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Abstract— This tutorial paper examines the operational and
economic aspects of autonomous mobility-on-demand (AMoD)
systems, a rapidly emerging mode of personal transportation
wherein robotic, self-driving vehicles transport customers in
a given environment. We address AMoD systems along three
dimensions: (1) modeling – analytical models capable of cap-
turing the salient dynamic and stochastic features of customer
demand, (2) control – coordination algorithms for the vehicles
aimed at stability and subsequently throughput maximization,
and (3) economic – fleet sizing and financial analyses for case
studies of New York City and Singapore. Collectively, the
models and algorithms presented in this paper enable a rigorous
assessment of the value of AMoD systems. In particular, the case
study of New York City shows that the current taxi demand
in Manhattan can be met with about 8,000 robotic vehicles
(roughly 70% of the size of the current taxi fleet), while the
case study of Singapore suggests that an AMoD system can
meet the personal mobility need of the entire population of
Singapore with a number of robotic vehicles that is less than
40% of the current number of passenger vehicles. Directions for
future research on AMoD systems are presented and discussed.

I. INTRODUCTION

A. Personal urban mobility in the 21st century

In the past century, private automobiles have dramatically
changed the paradigm of personal urban mobility by en-
abling fast and anytime point-to-point travel within cities.
However, concerns about the sustainability of this transport
model are growing. Arguments against the private car in-
clude its high dependence on oil, the production of harmful
greenhouse gases, escalating levels of traffic congestion, and
an ever-increasing demand for land to build more roads and
parking lots [1]. In the US, urban vehicles consume more
than half of the oil used by all sectors [2], and produce
20% of the total carbon dioxide emissions [3], [4]. Recently,
congestion has soared dramatically, a reflection of aging
and inadequate infrastructure that cannot keep pace with
increasing transportation demand [5]. In 2011, congestion
in metropolitan areas increased the collective travel time of
Americans living in or commuting through urban areas by 5.5
billion hours (causing a 1% loss of US GDP [6]). This figure
is projected to increase by 50% by 2020 [6]. Concurrently,
valuable and increasingly rare land is being paved for new
roads and parking lots. The problem is even worse at a global
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scale, due the combined impact of rapid increases in the
urban population (projected to reach 5 billion, more than
60% of the world population, by 2030 [7]) and increasing
car ownership in developing countries [1]. Owing to these
factors, the private automobile is widely recognized as an
unsustainable option for personal mobility in urban areas
[1].

B. The rise of mobility-on-demand

The challenge in finding a sustainable solution to satisfy
the demand for urban transportation lies in preserving the
benefits of the private automobile, while reducing the de-
pendency on non-renewable resources, minimizing pollution,
and avoiding the need drastically expand existing infrastruc-
ture, i.e., roads and parking lots. A hint at a solution comes
from realizing that most urban vehicles are over-engineered
and underutilized. For example, a typical automobile can
attain speeds well over 100 miles per hour, but urban driving
is typically confined to much slower speeds (in the 15-
to 25-miles per hour range [5], [8]). Furthermore, private
automobiles are parked more than 90% of the time [5].
Taking direct aim at these inefficiencies, one of the most
promising strategies for personal mobility in urban areas
is the concept of one-way vehicle sharing. In this system
(referred to as Mobility-on-Demand or MoD), small, electric
cars are provided at stacks and racks at closely spaced
intervals throughout a city [1]. When a person wants to travel,
she/he simply walks to the nearest rack, swipes a card to pick
up a vehicle, drives it to the rack nearest her/his destination,
and drops it off.

In many ways, MoD systems that use electric vehicles
directly address the problems of oil dependency (assuming
electricity is produced cleanly), pollution, and, via higher
utilization rates, parking lot sprawl. Furthermore, they offer
greater flexibility as compared to two-way rental systems,
in which cars must be returned to the station they were
rented from. Finally, they provide personal, anytime mo-
bility beyond what is offered by traditional taxi systems or
alternative one-way ridesharing concepts such as carpooling,
vanpooling, and buses. As such, MoD systems have been
advocated as a key step toward sustainable personal urban
mobility in the 21st century [1]. The recent success of
Car2Go (a one-way rental company operating over 10,000
two-passenger vehicles in 26 cities worldwide [9]) corrobo-
rates this statement (see Figure 1, left).

However, MoD systems have their own limitations and
challenges. For example, due to the spatio-temporal nature
of urban mobility, certain locations tend to be more popular



Fig. 1. Left figure: A Car2Go vehicle used in a traditional (i.e., non-
robotic) MoD system. Right figure: Self-driving vehicle that Google will
use in a 100-vehicle AMoD pilot project within the next two years. Image
credit: Car2Go and Google.

destinations than others. Consequently, the vehicles in MoD
systems inevitably become unbalanced: vehicles build up
in some parts of a city and become depleted in others.
Moreover, MoD systems do not directly address the need
to reduce congestion. In fact, the need to rebalance vehi-
cles creates additional trip that actually increase the overall
mileage driven.

C. Beyond MoD: autonomous mobility-on-demand (AMoD)

Advancement in autonomous driving technology, largely
over the last decade, have the potential to address a num-
ber of the inherent challenges MoD systems present. For
example, robotic vehicles can rebalance themselves (elimi-
nating the rebalancing problem at its core), autonomously
monitor and recharge their batteries (at dedicated charging
stations), and coordinate their actions at a system-wide level
to optimize throughput. Furthermore, robotic vehicles would
free passengers from the task of driving, provide a personal
mobility option to people unable or unwilling to drive, and
offer a number of safety improvements. Recognizing these
benefits, a number of companies and car manufacturers are
aggressively pursuing “AMoD technology,” with initiatives
ranging from the design of vehicles specifically tailored to
AMoD operations [10], [11], to Google’s expected launch of
a 100-vehicle AMoD pilot project within the next two years
[12] (see Figure 1, right).

Rapid advances in vehicle automation technologies cou-
pled with the increased economic and social interest in MoD
systems have fueled heated debates regarding the viability
of AMoD systems on these fronts. Assessing the merits
of these claims raises a number of important questions.
How many robotic vehicles would be needed to achieve a
certain quality of service? What would be the cost for their
operation? Would AMoD systems decrease congestion? In
general, do AMoD systems represent an economically viable,
sustainable, and societally-acceptable solution to the future
of personal urban mobility?

D. Paper contributions

To answer the above questions, we need to first understand
how to control AMoD systems, which entails optimally
routing, in real time, potentially hundreds of thousands
of robotic vehicles. Such routing process must take into
account the spatio-temporal variability of mobility demand,

together with a number of constraints such as conges-
tion and battery recharging. This represents a networked,
heterogeneous, stochastic decision problem with uncertain
information, hence complexity is at its heart. Within this
context, the contribution of this paper is threefold:

1) We present two spatial queueing-theoretical models
for AMoD systems that capture salient dynamic and
stochastic features of customer demand. A spatial
queueing model entails an exogenous dynamical pro-
cess that generates “transportation requests” at spatially
localized queues. Specifically, the first model, referred
to as the “distributed” model, transforms the problem of
controlling a set of spatially localized queues into one of
controlling a single “spatially-averaged” queue and al-
lows the determination of analytic scaling laws that can
be used to select important system parameters (e.g., fleet
size). The second model, referred to as the “lumped”
model, exploits the theory of Jackson networks and
allows the computation of key performance metrics and
the design of system-wide coordination algorithms. For
the distributed and lumped models, we provide an inline
description of the background necessary to understand
the model and how our models can be calibrated using
available datasets.

2) We discuss the synthesis of closed-loop control policies
within, respectively, the distributed and the lumped
models. The policies combine techniques from receding
horizon control, combinatorial optimization, and integer
programming.

3) Using the control strategies outlined above, we discuss
two case studies for the deployment of AMoD systems:
one based on taxis in New York City and another
targeting all modes of land based transport in Singapore.
These case studies suggest that it is much more afford-
able (and convenient) to access mobility in an AMoD
system compared to traditional mobility models based
on private vehicle ownership.

The paper concludes with a discussion about future di-
rections for research, with a preliminary discussion about
the potential of AMoD systems to decrease congestion. The
results presented in this paper are primarily based on [13] as
well as a number of previous works by the authors and their
collaborators, namely [14] for the lumped approach, [15]–
[18] for the spatial queueing-theoretical framework and the
distributed approach, and [14], [19] for the case studies.

The rest of this paper is structured as follows. Section
II presents a general introduction to spatial queueing models
for AMoD systems. Sections III and IV present, respectively,
the distributed and lumped models of AMoD systems. In
each case, the discussion highlights the performance metrics
that can be ascertained from relevant model parameters and
describes how these parameters may be calibrated from
available data. Section V introduces control algorithms for
AMoD fleet operations, based on the previously defined
models. Section VI leverages analysis and control synthesis
tools from Sections II to V to provide an initial evaluation



of AMoD systems for two case studies focusing on New
York City and Singapore. A financial analysis that reveals
the benefits of AMoD systems as well as a human-based
approach to rebalancing MoD systems are also provided.
Section VII outlines directions for future research, with a
particular emphasis on (and some preliminary results for)
congestion effects. Finally, Section VIII concludes the paper.

II. SPATIAL QUEUEING-THEORETICAL MODELS
OF AMOD SYSTEMS: AN OVERVIEW

At a high level, an AMoD system can be mathematically
modeled as follows. Consider a given environment, where a
fleet of self-driving vehicles fulfills transportation requests.
Transportation requests arrive according to an exogenous
dynamic process with associated origin and destination lo-
cations within the environment. The transportation request
arrival process and the spatial distribution of the origin-
destination pairs are modeled as stochastic processes, leading
to a probabilistic analysis. Transportation requests queue
up within the environment, which gives rise to a network
of spatially localized queues dynamically served by the
self-driving vehicles. Such a network is referred to as a
“spatial queueing system.” Performance criteria include the
availability of vehicles upon the request’s arrival and average
wait time to receive service. The model is portrayed in Figure
2.
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Fig. 2. A spatial queueing model of an AMoD system entails an exogenous
dynamical process that generates “transportation requests” (yellow dots) at
spatially localized queues. Self-driving vehicles (represented by small car
icons) travel among such locations according to a given network topology
to transport customers.

Controlling a spatial queueing system involves a joint
task allocation and scheduling problem, whereby vehicle
routes should be dynamically designed to allocate vehicles
to transportation requests so as to minimize, for example,
wait times. In such a dynamic and stochastic setup, we need
to design a closed-loop control policy, as opposed to open-
loop preplanned routes. The problem combines aspects of
networked control, queueing theory, combinatorial optimiza-
tion, and geometric probability (i.e., probabilistic analysis
in a geometrical setting). This precludes the direct applica-
tion of “traditional” queueing theory due to the complexity
added by the spatial component (these complexities include,

for example, congestion effects on network edges, energy
constraints, and statistical couplings induced by the vehicles’
motion [18], [20], [21]). It also precludes the direct appli-
cation of combinatorial static optimization, as the dynamic
aspect of the problem implies that the problem instance is
incrementally revealed over time and static methods can no
longer be applied.

Next two sections present two recent, yet promising ap-
proaches for modeling AMoD systems within the framework
of spatial queueing systems, namely the distributed approach
(Section III) and the lumped approach (Section IV) . Both ap-
proaches employ a number of relaxations and approximations
to overcome the difficulties in directly applying results from
queueing (network) theory to spatial queueing models. A
remarkable feature of these approaches is that they generally
yield formal performance bounds for the control policies and
scaling laws for the quality of service in terms of model data,
which can provide useful guidelines for selecting system
parameters (e.g., number of vehicles). These approaches take
their origin from the seminal works on hypercube models for
spatial queues [20], on the Dynamic Traveling Repairman
problem [21]–[24], and on the Dynamic Traffic Assignment
problem [25], [26].

Alternative approaches could be developed by leveraging
worst-case (as opposed to stochastic) techniques for dynamic
vehicle routing, e.g., competitive (online) analysis [27]–[29].
This is an interesting direction for future research.

III. DISTRIBUTED SPATIAL-QUEUEING MODEL
OF AN AMOD SYSTEM

A. The model

The key idea behind the distributed approach, discussed in
[15]–[18], is that a collection of N stations represents a con-
tinuum as N →∞. In this way, the setup in which demands
enter the workspace is similar to the Dynamic Traveling
Repairman problem [21]–[24]. In other words, customers can
arrive at any point in a given bounded planar environment
[16], [17]. Similarly, in a road map, customers can arrive at
any point along an edge of the network [16]. In the simplest
scenario, a dynamic process generates spatially localized
origin-destination requests in a geographical region Q ⊂
R2. The process that generates origin-destination requests
is modeled as a spatio-temporal Poisson process, namely,
(i) the time between consecutive generation instants has an
exponential distribution with intensity λ, and (ii) origins and
destination are random variables with probability density
functions, respectively, ϕO and ϕD, supported over Q, see
Figure 3. Among trips, the origin points are independent and
identically distributed (i.i.d.), as are the destination points.
Furthermore, the origin and destination points associated
with the same trip are independent. Trip requests are serviced
by vehicles that travel at a constant speed v and may transport
at most one trip demand at a time.

Within the distributed setup, the ultimate objective is to de-
sign a routing policy that minimizes the average steady-state
time delay between the generation of an origin-destination
pair and the time the trip is completed. By removing the
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Fig. 3. In a distributed model of AMoD systems, a stochastic process
with rate λ generates origin-destination pairs, distributed over a continuous
domain Q.

constraint that the customers’ origin-destination requests are
localized at a finite set of points in an environment, one
transforms the problem of controlling N different queues
into one of controlling a single “spatially-averaged” queue.
This considerably simplifies analysis and control, and allows
us to derive analytical expressions for important design
parameters. For example, it is possible to derive stability
conditions, as briefly detailed below.

Given a trip arrival process, a fleet of m vehicles is said
to stabilize the system if there exists a service policy π(m)
that ensures the expected number of outstanding demands
is bounded at all times. Stability implies the fleet, as a
whole, must be able to travel at least as fast, on average,
as the rate at which trip distance accumulates. Given two
points p1, p2 ∈ Q, let d(p1, p2) denote the shortest distance
between p1 and p2. Let dav = E [d(Oi, Oi+1;π(m))] denote
the average distance a vehicle must travel between two
successive trips under π(m). The rate at which work enters
the system is then λdav. A fleet of m vehicles, each capable
of traveling at speed v, is able to, collectively, cover distance
at a rate of mv. Therefore, a necessary condition for system
stability is

m ≥ λdav

v
. (1)

A self-driving vehicle successively alternates between two
states when completing trips: (i) driving a passenger from an
origin Oi to a destination point Di and (ii) driving (empty)
from Di to the origin point of the next trip Oi+1. For π(m),
let dOD = E [d(Oi, Di)] denote the average trip distance
and de = E [(Di, Oi+1)] the average inter-trip distance. For
any reasonable π(m), dOD is simply the shortest distance
between O and D. Quantifying de, however, closely depends
on how π(m) stipulates the vehicles should behave when
transitioning from one job to the next. In [17], rigorous
arguments are used to prove de ≥ EMD(ϕO, ϕD) for any
π(m), where EMD(ϕO, ϕD) is the Earth Mover’s Distance
(or Wasserstein distance) between ϕO and ϕD. Intuitively, if
ϕO and ϕD are imagined to be piles of dirt (i.e., earth), each
having unit volume, then EMD(ϕO, ϕD) is the minimum
amount of work (dirt × distance) required to reshape ϕO

into ϕD. See [30] for more on the formal definition.
Noting that dav = dOD + de, the necessary condition on

fleet size becomes

m ≥ λ(dOD + EMD)

v
. (2)

Rearranging the above equation, we obtain that a necessary
(indeed also sufficient [17]) condition for stability is that the
load factor

% := λ (EϕO ϕD [Y −X] + EMD(ϕO, ϕD)) /(vm) (3)

is strictly less than one.
Equation (3) is useful because it can be used to estimate

the minimum fleet size necessary to ensure stability. Al-
though many existing works emphasize the relationship be-
tween dOD and minimum fleet size, they often fail to recog-
nize the contribution of de ≥ EMD(ϕO, ϕD). This omission
is unfortunate, as EMD(ϕO, ϕD) represents the minimum
amount of distance, on average, a vehicle must travel to
realign itself with the travel demand, and is a fundamental
contributor to system workload. Ignoring EMD(ϕO, ϕD) is
justifiable only in the rare instances where ϕO = ϕD.

By leveraging the distributed model, it is also possible
to obtain formal performance bounds (i.e., factors of sub-
optimality) for receding-horizon control policies, in the
asymptotic regimes % → 1− (heavy-load, system saturated)
and % → 0+ (light-load, system empty of customers) [18],
[31].

B. Calibration of the model

1) Data Sources: In order to apply the distributed model
to real-world cases, we need to “calibrate” all problem data
(e.g., ϕO, ϕD, v, etc.). In this section, we show how this can
be accomplished for the city of Singapore by considering
three complementary data sources. We then proceed to de-
scribe the methodology for extracting the requisite quantities
from the data source. These values will then be used in
Section VI to compute the minimum fleet size for a case
study of Singapore.

The Household Interview Travel Survey: The Household
Interview Travel Survey, or simply HITS, is a comprehen-
sive survey conducted periodically by the Land Transport
Authority (LTA) for the purpose of gathering an overview
of high-level transportation patterns within Singapore. This
work employed the 2008 HITS survey in which 10,840 of
the then 1,144,400 households in Singapore were selected to
participate in the survey.

The HITS database, which summarizes the survey, is
structured as follows. For each household surveyed, hi, each
resident, rj , reported specific details of each trip, τk, taken on
a recent weekday of interest. In general, τk is comprised of
stages s1(τk), s2(τk), . . ., with a new stage introduced each
time the participant switched their mode of transport during
τk, e.g., transferred from the subway to bus as part of the
same trip. For each τk, the resident reported the trip’s origin
point Ok, destination point Dk, start time tstk , end time tendk ,
and the mode of transport, e.g., car, bus, subway, etc., used



in each substage. For the purposes of our study, each entry
in the HITS database is a tuple of the form

(hi, rj , τk, sk,`, Ok, Dk, t
st
k , t

end
k ,mode(sk,`)). (4)

Ok and Dk are affixed postal code values in the HITS
database. It should be noted that postal codes are liberally
assigned in Singapore and, in many cases, each building is
assigned its own postal code. Therefore, Ok and Dk provide
sufficient geographic resolution regarding where τk begins
and ends. To facilitate the analysis, postal codes were con-
verted to their associated longitude and latitude coordinates
by consulting an external database. Henceforth, we shall
assume Ok and Dk are of the form Ok = (lonOk , lat

O
k ) and

Dk = (lonDk , lat
D
k ), respectively. A detailed description of

the HITS survey may be found in [32].

Taxi Data: Ground truth traffic characteristics were estimated
by consulting taxi records collected over the course of
a week, in 2012, in Singapore. The data chronicled the
movement and activities of approximately sixty percent of all
active taxis by listing each vehicle’s GPS coordinates, speed,
and passenger status, e.g., “passenger-on-board”, “vacant”,
“responding to call”, etc. Owing to the high rate at which
recordings were taken (approximately every thirty seconds
to one minute per vehicle) and the large number of taxis
contributing to the database (in excess of 10,000), the fleet,
collectively, serves as a distributed, mobile, embedded traffic
sensor which was queried to provide an estimate of traffic
conditions throughout the city.

Road Network: A graph-based representation of Singapore’s
road network was used to determine routes robotic vehicles
should take when transporting passengers. Edges in this
network are categorized based on the type of road they
represent, e.g., a major highway or a residential street. This
feature enables us view the road network at varying levels
of granularity.

2) Methodology for computing λ, EMD, ϕO, ϕD, and
v: This section describes the methodology used in [19] to
estimate the quantities appearing in (2), i.e., the average de-
mand arrival rate λ, the average trip length dOD, the average
vehicle speed v, and finally the Earth Mover’s Distance EMD
measuring the difference between the distributions of origin
and destination points.

Computation of λ: Let λHITS represent the average rate
at which trips arrive based solely on the HITS survey.
The overall arrival rate is then λ = αλHITS, where α =
1, 144, 400/10, 840 = 105.57 is the scaling factor that,
inversely, reflects the fraction of the population that took
part in the HITS survey. From the HITS data, 56,839 trips
were extracted. After eliminating trips for which the GPS
coordinates of Ok, Dk, or both were unavailable, 56,673
trips remained. Arrival rates for hour k, 0 ≤ k ≤ 23, were
then calculated as λk = αλHITS,k, where λHITS,k is the
number trips in the HITS database that started in hour k.

Computation of ϕO, ϕD, and EMD: As mentioned, EMD
is a measure of the driving distance required to reshape one

distribution into another. In this regard, it is important to rec-
ognize that the HITS data is organized on a trip-by-trip basis
and, as such, care must be taken in selecting the time window
over which to compute EMD. Namely, for an individual that
reports successive trips (O1, D1), (O2, D2), . . . , (Ok, Dk)
throughout the day, it follows that Dk = O1 and Oi+1 =
Di, i = 1, . . . , k − 1. Consequently, when all trips are
aggregated over the course of a day, ϕO = ϕD, which would
imply, erroneously, that, having just dropped off a passenger,
vehicles are immediately aligned with the transportation
demand.

To avoid this problem, EMD was computed on a smaller
time scale on par with how quickly trips were completed,
namely, every hour, with EMDk the Earth Mover’s Distance
associated with pickups and drop-offs in hour k = 0, . . . , 23.
Let T k := {τ : τ starts in interval k + 1}, k = 0, 1, . . . ,K
denote the set of all trips τ that started in hour k. Similarly,
let ϕkO, ϕkD, and EMDk denote the origin distribution,
destination distribution, and EMD associated with trips in
T k. Further details on the EMD and its calculation can be
found in [33]. Here, EMDk is computed by discretizing
Singapore into N regions, R1, R2, . . . , RN . (In this work, for
simplicity, we considered a 10-by-10 grid, hence N = 100.)
Let ci be the centroid of Ri. The distance between regions
Ri and Rj is defined as d(Ri, Rj) := ||ci − cj ||. For trip τ ,
let O(τ) and D(τ) denote τ ’s origin and destination points,
respectively. Finally, let O(Rki ) = {τ ∈ T k : O(τ) ∈ Ri}
and, likewise, D(Rki ) = {τ ∈ T k : D(τ) ∈ Ri}. Note
that {|O(Rki )|/|T k|}Ni=1 defines an empirical probability
distribution over the discrete regions R1, . . . , RN .

Based on the aforementioned discretization of the
workspace, EMDk is given by the solution to the following
flow-based optimization problem with decision variables fij :

EMDk = min
fij

N∑
i=1

N∑
j=1

fijd(Ri, Rj) (5)

s.t.

N∑
j=1

fij = O(Rki )/|T k|, i = 1, . . . , N

N∑
i=1

fji = D(Rki )/|T k|, i = 1, . . . , N

fij ≥ 0, i, j ∈ {1, . . . , N}.

Computation of dOD: For each O-D pair in the HITS
database, we assume the trip takes place on the shortest path
(as measured by distance) connecting O and D. Shortest
path algorithms, e.g., Dijkstra’s algorithm, are computation-
ally efficient, allowing calculations to be run on a detailed
roadmap of Singapore. The average trip distance in interval
k is dkOD. For an entire day, dOD was 9.4 km.

Computation of v: The GPS traces of taxis in Singapore were
used to estimate average traffic speeds throughout the day.
To determine how fast, on average, an individual taxi travels
during hour k, the total distance traveled by the taxi, with
a passenger on board, was divided by the total associated



time for each hour k. These quantities were then averaged
over all taxis active in hour k to estimate vk the average
speed of travel during hour k = 0, . . . , 23. Collectively, these
parameters will be used in Section VI to find the minimum
number of robotic vehicles required for an AMoD system to
service all travel demands in Singapore.

IV. LUMPED SPATIAL-QUEUEING MODEL
OF AN AMOD SYSTEM

A. Overview of lumped model

Within the lumped approach [14], customers are assumed
to arrive at a set of stations located within a given envi-
ronment1, similar to the hypercube model [20]. The arrival
process at each station is Poisson with rate λi, where i ∈
{1, . . . , N} and N denotes the number of stations. (Reason-
able deviations from the assumption of Poisson arrivals have
been found not to substantially alter the predictive accuracy
of these models [20].) Upon arrival, a customer at station
i selects a destination j according to a probability mass
function {pij} (Figure 4). If vehicles are parked at station
i, the customer takes a vehicle and is driven to the intended
destination, with a travel time modeled as a random variable
Tij . However, if the station is empty of vehicles, the customer
immediately leaves the system (this is usually referred to as
a loss model, which models well systems with impatient
customers or systems with high quality of service). The
lumped model captures the performance characteristics of
an AMoD system by leveraging the rich theory of queueing
networks, specifically Jackson networks. The next section
reviews several important results and techniques that will
allow us to analyze an AMoD system as a closed Jackson
network.

B. Review of Jackson Networks

A queueing network is a directed graph containing |N |
nodes or queues, where N is the set of nodes in the network.
Discrete agents (usually referred to as customers in the
literature) arrive at each node from outside the network
according to a stochastic process or move among the nodes.
Each agent arriving at a node is serviced by that node
before traveling to another node or leaving the network.
A network is closed if the number of agents within the
network remains constant and no agent enters or leaves the
network. In contrast, in an open network, agents arrive from
outside of the network and eventually leave the network.
Though in general, many types of queues can exist in a
queueing network (for example, first-come first-serve, last-
come first-serve, processor-sharing, etc.), we only consider
queues where agents are serviced on a first-come first-
serve basis. A Jackson network is a Markovian queueing
network where agents move among the nodes according to

1Alternatively, to model an AMoD system where the vehicles directly
pick up the customers, we would decompose a city into N disjoint regions
Q1, Q2, . . . , QN . Such regions would replace the notion of stations. When
a customer arrives in region Qi, destined for Qj , a free vehicle in Qi is
sent to pick up and drop off the customer before parking at the median
of Qj . The two models are then formally identical and follow the same
mathematical treatment.

a stationary routing distribution rij and the service rate at
each node i, µi(xi), depends only on the number of agents
at that node, xi [34, p.9]. Jackson networks are part of a more
general class of queueing networks called BCMP networks
[35] that are known to have analytically tractable product-
form equilibrium distributions. In equilibrium, the average
number of agents moving through a node per unit time
(referred to as throughput) satisfies the balance equations

πi =
∑
j∈N

πjrji ∀i ∈ N . (6)

For a closed network, solving (6) only determines the
throughputs to a constant factor, hence {π} is referred to as
the relative throughput. The real throughput is determined by
a normalization constant, G(m), that arises in the stationary
probability distribution of the closed Jackson network, and
is dependent on the number of agents, m, in the system.
Explicitly, G(m) is given by

G(m) =
∑
x∈Ωm

|N |∏
j=1

π
xj

j

xj∏
n=1

µj(n)−1,

where Ωm = {x = (x1, x2, ..., x|N |) :
∑|N |
i=1 xi = m,xi ∈

Z≥0} is the state space of the closed Jackson network. Given
G(m), the actual throughput of each node is

Λi(m) = πi
G(m− 1)

G(m)
. (7)

The probability that at least one agent is waiting at node i is
given by dividing the throughput by the service rate at node
i

Ai(m) =
πi

µi(1)

G(m− 1)

G(m)
= γi

G(m− 1)

G(m)
, (8)

where γi is referred to as the relative utilization of node i.
Ai(m) is referred to as the availability of node i [14], [36]
because as long as a vehicle (which are the agents in our
queueing network) is at a station (a node), it is available
for customers to rent. This is an important performance
metric for quality of service, and it has been shown that
high availability throughout the network corresponds to low
customer wait times [14]. Computing the availability using
(8) is non-ideal because in general the normalization constant
G(m) is expensive to compute. Section IV-D describes a
method to calculate the availability and the mean value of
the throughput without explicitly computing G(m).

C. Developing a lumped model for AMoD systems

Under the assumptions of Poisson arrivals and
exponentially-distributed travel times, an AMoD system
is then translated into a closed Jackson network model
through an abstraction procedure [14], [36], whereby we
identify the stations with single-server queues and the roads
with infinite-server queues (note that this does not take
into account traffic congestion). We let S be the set of
single-server station nodes and I be the infinite-server road
nodes. The agents in the Jackson network are the vehicles
in the AMoD system (the network is closed because there
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Fig. 4. In the lumped model, an AMoD system is modeled as a Jackson
network, where stations are identified with single-server queues and roads
are identified with infinite-server queues. (Customers are denoted with
yellow dots and servicing vehicles are represented by small car icons.) Some
vehicles travel without passengers to rebalance the fleet.

is a constant number of vehicles). The Poisson arrival
process of customers can be viewed as the exponentially
distributed service rate of vehicles at each station node (i.e.
µi(1) = λi). The mean service rate at the infinite-server
road queue between station i and j is the inverse of the
mean travel time, Tij . With this identification, an AMoD
system becomes a closed Jackson network with respect to
the vehicles, which is amenable to analytical treatment [14]
(Figure 4).

To control the network, the strategy is to autonomously
rebalance the vehicles to ensure even vehicle availability
(i.e. Ai(m) = Aj(m) ∀ i, j). Remarkably, this condition
achieves the dual purpose of maximizing the availabilities
across all stations [14], [36]. Rebalancing can be modeled
by the addition of virtual customer streams [14]. Specifically,
we assume that each station i generates “virtual customers”
according to a Poisson process with rate ψi, independent of
the real customer arrival process, and routes these virtual
customers to station j with probability αij . The problem
of controlling an AMoD system becomes one of optimizing
over the rates {ψi} and probabilities {αij} with the goal of
minimizing the number of rebalancing vehicles on the road.
By exploiting the theory of Jackson networks, this can be
cast into the following linear program

minimize
βij

∑
i,j

Tijβij (9)

subject to
∑
j 6=i

(βij − βji) = −λi +
∑
j 6=i

pjiλj

βij ≥ 0

Let {β∗ij}ij denote an optimal solution to (9). The virtual
customer rates are found by making the following substitu-

tions

ψi =
∑
j 6=i

β∗ij

αij =


0 if i = j

β∗ij/ψi if ψi > 0

1/(N − 1) otherwise.

The virtual customers process can then be combined with
the real customer process to yield a closed Jackson network
with total customer arrival rates (both real and virtual)

λtot
i = λi + ψi,

and routing probabilities

ptot
ij = αij

ψi
λtot
i

+ pij
λi
λtot
i

.

The rebalancing approach maintains analytic tractability in
the Jackson network because the virtual customers are also
subject to loss if vehicles are not available, thus rebalancing
is “encouraged” rather than enforced. Once the parameters in
the Jackson network (λtot

i , ptot
ij , and Tij) have been computed,

the performance metric (i.e. vehicle availability Ai(m)) can
be computed, as discussed in the next section.

D. Computation of availability metric

The vehicle availability Ai(m) can be computed via a
technique known as mean value analysis (MVA), which
iteratively calculates the mean wait times Wi(n) and mean
queue lengths Li(n) at each node i of the closed Jackson
network, where n = 1, ...,m is the number of vehicles over
which the algorithm iterates. To use the MVA algorithm, first
the relative throughputs πi must be solved using (6). Due to
the special structure of the AMoD model, (6) can be solved
just in terms of the single-server station nodes [14] as

πi =
∑
j∈S

πjp
tot
ji ∀i ∈ S. (10)

The throughput of the infinite-server node {ij} is given by

πij = πip
tot
ij . (11)

The MVA algorithm proceeds as follows:

Algorithm 1 Mean Value Analysis
1: function MVA(πi, πij)
2: Wi(0)← 0, Li(0)← 0
3: for n = 1→ m do
4: Wi(n) = (1 + Li(n− 1))/λtot

i , ∀i ∈ S
5: Wij(n) = Tij , ∀ {ij} ∈ I
6: Li(n) = nπiWi(n)∑

j∈S πjWj(n)+
∑

{jk}∈I πjkWjk
, ∀i ∈ S

return Wi(m), Li(m)

The throughput of station i is then given by Little’s
theorem [37, p.152]

Λi(m) =
Li(m)

Wi(m)
, (12)



and finally, the availability is given by

Ai(m) =
Λi(m)

λtot
i

. (13)

E. Calibration of the model

The parameters of the lumped model, N , λi, pij , and Tij ,
are calibrated in a way similar to the distributed model.
For the case study of Singapore, the HITS database was
used to calculate the number of stations N , the arrival rates
λi, and the routing distributions pij . The taxi database was
used to estimate the average speed, which is then used to
calculate the mean travel times Tij . For the case study of
New York City, a database of taxi trips (including trip origins,
destinations, and travel times) was used courtesy of the New
York City Taxi & Limousine Commission. This database was
used to calibrate all of the model parameters.

The set of trip origin and destinations are clustered into
N stations. K-means clustering is used to determine the
locations of the stations. N can be chosen based on the
average distance a demand is from the closest station. For the
New York City case study, N = 100 stations in Manhattan
meant that a demand is on average less than 300m from the
nearest station. Arrivals within each cluster is assigned to
the station at the center of the cluster. Once the locations
of the stations have been chosen, λi and pij are computed
by simply counting the number of arrivals at each cluster
and their destinations. If the AMoD system operates in
such a way that vehicles provide door-to-door service, the
number of “stations” can be a flexible parameter that changes
dynamically based on current demand distribution, and the
locations of the stations can be inferred using Bayesian
nonparametric algorithms such as DP-means [38]. This is
an interesting avenue for further research.

F. Comparison of the two approaches

The lumped approach and the distributed approach are
complementary in a number of ways. Both models provide
formal guarantees for stability and performance. The former
is more realistic (a road topology can be readily mapped into
this model) and provides a natural pathway to synthesize
control policies. The latter provides significant mathematical
simplifications (as we only need to study a spatially-averaged
queue) and enables the determination of analytic scaling
laws that can be used to select system parameters (e.g., fleet
sizing). In section VI, we will exploit the interplay between
such two approaches to characterize AMoD systems for case
studies of New York City and Singapore.

V. CONTROL OF AMOD SYSTEMS

In this section, we discuss the synthesis of closed-loop
control policies within, respectively, the distributed and the
lumped models.

A. Synthesis of closed-loop policies for the distributed model

A simple, yet effective, class of control policy is repre-
sented by gated policies, whereby static instances of the
routing problem are repeatedly solved in a receding horizon

fashion. Specifically, the strategy is to repeatedly perform the
following steps any time all servers are idle: (1) solve a static
pickup and delivery problem through the outstanding travel
demands, (2) splits the tour into m equal length fragments
(where m is the number of vehicles), and (3) assigns a frag-
ment to each vehicle. A few comments are in order. First, this
approach relies on the capability of solving large instances of
pickup-and-delivery problems relatively quickly; we present
below an algorithm, referred to as SPLICE [17], which
fulfills such requirement. Second, instead of computing a
single tour (step 1) and then split it into m fragments (step 2),
we could directly compute m tours, one for each vehicle. In
the limit where the number of trips n goes to infinity, the two
strategies become equivalent. Finally, re-optimization occurs
when all vehicles are idle. This mainly serves to maintain
tractability in the analysis of the control policy; in reality we
would consider an asynchronous implementation whereby
new tours are computed as soon as a vehicle becomes idle.

As explained above, the performance of a gated policy
hinges upon a computationally efficient and high quality
solution to the problem of coordinating the pickup and
delivery of n points, for large n, as discussed in [17].
More specifically, let the pickup and delivery locations be
{x1, x2, . . . , xn} and {y1, y2, . . . , yn}, respectively. For unit
capacity service vehicles, xi must be delivered to yi imme-
diately after being picked up, i = 1, . . . , n. The challenge
in servicing demand therefore lies in finding an effective
rule for transitioning from delivery locations to subsequent
pickup locations, i.e., from yi’s to xj’s.

The problem of finding a minimal-length tour through the
xi’s and yi’s, subject to the aforementioned unit capacity
constraint, is referred to as the stacker crane problem (SCP).
At its core, the SCP is an instance of a minimal bipartite
matching problem that seeks to efficiently link delivery
and pickup locations of otherwise unrelated demands. This
matching may be solved by a number algorithms, e.g., the
Hungarian algorithm, that are constant-factor optimal and
run in polynomial time. However, these algorithms generally
produce disjoint sub-tours, i.e., two or more cyclic paths
through the {xi} and {yi}, but no single uninterrupted path.

In the interest of deploying service vehicles and estab-
lishing key analytic results, it is preferable to have a single
tour through all the {xi} and {yi}, i.e., a stacker crane tour.
Fortunately, the various sub-tours can be readily rewired by
joining or splicing sub-tours to create the desired stacker-
crane tour. Moreover, as n increases, the number of disjoint
sub-tours grows as O(log n), and the process of finding a
continuous stacker crane tour is dominated by solving the
initial the bipartite matching problem. As a reference, [39]
provides a constant-factor optimal solution that is O(n2+ε)
for any ε > 0. In [17], the processes by which disjoint
sub-tours are fused into a single stacker-crane tour through
all {xi} and {yi} is referred to as the SPLICE algorithm.
The structure of the SPLICE algorithm is described in
Algorithm 2. Using similar scaling arguments, it can be
shown that the tours specified by the SPLICE algorithm
are asymptotically optimal with respect to distance. Figure 5
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Fig. 5. Stages of the SPLICE algorithm, beginning with 6 pickup and
delivery locations on the Euclidean plane, and ending with a complete
stacker crane tour.

illustrates the general functionality of the SPLICE algorithm
on a problem of modest size.

Algorithm 2 SPLICE
INPUT: a set of demands S = {(x1, y1), . . . , (xn, yn)},

n > 1
OUTPUT: a stacker crane tour through S.

1: initialize σ ← solution to the Euclidean bipartite match-
ing problem between the sets X = {x1, . . . , xn} and
Y = {y1, . . . , yn} computed by using bipartite matching
algorithm M.

2: Add the n pickup-to-delivery links xi → yi, i =
1, . . . , n.

3: Add the n matching links yi → xσ(i), i = 1, . . . , n.
4: Apply the rewiring heuristic to connect sub-tours.

In [17], the authors show that a gated policy relying on
SPLICE is stabilizing whenever the condition for stability
(2) is satisfied.

B. Synthesis of closed-loop policies for the lumped model

Synthesis of control policies within the lumped model
still relies on receding horizon optimization [40], but at
each optimization step one solves the optimization problem
introduced in Section IV-C (using the current distribution of
vehicles and waiting customers), rather than a static stacker
crane problem (as it was done in the distributed model).
Specifically, we let vown

i (t) be the number of vehicles owned
by station i, defined as

vown
i (t) = vi(t) +

∑
j

vji(t),

where vi(t) is the number of vehicles currently at station i
and vji(t) is the number of vehicles currently traveling from
station j to i. Let ci(t) be the number of customers at station
i. We can define the “excess” number of vehicles at station
i to be

vexcess
i (t) = vown

i (t)− ci(t).
These are the vehicles that a station can send to another
station to rebalance the system. The total number of excess
vehicles is given by

∑
i v

excess
i (t) = m−∑

i ci(t). The goal
is to distribute these excess vehicles appropriately among
the stations. One way to distribute is to divide the vehicles
evenly [40], so that the desired number of vehicles for each
station, vdi (t), is

vdi (t) =
⌊m−∑

j cj(t)

n

⌋
.

If the customer arrival rates are known or can be estimated,
the vehicles can be distributed based on the demand

vdi (t) =
⌊λi(t)(m−∑

j cj(t))∑
j λj(t)

⌋
.

Finally, we let nvij represent the number of rebalancing vehi-
cles to send from station i to j. The following optimization
procedure solves for nvij every thor time steps

minimize
nv
ij

∑
i,j

Tijn
v
ij (14)

subject to vexcess
i (t) +

∑
j 6=i

(nvji − nvij) ≥ vdi (t)

nvij ∈ N.

It is worth noting that the contraint matrix of this integer
linear program is totally unimodular, and hence can be
solved as a linear program and the solution will necessarily
take on integer values [40]. This closed-loop control policy
is used to evaluate AMoD systems in Section VI.

Parallel to our discussion in Section IV-F, the control
strategies for the distributed model and lumped model are
complementary. Both control policies apply receding horizon
techniques to optimization problems (combinatorial opti-
mization for the distributed model and linear optimization
for the lumped model). The distributed control policy is
amenable to analytic treatment and provides performance
guarantees, and while the lumped control policy does not
provide such guarantees, it is easier to implement and extend
in practice (e.g. the inclusion of additional constraints).

VI. EVALUATING AMOD SYSTEMS

Leveraging models and methods from Sections III and
IV, this section studies hypothetical deployments of AMoD
systems in two major cities, namely New York City and
Singapore. Collectively, the results presented in this section
provide a preliminary, yet rigorous evaluation of the benefits
of AMoD systems based on real-world data. We mention
that both case studies do not consider congestion effects
– a preliminary discussion about these effects is presented
in Section VII. A financial analysis compares the cost of



mobility in an AMoD system to that in a traditional model
based on private vehicle ownership. Finally, we describe how
the lumped model can be used to model MoD systems where
humans perform vehicle rebalancing.

A. Case Study I: AMoD in Manhattan

This case study applies the lumped approach to charac-
terize how many self-driving vehicles in an AMoD system
would be required to replace the current fleet of taxis in
Manhattan while providing quality service at current cus-
tomer demand levels [14]. In 2012, over 13,300 taxis in New
York City made over 15 million trips a month or 500,000
trips a day, with around 85% of trips within Manhattan. The
study uses taxi trip data collected on March 1, 2012 (the
data is courtesy of the New York City Taxi & Limousine
Commission) consisting of 439,950 trips within Manhattan.
First, trip origins and destinations are clustered into N = 100
stations, so that a demand is on average less than 300m
from the nearest station, or approximately a 3-minute walk.
The system parameters such as arrival rates {λi}, destination
preferences {pij} and travel times {Tij} are estimated for
each hour of the day using trip data between each pair of
stations.

Vehicle availability (i.e., probability of finding a vehicle
when walking to a station) is calculated for 3 cases –
peak demand (29,485 demands/hour, 7-8pm), low demand
(1,982 demands/hour, 4-5am), and average demand (16,930
demands/hour, 4-5pm). For each case, vehicle availability
is calculated by solving the linear program discussed in
Section IV-C and then applying mean value analysis [36]
techniques to recover vehicle availabilities. (The interested
reader is referred to [14] for further details). The results are
summarized in Figure 6(a).

For high vehicle availability (say, 95%), we would need
around 8,000 vehicles (∼70% of the current fleet size op-
erating in Manhattan, which, based on taxi trip data, we
approximate as 85% of the total taxi fleet) at peak demand
and 6,000 vehicles at average demand. This suggests that
an AMoD system with 8,000 vehicles would be able to
meet 95% of the taxi demand in Manhattan, assuming 5%
of passengers are impatient and are lost when a vehicle
is not immediately available. However, in a real system,
passengers would wait in line for the next vehicle rather
than leave the system, thus it is important to determine
how vehicle availability relates to customer waiting times.
Customer waiting times are characterized through simulation,
using the receding horizon control scheme mentioned in
Section V-B. The time-varying system parameters λi, pij ,
and average speed are piecewise constant, and change each
hour based on values estimated from the taxi data. Travel
times Tij are based on average speed and Manhattan distance
between i and j, and autonomous vehicle rebalancing is
performed every 15 minutes. Three sets of simulations are
performed for 6,000, 7,000, and 8,000 vehicles, and the
resulting average waiting times are shown in Figure 6(b).

Figure 6(b) shows that for a 7,000 vehicle fleet, the peak
averaged wait time is less than 5 minutes (9-10am) and for
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Fig. 6. 6(a): Vehicle availability as a function of system size for 100
stations in Manhattan. Availability is calculated for peak demand (7-8pm),
low demand (4-5am), and average demand (4-5pm). 6(b): Average customer
wait times over the course of a day, for systems of different sizes.

8,000 vehicles, the average wait time is only 2.5 minutes.
The simulation results show that high availability (90-95%)
does indeed correspond to low customer waiting time and
that an AMoD system with 7,000 to 8,000 vehicles (roughly
70% of the size of the current taxi fleet) can provide adequate
service with current taxi demand levels in Manhattan.

B. Case Study II: AMoD in Singapore

This case study discusses an hypothetical deployment
of an AMoD systems in Singapore to replace its entire
transportation infrastructure [19]. The study, which should
be interpreted as a thought experiment to investigate the
potential benefits of an AMoD solution, addresses three main
dimensions (i) minimum fleet size to ensure system stability
(i.e., uniform boundedness of the number of outstanding
customers), (ii) fleet size to provide acceptable quality of
service at current customer demand levels, and (iii) financial
estimates to assess economic feasibility.

1) Minimum fleet sizing: In Section III-B, it was argued
that an hour was an appropriate time scale over which to
compute key parameters of the distributed model. Conse-



quently, we estimate fleet size by modifying the bound in
(2) to reflect hourly values, i.e.,

mmin =

∑
k λk(dkOD + EMDk(ϕkO, ϕ

k
D))∑

k v
k

. (15)

Computing the necessary quantities as in subsection III-
B.2, equation (15) yields that at least 92,693 self-driving
vehicles are required to ensure the transportation demand
remains uniformly bounded. To gain an appreciation for the
level of vehicle sharing possible in an AMoD system of this
size, consider that at 1,144,400 households in Singapore,
there would be roughly one shared car for every 12.3
households. Note however, that this should only be seen as
a lower bound on the fleet size, since customer wait times
would be unacceptably high.

2) Fleet sizing for acceptable quality of service: To
ensure acceptable quality of service, we need to increase
the fleet size. To characterize such increase, we use the
same techniques outlined in Section VI-A, which rely on
the lumped approach. Vehicle availability is analyzed in two
representative cases. The first is chosen as the 2-3pm bin,
since it is the one that is the closest to the “average” traffic
condition. The second case considers the 7-8am rush-hour
peak. Results are summarized in Figure 7(a). With about
200,000 vehicles availability is about 90% on average, but
drops to about 50% at peak times. With 300,000 vehicles in
the fleet, availability is about 95% on average and about
72% at peak times. As in Section VI-A, waiting times
are characterized through simulation. For 250,000 vehicles,
the maximum wait times during peak hours is around 30
minutes, which is comparable with typical congestion delays
during rush hour. With 300,000 vehicles, peak wait times are
reduced to less than 15 minutes. To put these numbers into
perspective, in 2011 there were 779,890 passenger vehicles
operating in Singapore [41]. Hence, this case study suggests
that an AMoD system can meet the personal mobility needs
of the entire population of Singapore with a number of
robotic vehicles that is less than 40% of the current number
of passenger vehicles.

C. Financial analysis of AMoD systems

This section finally provides a preliminary, yet rigorous
economic evaluation of AMoD systems, as first introduced
in [19]. Specifically, this section characterizes the total mo-
bility cost (TMC) for users in two competing transportation
models. In System 1 (referred to as traditional system),
users access personal mobility by purchasing (or leasing)
a private, human-driven vehicle (PHDV). Conversely, in
System 2 (the AMoD system), users access personal mobility
by subscribing to a shared AMoD fleet of vehicles. For both
systems, the analysis considers not only the explicit costs
of access to mobility (referred to as cost of service -COS-
), but also hidden costs attributed to the time invested in
various mobility-related activities (referred to as cost of time
-COT-). A subscript i = {1, 2} will denote the system under
consideration (e.g., COS1 denotes the COS for System 1).
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Fig. 7. 7(a): Performance curve for Singapore with 100 stations, showing
the availability of vehicles vs. the size of the system for both average demand
(2-3pm) and peak demand (7-8am). 7(b): Average wait times over the course
of a day, for systems of different sizes.

Cost of service: The cost of service is defined as the sum
of all explicit costs associated with accessing mobility. For
example, in System 1, COS1 reflects the costs to individually
purchase, service, park, insure, and fuel a PHDV, which, for
the case of Singapore, is estimated for a mid-size car at
$18, 162/year. For System 2, we need to make an educated
guess for the cost incurred with retrofitting production vehi-
cles with the sensors, actuators, and computational power
required for automated driving. Based upon the authors’
experiences on autonomous vehicles, such cost (assuming
some economies of scale for large fleets) is estimated as a
one-time fee of $15, 000. From the fleet-sizing arguments
of Section VI-B.2, one self-driving vehicle in System 2 can
effectively serve the role of about 4 PHDVs in System 1,
which implies an estimate of 2.5 years for the average lifes-
pan of a self-driving vehicle. Tallying the aforementioned
costs on a fleet-wide scale and distributing the sum evenly
among the entire Singapore population gives a COS2 of
$12,563/year (see [19] for further details about the cost
breakdown). According to COS values, it is more affordable
to access mobility in System 2 than System 1.



TABLE I
SUMMARY OF THE FINANCIAL ANALYSIS OF MOBILITY-RELATED COST

FOR TRADITIONAL AND AMOD SYSTEMS.

Cost [USD/km] Yearly cost [USD/year]
COS COT TMC COS COT TMC

Traditional 0.96 0.76 1.72 18,162 14,460 32,622
AMoD 0.66 0.26 0.92 12,563 4,959 17,522

Cost of time: To monetize the hidden costs attributed to
the time invested in mobility-related activities, the analysis
leverages the Value of Travel Time Savings (VTTS) numbers
laid out by the Department of Transportation for performing
a Cost Benefit Analysis of transportation scenarios in the
US [42]. Applying the appropriate VTTS values based on
actual driving patterns gives COT1 = $14,460/year (which
considers an estimated 747 hours/year spent by vehicle
owners in Singapore in mobility-related activities, see [19]).
To compute COT2, this analysis prices sitting comfortably
in a self-driving vehicle while being able to work, read, or
simply relax at 20% of the median wage (as opposed to 50%
of the median wage which is the cost of time for driving in
free-flowing traffic). Coupling this figure with the facts that
a user would spend no time parking, limited time walking to
and from the vehicles, and roughly 5 minutes for a requested
vehicle to show up (see Section VI-B.2), the end result is a
COT2 equal to $4,959/year.

Total mobility cost: A summary of the COS, COT, and
TMC for the traditional and AMoD systems is provided in
Table I (note that the average Singaporean drives 18,997
km each year [19]). Remarkably, combining COS and COT
figures, the TMC for AMoD systems is roughly half of
that for a traditional system. To put this into perspective,
these savings represent about one third of GDP per capita.
Hence, this analysis reveals it is much more affordable to
access mobility in an AMoD system compared to traditional
mobility models based on private vehicle ownership.

D. Comparing AMoD to human-driven MoD systems

We can directly compare the potential of AMoD systems
to current human-driven MoD systems such as Car2Go
[9]. Remarkably, the queueing network approach used in
the lumped model can be extended to model human-driven
MoD systems. A human-driven MoD system consists of mv

(non-autonomous) vehicles, and rebalancing is performed
by a team of md hired drivers (called “rebalancers”) [43].
As the drivers rebalance the vehicles, however, they them-
selves become unbalanced. To “rebalance the rebalancers”,
the strategy is to allow the drivers to drive customers to
their destinations similar to a taxi service [43], [44]. If
we assume that each driver must have access to a vehicle
at all times (otherwise the driver would be stranded at a
station), the MoD system can be viewed as a customer-driven
carsharing system operating in parallel with a taxi service,
which we model using two coupled closed Jackson networks.
Specifically, we define System 1 to be the customer-driven
carsharing system (with mv − md vehicles) and System 2
to be the taxi system (with md vehicles). When a customer

arrives at a station, he/she is delegated to one of the two
systems. If no vehicles are available in the system to which
the customer was delegated, the customer immediately leaves
the system. This represents an expanded version of the loss
model described in Section IV-A. Virtual customers are
generated in the same way to rebalance vehicles, but only in
System 2 (the taxi system). Instead, the delegation process of
customers will serve to balance System 1 in the absence of
autonomous cars. In this case, the parameters of the Jackson
network for System 1 become

λ
(1)
i = λi − λdel

i ,

p
(1)
ij = pij

λi

λ
(1)
i

− ηij
λdel
i

λ
(1)
i

,

where λdel
i is the rate of customers at station i delegated to

System 2 and ηij is the routing distribution of the customers
delegated to System 2. The parameters for System 2 are

λ
(2)
i = λdel

i + ψi,

p
(2)
ij = ξij

ψi

λ
(2)
i

+ ηij
λdel
i

λ
(2)
i

,

where ψi is the rate of arrival of virtual customers at station
i and ξi is the routing distribution of virtual customers.

With this formulation, the optimization variables for re-
balancing become λdel

i , ηij , ψi, and ξij . By direct extension
of the AMoD analysis, we can define two decoupled linear
programs to solve for these parameters while minimizing the
number of rebalancing drivers and vehicles.

minimize
βij

∑
i,j

Tijβij (16)

subject to
∑
j 6=i

(βij − βji) = λi −
∑
j 6=i

pjiλj

0 ≤ βij ≤ λipij

minimize
αij

∑
i,j

Tijαij (17)

subject to
∑
j 6=i

(αij − αji) = −λi +
∑
j 6=i

pjiλj

αij ≥ 0

The rebalancing parameters are given by making the follow-
ing substitutions [44]:

λdel
i =

∑
j 6=i

β∗ij ,

ψi =
∑
j 6=i

α∗ij ,

ηij =


0 if i = j,

β∗ij/λ
del
i if λdel

i > 0, i 6= j,

1/(N − 1) otherwise,

ξij =


0 if i = j,

α∗ij/ψi if ψi > 0, i 6= j,

1/(N − 1) otherwise,



where β∗ij is the optimal solution to (16) and α∗ij is the
optimal solution to (17). The availabilities of each system can
then be calculated using the procedure described in Section
IV-D. The overall availability for all real passengers is found
by consolidating the two systems.

Apass
i (mv,md) = A

(1)
i (mv −md)

λ
(1)
i

λi
+A

(2)
i (md)

λdel
i

λi
.

(18)
Since λ(1)

i and λdel
i depend on the station i, the availability

metric Apass
i is no longer equal across all stations. Figure

8 shows that the availabilities of the stations no longer
overlap with one another, even though availabilities still tend
towards one as mv increases. We can also see that the
spread of the availabilities across different stations increase
with the vehicle-to-driver ratio (mv/md). This is intuitively
clear because fewer drivers means fewer rebalancing trips
which leads to a more unbalanced system. The red line in
Figure 8 shows the availability for an AMoD system. It is
clear that AMoD outperforms human-driven MoD systems
because every vehicle is able to rebalance at any time. The
human-driven MoD system can still be balanced (i.e. all
availabilities are equal) at a particular operating point (i.e.
mv and md) if equation (18) is used as a constraint in the
optimization. However, the optimization will no longer be
a linear program (since MVA is needed to calculate (18)).
The optimization can be solved using general nonlinear opti-
mization techniques and MVA can be performed quickly for
systems of reasonable size. For much larger systems (i.e. tens
or hundreds of thousands of vehicles), an approximate MVA
technique exists which transforms the iterative algorithm
into a set of nonlinear equations [45]. More details of the
nonlinear optimization problem can be found in [44].

As we see from Figure 8, the performance of the human-
driven MoD system can be heavily dependent on the vehicle-
to-driver ratio, mv/md. The greater the number of rebalanc-
ing drivers, the easier it is to balance the system. However,
hiring drivers comes with a cost most likely higher than the
cost of the vehicle itself. It is therefore possible to conduct
a financial comparison between an AMoD system and a
human-driven MoD system where the human-driven MoD
system is assumed to operate at a vehicle-to-driver ratio that
minimizes total cost while maintaining an acceptable level
of performance. The total cost, for example, can be

ctotal = mv + crmd, (19)

where cr is the cost ratio between a vehicle and a driver.
While this financial analysis is left for future research, in
[44] it is shown that the optimal vehicle-to-driver ratio that
minimizes (19) is between 3 and 5 for a wide range of
cost ratios. Depending on the cost of labor for drivers,
this analysis may provide significant financial incentives for
AMoD systems over human-driven MoD systems.

VII. FUTURE RESEARCH DIRECTIONS

This paper provided an overview of modeling and control
techniques for AMoD systems, and a preliminary evaluation

of their financial benefits. Future research on this topic
should proceed along two main dimensions: efficient con-
trol algorithms for increasingly more realistic models and
eventually for real-world test beds, and financial analyses for
a larger number of deployment options and accounting for
positive externalities (e.g., increased safety) in the economic
assessment. Such research directions are discussed in some
details next, with a particular emphasis on the inclusion of
congestion effects and some related preliminary results.

A. Future research on modeling and control

A key direction for future research is the inclusion of
congestion effects. In AMoD systems, congestion manifests
itself as constraints on the road capacity, which in turn affect
travel times throughout the system. To include congestion
effects, a promising strategy is to study a modified lumped
model whereby the infinite-server road queues are changed
to queues with a finite number of servers, where the number
of servers on each road represents the capacity of that
road. This approach is used in Figure 9 on a simple 9-
station road network, where the aim is to illustrate the
impact of autonomously rebalancing vehicles on congestion.
Specifically, the stations are placed on a square grid, and
joined by 2-way road segments each of which is 0.5 km
long. Each road consists of a single lane, with a critical
density of 80 vehicles/km. Each vehicle travels at 30 km/h
in free flow, which means the travel time along each road
segment is 1 minute in free flow. Figure 9 plots the vehicle
and road utilization increases due to rebalancing for 500
randomly generated systems (where the arrival rates and
routing distributions are randomly generated). The routing
algorithm for the rebalancing vehicles is a simple open-loop
strategy based on the linear program discussed in Section
IV-C. The x-axis shows the ratio of rebalancing vehicles to
passenger vehicles on the road, which represents the inherent
imbalance in the system. The red data points represent the
increase in average road utilization due to rebalancing and
the blue data points represent the utilization increase in the
most congested road segment due to rebalancing. It is no
surprise that the average road utilization rate is a linear
function of the number of rebalancing vehicles. However,
remarkably, the maximum congestion increases are much
lower than the average, and are in most cases zero. This
means that while rebalancing generally increases the number
of vehicles on the road, rebalancing vehicles mostly travel
along less congested routes and rarely increase the maximum
congestion in the system. This can be seen in the middle
figure of Figure 9, where rebalancing clearly increases the
number of vehicles on many roads but not on the most
congested road segment (from station 6 to station 5).

The simple setup in Figure 9 suggests that AMoD systems
would, in general, not lead to an increase in congestion.
On the other end, a particularly interesting and intriguing
research direction is to devise routing algorithms for AMoD
systems that lead to a decrease in congestion with current
demand levels (or even higher). A promising strategy relies
on the idea that if AMoD systems are implemented such
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Fig. 8. Overall vehicle availability for passengers for a 20-station human-driven MoD system based on taxi data from Lower Manhattan. The red line shows
the availability for an AMoD system with mv vehicles (or a human-driven MoD system with as many drivers as vehicles). 8(a) shows a vehicle-to-driver
ratio of 2, 8(b) shows a vehicle-to-driver ratio of 5, and 8(c) shows a vehicle-to-driver ratio of 10.
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Fig. 9. Left: Layout of the 9-station road network. Each road segment has a capacity of 40 vehicles in each direction. Middle: The top picture shows
the 9-station road network without rebalancing. The color on each road segment indicates the level of congestion, where green is no congestion, and red
is heavy congestion. The bottom picture is the same road network with rebalancing vehicles. Right: The effects of rebalancing on congestion. The x-axis
is the ratio of rebalancing vehicles to passenger vehicles on the road. The y-axis is the fractional increase in road utilization due to rebalancing.

that passengers are given precise pickup times and trips
are staggered to avoid too many trips at the same time,
congestion may be reduced. Passengers may still spend the
same amount of time between requesting a vehicle and arrival
at their destination, but the time spent waiting for the vehicle
could be used for productive work as opposed to being stuck
in traffic. Specifically, for highly congested systems, vehicle
departures can be staggered to avoid excessive congestion,
and the routing problem is similar to the simultaneous
departure and routing problem [46].

Besides congestion, several additional directions are open
for future research. As far as modeling is concerned, those
include (i) analysis in a time-varying setup (e.g., with period-
ically time-varying arrival rates), (ii) inclusion of mesoscopic
and microscopic effects into the models (e.g., increased
throughput due to platooning or automated intersections),
and (iii) more complex models for the transportation de-
mands (e.g., time windows or priorities). On the control
side, those include (i) inclusion of recharging constraints in
the routing process, (ii) control of AMoD systems as part
of a multi-modal transportation network, which should ad-
dress synergies between AMoD and alternative transportation
modes and interactions with human-driven vehicles, and (iii)

deployment of control algorithms on real-world test beds.

B. Future research on AMoD evaluation

The AMoD evaluation presented in Section VI already
showed that AMoD systems might hold significant financial
benefits. Remarkably, such financial benefits might be even
larger when we also account for the positive externalities of
an AMoD system, e.g., improved safety, freeing up urban
land for other uses, and even creating a new economy based
on infotainment systems onboard the autonomous vehicles.
Such additional benefits, however, have not been thoroughly
characterized yet and require additional analyses. Another
research direction involves the evaluation of AMoD systems
for more complex deployment options, e.g., as a last-mile
solution within a multi-modal transportation system, or with
a more sophisticated service structure, e.g., multiple priority
classes.

VIII. CONCLUSIONS

This paper overviewed recent results regarding the analy-
sis, design, control, and evaluation of autonomous mobility-
on-demand systems. Case studies of New York City and
Singapore suggest that it would be much more affordable



(and more convenient) to access mobility in an AMoD
system compared to traditional mobility models based on
private vehicle ownership. More studies are however needed
to devise efficient, system-wide coordination algorithms for
complex AMoD systems as part of a multi-modal trans-
portation network, and to fully assess the related economic
benefits.
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