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Abstract

Directed in-situ science and exploration on the sur-
face of small Solar System bodies requires controlled mo-
bility. In the microgravity environment of small bodies
such as asteroids, comets or small moons, the low gravi-
tational and frictional forces at the surface make typical
wheeled rovers ine↵ective. Through a joint collabora-
tion, the Jet Propulsion Laboratory together with Stanford
University have been studying microgravity mobility ap-
proaches using hopping/tumbling platforms. They have
developed an internally-actuated spacecraft/rover hybrid
platform, known as “Hedgehog,” that uses flywheels and
brakes to impart mobility. This paper presents a model
of the platform’s mobility, analyzing its three main states
of motion (pivoting, slipping and hopping) and the con-
tact dynamics between the platform’s spikes and various
regolith simulants. To experimentally validate the model,
an Atwood machine (pulley and counterbalance) was used
to emulate microgravity. Experiments were performed
with a range of torques on both rigid and granular surfaces
while a high-speed camera tracked the platform’s motion.
Using parameters measured during the experiments, the
platform was simulated numerically and its motion com-
pared. Within the limits of the experimental setup, the
model is consistent with observations; it indicates the abil-
ity to perform controlled forward motions in microgravity
on a range of rigid and granular regolith simulants.

1 Introduction

There is increasing interest in exploring small bodies
such as asteroids, comets, small moons and near-Earth ob-
jects for both science and human missions [1, 2]. One of
the biggest challenges associated with this type of target
is the microgravity environment that makes surface mo-
bility very challenging. For the smallest potential targets,
the gravitational forces can be as low as 10�6 g [3].

Small forces normal to the surface and loose or low-
friction regolith may make it di�cult for wheeled rovers to
produce enough traction, thus restricting them to very low
velocities [4]. Moreover, the potential exists for wheels
to bind on rocky surfaces, whereby a momentary energy
build-up could cause the rover to leave the surface in an
uncontrolled manner (or exceed escape velocity). Several
research groups have considered legged mobility as an al-
ternative to wheels, with anchoring devices at the tip of its
appendages [5], however such highly articulated systems
are complex, making thermal management challenging.

Other researchers have adopted approaches that use
microgravity to their advantage, including hopping or
tumbling techniques for surface mobility. In 2005, JAXA

Figure 1. : NASA/JPL Hedgehog platform prototype
without avionics, covers or solar panels. The array of pro-
truding spikes provide the contact interface with the sur-
face and protect the platform.



attempted to deploy the MINERVA rover onto the surface
of Asteroid (25143) Itokawa from the Hayabusa space-
craft. While the 0.6 kg MINERVA lander didn’t reach the
surface, JAXA had planned to demonstrate controlled mo-
bility with a single flywheel mounted on a turntable [6].
In late 2014 JAXA is planning to launch Hayabusa 2 to
Asteroid (162173) 1999 JU3 carrying both MINERVA 2
and DLR’s MASCOT lander [7]. MASCOT is a 13.5 kg
box-shaped lander with an actuated o↵-center mass. Af-
ter landing it will use the actuated mass to right itself, and
optionally later for uncontrolled mobility.

Our team has been developing a platform to allow
controlled mobility in microgravity [8, 9, 10]. The plat-
form uses internal actuation (three mutually-orthogonal
flywheels) to generate reaction torques that create mobil-
ity. The experimental results in this paper were obtained
using the Jet Propulsion Laboratory’s prototype, shown in
Figure 1. Its external array of spikes protect the platform
during motion while providing the primary contact inter-
face with the surface.

In previous work using an earlier prototype [8], Allen
et al. showed that such platforms could produce tumbling
motions in emulated microgravity (0.024 g). Using an ex-
perimental setup similar to the one described in this pa-
per they demonstrated planar 3 degree-of-freedom (DOF)
motions that they compared to simulations. Validations
were limited to a comparison of the torque levels required
to initiate a tumbling/hopping motion. They simulated
their prototype by applying the torque profiles measured
in their experiments while scaling the profiles to best cor-
relate the results (mean scale factor was 106%). In our ex-
periments we collect significantly more data, including the
platform’s 6 DOF pose at 120 Hz, and directly compared
simulated and experimental trajectories. Our comparisons
also include an analysis of the sensitivities to surface fric-
tion coe�cients.

Small bodies may have complex and varying mor-
phologies: from rocky or icy surfaces to fine granular
regolith. Surface observations of the Asteroid Itokawa
are currently the highest quality observations of complex
rocky and granular morphologies [11]. The ability of a
platform to move over such surfaces depends on the mag-
nitude of the reaction forces between a platform’s contacts
and the surface. Further, the ability to direct the motion
depends on having su�cient friction, hence reaction force
to accelerate across the surface.

Koenig et al. analyzed both linear and angular actua-
tion of platforms using a Coulomb friction model for sur-
face contact [10]. They provide an analysis of forces and
the resulting constraints on motion for a platform that ei-
ther pivots over its contact points, or slips, and describe a
set of viable hopping angles. In this work, we use numer-
ical simulations and high-speed video of experiments to
show the dynamic nature of transitions between pivoting

and slipping motions, including the possibility of control-
ling the hopping angle within the viable range described
by Koenig et al. We increase the fidelity of the contact
model, and approximate compliance in both the surface
and the platform, by adding a spring-damper component
that acts normal to the surface [12]. We note that small
bodies are unlikely to be smooth and homogeneous, how-
ever the model may be su�cient to analyze mobility on
rigid parts of their surface.

For complex or non-rigid surfaces including granular
regolith, pebbles or ice, realistic contact models are harder
to derive and validate. In microgravity environments, the
forces interacting with the regolith are likely to be much
stronger than the local surface gravity field [13]. The main
factors a↵ecting contact dynamics with granular regolith
are i) the compressive strength of the regolith, ii) the dy-
namic drag term resulting from the transfer of momentum
from the platform to the ground (proportional to the granu-
lar media density and the square of velocity of the contact)
and iii) the sliding friction at the contact interface. DLR
developed a “soil” contact model for MASCOT, based on
planetary rover wheel-soil interactions [7]. They used ter-
ramechanics theory to evaluate the contact dynamics be-
tween MASCOT’s rectangular faces and regolith in mi-
crogravity. Contact models for granular regolith remain
an open research question.

High-level mission architectures to small Solar Sys-
tem bodies have been explored. One such architecture in-
cludes a “mother” spacecraft with one or more deployable
platforms [9, 14]. Aside from mobility, there are various
other challenges deploying platforms on small bodies in-
cluding soft-landing on the surface. Tardivel and Scheeres
simulate trajectories for approaching small bodies [15]
and, using high-level stochastic models, they consider a
passive “pod” bouncing around on the surface for many
hours until coming to rest.

The closest terrestrial equivalent to the Hedgehog pro-
totype is “Cubli”, a 15⇥15⇥15 cm cube with 3 orthogonal
flywheels [16]. To operate in the Earth’s gravity, Cubli
requires orders of magnitude more torque, which it cre-
ates using a braking mechanism. Gajamohan et al. have
demonstrated Cubli hopping onto one corner and balanc-
ing in an inverted pendulum configuration. Using precise
torque control they have demonstrated a sequence of con-
trolled tumbles and maneuvers while balancing.

In the next section, we give an overview of our plat-
form design principles including our current Hedgehog
prototype. Section 3 presents our model for the platform’s
dynamics including its three main states of motion (pivot-
ing, slipping and hopping) and the regolith contact model
during these states. The experimental setup used to val-
idate our model is presented in Section 4, with various
results and analysis in Section 5 and Section 6.



2 Platform Description

The spacecraft/rover hybrid we describe here is a mo-
bility platform that uses internal flywheels to produce
tumbling or hopping motions. It is supported and pro-
tected from the surface by an array of external spikes. We
are considering designs that are about ⇡ 0.5 m in diameter
and ⇡ 5 kg in mass. The design is scalable depending on
payload accommodations [9]. Our current Hedgehog pro-
totype, shown in Figure 1, has 24 external spikes forming
a rhombicuboctahedron and providing an octagonal cross-
section of 0.4 m in diameter. The platform is normally
supported by four spikes forming a square base and oc-
casionally supported by three spikes forming a less stable
triangular support. We expect the final mass with covers
and solar panels to be around 10 kg.

The platform uses no external propulsion. Instead,
it is actuated by three mutually-orthogonal flywheels en-
closed in the body. Benefits of this design include sim-
pler environmental sealing and thermal management [9].
Using a linear combination of torques, the three flywheel
motors can produce reaction torques at the surface in any
orientation without additional moving parts. Regarding
mobility, the design is expected to be safer and more capa-
ble than wheeled rovers. The internal torques can produce
momentarily large reaction forces at the surface resulting
in increased acceleration across the surface. By dynam-
ically controlling the flywheel torques, the platform can
perform motions such as small tumbles across the surface
or large ballistic hops.

3 Dynamic Analysis

This section derives a dynamic model for the plat-
form with equations of motion provided for its three main
states: pivoting, slipping and hopping. We define a con-
tact model for the pivoting and slipping states when the
platform’s spikes contact the regolith surface. Figure 3
provides a schematic of the dynamic model, while Table
1 lists the parameters used throughout this paper.

To simplify the analysis, the platform’s mass distri-
bution is assumed to be uniform with its center of mass
coinciding with its geometric center. By operating only
a single flywheel, the platform’s motion is restricted to a

Figure 2. : Three main states of motion.

Figure 3. : Platform and contact schematic.

Parameter Definition
q = (

x,y,✓) Platform pose
m

hh

Platform mass
J

hh

Platform inertia matrix
l Spike length from the center to the pivot
⌧ Torque applied by flywheel

µ
s

, µ
d

Static and dynamic friction coe�cients
K Surface sti↵ness
C Surface damping
g Gravity at surface (m/s2)

Table 1. : Platform and environment parameters.

plane. It’s initial pose, parameterized by q = (
x,y,✓), is⇣

0, lcos ⇡8 ,0
⌘

at rest. The regolith surface is assumed to be
flat and homogeneous, while contact interfaces with the
spikes are modeled as uniform points. The contact equa-
tions comprise of a spring-damper component [12] that is
normal to the surface, and a Coulomb friction component
that acts tangential to the surface.

Figure 2 illustrates a typical hopping motion. The
torque ⌧, applied to the platform at rest, causes it to pivot
over its two leading spikes until the horizontal compo-
nent of the contact force becomes greater than the static
friction force . A period of slipping motion typically fol-
lows where the platform rotates forward and the same two
spikes are dragged backwards in contact with the surface.
Given su�cient energy, the platform will then leave the
surface, hopping forwards in a ballistic trajectory. The
profile of the torque ⌧ (

t

) determines whether a tumble or
a hop is executed. In this analysis, a constant torque is
applied for the duration of any contact with the surface.

Transitions between states are determined by the pres-
ence of interactions (contacts) between spikes and the sur-
face. If the tip of a spike intersects the surface, the reaction
force on the spike at the contact consists of a normal com-



ponent F

n

and a tangential component F

t

. The Coulomb
model for static friction provides the upper bound on F

t

to maintain a pivoting motion: F

t

< µ
s

F

n

. Once the plat-
form transitions to a slipping motion, the dynamic friction
coe�cient places a lower bound on F

t

to keep slipping:
F

t

> µ
d

F

n

. If no spikes are intersecting the surface, the
platform is in a ballistic (hopping) trajectory.

We model the platform with a Lagrangian approach
where q = (

x,y,✓) is a vector describing the platform’s
pose:

d

dt

@T

@q̇
� @T
@q
+
@D

@q̇
+
@V

@q
=
@�L

@�q
(1)

T is the kinetic energy, D is the dissipated energy, V

is the potential energy, L is the virtual work of external
forces and @�L@�q is the Lagrangian component of the exter-
nal forces. We derive each of these terms in the following
sections.

3.1 Contact Dynamics
Contact points are defined during motions where one

or more spikes penetrate the surface. Our Hedgehog plat-
form has an octagonal cross-section, where eight spikes of
length l are separated by 45�. The spikes are rigidly con-
nected to the platform, and therefore rotate with ✓. The
contact angle from vertical, �, for each spike, is:

� (✓,n) = ✓+
⇡

8
+
⇡

4
n, n = 1, 2 . . .8 (2)

The inset in Figure 3 shows a spike contact point,
(x

c

,y
c

). The penetration depth for the spike, y

c

, is a func-
tion of the platform’s height, y, and spike rotation, �:

y

c

= y� lcos� (3)

Similarly the horizontal position of the contact, x

c

, is:

x

c

= x+ lsin� (4)

For a spike penetrating y

c

into the elastic surface K,
the stored potential energy is defined:

V

c

=
1
2

Ky

2
c

8 y

c

< 0 (5)

The dissipative energy is defined by a damping term,
proportional to the square of the spike’s penetration veloc-
ity:

D

c

=
1
2

Cẏ

c

2 8 ẏ

c

< 0 (6)

Here the damping term is only applied when ẏ

c

< 0, as
the spike is actively penetrating into the surface and dissi-
pating energy. During slipping motions each contact pro-
duces the friction force F

f

= �sign

(
ẋ

c

)µ
d

F

n

. This creates
a virtual work term:

L

c

= F

f

x

c

(7)

3.2 Slipping and Hopping Dynamics
Hopping is the simplest motion state since no surface

contact exists (
y

c

> 0). During hopping, the platform un-
dergoes unrestrained 3 DOF ballistic motion, q = (

x,y,✓).
During slipping, the platform’s pose is constrained such
that contact points slide along the surface, however it still
undergoes 3 DOF motion. Thus the same dynamic equa-
tions are used for both slipping and hopping. For hopping
motions the contact-related terms V

c

, D

c

and L

c

are zero.
The kinetic energy of the platform is defined:

T =
1
2

m

hh

⇣
ẋ

2+ ẏ

2
⌘
+

1
2

J

hh

✓̇2 (8)

The potential energy in the system is defined by a
gravitational term and the term due to contact V

c

(if any):

V = m

hh

gy+V

c

(9)

If a contact exists, the dissipative energy D = D

c

is
given in equation 6. The virtual work L that results from
applying a torque ⌧ on the flywheels is given by ⌧✓, and
while slipping, the work done against friction, L

c

, from
equation 7:

L = ⌧✓+L

c

(10)

Using equations 2, 3 and 4, the contact-related terms
V

c

, D

c

and L

c

can be rearranged in terms of x, y and ✓.
Applying the Lagrangian approach, the contact dynamics
are:

m

hh

ẍ = F

f

(11)
m

hh

ÿ+m

hh

g+K

⇥
y� lcos(✓)

⇤

+C

h
ẏ+ lsin(✓)✓̇

i
= 0 (12)

J

hh

✓̈+ lsin(✓) [K (
y� lcos(✓))

+C

⇣
ẏ+ lsin(✓)✓̇

⌘i
= ⌧�F

f

cos(✓) (13)

3.3 Pivoting Dynamics
During a pivoting motion, the platform’s pose q =

(
x,y,✓) is constrained to rotate on an arc with a radius l

centered on the contact point. To simplify calculations,
the constrained pose is parameterized using 2 DOF: the
platform rotation, ✓, and the vertical penetration of the
spike at the contact point, y

c

 0, given in equation 3.
The kinetic, T , and potential, V , terms are given in

equation 8 and 9. The dissipative energy in the contact
D = D

c

is given in equation 6. Di↵erentiating and substi-
tuting equations 2 and 3 into T , V and D results in func-
tions of y

c

, ẏ

c

, ✓, and ✓̇. The virtual work L is given by
the torque, ⌧, that the flywheel applies during the pivoting
motion:

L = ⌧✓ (14)



By applying the Lagrangian approach, the 2DOF piv-
oting contact dynamics are:

m

hh

h
ÿ

c

+ lsin(✓)✓̈+ lcos(✓)✓̇2
i

+Cẏ

c

+Ky

c

+m

hh

g = 0 (15)⇣
m

hh

l

2+ J

hh

⌘
✓̈+m

hh

lsin(✓)ÿ
c

+m

hh

glsin(✓) = ⌧ (16)

4 Experimental Setup and Procedure

Experiments were performed to validate the analyti-
cal model presented in Section 3. The setup is shown in
Figure 4. An Atwood machine was configured as a grav-
ity o✏oading test bed. The platform was secured through
its center of mass by a shaft and a pair of bearings so
that it could rotate freely. Two high-tensile steel wires
were connected to the bearings, looped over two pulleys
and connected to a counterbalance suspended on the other
side. The large diameter light-weight pulleys were free to
rotate around low-friction bearings. With the counterbal-
ance o↵setting most of the platform’s mass, experiments
were performed on a range of regolith simulants.

Using the test bed, we were able to simulate gravity
levels on the order of 10�2 g. However, this type of plat-
form (described in Section 2) targets surface gravity lev-
els several orders smaller (from ⇡ 10�4 g on Mars’ moon
Phobos down to 10�6 g on small asteroids). The flywheel
motors in the prototype produce a maximum of 0.22 Nm
torque, which can only produce tumbles in the test bed.
To apply larger torques and analyze hopping, the proto-
type includes electromechanical brakes that decelerated
the flywheels to produce ⇡ 6.0 Nm torque.

The total mass of the prototype was 5.3 kg, and with
the matching counterbalance mass, the additional inertia
limited mobility further. The additional mass also created
artificial stresses in the chassis impacting braking perfor-
mance. To reduce the mass and corresponding chassis
stress, only one of the three flywheel and brake assemblies
were installed for the experiments. The motor controllers
were installed in the prototype, however the avionics were
o↵-board to minimize weight. A light-weight 3-wire um-
bilical was used to communicate with the platform, sup-
ported to prevent disruption to the platform’s dynamics
during motion. Power was supplied from on-board lithium
polymer batteries.

The configuration allowed for two translational and
one rotational degrees of freedom, providing about 40 mm
of free motion in simulated microgravity before tangential
forces from the pendulum distorted the trajectory. This
provided enough range of motion to allow the initial tra-
jectory to be characterized. Data recorded during experi-
ments included the velocity of the flywheel at 600 Hz and
the platform’s rotation rates and accelerations with an in-
ertial measuring unit (IMU) at 100 Hz. The platform’s

Figure 4. : Gravity o✏oading test bed: an Atwood ma-
chine o↵sets the weight of the Hedgehog platform allow-
ing di↵erent gravity levels to be simulated.

pose was tracked in 6 DOF at 120 Hz using an external
high-speed video camera and visual fiducial markers [17].
The tracking quality was monitored throughout the exper-
iments and millimeter pose accuracy was maintained. The
video was also used to identify motion state transitions.

Experiments were performed at two simulated grav-
ity levels (0.015 g and 0.0085 g). For each gravity, level
three torques (0.125 Nm, 0.22 Nm and 6.0 Nm) were eval-
uated on four di↵erent surfaces. To simulate rocky and icy
regolith, a limestone brick and steel plate were used. To
simulate granular regolith, beds of fine sand and JSC-1A
Lunar simulant [18] were used.

The experimental procedure included preparations
such as aligning the pulleys to minimize friction, and then
allowing the platform to come to rest on the surface, sup-
ported by four spikes. For the granular regolith exper-
iments the media was “flu↵ed” and leveled before each
test. Granular media properties were measured with a
small conical penetrometer.

4.1 Gravity O✏oading Setup Dynamics
During dynamic motions the gravity o✏oading setup

causes the counterbalance to move in the vertical (y) di-
rection, while the platform’s center of mass moves in the
x, y plane. The rigid coupling between the masses, and



the platform’s pendulum-like motion creates a potentially
complex dynamic system. While the Lagrangian compo-
nents are tractable, by only considering the first 40 mm of
the platform’s motion, the dynamics are simplified. With
the o✏oading pulleys 2.2 m above the platform, the arc
angle 40

2200 ⇡ 1.0� is small enough to use small-angle ap-
proximations.

To compare simulated and experimental results we
model the counterbalance mass, m

b

, by adding two terms
to the Lagrangian equations. The velocity of the counter-
balance, ẏ

b

, is approximated by:

ẏ

b

� �ẏ (17)

The kinetic and potential energy terms for the counterbal-
ance are hence:

T

b

=
1
2

m

b

ẏ

2
b

V

b

= m

b

y

b

g

(18)

4.2 Numerical Simulations
We performed numerical simulations using the plat-

form’s analytical model, derived in Section 3, and the of-
floading setup model from Subsection 4.1. The discrete-
time simulation was programmed in Matlab with a fixed
1 ms time-step and parameters that were measured exper-
imentally. Simulated trajectories appeared most sensitive
to the static and dynamic friction coe�cients, however we
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s
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Figure 5. : Initial platform trajectories. Both experi-
mental and simulated trajectories are shown in simulated
0.0085 g. As the torque increases (0.125 Nm, 0.22 Nm
and 6.0 Nm) the trajectory angle increases also. Sensitiv-
ity to the static friction coe�cients (µ

s

= 0.25) is indicated
by the bounding ±10% simulations.

note these were the hardest to measure accurately. In each
of the simulations we evaluated this sensitivity by sim-
ulating ±10% of the friction coe�cients. The dynamic
friction coe�cients were fixed to half of the static value:
µ

d

= µ
s

/2 .

5 Results
Figure 5 shows the platform’s initial trajectories while

completing motions on the steel surface (µ
s

= 0.25) with
a simulated gravity level of 0.0085 g. Experimental and
simulated trajectories match well. Di↵erences begin to
appear in some trajectories where the prototype appears
to push away from the surface faster. This may be caused
by vibrations through the platform as the flywheels ac-
celerate/decelerate. Spike vibrations at the contact point
cause it to “skip” over the surface and greatly reduce the
dynamic friction coe�cient. Pendulum-like e↵ects, due to
the o✏oading setup, are observed over larger trajectories
(> 50 mm). As the applied torque increases the trajectory
angle increases also, to a maximum of about 60 degrees.

To further validate our model the state transitions be-
tween pivoting, slipping and hopping are plotted in Figure
6. Even for a short tumble in 0.0085 g the simulation pre-
dicts the platform will break contact with the ground and
perform a brief hop. Analyzing the high-speed video con-
firms this in 5 of 6 cases. Similarly the majority of the
transition angles in the experimental occur within 5 de-
grees of the simulated angles. Figure 6 includes markers
where the pendulum e↵ect begins to a↵ect motion in the
experiments. State transitions after these markers are not
expected to match well. The 6.0 Nm torque simulations
show a harmless artifact in the transition to hopping that
is not observed in the experiments.

To demonstrate that the platform can produce for-
ward motions on a variety of surfaces, the initial trajec-
tory angles, maximum linear and angular velocities were
plotted in Figure 8. Most of the low-torque experiments
(0.125 Nm and 0.22 Nm) produced slow, tumbling mo-
tions that can be identified by the ⇡ 22.5 degree initial tra-
jectory angle. Five experiments exceed this angle, indicat-
ing hopping trajectories. Four of these experiments used
the higher torque from the brakes (6.0 Nm), for which
Figure 6 confirms that the platform begins to slip almost
immediately, which is consistent with the predictions in
[10] for high-energy hops. Figure 7 extrapolates the ini-
tial hopping trajectory from these experiments, suggest-
ing what the unrestrained hopping trajectories could have
looked like. Simulated trajectories agree well with the ex-
trapolated experimental data. Four experiments in Fig-
ure 8 have negative trajectory angles, corresponding to the
brake being used on granular simulants. In each of these
experiments the platform made good forward progress,
however sank into the simulant slightly due to initial con-
ditions.
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Figure 6. : Motion state transitions during a tumble (a, b, c and d) and hop (e and f) with gravity level 0.0085 g. Left (a,
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produce the hops/tumbles are (a and b) 0.125 Nm, (c and d) 0.22 Nm, (e and f) 6.0 Nm. Sensitivity to the static friction
coe�cients are indicated by the bounding ±10% simulations.



6 Conclusions
We have presented an analytical model for the Hedge-

hog platform, considering its three main states of motion
(pivoting, slipping and hopping) and the contact dynam-
ics between the platform’s spikes and rigid surfaces. Ex-
periments were performed at two simulated microgravity
levels (0.0085 g and 0.015 g), and with a range of torques
(0.125 Nm, 0.22 Nm and 6.0 Nm). Numerical simulations
using parameters measured in the experiments were com-
pared and show close correlation with the experimental
observations, within the limits of the experimental setup.
Experiments on four surfaces (brick, steel, sand and JSC-
1A) indicate that the platform can perform forward mo-
tions in simulated microgravity. The correlation observed
between torque and trajectory angles suggests that dynam-
ically controlling the torque may enable hopping angles to
be controlled.

One source of discrepancies between the analytical
model and experiments results from vibrations induced
by the flywheels. These vibrations disrupt the Coulomb
friction at the spike’s contact, e↵ectively decreasing the
static friction coe�cients. Modeling the spike’s vibra-
tion modes may resolve part of this discrepancy. Small ir-
regularities in the surfaces, particularly the brick surface,
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Figure 7. : Extrapolated hopping trajectories on (a) the
steel surface and (b) the brick surface at both gravity levels
(0.015 g and 0.0085 g). The parabolic hops have been ex-
trapolated from the trajectory angles and velocities mea-
sured in the experiments. These hops were not possible
due to the experimental setup.

further amplify this e↵ect, however they are di�cult to
model. Errors in parameter measurements, slightly o↵-
center platform mass (non-uniform mass distribution) and
the assumption of a point contact (l varies with angle � for
a spherical spike) may contribute to small discrepancies
that were observed. Experiments with the granular sim-
ulants indicate the platform can make forward progress
on lightly-packed regolith, however, multiple tumbles are
needed to provide more realistic initial conditions for suc-
cessive tumbles and to confirm that the platform will not
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Figure 8. : (a) The initial platform trajectory angle,
(b) maximum linear velocity magnitude and (c) angu-
lar velocity. This figure captures all experiments per-
formed: two gravity levels (0.015 g and 0.0085 g) with
three torques (0.125 Nm, 0.22 Nm and 6.0 Nm) evaluated
on four di↵erent surfaces (brick, steel, sand and JSC-1A).



continue to sink. This is not possible with the current
gravity o✏oading setup.

Future work includes addressing deficiencies in the
gravity o✏oading setup. Our collaborators at Stanford are
currently developing an actuated 6 DOF gantry, where the
vertical axis uses a voice-coil to increase the fidelity of
gravity o✏oading. Actively “flu�ng” granular simulants
with air fluidization may allow contact dynamics to be ex-
plored in microgravity, however designing comprehensive
microgravity mobility experiments remains a challenge.
Another avenue for future work is to simulate both the
platform and granular media with multi-body discrete el-
ement methods, however computational requirements and
model validation remains an open research problem. In
the near-term our team is planning to further validate the
Hedgehog platform’s mobility in a campaign of parabolic
flights on a zero-g aircraft.
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