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In this paper we study distributed control policies for spacecraft forma-

tions that draw inspiration from the simple idea of cyclic pursuit. First,

we study cyclic-pursuit control laws for both single- and double-integrator

models in three dimensions. In particular, we develop control laws that

only require relative measurements of position and velocity with respect to

the two leading neighbors in the ring topology of cyclic pursuit, and allow

convergence to a variety of symmetric formations, including evenly spaced

circular and elliptic formations, and evenly spaced Archimedes’ spirals. Sec-

ond, we discuss potential applications, including spacecraft formation for

interferometric imaging and convergence to low-effort relative trajectories.

Finally, we present and discuss experimental results obtained by implement-

ing the aforementioned control laws on the SPHERES testbed on board the

International Space Station.

I. Introduction

In recent years, the idea of distributing the functionalities of a complex agent among mul-

tiple, simple and cooperative agents is attracting increasing interest in several application
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domains. In fact, multi-agent systems present several advantages. For example, consider-

ing an aerospace application, a cluster of spacecraft flying in formation for high-resolution,

synthetic-aperture imaging can act as a sparse aperture with an effective dimension larger

than the one that can be achieved by a single, larger satellite.1 In general, the intrinsic par-

allelism of a multi-agent system provides robustness to failures of single agents; moreover,

it is possible to reduce the total implementation and operation cost, increase reactivity and

system reliability, and add flexibility and modularity to monolithic approaches.

In this context, the problem of formation of geometric patterns is of particular interest,

with engineering applications including distributed sensing using mobile sensor networks,

and space missions with multiple spacecraft flying in formation (on which we will focus

the paper). Within the robotics community, many distributed control strategies have been

recently proposed for convergence to geometric patterns. Justh et al.6 presented two strate-

gies to achieve, respectively, rectilinear and circular formation, using all-to-all communica-

tion among agents. Jadbabaie et al.7 formally proved that the nearest neighbor algorithm

by Vicsek8 causes all agents to eventually move in the same direction, despite the absence

of centralized coordination and despite the fact that each agent’s set of nearest neighbors

change with time as the system evolves. Olfati-Saber et al.9 and Leonard et al.10 used

potential function theory to prescribe flocking behavior in connected graphs. Lin et al.11

exploited cyclic pursuit (where each agent i pursues the next i + 1, modulo n) to achieve

alignment among agents, while Marshall et al.12,13 extended the classic cyclic pursuit to a

system of wheeled vehicles, each subject to a single non-holonomic constraint, and studied

the possible equilibrium formations and their stability. Paley et al.14 introduced control

strategies to stabilize symmetric formations on convex, closed curves. Ren15,16 introduced

Cartesian coordinate coupling to existing consensus algorithms and derived algorithms for

different types of collective motions (a more detailed discussion on the two-part paper15,16

is given in Section IV.C).

The problem of formation of geometric patterns has been the subject of intensive re-

search efforts also within the aerospace community, see17 and references therein; see also the

very recent work of Chung et al.,18 where the authors present a contraction theory approach

to achieve synchronized formations that, however, requires a form of higher level agree-

ment on the set of predetermined trajectories. Broadly speaking, spacecraft formation algo-

rithms can be divided into three main architectures:17 (i) Multiple-Input Multiple-Output

(MIMO), in which the formation is treated as a single multiple-input, multiple-output plant,

(ii) Leader/Follower, in which individual spacecraft controllers are connected hierarchically,

and (iii) Cyclic, in which individual spacecraft controllers are connected non-hierarchically.

By allowing non-hierarchical connections between individual spacecraft controllers, Cyclic

algorithms can perform better than Leader/Follower algorithms, and can distribute control
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effort more evenly.17 Moreover, Cyclic algorithms are generally more robust than MIMO

algorithms, for which a local failure can have a global effect.17 Finally, Cyclic algorithms

can also be completely decentralized in the sense that there is neither a coordinating agent

nor instability resulting from single point failures.17 The two primary drawbacks of Cyclic

algorithms are that the stability of these algorithms and their information requirements are

poorly understood;17 in particular, the stability analysis of Cyclic algorithms is difficult since

the cyclic structure introduces feedback paths.

Motivated by the previous discussion, the objective of this paper is to present a class

of Cyclic algorithms for formation flight, for which a rigorous stability analysis is possible

and for which the information requirements are minimal. The starting point is our previous

work,4 where we developed distributed control policies that draw inspiration from the simple

idea of cyclic pursuit and that guarantee convergence to symmetric formations. The key

features of the control laws in4 are global stability and the capability to achieve a variety of

formations, namely rendez-vous to a single point, circles, and logarithmic spirals; moreover,

the control laws in4 are distributed and require the minimum number of communication links

(n links for n agents) that a cyclic structure can have.

Specifically, the main contributions of this paper are threefold. First, building upon

the work in,4 we rigorously study novel cyclic-pursuit control laws for formation flight, for

both single- and double-integrator models in three dimensions. We also extend our con-

trol laws to deal with the (linearized) relative dynamics of spacecraft, e.g., in the Earth’s

gravitational field. In particular, unlike the work of Chung et al.,18 our control laws do not

require any agreement on a set of predetermined trajectories. Second, we discuss potential

applications, including spacecraft formation for interferometric imaging and convergence to

low-effort relative trajectories. Finally, we present and discuss experimental results obtained

by implementing the aforementioned control laws on the SPHERES testbed21 on board the

International Space Station.

The organization of this paper is as follows. In Section II, we introduce basic concepts in

matrix theory and review the cyclic-pursuit control laws in,4 which were devised for single-

integrator models in two dimensions. In Section III, we extend the aforementioned control

laws in three directions: (i) we address the case in which agents move in three dimensions,

(ii) we consider control of the center of the formation, and (iii) we study convergence to

evenly-spaced circular formations with a prescribed radius. Then, in Section IV, we extend

the control laws in4 to double-integrator models in three dimensions. In particular, we

develop control laws that only require relative measurements of position and velocity with

respect to the two leading neighbors in the ring topology of cyclic pursuit, and allow the

agents to converge from any initial condition (except for a set of measure zero) to a single

point, an evenly-spaced circular formation, an evenly-spaced logarithmic spiral formation,
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or an evenly-spaced Archimedes’ spiral formation (an Archimedes’ spiral is a spiral with

the property that successive turnings have a constant separation distance), depending on

some tunable control parameters. Control laws that only rely on relative measurements are

indeed of critical importance in deep-space missions, where global measurements may not be

available. In Section V, we discuss potential applications, including spacecraft formation for

interferometric imaging and convergence to zero-effort orbits, and we argue that Archimedes’

spiral formations are among the most useful symmetric formations for applications. Finally,

in Section VI, we present and discuss experimental results obtained by implementing the

proposed control laws on three nanospacecraft on board the International Space Station

(ISS), and in Section VII we draw our conclusions.

II. Background

In this section, we provide some definitions and results from matrix theory. Moreover,

we briefly review cyclic-pursuit control laws for single integrators.

A. Notation

We let R>0 and R≥0 denote the positive and nonnegative real numbers, respectively. We let

In denote the identity matrix of size n; we let AT and A∗ denote, respectively, the transpose

and the conjugate transpose of a matrix A. For an n×n matrix A, we let eig(A) denote the

set of eigenvalues of A, and we refer to its kth eigenvalue as λA,k, k ∈ {1, . . . , n} (or simply

as λk when there is no possibility of confusion). Finally, let j
.
=
√
−1.

B. Kronecker Product

Let A and B be m×n and p× q matrices, respectively. Then, the Kronecker product A⊗B
of A and B is the mp× nq matrix

A⊗B =


a11B . . . a1nB

...
...

am1B . . . amnB

 .
If λA is an eigenvalue of A with associated eigenvector νA and λB is an eigenvector of B with

associated eigenvector νB, then λAλB is an eigenvalue of A⊗B with associated eigenvector

νA ⊗ νB. Moreover, the following property holds: (A ⊗ B)(C ⊗D) = AC ⊗ BD, where A,

B, C and D are matrices with appropriate dimensions.
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C. Determinant of Block Matrices

If A, B, C and D are matrices of size n× n, and AC = CA, then

det

 A B

C D

 = det(AD − CB). (1)

D. Rotation Matrices

A rotation matrix is a real square matrix whose transpose is equal to its inverse and whose

determinant is +1. The eigenvalues of a rotation matrix in two dimensions are e±jα, where α

is the magnitude of the rotation. The eigenvalues of a rotation matrix in three dimensions are

1 and e±jα, where α is the magnitude of the rotation about the rotation axis; for a rotation

about the axis (0, 0, 1)T , the corresponding eigenvectors are (0, 0, 1)T , (1,+j, 0)T (1,−j, 0)T .

E. Circulant Matrices

A circulant matrix C is an n× n matrix having the form

C =


c0 c1 c2 . . . cn−1

cn−1 c0 c1 . . .
...

... c1

c1 c2 . . . . . . c0

 . (2)

The elements of each row of C are identical to those of the previous row, but are shifted one

position to the right and wrapped around. A detailed treatise on circulant matrices can be

found in.20 The following theorem summarizes some of the properties of circulant matrices

and will be essential in the development of the paper.

Theorem II.1 (Adapted from Theorem 7 in20) Every n × n circulant matrix C has

eigenvectors

ψk =
1√
n

(
1, e2πjk/n, . . . , e2πjk(n−1)/n

)T
, k ∈ {0, 1, . . . , n− 1}, (3)

and corresponding eigenvalues

λk =
n−1∑
p=0

cpe
2πjkp/n, (4)

and can be expressed in the form C = UΛU∗, where U is a unitary matrix whose kth column

is the eigenvector ψk, and Λ is the diagonal matrix whose diagonal elements are the corre-
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sponding eigenvalues. Moreover, let C and B be n × n circulant matrices with eigenvalues

{λB,k}nk=1 and {λC,k}nk=1, respectively; then,

1. C and B commute, that is, CB = BC, and CB is also a circulant matrix with eigen-

values eig(CB) = {λC,k λB,k}nk=1;

2. C +B is a circulant matrix with eigenvalues eig(C +B) = {λC,k + λB,k}nk=1.

From Theorem II.1 all circulant matrices share the same eigenvectors, and the same matrix

U diagonalizes all circulant matrices.

F. Cyclic Pursuit for Single Integrators

Let there be n ordered mobile agents a in the plane, their positions at time t ≥ 0 denoted by

xi(t) = [xi,1(t), xi,2(t)]
T ∈ R2, i ∈ {1, 2, . . . , n}, where agent i pursues the next i+1 modulob

n. The dynamics of each agent is described by a simple (vector) integrator:4

ẋi = ui,

ui = R(α)(xi+1 − xi),
(5)

where the dot represents differentiation with respect to time, and R(α), α ∈ [−π, π), is the

rotation matrix:

R(α) =

 cosα sinα

− sinα cosα

 .

Let x = [xT1 ,x
T
2 , . . . ,x

T
n ]T ; the dynamics of the overall system can be written in compact

form as

ẋ = (L⊗R(α)) x,

where L is the circulant matrix

L =


-1 1 0 . . . 0

0 -1 1 . . . 0
...

...

1 0 0 . . . -1

 . (6)

From Theorem II.1 the eigenvalues of matrix L are {e2πjk/n−1}nk=1. Then, by the properties

of the Kronecker product, the 2n eigenvalues of L ⊗ R(α) are {(e2πjk/n − 1)e±jα}nk=1. The

following is proven in:4

aHenceforth, we will use the words agent and spacecraft interchangeably.
bHenceforth, agent indices should be evaluated modulo n.
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Theorem II.2 L⊗R(α) has exactly two zero eigenvalues, and

1. if 0 ≤ |α| < π/n, all non-zero eigenvalues lie in the open left-half complex plane;

2. if |α| = π/n, two non-zero eigenvalues lie on the imaginary axis, while all other non-

zero eigenvalues lie in the open left-half complex plane;

3. if π/n < |α| < 2π/n, two non-zero eigenvalues lie in the open right-half complex plane,

while all other non-zero eigenvalues lie in the open left-half complex plane;

Moreover, it is possible to prove (see ref.4) that the matrix L⊗R(α) is diagonalizable for

all values of α. Then, by exploiting the structure of the eigenvectors of a circulant matrix

(see Theorem II.1), it is easy to show4 that agents starting at any initial condition (except

for a set of measure zero) in R2n and evolving under (5) exponentially converge:

1. if 0 ≤ |α| < π/n, to a single limit point, namely their initial center of mass;

2. if |α| = π/n, to an evenly spaced circle formation;

3. if π/n < |α| < 2π/n, to an evenly spaced logarithmic spiral formation.

Note that (i) these results are derived for agents operating in R2 and with single-integrator

dynamics, (ii) the center of the formation is determined by the initial positions of the agents,

and (iii) the radius of a circular formation is also determined by the initial positions of the

agents.

III. Cyclic-Pursuit Control Laws for Single-Integrator Models

In this section, we extend the results in4 in three directions: (i) we address the case in

which agents move in R3, (ii) we consider control of the center of the formation, and (iii) we

study convergence to evenly-spaced circular formations with a prescribed radius. We start

by addressing issues (i) and (ii).

A. Cyclic pursuit in three dimensions with control on the center of the forma-

tion

Let there be n ordered mobile agents in the space, their positions at time t ≥ 0 denoted by

xi(t) = [xi,1(t), xi,2(t), xi,3(t)]
T ∈ R3, i ∈ {1, 2, . . . , n},

and let x = [xT1 ,x
T
2 , . . . ,x

T
n ]T . The dynamics of each agent are described by a simple vector

integrator

ẋi = kg ui, kg ∈ R>0; (7)
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henceforth, without loss of generality, we assume kg = 1. Consider the following three-

dimensional generalization of the cyclic-pursuit control law in equation (5):

ui = R(α)(xi+1 − xi)− kc xi, kc ∈ R≥0, (8)

where R(α), α ∈ [−π, π), is the rotation matrix (with rotation axis (0, 0, 1)T without loss of

generality):

R(α) =


cosα sinα 0

− sinα cosα 0

0 0 1

 . (9)

The overall system can be written in compact form as

ẋ = (L⊗R(α)− kc I3n) x, (10)

where L is defined in equation (6).

We start the analysis with the following theorem, that characterizes the spectrum of

L⊗R(α).

Theorem III.1 L⊗R(α) has exactly three zero eigenvalues, and

1. if 0 ≤ |α| < π/n, all non-zero eigenvalues lie in the open left-half complex plane;

2. if |α| = π/n, two non-zero eigenvalues lie on the imaginary axis, while all other non-

zero eigenvalues lie in the open left-half complex plane;

3. if π/n < |α| < 2π/n, two non-zero eigenvalues lie in the open right-half complex plane,

while all other non-zero eigenvalues lie in the open left-half complex plane.

Moreover, L⊗R(α) is diagonalizable for all α ∈ [−π, π).

Proof: By the properties of the Kronecker product, the 3n eigenvalues of L⊗R(α) are:

λk = e2πjk/n − 1,

λ+
k = (e2πjk/n − 1) ejα,

λ−k = (e2πjk/n − 1) e−jα,

(11)

where k ∈ {1, . . . , n}. Note that for k ∈ {1, . . . , n − 1} the eigenvalues λk lie in the open

left-half complex plane, while for k = n we have λn = 0; moreover, the 2n eigenvalues

{λ±k }nk=1 are the same as those in Theorem II.2. Then, the first part of the claim follows

from Theorem II.2.
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We now turn our attention to the diagonalizability of L ⊗ R(α). We already now that

L⊗R(α) has three zero eigenvalues; note that the zero eigenvalues are all obtained for k = n.

Next, we study the algebraic multiplicity of the eigenvalues obtained for k < n (if any, i.e.,

if n > 1). The magnitude of the eigenvalues λk, k ∈ {1, . . . , n}, is given by

|λk| =
√(

cos(2πk/n)− 1
)2

+ sin2
(

2πk/n
)

=

√
2
(

1− cos(2πk/n)
)

= 2 sin
πk

n
.

Note that the eigenvalues λ+
k (respectively λ−k ) are just a rotation with angle α (respectively

−α) of the eigenvalues λk (in particular |λ±k | = λk for every k); hence, as α is varied, the

eigenvalues λ±k move on circles with radius rk = 2 sin(πk/n) and center the origin. Since it

holds

sin
(
π(n− k)/n

)
= sin (πk/n) , (12)

there are only (n − 1)/2 distinct circles if n is odd, or n/2 distinct circles if n is even; we

call Ck such circles, k ∈ {1, . . . , k̄}, where k̄ = (n− 1)/2 if n is even and k̄ = n/2 otherwise.

From equation (12), the eigenvalues that lie on the same circle Ck are, for all α ∈ [−π, π),

λk, λn−k, λ+
k , λ+

n−k, λ−k , λ−n−k, k = 1, 2, . . . , k̄; (13)

Therefore just 6 eigenvalues lie on the same circle (3 in the case that n is even and k = k̄).

Clearly, only the eigenvalues that lie on the same circle can coincide.

Assume that n is odd, or n is even and k < k̄. Then, the eigenvalues λk and λn−k are

distinct. Indeed, λk = λn−k implies sin(2πk/n) = sin(2π(n− k)/n); since we have

0 < 2πk/n < 2π for k ∈ {1, . . . , n− 1},

the equality sin(2πk/n) = sin(2π(n− k)/n) is impossible under the assumptions. Similarly,

the eigenvalues λ+
k and λ+

n−k are distinct, and the eigenvalues λ−k and λ−n−k are distinct. As α

is changed, the eigenvalues λk and λn−k, which are distinct, do not move along the circle Ck;

as α is increased, the eigenvalues λ+
k and λ+

n−k, which are distinct, move counter-clockwise

along the circle Ck, with fixed (non-zero) phase difference; finally, as α is increased, the

eigenvalues λ−k and λ−n−k, which are distinct, move clockwise along the circle Ck, with fixed

(non-zero) phase difference. We conclude that at most three eigenvalues can coincide; in

particular, the possible pairs of eigenvalues that can coincide are

(λk, λ
+
k ), (λk, λ

+
n−k), (λk, λ

−
k ), (λk, λ

−
n−k), (λn−k, λ

+
k ), (λn−k, λ

+
n−k), (λn−k, λ

−
k ),

(λn−k, λ
−
n−k), (λ+

k , λ
−
k ), (λ+

k , λ
−
n−k), (λ+

n−k, λ
−
k ), (λ+

n−k, λ
−
n−k).

(14)
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Similarly, the only triples of eigenvalues that can potentially coincide are

λk −→


λ+
k −→

 λ−k

λ−n−k

λ+
n−k −→

 λ−k

λ−n−k

and λn−k −→


λ+
k −→

 λ−k

λ−n−k

λ+
n−k −→

 λ−k

λ−n−k

. (15)

If n is even and k = k̄, it is straightforward to see that the possible pairs of eigenvalues

on Cn/2 that can coincide are

(λn/2, λ
+
n/2), (λn/2, λ

−
n/2), (λ+

n/2, λ
−
n/2),

while the three eigenvalues on Cn/2 coincide only when α = 0.

The last step before proving that L⊗R(α) is diagonalizable is to compute its eigenvectors.

Recall that the eigenvectors of L are ψk =
(

1, χk, χ
2
k, . . . , χ

n−1
k

)T
, where χk = e2πjk/n, k ∈

{0, . . . , n− 1} (we are omitting the constant 1/
√
n). The eigenvectors of L⊗R(α) are then

given by

µk
.
= ψk ⊗ (0, 0, 1)T = (0, 0, 1, 0, 0, χk, . . . , 0, 0, χ

n−1
k )T ,

µ+
k

.
= ψk ⊗ (1, j, 0)T = (1, j, 0, χk, j χk, 0, . . . , χ

n−1
k , j χn−1

k , 0)T ,

µ−k
.
= ψk ⊗ (1,−j, 0)T = (1,−j, 0, χk,−j χk, 0, . . . , χn−1

k ,−j χn−1
k , 0)T ,

where k ∈ {1, . . . , n}. Given any triple of integers p, q, r ∈ {1, . . . , k}, it is easy to see

that the three eigenvectors µp, µ
+
q , µ−r are linearly independent (just observe the first three

components of each eigenvector). Hence, the zero eigenvalues (which have an algebraic multi-

plicity equal to three) have a geometric multiplicity equal to three; recalling that the possible

pairs or triples of non-zero coincident eigenvalues are given in equations (14) and (15), we

conclude that whenever two or three eigenvalues coincide the corresponding eigenvectors are

linearly independent. Therefore, L⊗R(α) is diagonalizable for all α ∈ [−π, π).

Corollary III.2 When α = π/n, the two eigenvalues that lie on the imaginary axis are

λ+
n−1 = −j 2 sin(π/n) and λ−1 = j 2 sin(π/n), with corresponding eigenvectors µ+

n−1 and µ−1 .

When π/n < α < 2π/n, the two eigenvalues with positive real part are λ+
n−1 and λ−1 , with

corresponding eigenvectors µ+
n−1 and µ−1 ; moreover, the real parts of λ+

n−1 and λ−1 are both

equal to 2 sin(π/n) sin(α− π/n).

Proof: The proof reduces to a straightforward verification in equation (11).

We are now in a position to study the formations that can be achieved with control law (8).

We study separately the case with kc = 0 and the case with kc > 0.
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1. Case kc = 0, i.e., no control on the center of the formation.

Combining Theorem III.1 and Corollary III.2 (where, in particular, the eigenvectors corre-

sponding to the dominant eigenvalues are explicitly given), it is easy to show (the arguments

are virtually identical to those in Section 3.5 of4 and are omitted in the interest of brevity)

that agents starting at any initial condition (except for a set of measure zero) in R3n and

evolving under (10) exponentially converge:

1. if 0 ≤ |α| < π/n, to a single limit point, namely their initial center of mass;

2. if |α| = π/n, to an evenly spaced circle formation, whose radius is determined by the

initial positions of the agents;

3. if π/n < |α| < 2π/n, to an evenly spaced logarithmic spiral formation.

The center of the formation is determined by the initial positions of the agents. The same

result has recently appeared in.15

Remark III.3 When kc = 0, the control law in equation (8) only requires the measurement

of the relative position (xi+1 − xi); however, it uses a rotation matrix that is common to all

agents. Hence, control law (8) requires that all agents agree upon a common orientation, but

it does not require a consensus on a common origin.

2. Case kc > 0, i.e., control on the center of the formation.

We now study the case kc > 0; we will see that in this case the center of the formation is

no longer determined by the initial positions of the spacecraft, instead it always converges,

exponentially fast, to the origin. In fact, when kc > 0 the eigenvalues of L ⊗ R(α) are

shifted toward the left-hand complex plane by an amount precisely equal to kc, while the

eigenvectors are left unchanged. Then, the following corollary is a simple consequence of

Corollary III.2.

Corollary III.4 Assume kc > 0; then, if 0 ≤ |α| ≤ π/n, all of the eigenvalues are in the

left-hand complex plane. If, instead, π/n < |α| < 2π/n we have

1. if kc > 2 sin(π/n) sin(α−π/n), all of the eigenvalues are in the open left-hand complex

plane;

2. if kc = 2 sin(π/n) sin(α − π/n), two non-zero eigenvalues lie on the imaginary axis,

while all other eigenvalues lie in the open left-hand complex plane;

3. if kc < 2 sin(π/n) sin(α − π/n), two non-zero eigenvalues lie in the open right-hand

complex plane, while all other eigenvalues lie in the open left-hand complex plane;
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Accordingly, by appropriately selecting α and kc, the agents, starting at any initial condition

(except for a set of measure zero) in R3n and evolving under (10), exponentially converge

to the origin, or to an evenly spaced circle formation centered at the origin, or to an evenly

spaced logarithmic spiral formation centered at the origin. Simulation results are presented

in Figure 1, where 7 agents reach a circular formation centered at the origin.

Remark III.5 When kc > 0, the control law in equation (8) requires that the agents agree

on a common reference frame (i.e., both a common origin and a common orientation); in

particular, each agent needs to measure its relative position (xi+1−xi) and know its absolute

position xi.

Remark III.6 Note that the center of the formation can be chosen to be any point in R3.

Assume, in fact, that we desire a formation centered at c ∈ R3. Then, if we modify the

control law (8) according to

ui = R(α)(xi+1 − xi)− kc (xi − xc), kc ∈ R>0,

it is immediate to see that the center of the formation will converge exponentially to xc.
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Vehicle trajectories

Figure 1. Convergence to circular trajectories centered at the origin. Left Figure: First
coordinate as a function of time for each agent. Right Figure: Trajectories in 3D.

B. Convergence to circular formations with a prescribed radius

Circular trajectories occur only when two non-zero eigenvalues are on the imaginary axis and

all other non-zero eigenvalues have negative real part, which makes this behavior not robust

from a practical point of view. In this section we address the problem of robust convergence

to a circular motion on a circle of prescribed radius around the (fixed) center of mass of the

group, with all agents being evenly spaced on the circle. Here, by robust we mean that the
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circular formation is now a locally stable equilibrium of a non-linear system. The key idea

is to make the rotation angle a function of the state of the system.

Specifically, let there be n ordered mobile agents in the plane, their positions at time

t ≥ 0 denoted by xi(t) = [xi,1(t), xi,2(t)]
T ∈ R2, i ∈ {1, 2, . . . , n}, where agent i pursues the

next i+ 1 modulo n. The kinematics of each agent is described by

ẋi = kg ui,

ui = R(αi)(xi+1 − xi),
(16)

where the rotation angle αi is now a function of the state of the system:

αi =
π

n
+ kα (r − ‖xi+1 − xi‖), kα, r ∈ R>0. (17)

Without loss of generality, we assume kg = 1. In equation (17) the constant kα is a gain,

while r is the desired inter-agent distance. Intuitively, if the agents are “close to each other”

with respect to r, they will spiral out since αi > π/n; conversely, if they are “far from each

other” with respect to r, they will spiral in since αi < π/n. It is easy to see that a splay state

formation whereby all agents move on a circle of radius r/(2 sin(π/n)) around the (fixed)

center of mass of the group, with all agents being evenly spaced on the circle, is a relative

equilibrium for the system. The next theorem shows that such equilibrium is locally stable.

Theorem III.7 A splay-state formation is a locally stable relative equilibrium for system

(16) - (17).

Proof: We first consider a sequence of coordinate transformations such that a splay-

state formation is indeed an equilibrium point (and not a relative equilibrium). Consider the

change of coordinates pi
.
= xi+1 − xi, i ∈ {1, 2, . . . , n}. In the new coordinates, the system

becomes (the index i is, as usual, modulo n)

ṗi = R(αi+1) pi+1 −R(αi) pi, where αi =
π

n
+ kα (r − ‖pi‖). (18)

By introducing polar coordinates, i.e., by letting the first coordinate pi,1 = %i cosϑi and the

second coordinate pi,2 = %i sinϑi, with %i ∈ R≥0 and αi ∈ R, the system becomes, after some

algebraic manipulations (see Appendix A for the details),

%̇i = %i+1 cos((ϑi+1 − ϑi)− αi+1(%i+1))− %i cos(αi(%i)), (19)

ϑ̇i =
%i+1

%i
sin((ϑi+1 − ϑi)− αi+1(%i+1)) + sin(αi(%i)), (20)

αi(%i) =
π

n
+ kα (r − %i), (21)
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where we have made explicit the dependence of αi on %i. Finally, by letting ϕi = ϑi+1 − ϑi,
we obtain

%̇i = %i+1 cos(ϕi − αi+1(%i+1))− %i cos(αi(%i)),

ϕ̇i =
%i+2

%i+1

sin(ϕi+1 − αi+2(%i+2)) + sin(αi+1(%i+1))−
%i+1

%i
sin(ϕi − αi+1(%i+1))− sin(αi(%i)),

αi(%i) =
π

n
+ kα(r − %i).

Define %
.
= (%1, . . . , %n)T and ϕ

.
= (ϕ1, . . . , ϕn)T ; in the new system of coordinates %-

ϕ, a splay state formation corresponds to an equilibrium point %∗ = (r, . . . , r)T and ϕ∗ =

(2π
n
, . . . , 2π

n
,−2π(n−1)

n
)T . In compact form we write %̇

ϕ̇

 = f(%, ϕ). (22)

The linearization of system (22) around the equilibrium point (%∗, ϕ∗) is

%̇i = cos(π/n)(%i+1 − %i)− kαr sin(π/n)(%i+1 + %i)− r sin(π/n)ϕi,

ϕ̇i = (kα cos(π/n) +
1

r
sin(π/n))(%i+2 − 2%i+1 + %i) + cos(π/n)(ϕi+1 − ϕi).

Without loss of generality we set r = 1; the linearized system can be written in compact

form as  %̇

ϕ̇

 =

 an L− 2kα sn In −sn In
bn L

2 cn L

 %

ϕ

 .
= P

 %

ϕ

 ,
where sn

.
= sin(π/n), cn

.
= cos(π/n), an

.
= (cn − kαsn), bn

.
= kαcn + sn, and L is defined in

equation (6). The spectrum of P is characterized by the following Lemma.

Lemma III.8 The matrix P has 2n−3 eigenvalues with negative real part, and 3 eigenvalues

with zero real part. The eigenvalues with zero real part are λ1 = 0, and λ2,3 = ±2jsn; the

corresponding eigenvectors v1, v2 and v3 are:

v1 = (1n,−2kα 1n)T ,

v2 =
(
ψ1, −2bne

πj/nψ1

)T
,

v3 = v̄2,

where 1n = (1, 1, . . . , 1)T ∈ Rn, ψ1 is the eigenvector for k = 1 in equation (3) and v̄

indicates the complex conjugate of v.
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Proof: The proof of this lemma is presented in Appendix B.

System (22) is constrained to evolve on a subset of R2n. To see why this is the case,

recall that from the definition of pi we have
∑n

i=1 pi = 0, or equivalently
∑n

i=1R(ϑ1)pi = 0.

In polar coordinates these constraints become
∑n

i=1 %i cos(ϑi−ϑ1) = 0 and
∑n

i=1 %i sin(ϑi−
ϑ1) = 0. Thus, in the system of coordinates %-ϕ, the following two constraints must hold at

all time

g1(%, ϕ) =
n∑
i=1

%i cos

(
i−1∑
k=1

ϕk

)
= 0,

g2(%, ϕ) =
n∑
i=1

%i sin

(
i−1∑
k=1

ϕk

)
= 0.

Moreover, by definition of ϕ, the following constraint must hold at all time

g3(%, ϕ) =
n∑
i=1

ϕi = 0.

Let g(%, ϕ) = (g1(%, ϕ), g2(%, ϕ), g3(%, ϕ))T and define

M .
= {(%, ϕ) ∈ R2n : g(%, ϕ) = 0} ⊂ R2n.

Note that (%∗, ϕ∗) ∈M. The Jacobian of g(%, ϕ) evaluated at the equilibrium point is

G=

 1 cos(2π/n) . . . cos(2π(n− 1)/n) −
∑n
i=2 r sin(2π(i− 1)/n) . . . −r sin(2π(n− 1)/n) 0

0 sin(2π/n) . . . sin(2π(n− 1)/n)
∑n
i=2 r cos(2π(i− 1)/n) . . . r cos(2π(n− 1)/n) 0

0 0 . . . 0 1 . . . 1 1

 .

LetBδ(%
∗, ϕ∗) be the open ball of radius δ > 0 centered at point (%∗, ϕ∗) in R2n. The rank ofG

is clearly 3; then, there exists δ > 0 such that M̃ .
=M∩Bδ(%

∗, ϕ∗) ⊂ R2n is a submanifold of

R2n. The tangent space of M̃ at (%∗, ϕ∗), that we call T(%∗,ϕ∗)M̃, is an invariant subspace of P

(since M̃, by construction, is invariant under (22), i.e., f(%, ϕ) ∈ T(%,ϕ)M̃ for all (%, ϕ) ∈ M̃)

and has dimension 2n − 3. Pick a basis {w1, . . . , w2n−3} of T(%∗,ϕ∗)M̃ and complete it to a

basis W of R2n. Then, with respect to this basis, P takes the upper-triangular form P1,1 P1,2

03×(2n−3) P2,2

 ,
where 03×(2n−3) is the zero matrix with 3 rows and 2n − 3 columns. Since our system is

constrained to evolve, at (%∗, ϕ∗), along the tangent space T(%∗,ϕ∗)M̃, the local stability of
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the equilibrium point is solely determined by the eigenvalues of P1,1.

We next show that the three eigenvalues of P2,2 are exactly the three eigenvalues of P

that have real part equal to zero. It is possible to show (see Appendix C) that

G · vi 6= 0, for each i ∈ {1, 2, 3},

where vi, i ∈ {1, 2, 3}, are the three eigenvectors associated to the three eigenvalues with

zero real part. Therefore, we have vi /∈ T(%∗,ϕ∗)M̃, i ∈ {1, 2, 3}. Let yi be the components

of vi with respect to the basis W ; define yi,1 as the vector of components with respect to

{w1, . . . , w2n−3}, and yi,2 as the vector of components with respect to the remaining basis

vectors in W . Since vi /∈ T(%∗,ϕ∗)M̃, vector yi,2 is non-zero. Since vi is an eigenvector of P

with eigenvalue λi, we can write P1,1 P1,2

03×(2n−3) P2,2

 yi,1

yi,2

 = λi

 yi,1

yi,2

 ,
and therefore P2,2 yi,2 = λi yi,2, i.e., λi is an eigenvalue of P2,2, i ∈ {1, 2, 3}. Since, we have

eig(P1,1) = eig(P ) \ eig(P2,2), we conclude, by using Lemma III.8, that all eigenvalues of P1,1

have negative real part. Therefore, the equilibrium point (%∗, ϕ∗) is locally stable.

IV. Cyclic-Pursuit Control Laws for Double-Integrator Models

In this section, we extend the previous cyclic-pursuit control laws to double integrators.

We first present a control law that requires each agent to be able to measure its absolute

position and velocity; then, we design a control law that only requires relative measurements

of position and velocity. As before, let xi(t) = [xi,1(t), xi,2(t), xi,3(t)]
T ∈ R3 be the position

at time t ≥ 0 of the ith agent, i ∈ {1, 2, . . . , n}, and let x = [xT1 ,x
T
2 , . . . ,x

T
n ]T . Moreover,

let R(α) be the rotation matrix in three dimensions with rotation angle α ∈ [−π, π) and

rotation axis (0, 0, 1)T (see equation (9)). The dynamics of each agent are now described by

a double-integrator model:

ẍi = ui. (23)

A. Dynamic Cyclic Pursuit with Reference Coordinate Frame

Consider the following feedback control law

ui = kdR(α)(xi+1 − xi) +R(α)(ẋi+1 − ẋi)

− kckd xi − (kc + kd) ẋi, kd ∈ R>0, kc ∈ R.
(24)
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Note that each agent needs to measure both its absolute position (if kc 6= 0) and its absolute

velocity (if kc 6= −kd). The overall dynamics of the n agents are described by: ẋ

ẍ

 =

 0 I3n

kdA(α) A(α)− kdI3n

x
.
= C(α) x, (25)

where A(α)
.
= L⊗ R(α)− kcI3n and L is the matrix defined in equation (6). The following

theorem characterizes eigenvalues and eigenvectors of C(α).

Theorem IV.1 Assume that -kd is not an eigenvalue of A(α). The eigenvalues of the state

matrix C(α) in equation (25) are the union of:

• the 3n eigenvalues of A(α),

• -kd, with multiplicity 3n.

In other words, eig(C(α)) = eig(A(α)) ∪ {−kd}. Moreover, the eigenvector of C(α) corre-

sponding to the kth eigenvalue λk ∈ eig(A(α)), k ∈ {1, . . . , 3n}, is:

νk
.
=

 νk,1

νk,2

 =

 µk

λkµk

 , k ∈ {1, . . . , 3n},

where µk is the eigenvector of A(α) corresponding to λk. The 3n (independent) eigenvectors

corresponding to the eigenvalue −kd (that has multiplicity 3n) are

νk
.
=

 νk,1

νk,2

 =

 −k−1
d ek−3n

ek−3n

 , k ∈ {3n+ 1, . . . , 6n},

where ej is the jth vector of the canonical basis in R3n.

Proof: First, we compute the eigenvalues of C(α). The eigenvalues of C(α) are, by

definition, solutions to the characteristic equation:

0 = det

 λI3n −I3n
−kdA(α) λI3n − (A(α)− kdI3n)

 .
By using the result in equation (1), we obtain

0 = det
(
λ2I3n − λ (A(α)− kdI3n)− kdA(α)

)
= det((λ+ kd)I3n) det(λI3n − A(α)).
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Thus, the eigenvalues of C(α) must satisfy 0 = det((λ + kd)I3n) and 0 = det(λI3n − A(α));

hence, the first part of the claim is proved.

By definition, the eigenvector [νTk,1 ν
T
k,2]

T corresponding to the eigenvalue λk, k = 1, . . . , 6n,

satisfies the eigenvalue equation:

λk

 νk,1

νk,2

 =

 0 I3n

kdA(α) A(α)− kdI3n

 νk,1

νk,2


=

 νk,2

kdA(α)νk,1+A(α)νk,2−kdνk,2

 .
Thus, we obtain

λkνk,1 = νk,2,

λkνk,2 = kdA(α)νk,1 + A(α)νk,2 − kd νk,2,

and therefore

λk(kd + λk)νk,1 = (kd + λk)A(α) νk,1. (26)

If λk = −kd, then we have 3n eigenvectors given by [−k−1
d ej, ej]

T , j = {1, . . . , 3n}. If,

instead, λk ∈ eig(A(α)) (note that by assumption −kd /∈ eig(A(α))), we obtain from equation

(26)

λkνk,1 = A(α)νk,1,

and we obtain the claim.

We are now in a position to study the formations that can be achieved with control law (24).

Theorem IV.2 Assume that -kd is not an eigenvalue of A(α). Then, agents’ positions

starting at any initial condition (except for a set of measure zero) in R3n and evolving under

(25) exponentially converge:

1. if kc = 0, to formations centered at the initial center of mass, in particular:

(a) if 0 ≤ |α| < π/n, to a single limit point;

(b) if |α| = π/n, to an evenly spaced circle formation;

(c) if π/n < |α| < 2π/n, to an evenly spaced logarithmic spiral formation;

2. if kc > 0, to formations centered at the origin, in particular:
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(a) if 0 ≤ |α| ≤ π/n, to a single limit point;

(b) if π/n < |α| < 2π/n

i. if kc > 2 sin(π/n) sin(α− π/n), to a single limit point;

ii. if kc = 2 sin(π/n) sin(α− π/n), to an evenly spaced circle formation;

iii. if kc < 2 sin(π/n) sin(α− π/n), to an evenly spaced logarithmic spiral forma-

tion.

Proof: As a consequence of Theorem IV.1, the eigenvectors of C(α) are linearly inde-

pendent. Indeed, the eigenvectors νk for k ∈ {1, . . . , 3n} are linearly independent since the

vectors µk are (see Theorem III.1); moreover, the eigenvectors νk for k ∈ {3n + 1, . . . , 6n}
are clearly linearly independent. Since, by assumption, −kd /∈ eig(A(α)), the independence

of the eigenvectors of C(α) follows.

Then, the proof is a simple consequence of Theorem III.1, Corollary III.2, Theorem IV.1,

and the arguments in Section 3.5 of.4

B. Control Law with Relative Information Only

Consider the following feedback control law:

ui = k1R
2(α)

(
(xi+2 − xi+1)− (xi+1 − xi)

)
+ k2R(α)(ẋi+1 − ẋi), (27)

where k1 and k2 are two real constants (not necessarily positive). In this case, each agent

only needs to measure its relative position with respect to the positions of agents i+ 1 and

i + 2 (note that (xi+2 − xi+1) = ((xi+2 − xi) − (xi+1 − xi))), and its relative velocity with

respect to the velocity of agent i+ 1. Note that control law (27) uses a rotation matrix that

is common to all agents; hence, it requires that all agents agree upon a common orientation,

but it does not require a consensus on a common origin. Indeed, in the case of spacecraft,

agreement on the orientation can be easily achieved by using star trackers.

It is possible to verify that

L2 =


1 -2 1 0 . . . 0

0 1 -2 1 . . . 0
...

...

-2 1 0 . . . . . . 1

 .
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Then, the overall dynamics of the n agents can be written in compact form as ẋ

ẍ

 =

 0 I3n

k1L
2 ⊗R2(α) k2(L⊗R(α))

x
.
= F (α) x. (28)

Let A(α)
.
= L⊗R(α), and define

β±
.
=
k2

2
±
√(k2

2

)2

+ k1. (29)

The following theorem characterizes eigenvalues and eigenvectors of F (α).

Theorem IV.3 Assume that β± 6= 0.The eigenvalues of the state matrix F (α) in equation

(28) are the union of:

• the 3n eigenvalues of A(α), each one multiplied by β+,

• the 3n eigenvalues of A(α), each one multiplied by β−.

In other words, eig(F (α)) = β+ eig(A(α))∪β− eig(A(α)). Moreover, the eigenvector of F (α)

corresponding to the kth eigenvalue λk ∈ β+eig(A(α)), k ∈ {1, . . . , 3n}, is:

νk
.
=

 νk,1

νk,2

 =

 µk

λkµk

 , k ∈ {1, . . . , 3n},

where µk is the eigenvector of A(α) corresponding to the eigenvalue λk/β+. Similarly, the

eigenvector corresponding to the kth eigenvalue λ3n+k ∈ β−eig(A(α)), k ∈ {1, . . . , 3n}, is:

ν3n+k
.
=

 ν3n+k,1

ν3n+k,2

 =

 µk

λkµk

 , k ∈ {1, . . . , 3n},

where µk is the eigenvector of A(α) corresponding to the eigenvalue λk/β−.

Proof: First, we compute the eigenvalues of F (α). Note that, by the properties of the

Kronecker product, L2 ⊗ R2(α) = (L ⊗ R(α))2 = A2(α). The eigenvalues of F (α) are, by

definition, solutions to the characteristic equation:

0 = det

 λI3n −I3n
−k1A

2(α) λI3n − k2A(α)

 .

20 of 41

Control of Spacecraft Formations via Cyclic Pursuit, Ramirez et al.



Using the result in equation (1) we have that

0 = det
(
λ2I3n − k2λA(α)− k1A

2(α)
)

= det
(

(λI3n − β+A(α))(λI3n − β−A(α))
)
.

Then, the first part of the claim is proven.

By definition, the eigenvector [νk,1 νk,2]
T corresponding to the eigenvalue λk, k ∈ {1, . . . , 6n},

satisfies the eigenvalue equation:

λk

 νk,1

νk,2

 =

 0 I3n

k1A
2(α) k2A(α)

 νk,1

νk,2


=

 νk,2

k1A
2(α)νk,1 + k2A(α)νk,2

 .
Thus, we obtain

λkνk,1 = νk,2,

λkνk,2 = k1A
2(α)νk,1 + k2A(α)νk,2,

and therefore,

λ2
kνk,1 = k1A

2(α)νk,1 + k2A(α)λkνk,1,

which can be rewritten as

(λkI3n − β+A(α))(λkI3n − β−A(α))νk,1 = 0. (30)

Therefore, if λk ∈ β+eigA(α) (analogous arguments hold if λk ∈ β−eigA(α)), the above

equation is satisfied by letting νk,1 be equal to µk, in fact in this case (notice that µk is the

eigenvector of A(α) corresponding to the eigenvalue λk/β+ and that β+ 6= 0):

λkνk,1 =
λk
β+

β+µk = β+A(α)µk = β+A(α)νk,1,

and the claim easily follows.

By appropriately choosing k1, k2 and α, it is possible to obtain a variety of formations.

Here we focus only on circular formations and Archimedes’ spiral formations (an Archimedes’

spiral is a spiral with the property that successive turnings have a constant separation dis-
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tance), which are arguably among the most important symmetric formations for applications.

In particular, Archimedes’ spiral formations are useful for the solution of the coverage path-

planning problem, where the objective is to ensure that at least one agent eventually moves

to within a given distance from any point in the target environment. More applications will

be discussed in Section V. We start with circular formations.

1. Circular formations with only relative information

We start with the following lemma.

Lemma IV.4 The vector wk =

 03n×1

µk

, where 03n×1 is the zero matrix with 3n rows and

1 column, is a generalized eigenvector for the zero eigenvalues λk, where k = n, 2n, 3n.

Proof: The claim can be easily obtained by direct verification into the equation (F (α)−
λk I6n)wk = νk.

Theorem IV.5 Let k2 = 2 cos(π/2n) and k1 = −(k2/2)2 − sin2(π/2n). Moreover, assume

that α = π/2n; then, the system converges to an evenly spaced circular formation whose

geometric center has constant velocity.

Proof: With the above choices for k1 and k2, it is straightforward to verify that

β± = ejπ/(2n). From Theorem IV.3, F (α) has exactly two eigenvalues on the imaginary axis,

a zero eigenvalue with algebraic multiplicity 6 and geometric multiplicity 3, and all other

eigenvalues β±λk in the open left-half complex plane with linearly independent eigenvectors.

Then, by using Theorem IV.3 and Lemma IV.4, it is possible to show that, as t→ +∞, the

time evolution of the system satisfies

x(t)

ẋ(t)

=

 x
G

ẋ
G

+t

 ẋ
G

03n×1

+ c1

 w1
dom

−ωw2
dom

+ c2

 w2
dom

ωw1
dom

 ,
where x

G
and ẋ

G
are the initial position and velocity of the center of the formation, c1 and c2

are constants that depend on the initial conditions, ω is a constant equal to 2 sin
(
π
n

)
, and,

finally, the eigenfunctions wp
dom, p ∈ {1, 2}, are given by:

w1
dom = [cos(ωt+δ1), sin(ωt+δ1), 0, . . . , cos(ωt+δn), sin(ωt+δn), 0],

w2
dom = [sin(ωt+δ1),− cos(ωt+δ1), 0, . . . , sin(ωt+δn),− cos(ωt+δn), 0], (31)

where δi = 2π(i− 1)/n, i ∈ {1, . . . , n}. (Note that ẇ1
dom= −ωw2

dom, ẇ2
dom= ωw1

dom.)
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Next we show how to choose k1, k2 and α to achieve Archimedes’ spiral formations; note

that an Archimedes’ spiral is described in polar coordinates by the equation %(ϕ) = aϕ, with

a ∈ R>0.

2. Archimedes’ spiral formations with only relative information

We start with the following lemma.

Lemma IV.6 Let k1 = −(k2/2)2 and assume α = π/n. Then, wk =

 03n×1

µk

 is a

generalized eigenvector for the eigenvalue λk/β.

Proof: The claim can be easily obtained by direct verification into the equation (F (α)−
λkI6n)wk = νk.

Theorem IV.7 Let k1 = −(k2/2)2, and assume k2 > 0 and α = π/n. Then, the system

converges to an Archimedes’ spiral formation whose geometric center has constant velocity.

Proof: In this case we have β+ = β− ∈ R>0, and thus λk = λk+3n for all k ∈ {1, . . . , 3n};
as a consequence, the eigenvalues of F (α) are β eig(A(α)). Hence, F (α) has exactly two

eigenvalues on the imaginary axis, each one with algebraic multiplicity 2 and geometric

multiplicity 1, a zero eigenvalue with algebraic multiplicity 6 and geometric multiplicity 3,

and all other eigenvalues β±λk in the open left-half complex plane. Then, by using Theorem

IV.3 and Lemma IV.6, it is possible to show that, as t → +∞, the time evolution of the

system satisfies

x(t)

ẋ(t)

=

 x
G

ẋ
G

+t

 ẋ
G

03n×1

+d1

 03n×1

w1
dom

+d2

 03n×1

w2
dom


+ (c1+d1t)

 w1
dom

−ωw2
dom

+(c2 + d2t)

 w2
dom

ωw1
dom

 ,
where x

G
and ẋ

G
are the initial position and velocity of the center of the formation, c1, c2, d1

and d2 are constants that depend on the initial conditions, ω is a constant equal to 2 sin
(
π
n

)
,

and, finally, the eigenfunctions wp
dom, p ∈ {1, 2}, are defined in equation (31). Then, agents

will perform spiraling trajectories; the radial growth rate is a constant equal to
√
d1 + d2, and

the center of the formation moves with constant velocity ẋG defined by the initial conditions.
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C. Comparison with existing results in the literature

It is of interest to discuss the relation between the control policies presented so far and a set

of related results recently appeared in.15,16 First, in,15 Ren proposes the following control

law for the single-integrator model in equation (7):

ui = −
n∑
k=1

qikR(α)(xi − xk), i ∈ {1, . . . , n},

where qik is the (i, k)th entry of a weighted adjacency matrix Q associated to a weighted

directed graph G (notice that the ring topology is a special case). In,15 it is shown that if G
has a directed spanning tree, the agents will eventually converge to a single point, a circle

or a logarithmic spiral pattern, depending on the value of α; the center of the formation is

determined by the initial positions, and the circular formation, whose radius is determined

by the initial positions, is achieved when certain eigenvalues are on the imaginary axis. Our

results in Section III differ from the results in15 along two main dimensions: (i) we consider

control on the center of the formation; (ii) most importantly, we consider the problem of

robust convergence to a circular motion on a circle of prescribed radius (see Section III.B).

Second, in,16 Ren proposes the following control law for the double-integrator model in

equation (23):

ui = −
n∑
k=1

qikR(α)(xi − xk)− γ ẋi, i ∈ {1, . . . , n}, γ ∈ R>0,

where qik is, as before, the (i, k)th entry of a weighted adjacency matrix Q associated to a

weighted directed graph G. In,16 it is shown that if G has a directed spanning tree, the agents

will eventually converge to a single point, a circle or a logarithmic spiral pattern, depending

on the value of α; the center of the formation is determined by the initial conditions and

the velocity needs to be measured in a common frame of reference. Our results in Section

IV differ from the results in16 along three main dimensions: (i) we consider control on the

center of the formation; (ii) we study control laws that only require relative measurements

of position and velocity; (iii) we consider a novel type of symmetric formation, namely

Archimedes’ spirals.

We next describe possible applications for the control laws we proposed, and we present

experimental results.
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V. Applications of Cyclic-Pursuit Algorithms

In the past few years, cyclic pursuit has received considerable attention in the control

community (see Section I); however to date, to the best of our knowledge, no application

has been proposed for which cyclic pursuit is a particularly effective control strategy. In this

section, we discuss application domains in which cyclic pursuit is indeed an ideal candidate

control law.

A. Interferometric Imaging in Deep Space

Interferometric imaging, i.e., image reconstruction from interferometric patterns, is an ap-

plication of formation flight that has been devised and studied for space missions such as

NASA’s TPF and ESA’s Darwin.2 The general problem of interferometric imaging consists

of performing measurements in a way that enough information about the frequency content

of the image is obtained. Such coverage problem is independent of the global positions of

the spacecraft;3 additionally, missions like TPF and Darwin consider locations far out of the

reach of GPS signals and are expected to only rely on relative measurements to perform

reconfigurations and observation maneuvers. Finally, a heuristic solution to this problem is

represented by Archimedes’ spiral trajectories .3 Hence, the application of the cyclic-pursuit

algorithms presented in Section IV is inherently appropriate in this context. Figure 2 shows

simulated trajectories resulting from the application of control law (27); the initial positions

are random inside a volume of (10km)3. In the first case spacecraft converge to circular tra-

jectories, while in the second case spacecraft converge to Archimedes’ spirals. The inertial

frame for the plots is the geometric center of the configuration.
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Figure 2. Convergence from random initial conditions to symmetric formations. Left Figure:
Circular trajectories. Right Figure: Archimedes’ spiral trajectories.
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B. On Reaching Natural Trajectories

In this section we modify the previous control laws to achieve convergence to elliptical tra-

jectories. Consider the application of a similarity transformation to the rotation matrix

R(α), in other words, we now replace the rotation matrix R(α) in the previous control laws

with TR(α)T−1, where T is a non-singular matrix. Such similarity transformation does not

change the eigenvalues of L⊗R(α) (hence Theorem III.1 still holds), but changes the eigen-

vectors µ of R(α) to Tµ. It is straightforward to see that the trajectories arising with the

previous control laws are then transformed according to

x̃i(t) = Txi(t), i ∈ {1, . . . , n}; (32)

in particular, circular trajectories can be transformed into elliptical trajectories.

Indeed, the above approach is useful to allow the system to globally converge to low-effort

trajectories. Consider the dynamic system

ẍi = f(xi, ẋi) + ui

= f(xi, ẋi)− (f(xi, ẋi)− unomi), (33)

which has a zero-effort (ui=0) invariant set x∗i , for which f(x∗i , ẋ
∗
i ) = unomi . If we use a

controller for which the state reaches x∗i (t) as t → ∞, then the control effort will tend to

ui = 0 as t→∞.

In the case of the dynamics of relative orbits slightly perturbed from a circular orbit,

elliptical relative trajectories are closed near-natural trajectories (i.e. theoretically they

require no control effort); in the following section, cyclic-pursuit controllers are proposed as

promising algorithms for formation acquisition, maintenance and reconfiguration.

1. Clohessy-Wiltshire model

The Clohessy-Wiltshire model approximates the motion of a spacecraft with respect to a

frame that follows a circular orbit with angular velocity ωR and radius Rref = (µ⊕/ω
2
R)1/3,

where µ⊕ is the gravitational constant of earth. The equations of motion ẍi = f(xi,ui) are:

ẍi = 2ωRẏi + 3ω2
Rxi + uix,

ÿi = −2ωRẋi + uiy, (34)

z̈i = −ω2
Rzi + uiz,

where the x, y and z coordinates are expressed in a right-handed orthogonal reference frame

such that the x-axis is aligned with the radial vector of the reference orbit, the z-axis is

26 of 41

Control of Spacecraft Formations via Cyclic Pursuit, Ramirez et al.



aligned with the angular momentum vector of the reference orbit, and the y-axis completes

the right-handed orthogonal frame.

Consider a formation of spacecraft that use the cyclic-pursuit controller

ui = −f(xi) + kg(kdTR(α)T−1(xi+1 − xi) + TR(α)T−1(ẋi+1 − ẋi)

− kckdxi − (kc + kd/kg)ẋi),
(35)

with kg = ωR/(2 sin(π/n)), and

T =


1
2

0 0

0 1 0

z0 cos(φz) z0 sin(φz) 1

 ,
where z0 and φz are tunable parameters (their roles will become clear later). Then, from the

results in Section IV, we obtain, as t→∞,

xi(t) = x∗i (t) = T


r sin(ωRt+ δi)

r cos(ωRt+ δi)

0

 , i ∈ {1, . . . , n},

where δi = 2π(i− 1)/n, and r is a constant that depends on the initial conditions. Thus, we

obtain

x∗i (t) =
1

2
r sin(ωRt+ δi),

y∗i (t) = r cos(ωRt+ δi),

z∗i (t) = zor sin(ωRt+ δi + φz);

hence, the formation will converge to an evenly-spaced elliptical formation with an x : y ratio

equal to 1 : 2, a y : z ratio equal to 1 : z0, and a phasing between the x and z motion equal to

φz. By replacing these equations into equation (34), it is easily shown that as x(t)→ x∗(t),

we have u→ 0.

2. Including J2 perturbation

A more accurate model for the motion of a spacecraft considers the effects of the J2 grav-

itational term. In,5 the authors show that the equations of motion relative to a circular

non-keplerian reference orbit and including the J2 term are well approximated by the linear
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system:

ẍi = 2ωRcẏi + (5c2 − 2)ω2
Rxi + uxi +

3

4
KJ2 cos(2k̄t),

ÿi = −2ωRcẋi + uyi +
1

2
KJ2 sin(2k̄t),

z̈i = −q2zi + 2lq cos(qt+ Φ) + uzi,

where, again, the x, y and z coordinates are expressed in a right-handed orthogonal reference

frame such that the x-axis is aligned with the radial vector of the reference orbit, the z-axis

is aligned with the angular momentum vector of the reference orbit, and the y-axis completes

the right-handed orthogonal frame; moreover, c =
√

1 + s, s = 3J2R2
e

8r2ref
(1+3 cos(2iref )), KJ2 =

3ω2
RJ2R2

e

rref
sin2(iref ), Re is the nominal radius of the earth, k̄ = c+ 3J2R2

e

2r2ref
cos2 iref , rref and iref

are parameters of the reference orbit, q is approximately equal to cωR, and Φ, l are time

varying functions of the difference in orbit inclination (see ref.5 for the details). Zero-effort

trajectories (i.e, trajectories with ui = 0) for the above dynamic model are shown to be:

x∗(t) = x0 cos(ωRt
√

1− s) +

√
1− s

2
√

1 + s
y0 sin(ωRt

√
1− s) + xcc(t),

y∗(t) = x0
−2
√

1 + s√
1− s

sin(ωRt
√

1− s) + y0 cos(ωRt
√

1− s) + ycc(t), (36)

z∗(t) = (lt+m) sin(qt+ Φ),

with

xcc(t)=[α(cos(2k̄t)− cos(ωRt
√

1− s)), β sin(2k̄t)− 2
√

1 + s√
1− s

α(cos(ωRt
√

1− s)), 0]T ,

where α, β, and m are constants that depend on the reference orbit parameters and for

brevity are not discussed here. (For details we refer the reader to the work of Schweigart

and Sedwick.5) As in the previous section, by defining the control coordinates in a reference

frame centered in xcc(t), and using the decentralized cyclic-pursuit controller in equation

(35) with a transformation matrix

T =


√

1−s
2
√

1+s
0 0

0 1 0

z0 cos(φz) z0 sin(φz) 1

 ,
and kg = ωR

√
1− s/(2 sin(π/n)), it is straighforward to show that the formation will con-

verge to elliptical trajectories centered at the point xcc(t). Then, as t → ∞, x(t) →
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T


r sin(ωRt+ δi)

r cos(ωRt+ δi)

0

 + xcc, and thus, as t → ∞, the trajectories for x(t), y(t) are those

described in equation (36), and we have that:

ux → 0,

uy → 0,

uz → (ω2
R − q2) + 2lq cos(qt+ Φ) ≈ 2lq cos(qt+ Φ).

The last term corresponds to the cohesive force required to maintain the formation when

the orbits are not coplanar (i.e. the spacecraft have different inclination and thus different

J2 secular drift rates). For zo → 0, then q = ωR, l → 0 and the theoretical required thrust

converges to zero.

Figure 3 shows simulation results for the control laws described in this section. The

system is simulated using dynamics including the J2 terms. The results show convergence

from random initial positions to the desired orbits, i.e., an evenly-spaced elliptical formation

in the desired plane. It is also shown (Fig. 3b) how the control effort reduces as the spacecraft

reach the desired low-effort trajectories.
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Figure 3. Convergence to elliptical trajectories with dynamics including J2 terms. The dots
indicate the positions after 3 orbits. Left Figure: 3D view, trajectories with respect to ref-
erence point xcc. Center Figure: 3D view, trajectories with respect to non-keplerian circular
orbit. Right Figure: Control effort versus time; note that as t→∞, u→ 0.

Although the achieved trajectories are not natural trajectories for a free orbiting body,

the proposed decentralized control law allows convergence to elliptical formations that are
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near-natural and would require low fuel consumption for their maintenance.

VI. Experimental Results on a Microgravity Environment

The previous control laws have been tested on the SPHERES testbed on board the

International Space Station. SPHERES is an experimental testbed consisting of a group of

small vehicles with the basic functionalities of a satellite.21 Their propulsion system uses

compressed CO2 gas, and their metrology system is “GPS-like”. Each vehicle has a local

estimator that calculates a global estimate of the state from measurements of ultrasound

pulses. The system uses a single TDMA based RF channel to communicate its state to

neighboring spacecraft. Figure 4 shows a picture of three SPHERES spacecraft on board the

ISS.

Figure 4. Picture of three SPHERES satellites performing a test on board the ISS. (Fotocredit:
NASA - SPHERES)

The dynamics of each spacecraft are well approximated by a double integrator. For the

tests presented in this section, we used a velocity-tracking control law to track the velocity

profile in equation (16). We set kα = 1, while the gain kg (and consequently the frequency

of rotation) was set in each maneuver to make the centripetal force for the circular motion

equal to 0.11N (half the saturation level of the thrusters). We next describe two tests

performed using the SPHERES testbed on board the ISS: the objective is to demonstrate

the closed-loop robustness of the approach.
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A. Test 1

The first test comprised the following series of maneuvers, with the initial conditions being

x1 = [0,−0.1,−0.2]T , x2 = [0, 0.1, 0.2]T , x3 = [0, 4, 0]T and zero velocity (with respect to the

ISS):

a) two spacecraft perform a rotation maneuver in the x-z plane with a radius r = 0.3m;

b) a change in the desired radius is commanded and the spacecraft spiral out to achieve a

circular formation with r = 0.4m;

c) a third spacecraft joins the formation and the system reconfigures into a three-spacecraft

evenly-spaced circular formation with r = 0.35m;

d) a similarity transformation T is applied to the rotation matrix, and the spacecraft achieve

an elliptical formation with eccentricity equal to 0.8.

The objective was to test convergence to evenly-spaced circular formations and robustness

with respect to changes in the number of agents. Figure 5 shows global position and velocity

of each spacecraft (with respect to the ISS); figure 6 shows the trajectories performed by the

spacecraft during the maneuvers a), b), c) and d). Experimental results (see in particular

Fig. 6) demonstrate the effectiveness of the proposed cyclic-pursuit controller.
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Figure 5. Experimental results from Test 1: Position and velocity vs. time. From left to right:
satellites 1, 2 and 3.

B. Test 2

The second test comprised the following series of maneuvers, with the initial conditions being

x1 = [0,−0.1,−0.2]T , x2 = [0, 0.1, 0.2]T , x3 = [0, 4, 0]T and zero velocity (with respect to the

ISS):
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Figure 6. Experimental results from Test 1: x-z plane. Sequence of maneuvers a), b), c) and
d).

a) three spacecraft perform an evenly-spaced rotation maneuver in the x-z plane with radius

r = 0.35m;

b) a similarity transformation T is applied to the rotation matrix, and the spacecraft achieve

an elliptical formation with eccentricity equal to 0.8.

Figure 7 shows global position and velocity of each spacecraft (with respect to the ISS);

figure 8 shows the trajectories performed by the spacecraft during the maneuvers a) and b).

Also in this case, experimental results (see in particular Fig. 8) demonstrate the effectiveness

of the proposed cyclic-pursuit controller. Videos of experimental results can be accessed at

http://ssl.mit.edu/spheres/video/CyclicPursuit.
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Figure 7. Experimental results from Test 2: Position and velocity vs. time. From left to right:
satellites 1, 2 and 3.
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Figure 8. Experimental results from Test 2: x-z plane. Sequence of maneuvers a) and b).

VII. Conclusions

In this paper we studied distributed control policies for spacecraft formation that draw

inspiration from the simple idea of cyclic pursuit. We discussed potential applications and

we presented experimental results. This paper leaves numerous important extensions open

for further research. First, all of the algorithms that we proposed are synchronous: we

plan to devise algorithms that are amenable to asynchronous implementation. Second, we

envision to study the problem of convergence to symmetric formations in presence of actuator

saturation. Finally, to further assess closed-loop robustness, we plan to perform additional

tests on board the ISS.
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Appendix

A. System (18) in Polar Coordinates

Assume that ‖pi‖ = %i > 0. Note that pi = %iR(−ϑi) e1, where e1 is the first vector of the

canonical basis, i.e., e1 = (1, 0)T . Then, we can write pi+1 as

pi+1 =
%i+1

%i
%iR(−ϑi+1) e1 =

%i+1

%i
%iR(−ϑi+1)R(ϑi)R(−ϑi) e1 =

%i+1

%i
R(ϑi − ϑi+1) pi. (37)

Moreover, it also holds

pTi R(γ)pi = ‖pi‖2 cos(γ) = %2
i cos(γ), for any γ ∈ R. (38)

First, we find the differential evolution for the magnitude of pi, i.e., for %i. We have

%̇i =
d‖pi‖
dt

=
pTi ṗi
‖pi‖

=
1

%i
pTi (R(αi+1)pi+1 −R(αi)pi).

By using Eqs. (37) and (38) we then obtain

%̇i =
1

%i
pTi

(
R(αi+1)

%i+1

%i
R(ϑi − ϑi+1) pi −R(αi)pi

)
= %i cos((ϑi+1 − ϑi)− αi+1)− %i cos(αi).

We now find the differential evolution for the phase of pi, i.e., for ϑi. Taking time

derivative in both hands of the identity pi,1 sinϑi − pi,2 cosϑi = 0, we easily obtain

ϑ̇i =
pi,1 ṗi,2 − pi,2 ṗi,1

%2
i

=
1

%2
i

pTi R
(π

2

)
ṗi =

1

%2
i

pTi R
(π

2

)(
R(αi+1)pi+1 −R(αi)pi

)
.

Then, by using Eqs. (37) and (38) we obtain

ϑ̇i =
1

%2
i

pTi R
(π

2

)(
R(αi+1)

%i+1

%i
R(ϑi−ϑi+1) pi−R(αi)pi

)
=
%i+1

%i
sin((ϑi+1−ϑi)−αi+1)+sin(αi).

B. Proof of Lemma III.8

Proof: The eigenvalues of P are solutions to the characteristic equation

0 = det

( λIn − an L+ 2kα sn In sn In

−bn L2 λIn − cn L

).
Note that both matrix (λIn − an L+ 2kα sn In) and matrix −bn L2 are circulant; then, since

circulant matrices form a commutative algebra (see Section II), we can apply the result in
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equation (1) and obtain

0 = det
(

(λIn − an L+ 2kα snIn)(λIn − cn L) + snbnL
2
)

= det

(
λ2In + λ

(
2kα snIn − (an + cn)L︸ ︷︷ ︸

.
=B

)
−2kαsncnL+ (ancn + snbn)L2︸ ︷︷ ︸

.
=C

)
= det

(
λ2In + λB + C

)
= det

(
λ2In + λB +B2/4− S

)
,

where S
.
= B2/4−C. Note that B and C are circulant, therefore S is also circulant. Since S

is circulant, it can be diagonalized according to S = U DS U
∗, where DS is a diagonal matrix

with the eigenvalues of S on the diagonal; accordingly, we have S1/2 = U D
1/2
S U∗. Note

that B and S1/2 commute. In fact, since B is circulant, it can be diagonalized via the same

orthogonal matrix U : B = U DBU
∗, where DB is a diagonal matrix with the eigenvalues of

B on the diagonal; hence

S1/2B = UD
1/2
S U∗ UDBU

∗ = UD
1/2
S DBU

∗ = UDBD
1/2
S U∗ = UDBU

∗ UD
1/2
S U∗ = B S1/2.

Therefore, we have

0 = det
(
λ2In×n+λB+B2/4−S

)
= det

(
λIn − (−B/2 +

√
S)
)

det
(
λIn×n − (−B/2−

√
S)
)
.

Hence, the eigenvalues of P are the union of the eigenvalues of (−B/2 +
√
S) and (−B/2−√

S). Since B and S1/2 are diagonalized by the same similarity transformation U , we have

− B

2
± S1/2 = U

DB

2
U∗ ± UD1/2

S U∗ = U

(
DB

2
±D1/2

S

)
U∗. (39)

Let λB,k be the kth eigenvalue of B, and λS,k be the kth eigenvalue of S, k ∈ {1, . . . , n}.
Then, from equation (39), we have that

eig(P ) =
{
λB,k/2± λ1/2

S,k

}n
k=1

.
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Hence, we are left with the task of computing the eigenvalues of B and S. Such eigenvalues

can be easily found by using equation (4):

eig(B) =
{

2kα sn + (an + cn)(1− e2πjk/n)
}n
k=1

,

eig(S) =
{

(λ2
B,k/4− λC,k

}n
k=1

=
{

(2kα sn + (an + cn)(1− e2πjk/n)2/4

−
(

(2kαsncn + ancn + snbn)− (2kαsncn + 2ancn + 2snbn)e2πjk/n

+ (ancn + bnsn)e4πjk/n
)}n

k=1
.

We first consider the eigenvalues of B. By using the following identities

(1− eαkj) = 2 sin(αk/2)ej
αk−π

2 , (1− 1

2
(1− ejαk)) = cos(αk/2)ejαk/2, (40)

and after some algebraic manipulations omitted for brevity, the eigenvalues of B can be

written as

λB,k = (2kαsn) + 2(2cn − kαsn) sin(kπ/n)ej(kπ/n−
π
2
), k ∈ {1, . . . , n}. (41)

Hence, we have, for k ∈ {1, . . . , n},

Re(λB,k) = 2kαsn + 2(2cn − kαsn) sin2(kπ/n),

Im(λB,k) = −2(2cn − kαsn) sin(kπ/n) cos(kπ/n). (42)

Next, we consider the eigenvalues of S. By using, again, the identities in equation (40),

and with simple algebraic manipulations, we can write, for k ∈ {1, . . . , n},

λS,k = k2
αs

2
n(cos(kπ/n)ejkπ/n)2 + (kαsncn + s2

n)(2 sin(kπ/n)ej(kπ/n−
π
2
))2

= [k2
αs

2
n + 4 sin2(kπ/n) + (4kαsncn − k2

αs
2
n − 4c2n) sin2(kπ/n)]ei2kπ/n.

Notice that kα, cn and sn are positive real numbers; then the term inside the square brackets

is a positive real number. Therefore we have, for k ∈ {1, . . . , n},

Re(
√
λS,k) = (k2

αs
2
n + 4 sin2(kπ/n) + (4kαsncn − k2

αs
2
n − 4c2)(sin2(kπ/n)))1/2 cos(kπ/n),

which can be rearranged as

Re(
√
λS,k) =

(
(kαsn + (2cn − kαsn) sin2(kπ/n))2 + 4 sin2(kπ/n)(s2

n − sin2(kπ/n))
)1/2

=
(
(λB,1/2)2 + 4 sin2(kπ/n)(s2

n − sin2(kπ/n))
)1/2

. (43)
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From equations (42) and (43) it is straigthforward to show that

• For k = n: we have

λP,n = −λB,n/2 +
√
λS,n = kαsn − kαsn = 0.

• For k = 1, k = n− 1:

Re(
√
λS,1) = Re(λB,1/2) = (kαsnc

2
n + 2s2

ncn), Im(
√
λS,1) = kαs

2
ncn + 2s3

n,

Re(
√
λS,n−1) = Re(λB,n−1/2) = (kαsnc

2
n + 2s2

ncn), Im(
√
λS,n−1) = −kαs2

ncn − 2s3
n.

Therefore, we obtain

Re(λP,1) = −Re(λB,1/2) +Re(λB,1/2)=0,

Im(λP,1) = (2cn−kαsn)sncn + kαs
2
ncn + 2s3

n=2sn,

Re(λP,n−1) = −Re(λB,n−1/2) +Re(λB,n−1/2)=0,

Im(λP,n−1) = −(2cn−kαsn)sncn − kαs2
ncn + 2s3

n=−2sn.

• For 1 < k < n− 1, since sin(kπ/n)2 > sin(π/n)2, we have:

Re(
√
λS,k) ≤ Re(λB,k/2),

and thus Re(λP,k) < 0 for k /∈ {0, 1, n− 1}.

Now, we proceed to show that v1, v2, v3 in lemma III.8 are the eigenvectors corresponding

to the eigenvalues 0, 2snj and −2snj respectively. First, consider the zero eigenvalue. Since

L · 1n = 0n (where 0n = (0, 0, . . . , 0)T ∈ Rn), it is easy to verify that:

P v1 =

 an L− 2kα sn In −sn In
bn L

2 cn L

 1n

−2kα1n

 = 02n.

Now, consider the imaginary eigenvalue λ2 = 2snj. By replacing v2 into the eigenvalue

equation we obtain an L− 2kα sn In −sn In
bn L

2 cn L

 ψ1

fn,2(kα)ψ1

 = 2snj

 ψ1

fn,2(kα)ψ1

 ,
Note that L and L2 (which are both circulant matrices) satisfy, respectively, Lψ1 = (e2πj/n−
1)ψ1 = (−2snj(cn + jsn))ψ1, and L2ψ1 = (e2πj/n − 1)2ψ1 = −4s2

ne
2πj/nψ1; hence, v2 is an
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eigenvector for P if and only if:

(an(e2πj/n − 1)− 2kαsn)ψ1 + 2bne
jπ/nsnψ1 = 2snjψ1 (44)

−4bns
2
n(cn + jsn)2ψ1 − cn(−2snj(cn + jsn))2bne

jπ/nψ1 = −4bne
jπ/nsnjψ1 (45)

By using the identities in equation (40), the first condition can be verified according to

2sn(−cn + kαsn)jejπ/n − 2snkα + 2snbne
jπ/n = 2snj,

2((cn − kαsn)j − (kα + j)(cn − jsn))eπj/n = −2bne
jπ/n,

−2(sn + kαcn)eπj/n = −2bne
jπ/n.

Similarly, the condition in equation (45) can be verified according to

−2bns
2
n(cn + jsn)2 + 2cn(jsn(cn + jsn))bne

jπ/n = −2bne
jπ/nsnj,

−sn(cn + jsn) + cn(j(cn + jsn)) = j,

j(s2
n + c2n) = j.

Similar arguments hold for λ3 and v3 (which are complex conjugates of λ2 and v2). This

concludes the proof.

C. Proof that vi /∈ T(%∗,ϕ∗)M̃

Proof: It is enough to prove that at least one of the components of G · vi is nonzero.
The proof that G · v1 6= 0 is trivial. We proceed to show that ∇g1 · v2 6= 0, i.e.:

[
1 cos

(
2π
n

)
. . . cos

(
2π(n− 1)

n

)
−

n∑
i=2

r sin
(

2π(i− 1)
n

)
. . . − r sin

(
2π(n− 1)

n

)
0

] ψ1

−2bnejπ/nψ1


= (∇%g1) · ψ1 + (∇ϕg1) · (−2bnejπ/nψ1) 6= 0.

Both terms in the above sum can be shown to be real and positive. For the first term we

have that:

(∇%g1) · ψ1 =
n−1∑
k=0

cos(2πk/n)(cos(2πk/n) + j sin(2πk/n))

=
n−1∑
k=0

cos2(2kπ/n) + j

n−1∑
k=0

2 sin(kπ/n) =
n−1∑
k=0

cos2(2kπ/n) ∈ R>0.
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For the second term we have:

(∇ϕg1) · (−2bne
jπ/nψ1) =

n−1∑
k=0

n∑
i=k+1

sin(2πk/n)2bne
jπ/ne2πk/n

= 2bn

n−1∑
k=0

ake
(2k+1)πj/n,

where ak =
∑n

i=k+1 sin(2πi/n) = −
∑k

i=1 sin(2πi/n). Now we show that
∑n

k=0 ake
(2k+1)πj/n >

0. First, consider the following facts:

ak ≤ 0 ∀k,

ak+1 = ak − sin(2π(k + 1)/n) < ak for 0 ≤k <n/2− 1,

ab(n−1)/2c < ak ∀k 6= d(n− 1)/2e,

an−k = −
n−k∑
i=1

sin(2πi/n) =
n∑

m=k+1

sin(2πm/n) = ak,

n−1∑
k=0

ake
(2k+1)πj/n =

b(n−1)/2c∑
k=0

(ake
kπj/n + an−ke

−kπj/n) + qa(n−1)/2

=

b(n−1)/2c∑
k=0

ak(e
πkj/n + e−kπj/n) + qa(n−1)/2

n−1∑
k=0

e(2k+1)πj/n =

b(n−1)/2c∑
k=0

(eπkj/n + eπ−kj/n) + q = 0

where q = 0 if n is even. Then,

n−1∑
k=0

ake
(2k−1)πj/n >

n−1∑
k=0

ab(n−1)/2ce
(2k−1)πj/n = 0.

Since bn = (sn + kαcn) > 0, we have that ∇ϕg1 · (−2bne
jπ/n) ∈ R>0.

The proof forG·v3 6= 0 is analogous; in particular, it requires to show that j∇%g2·ψ1 ∈ R>0

and j∇ϕg2 · (−2bne
jπ/nψ1) ∈ R>0.
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