rich theory of network flows: in particular, in
Section III section we exploit this theory to losslessly reduce
the dimensionality of the optimization problem.

We denote the customer flow as the rate of customer-
carrying vehicles belonging to a specific transportation request
(vm, wm, tm, λm) traversing an edge e ∈ E . Formally, for
request m ∈ {1, . . . ,M}, the customer flow is a function
fm(v,w) : E 7→ R≥0, that represents the rate of customers
belonging to request m traveling from location vv to location
vw (or charging/discharging at location vv = vw) from time tv
to time tw, with an initial battery charge of cv and a final bat-
tery charge of cw. Analogously, the rebalancing (or customer-
empty) flow f0(v,w) : E 7→ R≥0 represents the rate of
empty vehicles traversing a road link or charging/discharging.
Customer flows must satisfy a continuity condition: customer-
carrying vehicles entering a node at a given time and charge
level must exit the same node at the same time and with the
same charge level. Equation (1) enforces this condition:∑

u:(u,v)∈E

fm(u,v) + 1vv=vm1tv=tmλ
cv,in
m =

∑
w:(v,w)∈E

fm(v,w)+

1vv=wmλ
tv,cv,out
m ∀v ∈ V,m ∈ {1, . . . ,M} , (1a)

C∑
c=1

λc,inm = λm,

T∑
t=1

C∑
c=1

λt,c,out
m = λm, ∀m∈{1, . . . ,M}, (1b)

where the variable λc,inm denotes the customer rate departing
with charge level c and the variable λt,c,out

m denotes the cus-
tomer rate reaching the destination at time t with charge level
c; both are optimization variables. Function 1x denotes the
indicator function of the Boolean variable x = {true, false},
that is 1x = 1 if x is true, and 1x = 0 if x is false.

Rebalancing flows must satisfy a continuity condition analo-
gous to the one for the customer flows. In addition, rebalancing
flows must satisfy a consistency condition representing the
fact that a customer may only depart the origin location if
an empty vehicle is available. Finally, the initial position and
charge level of the vehicles are fixed; the final position and
charge level are optimization variables (possibly subject to
constraints, e.g., on the minimum final charge level). The
constraints for the initial and final positions of the rebalancing
vehicles at each node v ∈ V are captured by a set of func-
tions NI(v) and NF (v), respectively. Formally, NI(v), with
tv = 0, denotes the number of rebalancing vehicles entering
the AMoD system at location vv at time tv with charge level
cv. Conversely, NF (v), with tv = T denotes the number of
rebalancing vehicles at location vv at time tv with charge level
cv. For tv 6= 0, NI(v) = 0; for tv 6= T , NF (v) = 0. The
overall number of vehicles in the network is

∑
v∈V NI(v).

Equation (2) simultaneously enforces the rebalancing vehicles’
continuity condition, consistency condition, and the constraints
on the initial and final locations:

∑
u:(u,v)∈E

f0(u,v) +

M∑
m=1

1vv=wmλ
tv,cv,out
m +NI(v) =

∑
w:(v,w)∈E

f0(v,w) +

M∑
m=1

1vv=vm1tv=tmλ
cv,in
m +NF (v), ∀v ∈ V. (2)

Congestion: We adopt a simple threshold model for con-
gestion: the vehicle flow on each road link is constrained to be
smaller than the road link’s capacity. The model is analogous
to the one adopted in [9] and is consistent with classical traffic
flow theory [23]. This simplified congestion model is adequate
for our goal of controlling the vehicles’ routes and charging
schedules, and ensures tractability of the resulting optimization
problem; higher-fidelity models can be used for the analysis
of the AMoD system’s operations. Equation (3) enforces the
road congestion constraint:

C∑
cv=1

M∑
m=0

fm(v,w) ≤ f (vv,vw),∀(vv, vw) ∈ ER, tv ∈ {1, . . . , T}.

(3)
Charging stations can simultaneously accommodate a lim-

ited number of vehicles. The station capacity constraint is
enforced with Equation (4):∑

(v,w)∈ES :
vv=vw=v

M∑
m=0

fm(v,w) ≤ Svv , ∀v ∈ S, t ∈ {1, . . . , T}. (4)

Network flow model of an AMoD system: The travel time
TM experienced by customers, a proxy for customer welfare,
and the overall mileage DV driven by (both customer-carrying
and empty) vehicles, a proxy for vehicle wear, are given by

TM =
∑

(v,w)∈E

tv,w

M∑
m=1

fm(v,w),

DV =
∑

(v,w)∈E

dvv,vw

M∑
m=0

fm(v,w).

Note that TM only includes the travel time of customer-
carrying vehicles, whereas DV includes the distance traveled
by all vehicles. Also note that, for charging edges, dvv,vw = 0.
The total cost of electricity incurred by the vehicles (including
any credit from selling electricity to the power network) is

VE =
∑

(v,w)∈ES

M∑
m=0

fm(v,w)δcvvp(v,w),

where δcvv = δc+vv and p(v,w) = p+vv if cw > cv, δcvv = δc−vv
and p(v,w) = p−vv otherwise.

The overall battery depreciation due to charging and dis-
charging is

VB =dB

M∑
m=0

 ∑
(v,w)∈ES

fm(v,w)|δcvv |+
∑

(v,w)∈EL

fm(v,w)|c(vv,vw)|

 .
(Note that battery depreciation accounts for both charging and

discharging, since battery life is determined by the number of
charging/discharging cycles incurred by the battery cells).

The goal of the TSO is to solve the Vehicle Routing and
Charging problem, that is, to minimize the aggregate societal
cost borne by the AMoD users while satisfying all operational
constraints. We define the customers’ value of time (i.e., the
monetary loss associated with traveling for one time interval)
as VT and the operation cost per kilometer of the vehicles
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(excluding electricity costs) as VD. We are now in a position
to state the TSO’s Vehicle Routing and Charging problem:

minimize
fm,λ

c,in
m ,λ

t,c,out
m ,NF

VDDV + VE + VB + VTTM , (5a)

subject to (1), (2), (3), and (4). (5b)

B. Linear model of power network
In this paper, the power network is modeled according to

the well-known DC model [24, Ch. 6], which, by assuming
constant voltage magnitudes and determining the power flow
on transmission lines solely based on voltage phase angles,
represents an approximation to the higher-fidelity AC flow
model [25]. In analogy with the treatment of the AMoD
model, we discretize the time horizon of the problem in T
time steps. The power grid is modeled as an undirected graph
P = (B, EP ), where B is the node set, commonly referred to
as buses in the power engineering literature, and EP ⊆ B×B
is the edge set, representing the transmission lines. The subsets
of buses representing generators and loads are defined as
G ⊂ B and L ⊂ B, respectively. Generators produce power
and deliver it to the network, while loads absorb power from
the network. Each generator g ∈ G is characterized by a
maximum output power pg(t), a minimum output power p

g
(t),

a unit generation cost og(t), and maximum ramp-up and ramp-
down rates p+g (t) and p−g (t), respectively. Transmission lines
e ∈ EP are characterized by a reactance xe and a maximum
allowable power flow pe (due chiefly to thermal constraints).
The reactance and the maximum allowable power flow do not
vary with time. Each load node l ∈ L is characterized by a
required power demand dl(t). The distribution network is not
modeled explicitly; however, thermal constraints due to the
substation transformers are modeled by an upper bound dl(t)
on the power that can be delivered at each load node.

We define a generator power function p : (G, {1, . . . , T}) 7→
R≥0, and a phase angle function θ : (B, {1, . . . , T}) 7→ R. The
generation cost is defined as

CG =

T∑
t=1

∑
g∈G

og(t)p(g, t).

The Economic Dispatch problem entails minimizing the
generation cost subject to a set of feasibility constraints [24]:

minimize
p,θ

CG, (6a)

subject to
∑

(u,v)∈EP

θ(u, t)− θ(v, t)
xu,v

+ 1v∈Gp(v, t) = 1v∈Ldv(t)+

∑
(v,w)∈EP

θ(v, t)− θ(w, t)
xv,w

, ∀v ∈ B, t ∈ {1, . . . , T} , (6b)

− pb1,b2 ≤
θ(b1, t)− θ(b2, t)

xb1,b2
≤ pb1,b2 ,

∀(b1, b2) ∈ EP , t∈{1, . . . , T}, (6c)
p
g
(t) ≤ p(g, t) ≤ pg(t), ∀g ∈ G, t∈{1, . . . , T} , (6d)

− p−g (t) ≤ p(g, t+ 1)− p(g, t) ≤ p+g (t) ,
∀g ∈ G, t ∈ {1, . . . , T − 1} , (6e)

dl(t) ≤ dl(t) , ∀l ∈ L, t ∈ {1, . . . , T} . (6f)

Equation (6b) enforces power balance at each bus based
on the so-called DC power flow equations; Equation (6c)
encodes the transmission lines’ thermal constraints; Equation
(6d) encodes the generation capacity constraints; Equation (6e)

encodes the ramp-up and ramp-down constraints; and Equation
(6f) encodes the thermal constraints of substation transformers.

The unit price of electricity at the load nodes is determined
through a mechanism known as Locational Marginal Pricing
(LMP) [24]. The LMP at a node is defined as the marginal cost
of delivering one unit of power at the node while respecting all
the system constraints. Accordingly, in this paper, the LMP at
each bus equals the sum of the dual variables (i.e., the shadow
prices) corresponding to the power injection constraint (6b)
and the substation transformer thermal constraint (6f) at the
same bus in the Economic Dispatch problem.

C. Power-in-the-loop AMoD system

The vehicles’ charging requirements introduce a coupling
between the AMoD system and the power network, as shown
in Figure 1. Specifically, the vehicles’ charging schedule
produces a load on the power network. Such a load on the
power network affects the solution to the ISO’s Economic
Dispatch problem and, as a result, the LMPs. The change in
LMPs, in turn, has an effect on the TSO’s optimal charging
schedule. In absence of coordination, this feedback loop can
lead to system instability, as shown for the case of privately-
owned, non-autonomous EVs in [4].

In this section, we formulate a joint model for the TSO’s Ve-
hicle Routing and Charging problem and the ISO’s Economic
Dispatch problem. The goal of this model is to maximize
the social welfare by minimizing the total cost of mobility
(a profit-maximizing formulation would be similar) and the
total cost of power generation and transmission. While the
resulting solution is not directly actionable (since it requires
the TSO and the ISO to coordinate and share their private
information), pricing mechanisms can be designed to steer the
system towards the optimum: we propose one such mechanism
in Section IV.

The coupling between the AMoD model and the electric
power model is mediated by the charging stations. A given
charging station is represented both by a node v ∈ VR
in the road network and by a load node l ∈ L in the
power network. To capture this correspondence, we define
an auxiliary function MP,R : L 7→ {VR ∪ ∅}. Given a load
node b ∈ L, MP,R(b) denotes the node in VR (if any) that
represents a charging station connected to b. We then define
two additional functions, M+

P,G : (L, {1, . . . , T}) 7→ {ES ∪ ∅}
and M−P,G : (L, {1, . . . , T}) 7→ {ES ∪ ∅}. The function M+

P,G
(respectively,M−P,G) maps a load node l and a time t to the set
of charge (respectively discharge) edges in G corresponding
to station MP,R(l) at time t. Formally,

M+
P,G(l, t) : {(v,w)∈ES |vv = vw, vv∈MP,R(l), cv<cw, tv ≤ t<tw},

M−P,G(l, t) : {(v,w)∈ES |vv = vw, vv∈MP,R(l), cv>cw, tv ≤ t<tw}.
The load at a load bus l can be expressed as the sum of two

components: an exogenous demand dl,e and the load due to
the charger or chargers connected to that bus, quantitatively,

dl(t) =dl,e(t) +
JCδc

+
MP,R(l)

TSδt
+
MP,R(l)

∑
(v,w)∈M+

P,G(l,t)

M∑
m=0

fm(v,w)

+
JCδc

−
MP,R(l)

TSδt
−
MP,R(l)

∑
(v,w)∈M−P,G(l,t)

M∑
m=0

fm(v,w), (7)

for all l ∈ L, t ∈ {1, . . . , T}.



6

We are now in a position to state the Power-in-the-loop
AMoD (P-AMoD) problem:

minimize
fm,λ

c,in
m ,λ

t,c,out
m ,NF ,θ,p

VTTM + VDDv + VB + CG, (8a)

subject to (1), (2), (3), (4), (6), and (7). (8b)

D. Discussion
Some comments are in order. First, the model assumes that

the TSO and the ISO share the goal of maximizing social
welfare and are willing to collaborate on a joint policy. This
assumption is, in general, not realistic: not only do the TSO
and ISO have different goals, but they are also generally
reluctant to share the information required for successful
coordination. However, once a socially optimal strategy is
found, efficient coordination mechanisms can be designed that
steer rational agents towards that strategy: in Section IV, we
show that the social optimum can be enforced as a general
equilibrium for a self-interested TSO, self-interested power
generators, and a non-profit ISO acting as a market broker,
and we propose a distributed privacy-preserving mechanism
that an ISO and a TSO can adopt to compute the market-
clearing prices that enforce such an equilibrium.

Second, we consider single-occupancy vehicles, in line with
the mode of operations of current MoD systems; the extension
to ride-sharing is an interesting avenue for future research.

Third, the network flow model has some well-known lim-
itations: chiefly, it does not capture the stochasticity of the
customer arrival process, and it does not directly yield integral
routes suitable for real-time control of vehicles. Furthermore,
in this paper, customer requests are assumed to be determinis-
tic and known in advance, an assumption that is not consistent
with the paradigm of on-demand mobility. Indeed, transporta-
tion requests in our model can be interpreted as expected
values of the corresponding stochastic processes (which can
be estimated from historical data and/or via demand models):
accordingly, the model proposed in this section may be used
for planning on timescales of days and hours, akin to the Day-
Ahead-Market already in use in the electric power network
[24]. Additionally, to enable real-time operations, in Appendix
A we propose a receding-horizon implementation of Problem
(8) that is able to quickly return integral solutions amenable
to real-time control of P-AMoD systems.

Finally, the DC model for the power network has some
shortcomings, chiefly the inability to handle voltage con-
straints [26] and system-dependent accuracy [27]. On the
other hand, its linearity makes it amenable to large-scale
optimization and easy to integrate within the economic theory
upon which the transmission-oriented market design is based
on [27]. Moreover, the DC model is widely adopted among
ISOs [28], and its LMP calculations are fairly accurate [29].
Hence, the DC model is appropriate for high-level synthesis
of joint control policies such as those considered in this paper.
We remark that any convex optimal power flow model could
be readily used in lieu of the DC model, since convex models
are also amenable to efficient optimization and can be used to
compute locational marginal prices; the study and integration
of such models is an interesting direction for future research.

III. SOLUTION ALGORITHMS

The number of optimization variables in the P-AMoD
problem (8) is (M+1)|E|+MC(T+1)+|VR|C+T (|G|+|B|).
The size of the edge set E is |E| = Θ((|ER| + |S|)CT )

(that is, the asymptotic growth of |E| is bounded both from
above by a function k(|ER| + |S|)CT and bounded below
by a function k(|ER| + |S|)CT , where k and k are positive
constants), and the number of customer requests M admits
an upper bound O(|VR|2T ), since each customer demand is
associated with an origin, a destination, and a departure time.
The size of the problem is dominated by the customer flow
variables in the road network – the number of such variables
is M |E| = O((|VR|2T )(|ER| + |S|)CT ). Consider a typical
problem with 25 road nodes, 200 road links, 30 charge levels,
and a horizon of 20 time steps. Such a problem results in a
number of variables on the order of 2 · 109, which can not be
solved even by state-of-the-art solvers on modern hardware
[30].

In this section, we propose a bundling procedure that allows
one to reduce the number of network flows to O(|VR|) without
loss of information. As a result, the size of the prototypical
problem above is reduced to 4 · 106 variables, well within
the reach of modern solvers. The procedure collects multiple
customer demands in a single customer flow, a concept we
refer to as bundled customer flow,

Definition III.1 (Bundled customer flow).
Consider the set of customer requests
{vm, wm, tm, λm}Mm=1. Denote the set of customer
destinations as D := {∪Mm=1wm}. For a given destination
dB ∈ D, we define a bundled customer flow as a function
fB,dB (u,v) : E 7→ R≥0 that satisfies∑

u:(u,v)∈E

fB,dB (u,v) +
∑

m∈{1,...,M}:
wm=dB

1vv=vm1tv=tmλ
cv,in
m

=
∑

w:(v,w)∈E

fB,dB (v,w) +
∑

m∈{1,...,M}:
wm=dB

1vv=wmλ
tv,cv,out
m , ∀v ∈ V, (9a)

C∑
c=1

λc,inm =

T∑
t=1

C∑
c=1

λt,c,out
m = λm, ∀m ∈ {1, . . . ,M} : wm = dB .

(9b)
Intuitively, the bundled customer flow for a given destination

dB can be thought of as the sum of customer flows (i.e., net-
work flows satisfying Equation (1)) for all customer requests
whose destination is node dB . A bundled customer flow is an
equivalent representation for a set of customer flows belonging
to customer requests sharing the same destination. The next
lemma formalizes this intuition.

Lemma III.2 (Equivalency between customer flows and bun-
dled customer flows). Consider a network G(V, E) and a
set of customer requests {vm, wm, tm, λm}Mm=1. Assume there
exists a bundled customer flow {fB,dB (u,v)}(u,v)∈E that
satisfies Equation (9) for a destination dB ∈ D. Then, for
each customer request {vm, dB , tm, λm} with destination dB ,
there exists a customer flow fm(u,v) that satisfies Equation
(1). Furthermore, for each edge (u,v) ∈ E , fB,dB (u,v) =∑
m∈{1,...,M}:wm=dB

fm(u,v).

Proof sketch: Define as path flow a network flow that has
a fixed intensity on edges belonging to a path without cycles
from the origin to the destination and zero otherwise. The flow
decomposition algorithm [22, Ch. 3.5] is used to decompose
the bundled customer flow into a collection of path flows,
each with a single origin node v ∈ V and destination node
w ∈ V with vw = dB . The customer flow for customer request
(vm, dB , t, λ) is then obtained as the sum of path flows leaving
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origin nodes {v = (vm, tm, c)}Cc=1 with total intensity λm. A
rigorous proof is reported in the Appendix.

We can leverage the result in Lemma III.2 to solve the
P-AMoD problem in terms of bundled customer flows, thus
dramatically decreasing the problem size. The next theorem
formalizes this intuition.

Theorem III.3 (P-AMoD with bundled customer flows).
Consider the following problem, referred to as the bundled
P-AMoD problem:

minimize
f0,fB,dB

,λc,in
m ,λt,c,out

m ,NF ,θ,p

VTTM + VDDv + VB + CG, (10)

subject to (9) ∀dB ∈ D , (2), (3), (4), (6), and (7) ,

where each instance of
∑M
m=1 fm in the cost function

and in Equations (2), (3), (4), (6), and (7) is replaced by∑
dB∈D fB,dB . The bundled P-AMoD problem (10) admits

a feasible solution if and only if the P-AMoD problem (8)
admits a feasible solution. Furthermore, the optimal values of
Problem (8) and Problem (10) are equal.

Proof sketch: The proof follows directly from Lemma III.2.
A rigorous proof can be found in the Appendix.

The optimization problem in (10) can be solved with a
number of variables on the order of O((|VR| + 1)|E| +
MC + |VR|C + T (|G| + |Ep| + |B|)). To see this, note that
in Equation (9) the variables {λt,c,out

m }{m,t,c} only appear as
part of the sum

∑
m∈{1,...,M}:wm=dB

λt,c,out
m and therefore may

be replaced by the smaller set of variables {λt,c,out
dB

}{dB ,t,c},
where λt,c,out

dB
:=
∑
m∈{1,...,M}:wm=dB

λt,c,out
m , without loss of

generality. Compared to Problem (8), the number of customer
flow variables. which dominate the problem size, grows lin-
early (as opposed to quadratically) with the number of nodes
|VR| and does not depend on the time horizon T .

IV. DISTRIBUTED SOLUTION TO THE P-AMOD PROBLEM

The model and solution algorithms presented in the previous
sections assume that the TSO and the ISO both wish to
maximize social welfare for given generation costs; also, in
order to compute the socially optimal solution to the P-AMoD
problem, the TSO and the ISO must be willing to share their
private information (e.g., customer transportation requests and
power generation costs). In this section, we provide theoretical
results and algorithmic tools to overcome these rather unreal-
istic assumptions. In particular, we define a P-AMoD market
as a perfectly competitive market where self-interested power
generators sell power to the power network, a self-interested
TSO buys from and sells power to the power network, and a
non-profit ISO acts as a market broker (similar to the model
in [31]). In this framework, we show that the socially optimal
solution to the P-AMoD problem can also be enforced as a
general equilibrium [24] for the TSO and the generators in the
P-AMoD market if the ISO sets the price of electricity through
Locational Marginal Prices. Next, we propose a distributed
privacy-preserving algorithm that the TSO and the ISO can use
to compute such prices without sharing private information on
transportation demand or generation costs.

A. The socially optimal solution can be enforced as a general
equilibrium
Theorem IV.1 (The socially optimal solution of the
P-AMoD problem can be enforced as a general equi-
librium through prices). Consider an optimal solution

{f?m, λc,in?m , λt,c,out?
m , N?

F , θ
?, p?} to the P-AMoD Problem (8).

Also consider a perfectly competitive market (denoted as
the P-AMoD market) where a self-interested TSO solves
the Vehicle Routing and Charging problem (5) by select-
ing variables {fm, λc,inm , λt,c,out

m , NF }, self-interested power
generators sell power to the network by determining the
revenue-maximizing power generation schedule {p}, and a
non-profit ISO acts as a market broker by setting locational
marginal prices and controlling phase angles {θ}. Then
({f?m, λc,in?m , λt,c,out?

m , N?
F }, {θ?}, {p?}) is a general equilib-

rium.

Proof Sketch: The proof relies on showing that satisfaction
of the KKT conditions for Problem (8) implies satisfaction of
the KKT conditions for Problem (5). The key insight is that
the term VE in the cost function of the Vehicle Routing and
Charging problem (5) captures the marginal cost imposed by
the TSO on the power network, aligning the TSO’s incentives
with the social optimum. A rigorous proof is reported in the
Appendix.

B. A distributed algorithm for the P-AMoD problem

Next, we show that the TSO and the ISO can compute the
locational marginal prices that enforce the general equilibrium
without disclosing their private information. Our approach
is similar to the one in [4] and relies on using a dual
decomposition algorithm [32, Ch. 6.4] to solve Problem (8) in
a distributed manner. Concretely, the TSO repeatedly solves
Problem (5) with electricity prices proposed by the ISO, and
the ISO updates the electricity prices according to the TSO’s
proposed charging schedule; the procedure is repeated until
convergence. The TSO and the ISO only exchange publicly-
available information (namely, the proposed charging schedule
of the AMoD vehicles and the proposed electricity prices);
thus, the algorithm is privacy-preserving.

For ease of notation, we rewrite Equations (1)-(2) and (3)-
(4) as, respectively,

f eq
TSO(fm, λ

c,in
m , λt,c,out

m , NF ) = 0, (Eq. (1)-(2)),with dual vars. λeq
TSO,

f ineq
TSO(fm, λ

c,in
m , λt,c,out

m , NF ) ≤ 0, (Eq. (3)-(4)),with dual vars. µineq
TSO.

Analogously, we rewrite Equation (6b) and Equations (6c)-
(6f) as, respectively,

f eq
ISO(fm, θ, p) = 0, (Eq. (6b)), with dual variables λeq

ISO,

f ineq
ISO (fm, θ, p) ≤ 0, (Eq. (6c)-(6f)), with dual variables µineq

ISO .

We consider a partial Lagrangian relaxation of Problem (8),
that is,

minimize
fm,λ

c,in
m ,λt,c,out

m ,NF ,θ,p

VTTM (fm) + VDDv(fm) + VB(fm) + CG(p)

+ λeq
ISOf

eq
ISO(fm, θ, p)+ µineq

ISOf
ineq
ISO (fm, θ, p),

(11a)

subject to f eq
TSO(fm, λ

c,in
m , λt,c,out

m , NF ) = 0, (11b)

f ineq
TSO(fm) ≤ 0. (11c)

The TSO and the ISO iteratively optimize Problem (11)
with respect to their own decision variables for a fixed value
of the Lagrangian multipliers λeq

ISO and µineq
ISO . Specifically, at

step k of the iterative procedure, the TSO solves:
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minimize
fkm,λ

c,in,k
m ,λ

t,c,out,k
m ,Nk

F

VTTM (fkm) + VDDv(f
k
m) + VB(f

k
m)

+ λeq,k−1
ISO f eq

ISO(f
k
m) + µineq,k−1

ISO f ineq
ISO (fkm),

(12a)

subject to f eq
TSO(f

k
m, λ

c,in,k
m , λt,c,out,k

m , Nk
F ) = 0, (12b)

f ineq
TSO(f

k
m) ≤ 0. (12c)

Minimizing the last two terms of Equation (12a) is equiv-
alent to minimizing the cost of electricity VE with prices(
λeq,k−1

ISO + µineq,k−1
ISO

)
. That is,

arg min
fk
m

λeq,k−1
ISO f eq

ISO(fkm) + µineq,k−1
ISO f ineq

ISO (fkm) = arg min
fk
m

VE .

Thus, Problem (12) is equivalent to the Vehicle Routing and
Charging Problem (5).

Analogously, at step k, the ISO solves

minimize
θk,pk

CG(p
k) + λeq,k−1

ISO f eq
ISO(θ

k, pk) + µineq,k−1
ISO f ineq

ISO (θk, pk).

The Lagrangian multipliers are then updated by the ISO as

λeq,k
ISO = λeq,k−1

ISO + αk
(
f eq

ISO(f
k
m, θ

k, pk)
)
,

µineq,k
ISO = max

(
0, µineq,k−1

ISO + αk
(
f ineq

ISO (fkm, θ
k, pk)

))
,

for an appropriately chosen step size αk (see Lemma IV.2
below), and the TSO is informed of the new proposed price
of electricity (i.e., the new value of the sum of the Lagrange
multipliers).

Note that the ISO only needs to know the TSO’s pro-
posed charging schedule to compute f eq

ISO(fkm, θ
k, pk) and

f ineq
ISO (fkm, θ

k, pk); in particular, the TSO does not need to
disclose the customers’ demand or the planned vehicle routes.
Conversely, the ISO only needs to inform the TSO of the
proposed price of electricity: the generation costs and the
power demands remain private.

The next lemma proves that, if the step size αk is “small
enough,” the algorithm converges.

Lemma IV.2 (Convergence of the dual decomposition algo-
rithm). If the step size αk is chosen so that

0 < αk <2 [− (VTTM (f?m) + VDDv(f
?
m) + VB(f

?
m) + CG(p

?))

+
(
VTTM (fkm) + VDDv(f

k
m) + VB(f

k
m) + CG(p

k)
)]

/
(
‖f eq

ISO(f
k
m, θ

k, pk)‖2 + ‖f ineq
ISO (fkm, θ

k, pk)‖2
)
, (13)

then the dual decomposition algorithm converges to the
optimal solution to Problem (8).

Proof. The proof follows immediately from Proposition 6.3.1
in [32].

Note that the optimal value of Problem (8),
(VTTM (f?m) + VDDv(f

?
m) + VB(f?m) + CG(p?)), is not

known. In practical applications, a small, fixed αk and an
appropriate stopping criterion should be used to ensure
convergence.

V. NUMERICAL EXPERIMENTS

We study a hypothetical deployment of a P-AMoD system to
satisfy medium-distance commuting needs in the Dallas-Fort
Worth metroplex, with the primary objective of investigating
the interaction between such a system and the Texas power net-
work. Specifically, we study a ten-hour interval corresponding
to one commuting cycle, from 5 a.m. to 3 p.m., with 30-minute

resolution. Data on commuting patterns is collected from
the 2006-2010 Census Tract Flows, based on the American
Communities Survey. The AMoD system is assumed to service
30% of all commuting trips, a scenario capturing low to
medium penetration of AMoD. Census tracts in the metroplex
are aggregated in 25 districts, as shown in Figure 2. We only
consider trips starting and ending in different districts: the
total number of customer requests is 400,532. The commuters’
value of time is set equal to $24.40/hr, in accordance with DOT
guidelines [33]. The road network, the road capacities, and
the travel times are obtained from OpenStreetMap data and
simplified. The resulting road network, containing 25 nodes
and 147 road links, is shown in Figure 2.

Road links
Districts

Generators

Transmission lines

Fig. 2. Left: Census tracts and simplified road network for Dallas-Fort Worth.
Right: Texas power network model (from [34]).

The battery capacity and power consumption of the EVs
are modeled after the 2017 Chevrolet Bolt [35]. The cost
of operation of the vehicles, excluding electricity costs, is
$0.16/mile (6.55¢/mile for maintenance and 9.46¢/mile for
mileage-based depreciation), in accordance with AAA guide-
lines [36]. The fleet consists of 150,000 vehicles, i.e. 1 AMoD
vehicle for every 2.67 customers, similar to the 2.6 ratio in [2].
To represent the possibility that vehicles might not begin the
day fully charged, each EV starts the day with a 50% battery
charge and is required to have the same level of charge at the
end of the simulation.

We adopt a synthetic model of the Texas power network pro-
vided in [34] and portrayed in Figure 2. The model provided
does not contain power generation costs: we labeled each gen-
erator according to its source of power and assigned generation
costs according to U.S. Energy Information Administration
estimates [37]. The model is also time-invariant; to model the
time evolution of power demand and the availability of solar
and wind power we used historical data from ERCOT, Texas’s
ISO, and we imposed ramp-up and ramp-down constraints of
10%/hr and 40%/hr on the generation capability of nuclear
and coal power plants, respectively.

We compare the results of three simulation studies. In the
baseline simulation study, no electric vehicles are present:
we consider the power network in isolation subject only to
exogenous loads. In the P-AMoD simulation study, we solve
Problem (10), which embodies the cooperation between the
TSO and the ISO. Finally, in the uncoordinated simulation
study, we first solve the TSO’s Vehicle Routing and Charging
problem with fixed electricity prices obtained from the baseline
simulation study; we then compute the load on the power
network resulting from the vehicles’ charging and discharging,
and solve the ISO’s Economic Dispatch problem with the up-
dated loads. The uncoordinated simulation study captures the
scenario where the TSO attempts to minimize its passengers’
cost while disregarding the coupling with the power network.

For each study, we consider three different levels of battery
depreciation. In the first case, the battery replacement cost
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TABLE I
SIMULATION RESULTS (ONE COMMUTING CYCLE, 10 HOURS).

$15,734 battery $1,573 battery No depreciation
Baseline P-AMoD Uncoord. P-AMoD Uncoord. P-AMoD Uncoord.

Avg. customer travel time [h] - 1.0277 1.0277 1.0277 1.0277 1.0277 1.0277
Total energy demand [GWh] 517.498 520.543 520.543 520.543 520.544 520.590 520.966

Total electricity expenditure [k$] 39,617.36 39,847.18 39,865.34 39,847.22 40,552.90 39,488.93 39,519.98
w.r.t. baseline [k$] +229.82 +247.98 +229.83 +935.54 -128.43 -97.38

Avg. price in DFW [$/MW] 78.75 78.68 78.79 78.69 82.23 76.89 77.12
TSO electricity expenditure [k$] - 228.86 237.04 228.90 258.36 228.55 408.18

is $15,734 (corresponding to the list price of a Chevrolet
Bolt battery) and vehicles’ batteries are fully depreciated over
1,000 charge-discharge cycles, in line with the performance
of current battery technology. In the second case, the battery
replacement cost is set to one tenth of the current one (or,
equivalently, the vehicles’ battery life is 10,000 cycles). In the
third case, battery depreciation is neglected.

Table I and Figure 3 show the results. The quality of
service experienced by TSO customers, measured by the
average travel time, is virtually identical in the P-AMoD
and in the uncoordinated case. The energy demand of the
AMoD system is also very similar in both cases. On the
other hand, the effect of coordination on the overall electricity
expenditure is noticeable. Specifically, with current battery
technology, coordination causes a 7.3% reduction in the TSO’s
electricity expenditure compared to the uncoordinated case,
corresponding to savings of $9M per year (assuming two
commuting cycles per day and 250 work days per year). As
battery prices are reduced ten-fold, the urgency of coordination
between AMoD systems and the power network increases.
In absence of coordination, the TSO’s attempts to greedily
charge and return power to the grid backfire, resulting in
a four-fold increase in the TSO’s electricity bill, a 4.4%
increase in the unit price of electricity in the Dallas-Fort
Worth area, and an additional expenditure of $935k per day,
or $467M per year, in electricity costs borne by all power
network customers. Conversely, coordination between the TSO
and the ISO ensures that the unit price of electricity in the
Dallas-Fort Worth area remains the same as in the baseline
case, and results in savings of $14.7M/year for the TSO
compared to the uncoordinated case. A further reduction
in the replacement cost of the batteries allows coordination
between the AMoD system and the power network to reduce
the total expenditure for electricity by $128k per commuting
cycle compared to the baseline case, despite the increased
demand. In other words, a P-AMoD system allows a TSO
to deliver on-demand transportation without an increase in
overall electricity expenditure – a remarkable, and perhaps
surprising, finding. In the uncoordinated case, the presence
of the TSO also reduces the overall electricity expenditure
by $97k/cycle compared to the baseline case - however, the
reduction is offset by a $180k/cycle increase in the TSO’s own
electricity bill compared to the coordinated case.

Who benefits from the reduction in energy expenditure?
From the last two rows in Table I, one can see that, in the
case where no depreciation is considered, the average price
of electricity in the P-AMoD case is 2.37% lower than in
the uncoordinated case in Dallas-Fort Worth (corresponding to
savings of $ 147M/year for Dallas-Fort Worth power network
customers, excluding the TSO). The energy expenditure of
the TSO in the P-AMoD case is 44% lower than in the
uncoordinated case (a saving of $180k per commuting cycle,
corresponding to close to $90M/year). Finally, electricity cus-

tomers outside of Dallas experience a small reduction of 0.23%
in their energy expenditure. Thus, the majority of the benefits
of coordination are reaped by customers of the power network
in the region where the AMoD system is deployed; the TSO
also benefits from a noticeable reduction in its electricity
expenditure. Figure 3 shows this phenomenon in detail for the

Fig. 3. LMPs in Texas between 9 a.m. and 11:30 a.m. The presence of the
AMoD fleet can reduce locational marginal prices; coordination between the
TSO and the ISO can yield a further reduction. A battery replacement cost
of $1,573 is considered.
scenario where the battery replacement cost is $1,573. The
presence of the AMoD system results in a decrease in the
LMPs with respect to the baseline case (11-11:30 a.m.). As
electricity prices increase, empty vehicles travel to carefully
chosen stations to sell their stored energy back to the network:
this results in reduced congestion and lower prices in the
power network, even in the absence of coordination. Crucially,
coordination between the TSO and the ISO can result in
further decreases in the price of electricity with respect to
the uncoordinated case (9-9:30 a.m.), significantly curtailing
the impact of the AMoD system on the power network. By
leveraging their battery capacities and acting as mobile storage
units, the EVs are able to reduce congestion in the power
transmission network: this results in lower LMPs in the Dallas-
Fort Worth region, and hence lower electricity expenditure.

Simulations were carried out on commodity hardware (Intel
Core i7-5960, 64 GB RAM) and used the MOSEK LP solver.
The simulations required 3,923s for the P-AMoD scenario,
2,885s for the uncoordinated scenario, and 4.55s for the
baseline scenario. While such computation times could be
improved by using high-performance computational hardware,
in Appendix A we present a receding-horizon algorithm
for P-AMoD which, in addition to the intrinsic robustness
benefits of closed-loop control, can be solved in minutes
on commodity hardware and returns integral solutions that
are directly amenable to control of P-AMoD systems. The
algorithm allows us to perform agent-based simulations that
provide further insights into the value of P-AMoD.

VI. CONCLUSIONS AND FUTURE WORK

In this paper we studied the interaction between an AMoD
system and the electric power network. The model we pro-
posed subsumes earlier models for AMoD systems and for the
power network; critically, it captures the coupling between the
two systems and allows for their joint optimization. We also
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proposed a numerical procedure to losslessly reduce the di-
mensionality of the P-AMoD optimization problem (Equation
(10)), making realistic problems amenable to efficient numeri-
cal optimization on commodity hardware. We showed that the
jointly optimal solution to the P-AMoD problem can be en-
forced as a general equilibrium, and we proposed a distributed
privacy-preserving algorithm that allows agents to compute
the market-clearing prices that enforce such an equilibrium
without sharing private information about customer requests,
generation costs, or power demands. We applied our model and
algorithms to a case study of an AMoD deployment in Dallas-
Fort Worth, TX. The case study showed that, depending on the
maturity and cost of battery technology, coordination between
the TSO and the ISO can result in a reduction in the overall
electricity expenditure (despite the increase in demand), while
having a negligible impact on the TSO’s quality of service;
conversely, lack of coordination can result in large increases
in power prices for power network customer and AMoD
operators alike. These results are corroborated by agent-based
simulations presented in the Appendix.

This work opens multiple avenues of research. First, we plan
to capture the impact of cooperation between the TSO and
the ISO on the power distribution network by incorporating
convex optimal power flow models. Second, we will extend the
AMoD model to capture other modes of provision of service,
including heterogeneous fleets where vehicles may differ in
size, seating capacity, and battery capacity, and ride-pooling
mechanisms where multiple customers with similar origins
and destinations can travel in the same vehicle. Third, the
model of the power network considered in this paper does
not capture ancillary services such as regulation and spinning
reserves. We will extend our model to capture those and
evaluate the feasibility of using coordinated fleets of EVs to aid
in short-term control of the power network. Finally, we wish
to explore the effect of TSO-ISO coordination on penetration
of renewable energy sources, and to determine whether large-
scale deployment of AMoD systems can increase the fraction
of renewable power sources in the generation power mix.
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APPENDIX

A. Agent-based simulations of P-AMoD

In this appendix we present agent-based simulations to
further explore the impact of P-AMoD on the electric power
network. First, by leveraging the structural insights from the
network flow optimization problem, along with a few mild
assumptions, we devise a computationally efficient control
algorithm that solves the P-AMoD Problem (10) in a receding-
horizon fashion. Due to space limitations, we only provide a
high-level description of the algorithm: a detailed description
is provided in the Extended Version of this paper1.

To reduce the computational complexity of the optimization
problem, we decouple the customer routing process from the
P-AMoD optimization. The key assumption is that customer-
carrying trips follow pre-computed routes and are never in-
terrupted by a charging/discharging event. Formally, customer
trips from node i ∈ VR to node j ∈ VR follow a fixed route
with a travel time of ti→j and a required charge of ci→j .
Thus, customer flows {fB,dB (u,v)}(u,v),dB are no longer part
of the optimization variables and Equation (9a) is redundant.
However, the initial and final charge of the customer-carrying
vehicles {λc,inm } and {λt,c,out

m } remain optimization variables.
The following constraint ensures that charge is conserved
along customer routes, that is, that vehicles traveling from i
to j and departing at time t at charge level c arrive at time
t+ ti→j with charge c− ci→j :

λt,c,out
m =

{
λ
c+cvm→wm ,in
m if tm = t− tvm→wm

0 otherwise
(14)

for all t ∈ {1, . . . , T}, c ∈ {1, . . . , C},m ∈ {1, . . . ,M}. The
cost function is also modified to remove the customers’ travel
times, and road congestion constraints are adjusted to account
for the traffic induced by customer-carrying vehicles.

The optimization problem is solved in receding-horizon
fashion. In order to adapt the problem for real-time control
of AMoD systems, one last difficulty must be overcome. The
output of the problem is, in general, fractional: therefore it
can not directly be used for control of individual vehicles. To
overcome this, control actions are computed by sampling the
first time step of the fractional optimal solution. We refer the
reader to the Extended Version1 for a thorough discussion.

We assess the performance of the receding-horizon
P-AMoD controller with an agent-based simulation based on
the same case study considered in Section V. The case study is
modified in two ways: First, the generation costs are based on
the marginal cost of generation (from EIA estimates [38, Table
8.4]), to reproduce the strategic behavior of generator operators
participating in a real-time electricity market. Second, in order
to assess the performance of the real-time controller under
heavy load, all 1,257,916 commuting trips in Dallas-Fort
Worth are serviced by an AMoD fleet of 450,000 vehicles.

The uncoordinated controller may cause the power network
to become unstable, causing the Economic Dispatch problem
(6) to become infeasible. To account for this, we introduce
slack variables in the power network balance equations (6b).
The slack variables capture the ISO’s ability to disconnect
loads to preserve the stability of the power network; the cost
associated with the slack variables captures the economic loss
borne by ISO users during a blackout (denoted as “Value of

1Available at http://arxiv.org/abs/1709.04906v3

Lost Load” in the literature) and is set to $6,000/MWh in
accordance with ERCOT estimates.

The receding-horizon problem is solved every 5 minutes
with a 4-hour lookahead and a 15-minute time step. The
performance of the algorithm is compared with a baseline
case where no vehicles are present and an uncoordinated
receding-horizon controller that optimizes the AMoD system’s
operations under the assumption that electricity prices stay
constant.

Table II shows the results. In absence of coordination, the
TABLE II

REAL-TIME ALGORITHM SIMULATION RESULTS (10 HOURS).
Baseline P-AMoD Uncoord.

Avg. cust. travel time [h] - 1.585 1.591
Tot. energy demand [GWh] 500.00 507.71 508.02

Blackouts [MWh] 0 0 109.19
Tot. elec. expenditure, excl. TSO [k$] 15,067 15,067 17,845

Avg. price in DFW [$/MWh] 30.136 30.136 47.345
TSO tot. elec. expenditure [k$] - 232.61 4,446.61

AMoD system causes rolling blackouts in Dallas-Fort Worth:
the Economic Dispatch problem is infeasible for 86 of the 600
minutes considered in the simulation, and overall 109.19 MWh
of power are not delivered to end users. The average electricity
price in Dallas-Fort Worth is $47.35/MWh, 57% higher than in
the baseline case; across Texas, the average price of electricity
is $43.88/MWh, and the total electricity expenditure for power
network customers is almost 48% higher compared to the
case where no vehicles are present. The TSO’s expenditure
is over 19 times higher compared to the coordinated case.
Conversely, the P-AMoD system is able to ensure that the
unit price of electricity (and therefore the expenditure of
power network customers) in Dallas-Fort Worth and across
Texas remains the same as in the case where no vehicles
are present, despite the 4.82% increase in power demand in
the Dallas-Fort Worth region. Thus, coordination between the
AMoD system and the power network is vital to ensuring the
stability of the power network. In absence of coordination,
mass deployment of AMoD systems can heavily destabilize the
power network, resulting in blackouts and excessive electricity
prices; conversely, coordination is able to ensure that power
prices remain constant despite the increase in power demand.

In contrast with the results in Section V, the AMoD system
is not able to achieve a reduction in electricity prices, This
is not entirely unexpected, as we use a comparatively short
4-hour lookahead which does not allow the system to fully
exploit the daily variations in power demand. An important
direction of future research is to explore how the lookahead
time affects the tradeoff between computational complexity,
economic savings, and robustness of the algorithm to inaccu-
racies in demand forecasting.

The receding-horizon P-AMoD problem was solved in an
average of 66s and a maximum of 190s; thus, the algorithm
is amenable to closed-loop control of large-scale systems.

B. Proofs of all theorems
Proof of Lemma III.2. The proof is constructive. First we
leverage the flow decomposition algorithm to decompose the
bundled customer flow in a collection of path flows; next,
we assign each path flow to a customer request; finally, we
merge the path flows assigned to each request to obtain a
feasible customer flow. We assume without loss of generality
that no two customer requests have the same origin node
vm ∈ VR, destination node wm ∈ VR, and departure time
tm ∈ {1, . . . , T}. Since customer routes are approximated as
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a network flow, if two or more such requests exist, they can
be equivalently represented by a single request with intensity
equal to the sum of the original requests’ intensities.

Define as path flow a network flow that has a fixed intensity
on edges belonging to a path without cycles from the origin
to the destination and zero otherwise. The flow decomposition
algorithm [22, Ch. 3.5] can decompose the bundled customer
flow into path flows. Specifically, the algorithm computes a
collection of path flows P = {fp(u,v)}p,(u,v)∈E such that,
for every edge (u,v) ∈ E ,

∑
p fp(u,v) = fB,dB (u,v). Each

path flow p ∈ P has a single origin node v ∈ V and destination
node w ∈ V with vw = dB . Next, we assign each path
flow to a customer request (vm, dB , tm, λm). Specifically, we
decompose the path flows P in a collection of disjoint sets
{Pm}m such that ∪Mm=1Pm = P and Pm ∩ Pm′ = 0 for all
m,m′ ∈ {1, . . . ,M}. To do so, we assign all the path flows
whose origin node belongs to the set {v = (vm, tm, c)}Cc=1 to
request m. By assumption, no two requests with the same
destination dB can have the same origin location vm and
departure time tm: thus, every path flow is assigned to exactly
one customer request m. The sum of the intensities of the
path flows p ∈ Pm is λm; this property follows immediately
from Equations (9a) and (9b).Finally, the customer flow for
customer request (vm, dB , tm, λm) is obtained as the sum of
the path flows in Pm. By construction, each path flow satisfies
Equation (1a). Since the sum of the path flows equals λm,
Equation (1b) is also satisfied by the sum of the path flows.
This concludes the proof.

Proof of Theorem III.3. (i) The bundled P-AMoD problem
admits a feasible solution if the P-AMoD problem admits a
feasible solution. Consider a feasible solution to the P-AMoD
problem. For each destination node, define the bundled flow
as the sum of the customer flows for customers directed to
that destination: fB,dB =

∑
m:wm=dB

fm for all dB ∈ B.
It is easy to verify that the resulting network flow satisfies

Equation (9). Also, the customer flows satisfy Equations (2),
(3), (4), (6), and (7) and, for every edge, by construction∑
dB∈B fB,dB =

∑
dB∈B

∑
m:wm=dB

fm =
∑
m fm. There-

fore the set of bundled customer flows {fB,dB}dB∈D satisfies
Equations (2), (3), (4), (6), and (7) where each instance of∑
m∈[1,M ] fm is replaced by

∑
dB∈D fB,dB .

(ii) The P-AMoD problem admits a feasible solution if the
bundled P-AMoD problem admits a feasible solution. Lemma
III.2 shows that, if there exists a set of bundled flows that
satisfy Problem (10), then there exists a set of customer
flows that satisfy Equation (1). Furthermore, for each edge,∑
m fm =

∑
dB∈B fB,dB . Since the bundled flows satisfy the

modified version of Equations (2), (3), (4), (6), and (7), the
customer flows also satisfy them.

(iii) The bundled P-AMoD problem and the P-AMoD prob-
lem have the same optimal value. Due to Lemma III.2,∑
m fm =

∑
dB∈B fB,dB . The claim follows from the defi-

nition of the cost in Problem (10).

Proof of Theorem IV.1. The optimal solution to the P-AMoD
problem also maximizes the revenue of the power generators
if locational marginal pricing is used [31, Sec. 3]. Thus, we
focus on showing that the optimal solution to the P-AMoD
problem is also an optimal solution to the TSO’s problem (5).

The KKT stationarity conditions for the P-AMoD Problem
(8) for variables {fm, λc,inm , λt,c,out

m , NF } are:

∂(VTTM + VDDV + VB)

∂fm(v,w)
+ λ

eq
TSO ·

∂f eq
TSO

∂fm(v,w)
+ µ

ineq
TSO ·

∂f ineq
TSO

∂fm(v,w)
+

λ
eq
ISO ·

∂f eq
ISO

∂fm(v,w)
+ µ

ineq
ISO ·

∂f ineq
ISO

∂fm(v,w)
= 0, ∀m ∈ {0, . . . ,M}, (v,w) ∈ E,

(15a)

λ
eq
TSO ·

∂f eq
TSO

∂λc,in
m

= 0, ∀c ∈ {0, . . . , C},m ∈ {0, . . . ,M}, (15b)

λ
eq
TSO ·

∂f eq
TSO

∂λt,c,out
m

= 0, ∀c ∈ {0, . . . , C}, t ∈ {1, . . . , T},m ∈ {0, . . . ,M},

(15c)

λ
eq
TSO

∂f eq
TSO

∂NF (v)
= 0, ∀v ∈ V. (15d)

For a given set of variables {θ?, p?}, the KKT conditions
for Problem (5) are
∂(VTTM + VDDV + VB)

∂fm(v,w)
+

∂(VE)

∂fm(v,w)
+ λ

eq
TSO ·

∂f eq
TSO

∂fm(v,w)
+

µ
ineq
TSO ·

∂f ineq
TSO

∂fm(v,w)
= 0, ∀m ∈ {0, . . . ,M}, (v,w) ∈ E, (16a)

λ
eq
TSO ·

∂f eq
TSO

∂λc,in
m

= 0, ∀c ∈ {0, . . . , C},m ∈ {0, . . . ,M}, (16b)

λ
eq
TSO ·

∂f eq
TSO

∂λt,c,out
m

= 0, ∀c ∈ {0, . . . , C}, t ∈ {1, . . . , T},m ∈ {0, . . . ,M},

(16c)

λ
eq
TSO ·

∂f eq
TSO

∂NF (v)
= 0, ∀v ∈ V. (16d)

The second term in Equation (16a) is
∂(VE)

∂fm(v,w)
= 1(v,w)∈ESp(v,w)δcvv ,

where δcvv = δc+vv if cw > cv and δcvv = δc−vv otherwise.
Leveraging Equation (7), the last two terms in Equation

(15a) can be rewritten as

λ
eq
ISO

∂f eq
ISO

∂fm(v,w)
+ µ

ineq
ISO

∂f ineq
ISO

∂fm(v,w)
=
∑
l∈B

T∑
t=1

[(
λ

eq
ISO(l, t) + µ

ineq
ISO (l, t)

)
·

(
1
(v,w)∈M+

P,G
(l,t)

+ 1
(v,w)∈M−

P,G
(l,t)

)]
JCδcvv .

Every edge (v,w) ∈ ES corresponds to a single load node
l ∈ B : vv = MP,R(l) at a single time t = tv.Thus, the
expression above can be rewritten as

λ
eq
ISO

∂f eq
ISO

∂fm(v,w)
+ µ

ineq
ISO

∂f ineq
ISO

∂fm(v,w)
=JCδcvw

(
λ

eq
ISO(lvv , tv) + µ

ineq
ISO (lvv , tv)

)
,

where lvv is such that vv =MP,R(lvv).
The vector (λeq

ISO + µineq
ISO ) denotes the locational marginal

price of energy at each bus in the power network. That is,

p(v,w) = JC
(
λeq

ISO(lvv , tv) + µineq
ISO (lvv , tv)

)
,

where lvv : vv = MP,R(lvv). (Note that p(v,w) is the
price per discrete energy level, whereas (λeq

ISO(l, t)+µineq
ISO (l, t))

is the price per unit of energy). Therefore, Equations (16a)
and (15a) are identical. As a result, the KKT conditions
for the TSO’s problem (5) are verified whenever the KKT
conditions for the P-AMoD problem (8) are verified, and
{f?m, λc,in?m , λt,c,out?

m , N?
F } is an optimal solution to Problem

(5) for fixed {θ?, p?}.
In conclusion, {f?m, λc,in?m , λt,c,out?

m , N?
F } is the solution to

the TSO’s Vehicle Routing and Charging Problem (5) if the
prices are set according to LMPs. In addition, the generation
schedule {p?} is the optimal (revenue-maximizing) schedule
for self-interested power generators if the prices are set ac-
cording to LMPs [31, Sec. 3]. That is, the set of variables
({f?m, λc,in?m , λt,c,out?

m , N?
F }, {θ?}, {p?}) is a general equilib-

rium for the P-AMoD market. This concludes the proof.


