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Abstract—A widely applied strategy for workload sharing is
to equalize the workload assigned to each resource. In mobile
multi-agent systems, this principle directly leads to equitable
partitioning policies whereby (i) the environment is equitably
divided into subregions of equal measure, (ii) one agent is
assigned to each subregion, and (iii) each agent is responsible for
service requests originating within its own subregion. The current
lack of distributed algorithms for the computation of equitable
partitions limits the applicability of equitable partitioning policies
to limited-size multi-agent systems operating in known, static
environments. In this paper, first, we design provably correct
and spatially distributed algorithms that allow a team of agents
to compute a convex and equitable partition of a convex environ-
ment. Second, we discuss how these algorithms can be extended
so that a team of agents can compute, in a spatially distributed
fashion, convex and equitable partitions with additional features,
e.g., equitable and median Voronoi diagrams. Finally, we discuss
two application domains for our algorithms, namely dynamic
vehicle routing for mobile robotic networks and wireless ad hoc
networks. Through these examples we show how one can couple
the algorithms presented in this paper with equitable partitioning
policies to make these amenable to distributed implementation;
more in general, we illustrate a systematic approach to devise
spatially distributed control policies for a large variety of multi-
agent coordination problems. Our approach is related to the
classic Lloyd algorithm, and exploits the unique features of power
diagrams.

I. INTRODUCTION

In the near future, large groups of autonomous agents will
be used to perform complex tasks including transportation
and distribution, logistics, surveillance, search and rescue
operations, humanitarian demining, environmental monitoring,
and planetary exploration. The potential advantages of multi-
agent systems are, in fact, numerous. For instance, the intrinsic
parallelism of a multi-agent system provides robustness to
failures of single agents, and in many cases can guarantee
better time efficiency. Moreover, it is possible to reduce the
total implementation and operation cost, increase reactivity
and system reliability, and add flexibility and modularity to
monolithic approaches.

In essence, agents can be interpreted as resources to be
shared among customers. In surveillance and exploration
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missions, customers are points of interest to be visited; in
transportation and distribution applications, customers are peo-
ple demanding some goods or services (e.g., utility repair); in
logistics tasks, customers could be troops on the battlefield.

A widely applied strategy for workload sharing is to equal-
ize the total workload assigned to each resource. In mobile
multi-agent systems, this strategy naturally leads to equitable
partitioning policies [1]-[4]. An equitable partitioning policy
is a workload sharing policy whereby the environment Q C R?
is equitably partitioned into m openly disjoint subregions Q;
(i € {1,...,m}) whose union is Q, where m is the number of
available agents; then, each agent ¢ is assigned to subregion
Q;, and each customer in Q; receives service by the agent
assigned to Q;. In this paper, equitability is in the following
sense: If we model the workload for subregion 7 C Q as
At = [ Xx)dx, where () is a measure over Q, the
workload for agent 7 is Ao, (the measure A can represent, for
example, the density of customers over Q, or, in a stochastic
setting, their arrival rate). Then, an equitable partition (i.e.,
a partition that guarantees equitable workload sharing) is a
partition where Ag, = Ag/m, for all 1.

Equitable partitioning policies are predominant for three
main reasons: (i) efficiency, (ii) ease of design and (iii)
ease of analysis. Equitable partitioning policies are, therefore,
ubiquitous in applications involving multi-agent systems. To
date, nevertheless, to the best of our knowledge, all equitable
partitioning policies inherently assume a centralized compu-
tation of the partition of the environment (henceforth, we
will refer to algorithms for the computation of partitions as
partitioning algorithms). This fact is in sharp contrast with
the desire of a fully distributed architecture for a multi-agent
system. The lack of a fully distributed architecture limits the
applicability of equitable partitioning policies to limited-size
multi-agent systems operating in a known, static environment.

The contribution of this paper is threefold. First, we design
provably correct and spatially distributed algorithms that allow
a team of agents to compute a convex and equitable partition
of a convex environment. Our approach is related to the
classic Lloyd algorithm from vector quantization theory [5],
[6], and exploits the unique features of power diagrams, a
generalization of Voronoi diagrams (a similar approach is
studied in [7] in the context of sensor networks performing
static coverage optimization with area constraints; see also
[8] for another interesting application of power diagrams in
the context of power-constrained mobile sensor networks).
Second, we discuss how these algorithms can be extended so
that a team of agents can compute, in a spatially distributed
fashion, convex and equitable partitions with additional fea-
tures critical to applications. For example, we consider equi-



table and median Voronoi diagrams, which play a key role
in several application domains: to the best of our knowledge,
no algorithm (centralized or distributed) is currently available
for their computation, but they are within the scope of our
analysis. Third, we discuss two important application domains
for our algorithms, namely, dynamic vehicle routing for mobile
robotic networks and wireless ad hoc networks. Through
these examples we illustrate a systematic approach to devise
spatially distributed control policies for the class of multi-
agent coordination problems that admit equitable partitioning
policies as a solution. This approach consists in combining the
partitioning algorithms presented in this paper with suitable
single-agent control laws. In other words, the partitioning
algorithms we devise in this paper are a “building block”
instrumental to design spatially distributed control policies for
a large variety of multi-agent coordination problems.

We mention that our algorithms, although motivated in the
context of multi-agent systems, are a novel contribution to
the field of computational geometry. In particular we address,
using a dynamical system framework, the well-studied equi-
table convex partition problem (see [9] and references therein);
moreover, our analysis provides new insights in the geometry
of Voronoi diagrams and power diagrams (including some
existence and impossibility results).

The paper is organized as follows. In Section II we provide
the necessary tools from calculus, algebraic topology, and
computational geometry. In Section III we first prove some
existence results for power diagrams, and then we design
provably correct and spatially distributed algorithms for the
computation of equitable partitions. In Section IV we discuss
how one can extend these algorithms to enable the spatially
distributed computation of convex and equitable partitions
with additional features (e.g., equitable and median Voronoi
diagrams). In Section V we describe two application domains
for the algorithms developed in this paper, namely dynamic
vehicle routing and deployment of wireless ad hoc networks,
and in Section VI we present results from numerical experi-
ments. Finally, in Section VII, we draw our conclusions.

II. BACKGROUND

In this section we introduce some notation and briefly
review some concepts from calculus, algebraic topology, and
computational geometry, on which we will rely extensively
later in the paper.

A. Notation

Let || - || denote the Euclidean norm. Let Q be a compact,
convex subset of R?. We denote the boundary of Q as 9Q and
the Lebesgue measure of Q as |Q|. We define the diameter of
Q as: diam(Q) = max{||p—q|| | p, ¢ € Q}. The distance from
a point z to a set M is defined as dist(x, M) = infpecar ||z —
pll. We define I,,, = {1,2,...,m}. Let G = (g1,...,9m) C
Q™ denote the location of m points in Q. A partition (or
tessellation) of Q is a collection of m closed subsets {Q;},
with disjoint interiors whose union is Q. A partition {Q;}7,
is convex if each Q;, i € I,,, is convex. Let A : @ — R+ be
a measure over Q, absolutely continuous with respect to the

Lebesgue measure. Define Ay = fT/\(x) dx for any T C QO;
a partition {Q;}™, of the environment Q is equitable with
respect to A if Ag, = Ag; for all ¢, j € Ip,.

Finally, we define the saturation function sat, (), with a <
b, as:

1, if > b,
saty () = (x —a)/(b—a), ifa<z<b,
0, if x < a.

B. Variation of an Integral Function due to a Domain Change

The following result is related to classic divergence the-
orems [10]. Let @ = Q(y) C Q be a region that depends
smoothly on a real parameter y € R and that has a well-
defined boundary 0Q(y) for all y. Let h be a density function
over Q. Then

d dz
qa () da = da Moy
dy /Q(y) () d /aQ(y)(dy n(x)) (x)dx (1)

where v - w denotes the scalar product between vectors v and
w, n(x) is the unit outward normal to 9Q(y) at z, and dz/dy
is the derivative of the boundary points with respect to .

C. A Sufficient Condition for the Surjectivity of a Map

The following two results will be fundamental to prove
some existence theorems and are a direct consequence of the
theory of degree of continuous maps between spheres (see the
Appendix for the definition of degree of a map).

Theorem 2.1 (Surjectivity of continuous maps): Let B™ be
a closed m-dimensional ball and let S™~! be its boundary,
namely an (m — 1)-dimensional sphere. Let f : B™ — B™
be a continuous map and assume that its restriction fgm-1 :
§m=1 — §m=1 has degree different from 0. Then f is onto
B™.

Proof: See Appendix. [ ]

In the sequel we will also need the following result.

Lemma 2.2 (Degree of continuous bijective maps): Let f :
S™ — 8™, with m > 1, be a continuous bijective map from
an m-dimensional sphere to itself. Then the degree of f is
equal to £1.

Proof: See Appendix. [ ]

D. Voronoi Diagrams and Power Diagrams

We refer the reader to [11] and [12] for comprehensive treat-
ments, respectively, of Voronoi diagrams and power diagrams.
Assume that G = (g1,...,9m) is an ordered set of distinct
points. The Voronoi diagram V(G) = (V1(G), ...,V (G)) of
Q generated by points G is defined by

Vi(G) ={z e Q| |z — gl <llz = gjll, Vi # 4 j € Im}-

We refer to G as the set of generators of V(G), and to V;(G) as
the Voronoi cell or region of dominance of the ¢-th generator.
For ¢;,9; € G, i # j, we define the bisector between g; and
g; as b(g:,g;) = {z € Q| |z — gill = & — g;]1}. The face
b(gi, g;) bisects the line segment joining g; and g;, and this
line segment is orthogonal to the face (Perpendicular Bisector



Property). One can easily show that each Voronoi cell is a
convex set, and thus a Voronoi diagram of Q is a convex
partition of Q (see Figure 1(a)). The Voronoi diagram of an
ordered set of possibly coincident points is not well defined.

Assume, now, that each point g; € G has assigned an
individual weight w; € R, i € I,; let W = (wq,...,wpy).
We define the power distance as

dp(z, gisw;) = ||z — gil|* — w;.

We refer to the pair (g;, w;) as a power point and define Gy =
(Cgr.w1). - (goms )
(g5, w;) are coincident if g; = g; and w; = w;. Assume that
Gy is an ordered set of distinct power points. Similarly as be-
fore, the power diagram V(Gw) = (Vi(Gw), ...,V (Gw))
of Q generated by power points Gy is defined by

. Two power points (g;,w;) and

Vi(Gw) ={z € Q| |z — gill* —wi < |lx — g; I — wy,
Vi #i,j € Ln).

We refer to Gy as the set of power generators of V(G ),
and to V;(Gw) as the power cell or region of dominance
of the i-th power generator; moreover we call g; and w;,
respectively, the position and the weight of the power generator
(gi, w;). One can easily show that a power diagram is a convex
partition of Q. Notice that, when all weights are the same, the
power diagram of Q coincides with the Voronoi diagram of Q.
Indeed, power diagrams are the generalized Voronoi diagrams
that have the strongest similarities to the original diagrams
[13]. There are some differences, though. First, a power cell
might be empty. Second, g; might not be in its power cell (see
Figure 1(b), where each weight is positive, and each power
generator (g;,w;) is represented by a circle whose center is
g; and whose radius is ,/w;). Finally, the bisector of (g;,w;)

and (g;, w;), i # j, is
b((gisw), (95 w))) = {2 € QI (g — )" =

1
3 Ulgsll* = llgill® + wi = w;)}.
@

Hence, b((gi7wi), (gj7wj)) is a face orthogonal to the line
segment g; g; and passing through the point g;; given by
12 = llgill* + wi — w;

2llg; — gill?

= lg; (95 — 9i);
this last property will be crucial in the remainder of the paper:
it means that, by changing the values of the weights, it is pos-
sible to arbitrarily move the bisector between the positions of
the two corresponding power generators, while still preserving
the orthogonality constraint. The power diagram of an ordered
set of possibly coincident power points is not well defined.
For simplicity, we will refer to V;(G) (V;(Gw)) as V;. When
the two Voronoi (power) cells V; and V; are adjacent (i.e.,
they share a face), g; ((g:,w;)) is called a Voronoi (power)
neighbor of g; ((gj,w;)), and vice-versa. The set of indices
of the Voronoi (power) neighbors of g; ((g;,w;)) is denoted
by N;. We also denote the (4, j)-face as A;; = V; NV},

(a) A Voronoi Diagram.

(b) A power diagram [13]. The
weights w; are all positive. Power
generator (g2, w2) has an empty cell.
Power generator (gs,ws) is outside
its region of dominance.

Fig. 1. Examples of Voronoi diagrams and power diagrams.

IITI. A SPATIALLY-DISTRIBUTED ALGORITHM TO
COMPUTE EQUITABLE PARTITIONS

In this section we develop a provably correct and spatially
distributed algorithm for the computation of a convex and
equitable partition of a convex environment Q (see, e.g., [14]
for a rigorous definition of spatially distributed algorithms). In
the next section we will present an extension of this algorithm,
which enables the spatially distributed computation of convex
and equitable partitions with additional features (e.g., convex
and equitable partitions that are approximations of equitable
Voronoi diagrams).

To develop our algorithms, we restrict our attention to a spe-
cific class of partitions, namely the class of power diagrams.
The reason for focusing on power diagrams is threefold. First,
power diagrams can be viewed as a map between sets of
weighted points and regions of dominance; as it will become
apparent in Section III-B, where we give an overview of the
proposed algorithm, this property simplifies considerably the
task of designing spatially distributed algorithms for environ-
ment partitioning. Second, several well-known and practically
important convex partitions, such as median Voronoi diagrams,
are particular types of power diagrams; hence, power diagrams
are rather general. Finally, equitable power diagrams are
always guaranteed to exist, as we show next.

A. On the Existence of Equitable Power Diagrams

An important property of power diagrams is that an equi-
table power diagram always exists for any A (notice that in
general, when ) is non-uniform, an equitable Voronoi diagram
may fail to exist, as we will show in section III-E). Indeed, as
shown in the next theorem, an equitable power diagram (with
respect to any given \) exists for any vector of distinct points
G=1(91,-.-,9m) in Q.

Theorem 3.1 (Existence of equitable power diagrams):

Let G = (¢1,- .-, 9m) be the positions of 1 < m < oo distinct
points in Q. Then, there exist weights w;, ¢ € I,,, such that

((917w1)7 R (gmvwm)
diagram that is equitable with respect to A\. Moreover, given a
vector of weights W* that yields an equitable power diagram,

the power points generate a power



the set of all vectors of weights yielding an equitable power
diagram is W* = {W* +t[1,...,1] | t € R}.

Proof: 1t is not restrictive to assume that A\g = 1 (i.e., we
normalize the measure of Q), since Q is bounded. The strategy
of the proof is to use a topological argument to force existence.
Specifically, we view a power diagram as a “map” that maps
vectors of weights into vectors of measures of power cells, and
we show that this map is surjective by applying Theorem 2.1.
The surjectivity of the “power diagram map”, in turn, implies
that it must exist a vector of weights that realizes an equitable
power diagram.

We begin the proof by constructing a weight space. Let
D = diam(Q)?/2, and consider the cube C = [—D, D]™ (see
Figure 2). This is the weight space and we consider weight
vectors W taking value in C; this is not restrictive, since
if the difference between two weights is larger than 2D =
diam(Q)?, at least one cell has measure zero, and thus the
corresponding power diagram can not be equitable. Second,
consider the standard m-simplex of measures \g,,...,\g,,
(where Qy, ..., Q,, are the power cells). This can be realized
in R™ as the subset of defined by Y ;" Ao, = 1 with the
condition Ag, > 0 (see again Figure 2). Let us call this set “the
measure simplex A” (notice that it is (m — 1)-dimensional).

We call f: C — A the map associating, according to the
power distance, a weight vector W with the corresponding
vector of measures (Ag,,...,Ag,, ). Since the points in G
are assumed to be distinct, this map is continuous.

To prove the first statement of the theorem, we will prove
that f : C — A is surjective for every m > 1 by using
induction on m, starting with the base case m = 3 (the
statement for m = 1 and m = 2 is trivially checked).
We consider as base case m = 3 since its study, which
can be aided by visualization, contains most of the ideas
involved in the inductive step and makes the corresponding
proof more transparent. When m = 3, the weight space C is

a three-dimensional cube with vertices vg = [—D,—D, —D],
v = [D,~D,~D), vs = [-D,D,~D], v3 = [-D, —D, D],
vi = [D,~D,D), vs = [-D,D,D], vy = |D,D,-D].
and v; = [D, D, D]. The measure simplex A is a triangle

with vertices u1, ug, and ug that correspond to the cases 1)
Ao, =10, =0,2g, =0,2) Ag, =0,g, =1,Ag, =0,
and 3) Ag, = 0,Ag, = 0, g, = 1, respectively. Moreover,
call e1,eo and eg the edges opposite to the vertices w1, uso,
and us, respectively. The edges e; are, therefore, given by the
condition {A\g, = 0} (see Figure 2).

Let us return to the map f : C — A. It is easy to see that
f is constant on sets of the form W = {{W + ¢(1,1,1)} N
C, t€ R}, where W is a weight vector in C; in other words,
whenever two sets of weights differ by a common quantity,
they are mapped to the same point in A. Moreover, fixing a
point p € A, we have that f~!(p) is simply given by a set of
the form W for a suitable W (a proof of this fact is provided,
for any m > 3, within the proof of the inductive step, which
is presented in the Appendix). Hence, the “fibers” of f, i.e.,
the loci where f is constant, are straight lines parallel to the
main diagonal vov7 (the second statement in Theorem 3.1 is
an immediate consequence of this fact). Note that the image
of the diagonal vyvr7 is exactly the point py of A for which the

v3

ez : {Ag, =0}
Ao, =1.Ag, =0,Ag, = 0]

vo = (=D, —D,-D)

Fig. 2. Weight space C, measure simplex A, and the power diagram map
f:C— Aform=3.

measures are those of a Voronoi partition, since the weights
are all equal.

On the weight space C let us define the following equiv-
alence relation: W' = W?2 if and only if they are on a line
parallel to the main diagonal vgv;. The map f : C — A
induces a continuous map (still called f by abuse of notation)
from C/ = to A having the same image. Let us identify C/ =
with a simpler topological space. Since any line in the cube
parallel to the main diagonal vgv; is entirely determined by
its intersections with the three faces F5 = C N {ws = —D},
F, =Cn{wy =—-D}, and F; = CN{w; = —D}, we can
identify C/ = with the union of these faces and we call this
union F. We therefore have a continuous map f : F — A
that has the same image of the original f; besides, the induced
map f : F — A is injective by construction, since each fiber
intersects J in only one point.

Observe that F is homeomorphic to B2, the 2-dimensional
ball, like A itself. Up to homeomorphisms, therefore, the map
f:+F — A can be viewed as a map (again called f by abuse
of notation) f : B2 — B2. Consider the closed loop I" given
by vovs, V53, V3V4, V4V1, U1Vg, VgU2 With this orientation (see
Figure 2). This loop is the boundary of F and we think of it
also as the boundary of B2. Taking into account the continuity
of f, it is easy to see that f maps I" onto the boundary of A.
For example, while we move on the edges vsvs and vsvs,
that are characterized by having w; = —D, the corresponding
point on the measure simplex moves on the edge e;.

Moreover, since f is injective by construction, the inverse
image of any point on the boundary of A is just one element
of T. Identifying the boundary of A with S* (up to homeomor-
phisms) and the loop I' with S! (up to homeomorphisms) we
have a bijective continuous map fg1 : S* — S'. By Lemma
2.2 the degree of f is equal to £1 and, therefore, f is onto
A, using Theorem 2.1. This proves the base case m = 3. The
proof of the inductive step is provided in the Appendix. M

Some remarks are in order.

Remark 3.2 (General measure assignment): In the proof of
the above theorem, we actually proved that for any measure
vector (Ag,,...,Ag,,) in A there exists a weight vector W €
C realizing it through the map f. This could be useful in some
applications.

Remark 3.3 (Uniqueness of equitable power diagrams):
Since all vectors of weights in W* yield exactly the same
power diagram, we conclude that the positions of the



generators uniquely induce an equitable power diagram.

B. Overview of the Algorithm

Henceforth, we assume that Q is a compact, convex sub-
set of R? (we will discuss more general environments in
Remark 4.5). Each agent locally controls a power generator
(g:(t), w;(t)) € Q x R, where t € R>( denotes dependence
on time. We will refer to the power cell V; = V;(Gw ), where
Gw = ((91, w1y -y (Gm, wm)), as the region of dominance
of agent i, and to the partition into regions of dominance
induced by the set of generators' Gy as V(G ).

The key idea is to construct an energy function with the
properties that (1) it depends on the weights of the generators,
and (2) all its critical points correspond to vectors of weights
yielding an equitable power diagram (whose existence is
guaranteed by Theorem 3.1). Then, the agents update their
weights according to a spatially distributed gradient-descent
law (while maintaining the positions of the generators fixed)
until a critical point of the energy function (and hence an
equitable power diagram) is reached.

Assume, henceforth, that the positions of the generators are
distinct, i.e., g; # g; for i # j, and define the set

Si{(wl,...,

In other words, set S contains all vectors of weights such that
no region of dominance has measure equal to zero.
We introduce the energy function Hy : S — Ry g:

—1 m
d =y At .. @3
Z(/V(W) (z) m) ; viwy G

wm) ER™ | Ay, >0, Vie Im}.

where W = (wy, ..., Wn).

C. Smoothness and Gradient of Hy

We now analyze the smoothness properties of Hy,. In the
following, let 7, = [lg; — il

Theorem 3.4 (Smoothness of Hy): Assume the generators’
positions are distinct, i.e., g; # g; for ¢ # j. The following
statements hold:

1) the function Hy is continuously differentiable on .S,
where for each i € {1,...,m}

1 1

2) all critical points of Hy, are weight vectors that yield an
equitable power diagram.

OHy 1
8 w; cN; 2’)/”'

Proof: By assumption, g; # g; for ¢ # j, thus the power
diagram is well defined. Since the motion of a weight w; only
affects power cell V; and its neighboring cells V; for j € N;,
we have

OHy 1 0h, Z 1 Oy,
ow; A Ow; )\ ow;

!For brevity, we will often refer to a power generator simply as a generator.

Now, the result in equation (1) provides the means to
analyze the variation of an integral function due to a domain
change. Since the boundary of V; satisfies 0V; = U;A;; U B;,
where A;; = Aj; is the edge between V; and Vj, and B; is
the boundary between V; and Q (if any, otherwise B; = (),
we have

Ay,
ow;

Z/ <8w1 ni;(x)) M) de +
., G

where we defined n;; as the unit normal to A;;, outward of
Vi (thus nj; = —n;;). The second term is trivially equal to
zero if B; = (; it is also equal to zero if B; # (), since the
integrand is zero almost everywhere. Similarly,

v, _ / Ox.
o Aij 611)1

611)1‘

To evaluate the scalar product between the derivative of
the boundary points and the unit normal to the boundary in
equations (5) and (6), we differentiate equation (2) with respect
to w; at every point x € Ay;; we get

5
n”(m)> Az) dz, ©)

=0

@) Aoy @

Ox (05 ) = 1
8wi gJ i) = 2.
From equation (2) we have n;; = (95 — i) /llg; — gill,

and the desired explicit expressions for the scalar products in
equation (5) and in equation (6) follow immediately (recalling
that n;; = —n;;). Collecting the above results, we obtain the
partial derivative with respect to w;.

The proof of the characterization of the critical points
(i.e., the proof of the second statement) is an immediate
consequence of the expression for the gradient of Hy; we
omit it in the interest of brevity.

|

Remark 3.5 (Spatially distributed gradient computation):
The computation of the gradient in Theorem 3.4 is spatially
distributed over the dual graph of the power diagram (we call
such graph the power-Delaunay graph), since the summation
in equation (4) only runs through the indices of generators
with neighboring power cells.

Example 3.6 (Gradient of Hy for uniform measure): The
gradient of Hy, simplifies considerably when A is uniform. In
this case, it is straightforward to verify that

0Hy |9 1 1
B Z (|vj2|vi|2>’

o0 w; 2)\Q N, Vs
where d;; is the length of the boundary segment A;;.

D. Spatially Distributed Algorithm for Equitable Partitioning

Each agent updates its own weight according to the follow-
ing control law defined over the set .S:
O0Hy
6101‘

w;i(t) = — (W(t), t=0, )



where the dot represents differentiation with respect to
time, and where we assume that the partition V(W) =
{V1,...,Vin} is continuously updated. One can prove the
following result.

Theorem 3.7 (Correctness of algorithm (7)): Assume that
the positions of the generators are distinct, i.e., g; # g; for
i # j. Consider the gradient vector field on S defined by
equation (7). Then generators’ weights starting at ¢ = 0 at
W(0) € S and evolving under (7) remain in S and converge
asymptotically to a critical point of Hy, i.e., to a vector of
weights yielding an equitable power diagram.

Proof: Define the set
U= {(wl,...,wm) eR™| ZUM = c},
i=1

where ¢ € R is an arbitrary constant. Let 3 = SN U. We
next prove that generators’ weights starting in €2 and evolving
under (7) converge to a vector of weights yielding an equitable
power diagram.

By assumption, g; # g; for 7 # j, thus the power diagram is
well defined. First, we prove that set ) is positively invariant
with respect to (7). Noticing that control law (7) is a gradient
descent law, we have for all trajectories starting in )

Since the measures of the power cells depend continuously on
the weights, we conclude that the measures of all power cells
will be bounded away from zero; thus, the weights will belong
to S for all ¢ > 0, that is, W (t) € S V¢t > 0. Moreover, the
sum of the weights is invariant, in fact

O wi N OHy
ot __Z

=1

R 2’Ym()\2v7 B AQW)/AU)‘(JJ) dr =0,

i=15€N;

since v;; = Vi, Aij = Aji, and j € N; < i € Nj. Thus, we
have W (0) € Q@ = W(t) € U Vt > 0. Since for all trajectories
starting in §2 one has W (t) € SVt > 0and W(t) € U ¥Vt > 0,
we conclude that W(0) € Q = W (t) e SNU =Q VvVt >0,
that is, set {2 is positively invariant.

Second, function Hy, is clearly non-increasing along system
trajectories starting in €2, that is, Hy < 0 in €.

Third, all trajectories with initial conditions in () are
bounded. Indeed, we have already shown that Y ;" w;(t) = ¢
along system trajectories starting in (2. This implies that
weights remain within a bounded set: If, by contradiction, a
weight could become arbitrarily positive large, another weight
would become arbitrarily negative large (since the sum of
weights is constant), and the measure of at least one power cell
would vanish, which contradicts the fact that 2 is positively
invariant.

Finally, by Theorem 3.4, Hy is continuously differentiable
in €. Hence, by invoking the LaSalle invariance principle (see,
for instance, [6]), generators’ weights with initial conditions
in 2 and evolving under (7) will converge asymptotically to
the set of critical points of Hy in €2, which is not empty as

confirmed by Theorem 3.1. Indeed, by Theorem 3.1, we know
that all vectors of weights yielding an equitable power diagram
differ by a common translation. Thus, the largest invariant set
of Hy in ) contains only one point. This implies that for all
W(0) € € the limit lim, ., W (t) exists and it is equal to a
vector of weights that yields an equitable power diagram.

The theorem then follows since ¢ was chosen arbitrarily.

|
Some remarks are in order.

Remark 3.8 (Global convergence): By Theorem 3.7, con-
vergence to an equitable power diagram is global with respect
to S for any set of generators’ distinct positions. Indeed, there
is a very natural choice for the initial values of the weights.
Assuming that at ¢ = 0 agents are in Q and in distinct
positions, each agent initializes the position of its generator
to its physical position, and the corresponding weight to zero.
Then, the initial partition is a Voronoi tessellation; since A
is positive on Q, each initial cell has nonzero measure, and
therefore W (0) € S.

Remark 3.9 (Spatially distributed algorithm): The compu-
tation of the partial derivative of Hy with respect to the
i-th weight only requires information from the agents with
neighboring power cells. Therefore, the gradient descent law
(7) is indeed a spatially distributed algorithm over the power-
Delaunay graph. We mention that, in a power diagram, each
power generator has an average number of neighbors less than
or equal to six [13]; therefore, the computation of gradient (7)
is scalable (on average) with the number of agents.

Remark 3.10 (Partitions with general measure assignment):
The focus of this paper is on equitable partitions. Notice,
however, that it is easy to extend the previous algorithm to
obtain a spatially distributed (again, over the power-Delaunay
graph) control law that provides any desired measure vector
(Avy, ...y Av,,). In particular, assume that we desire a partition
such that Ay, = B;Ag, where 3; € (0,1), >7", 3 = L. If
we redefine Hy : S — R- as

Hy(W) = Z

then, following the same steps as before, it is possible to show
that under control law

. OHy . 1 (B8 B
wl__awz'(W)_ZQ%'j<)‘2vj_/\%/i /A

JEN;

2
[

Aviowy

Az) dx,
the solution converges to a vector of weights that yields
a power diagram with the property Ay, = B;Ag (whose
existence is guaranteed by Remark 3.2).

E. On the Use of Power Diagrams instead of Voronoi Dia-
grams

A natural question that arises is whether a similar result
can be obtained by using Voronoi diagrams (of which power
diagrams are a generalization). The answer is positive if we
constrain A to be uniform over Q, but it is negative for general
measures A, as we briefly discuss next.

Indeed, when X is uniform over Q, an equitable Voronoi
diagram always exists. We prove this result in a slightly more
general setup.



Definition 3.11 (Unimodal Property): Let Q@ C R? be a
bounded, measurable set (not necessarily convex). We say
that Q enjoys the Unimodal Property if there exists a unit
vector v € R? such that the following holds. For each s € R,
define the slice Q° = {z € Q, v -z = s}, and call
P(s) = mg—1(Q®) the (d—1)-dimensional Lebesgue measure
of the slice. Then, the function 7 is unimodal. In other words,
1 attains its global maximum at a point s, is increasing on
(—00, 5], and decreasing on [, 00).

When A is uniform, the Unimodal Property (notice that
every compact, convex set enjoys this property) turns out to
be a sufficient condition for the existence of equitable Voronoi
diagrams, as stated in the following theorem.

Theorem 3.12 (Existence of equitable Voronoi diagrams):
If @ ¢ RY is a bounded, measurable set satisfying the
Unimodal Property and A is uniform over Q, then for every
m > 1 there exists an equitable Voronoi diagram with m
(Voronoi) generators.

Proof: See Appendix. ]

Then, an equitable Voronoi diagram can be achieved by
using a gradient descent law conceptually similar to the one
discussed previously (the details are presented in [15]). We
emphasize that the above existence result on equitable Voronoi
diagrams seems to be new in the rich literature on Voronoi
tessellations.

While an equitable Voronoi diagram always exists when
A is uniform over Q, in general, for non-uniform A, an
equitable Voronoi diagram fails to exist, as the following
counterexample shows.

P, =(17/20,17/6)"7]

™~ P, =(3/20,17/6)
2.5

P, =(2/10,1/3) P, =(8/10,1/3)
N

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Vs

Fig. 3. Example of non-existence of an equitable Voronoi diagram on a line.
The above tessellation is an equitable partition, but not a Voronoi diagram.

Example 3.13 (Existence problem on a line): Consider a
one-dimensional Voronoi diagram. In this case a Voronoi
cell is a half line or a line segment (called a Voronoi line).
It is easy to notice that the boundary point between two
adjacent Voronoi lines is the mid-point of the generators of
those Voronoi lines. Consider the measure A in Figure 3,
whose support is the interval [0, 1]. Assume m = 5. Let b;
(i =1,...,4) be the position of the i-th leftmost boundary
point and g; be the position of the i-th leftmost generator
(z =1,...,5). It is easy to verify that the only admissible
configuration for the boundary points in order to obtain an
equitable Voronoi diagram is the one depicted in Figure 3 (the
Vi’s represent the Voronoi lines). Now, by the Perpendicular

Bisector Property, it must hold:

{ g3 — b2 =02 —go

g1 —bs =bs— g3

Therefore, we would require g4 — go = 2(bs — ba) = 1.2; this
is impossible, since g must belong to the interval [0.1, 0.2]
and g, must belong to the interval [0.8, 0.9].

IV. DISTRIBUTED ALGORITHMS FOR EQUITABLE
PARTITIONS WITH ADDITIONAL FEATURES

In this section we devise spatially distributed algorithms to
compute convex, equitable partitions with additional features
(e.g., convex and equitable partitions that are approximations
of equitable Voronoi diagrams). In the next section we will
provide in-depth motivations for the partitions we study here
and two applications for the algorithms we devise.

From an algorithmic standpoint, the key idea we exploit
is that an equitable power diagram can be obtained by just
changing the values of the weights (while keeping the gener-
ators’s positions fixed), as shown in Theorem 3.7. Thus, one
can use the degrees of freedom given by the positions of the
generators to achieve additional objectives. Specifically, we
now assume that both generators’ weights and positions obey
a first order dynamical behavior

u’)i = UEU,
gi = ul.
Define the set

$={((gr,w1), - (gmswm)) € (QxR)™ | g; £ g;
for alli # j,and Ay, > 0 Vi € Im}.

The primary objective is to achieve a convex and equitable
partition, and is captured, similarly as before, by the energy
function Hy : S — Ry

Z )\V (Gw)"

Theorem 4.1 (Smoothness of HV ): The
statements hold: ~
1) the function Hy is continuously differentiable on .S,

following

where for each i € {1,...,m}
H 1 1 —gi
: V:Z(T*T)/ =9 \(@) e,
9gi  u M A
OHy ( 1 1 ) / 1
= - - Az) dz,

2) all critical points of Hy are generators’ positions and
weights that yield an equitable power diagram.

Proof: The proof of this theorem is very similar to the
proof of Theorem 3.4; we omit it in the interest of brevity (the
derivation of the partial derivative %—If]:i can be found in [16]).

|

Notice that the computation of the gradient in Theorem 4.1

is spatially distributed over the power—Delaunay graph. For

brevity, we denote the vectors :I:a— with v, 7 , respectively.

Three possible additional ObJGCtIVGS are discussed in the
remainder of this section.



A. On Approximating Equitable and Median Power Diagrams

We call a power diagram V(Gw ) a median power diagram
of Q with respect to the measure ) if the ordered set of gen-
erators’ positions GG is equal to the ordered set of generalized
medians of the sets in V(Gy/) with respect to A, i.e., if for
alli e {1,...,m}

g; = arg min / llg — x| A(x). (8)
9€R? Jv;(Gw)

If all weights are equal, a median power diagram is referred
to as a median Voronoi diagram (since when all weights
are equal a power diagram reduces to a Voronoi diagram).
It is possible to show that a median power diagram always
exists for any compact domain Q and density A [17]. The
minimization problem in equation (8) is a strictly convex
optimization problem, and we denote its (unique) solution with
g;; the point g can be readily computed by using iterative
methods, e.g., gradient-descent methods where the gradient is
given by the formula

akmm)gﬂM@dx_/

g—z
Gw) llg ==l

Az) dx.

The main motivation to study equitable and median power
diagrams is that, as it will be discussed in Section IV-C, they
can be used to approximate equitable and median Voronoi
diagrams. Such diagrams play a special role in the context of
dynamic vehicle routing for robotic networks (see Section V
for further details). Remarkably, in a median Voronoi diagram
the shape of the cells, under certain conditions, resembles that
of regular polygons [17].

A natural candidate control law for the computation of
an equitable and median power diagram (or at least for the
computation of an approximation of it) is to let the positions of
the generators move toward the medians of the corresponding
regions of dominance, when this motion does not increase the
disagreement between the measures of the cells (i.e., it does
not make the time derivative of Hy positive). Accordingly, we
introduce the following C'°° saturation function

] 0 forz <0,
Q(x) o exp(—@) for z > 07 ﬁ S R>0;
moreover, we denote the vector g — g; as Vg¥ g Then,

each agent updates its own power generator according to the
following control law defined over the set .S:

oy
ow; ’ €))

gi =« @(Ugf,gi : Ufaffi) Vgs,g:i»

w; =

where we assume that the partition V(Gyw ) = {V1,...,V,,} is
continuously updated, and where a € R~. The term O (vg- g, -
v_pj7,) is needed to make the right-hand side of (9) compatible
with the minimization of f[v; in fact, due to the presence of
O(+), gi = 0 whenever Vgrg; " V_p, < 0. In other words,
g; moves toward the median of its cell if and only if this
motion is compatible with the minimization of Hy. Note that
the vector field in equation (9) is Lipschitz continuous and

that the computation of the right-hand side of (9) is spatially
distributed over the power-Delaunay graph.

As in many algorithms that involve the update of generators
of Voronoi diagrams, it is possible (even though simulations
show that this is “highly unlikely”) that under control law (9)
there exists a time ¢* and 4, j € I,,, such that g;(t*) = g,;(t*).
In such a case, either the power diagram is not defined (when
w; (t*) = w;(t*)), or there is an empty cell (when w;(t*) #
w;(t*)), and there is no obvious way to specify the behavior
of control law (9) for these singularity points. Then, to make
the set S positively invariant, we have to make a technical
modification to the update equation for the positions of the
generators. The idea is to stop the positions of two generators
when they are close and are on a collision course.

Define, for A € Ry, the set M;(G,A) = {g; €
Glllg; — gill < A, g; # gi}. In other words, M; is the
set of generators’ positions within an (Euclidean) distance
A from g;. For § € Ry, § < A, define the gain function
T(p,d) :[0,A] x [0,27] — R>¢ (see Figure 4) as follows:

g;j; ifo<p<A and0< ¥ <,
z—_‘;(lJrsinﬁ)fsinz? ifd<p<A and 7 <9 <2,
0 if p<d and 0 < ¥ < m,
—gsinﬁ ifp<o and ™ <9 < 27.

It is easy to see that (-, -) is a continuous function on [0, A] x
[0,27] and it is globally Lipschitz there. Function ¥(-,-) has
the following motivation. Let p be equal to |g; — g;| (for
some g; € M;(G,A)), and let v, be a vector such that the tern
{vz, (g — i), vz x (g —gi)} is an orthogonal basis of R3, co-
oriented with the standard basis. In Figure 4, v, corresponds
to the z axis and g; — g; corresponds to the y axis. Finally,
let ¥ be the angle between v, and Vg¥,gs where 0 < 9 < 2.
If p <dand 0 < 9 < 7, then g; is close to g; and it is
on a collision course, thus we set the gain to zero. Similar
considerations hold for the other three cases; for example, if
p < dand 7 < ¢ < 27, the positions of the generators are
close, but they are not on a collision course, thus the gain is
positive. In practice, one should choose small values for the
constants § and A (e.g., in our simulations, they are set to
values in the order of diam(Q) - 107°).

Zero gain

A Y =95~ i

Fig. 4. Gain function used to avoid that the positions of two power generators
can coincide.



Accordingly, we modify control law (9) as follows:
aﬁv ~  medw

3wi T ’

gi = aO(vgr g, - U—aﬁ,;) Vgr.9i°

11 ‘P(llgj

gj GAL,(G,A)

Wy = —

(10)

where 1J;; is the angle between v, and Vg¥,gi (see the above
discussion for the definition of v,). If M;(G, A) is the empty
set, then we have an empty product, whose numerical value is
1. Note that the right-hand side of (10) is Lipschitz continuous,
since it is a product of C'! functions and Lipschitz continuous
functions, and it can be still computed in a spatially distributed
way (in fact, it only requires information from the agents
with neighboring power cells, and whose generators’ positions
are within a distance A). Next theorem shows that algorithm
(10) is still guaranteed to provide an equitable power diagram,
whose closeness to an equitable and median power diagram
will be discussed in section VI.

Theorem 4.2 (Correctness of algorithm (10)): Consider
the vector field on S defined by equation (10). Then
generators’ positions and weights starting at ¢ = 0 at
Gw(0) € S and evolving under (10) remain in S and
converge asymptotically to the set of critical points of the
objective function H y (i.e., to the set of vectors of generators’
positions and weights that yield an equitable power diagram).

Proof: The proof is virtually identical to the one of
Theorem 3.7, and we omit it in the interest of brevity. We only
notice that Hy is non-increasing along system trajectories

OHV 8HV_ & 9Hy G OHy \?
2:: 2891.1 (8wi>§0'

<0

Moreover, the components of vector field (10) for the position
of each generator are either zero or point toward Q (since the
median of a cell must be within Q); therefore, each generator
will remain within the compact set Q. ]

B. On Approximating Equitable Voronoi Diagrams

As we will show in Section V, in some applications it could
be preferable to have power diagrams as close as possible
to Voronoi diagrams (recall that when A is not uniform, an
equitable Voronoi diagram could fail to exist). The objective of
obtaining a power diagram close to a Voronoi diagram can be
translated in the minimization of the function K : R™ — R>(:

1 m
=§Zwi2;
i=1

when w; = 0 for all ¢ € I,,,, one has K (W) = 0 and the cor-
responding power diagram coincides with a Voronoi diagram.
To include the minimization of the additional objective K it
is natural to consider, instead of control law (7), the following
update law for the weights:

0Hy
8101‘

oK

- 9Hy
3w7; o

8w1;

— ;. (11)

Wy = —

However, Hy (defined in equation (3)) is no longer a valid
Lyapunov function for control law (11). The idea, then, is to
let the positions of the generators move so that aaZf - g —
%ﬁ‘; w; = 0. In other words, the dynamics of generators’
positions are used to compensate the effect of the term —w;
(present in the weights’ dynamics) on the time derivative of
Hy.

Thus, we set up the following control law, with €1, €2 and
€3 positive small constants, 5 > €1,

. 8H
i = =g Wi sat., 52(||110H ||> satg 53(dlst(g“BV))

. 8Hv Yo,

gi = 8wl m Sat51752<||U8H H) Sato 83<dlst(gz, 8V ))

(12)

The gain sat., o, ([|vyg, ||) is needed to make the right-
hand side of (12) Lipschitz continuous, while the gain
satg ¢, (dist(gi,é)VZ-) ensures that generators’ positions stay
within Q. Notice that the computation of the right-hand side
of (12) is spatially distributed over the power-Delaunay graph.

As before, it is possible (even though simulations show that
this is “highly unlikely”) that under control law (12) there
exists a time ¢* and 4, j € I,,, such that g;(¢t*) = g,(¢*). Thus,
similarly as before, we modify the update equations (12) as
follows

. OHy .
i = =Sy satey oo (|0, ) sato.co (dist(gi, OV3)):
Bwi *
H ‘I’<||9j = gill; 191‘1) =,
9;EM;(G,A)
. OHy Vg, .
Ji = w; B, m Sat51152<||v6m H) sat0753<dlst(gi, 81/;-))
H \IJ(”gJ _nga 191]) = uzor’ga
g;€EM;(G,A)

13)

where 1J;; is defined as in Section IV-A, with wi%vaﬁi
playing the role of vg: ..

Next theorem shows that algorithm (13) is still guaranteed
to provide an equitable power diagram, whose closeness to an
equitable Voronoi diagram will be discussed in section VI.

Theorem 4.3 (Correctness of algorithm (13)): Consider
the vector field on S defined by equation (13). Then
generators’ positions and weights starting at ¢ = 0 at
Gw(0) € S and evolving under (13) remain in S and
converge asymptotically to the set of critical points of the
objective function lEIV (i.e., to the set of vectors of generators’
positions and weights that yield an equitable power diagram).

Proof: Consider Hy as a Lyapunov function candidate.
First, we prove that set Sis positively invariant with respect to
(13). Indeed, by definition of (13), we have g; # g; for i # j
for all £ > O (therefore, the power diagram is always well
defined). Moreover, it is straightforward to see that ﬁv <0.
Therefore, it holds

MGy < Hv(Gw (1) < Hu(Gw(0)), i€ L, t > 0.



Since the measures of the power cells depend continuously
on the generators’ positions and weights, we conclude that
the measures of all power cells will be bounded away from
zero. Furthermore, since ¢; = 0 on the boundary of Q for all
i € I,,,, each generator will remain within the compact set Q.
Thus, the generators’ positions and weights will belong to S
for all ¢+ > 0, that is, Gy (t) € S Vt > 0.

Second, as stated before, I:IV': S — R+ is non-increasing
along system trajectories, i.e., f]v <0 in S.

Third, all trajectories with initial conditions in S are
bounded. Indeed, we have already shown that each generator
remains within the compact set Q under control law (13). As
far as the weights are concerned, we start by noticing that the
time derivative of the sum of the weights is

03 ity wi

I1

gj E]\/[l(G,A)

since, similarly as in the proof of Theorem 3.7, Z:’;l %Iju Yo o—

0. Moreover, the magnitude of the difference between any two
weights is bounded by a constant B € R, that is,

lw; —w;| < B forall i, j € I,. (14)

In fact, if, by contradiction, the magnitude of the difference
between any two weights could become arbitrarily large, the
measure of at least one power cell would vanish, since the
positions of the generators are confined within Q. Assume,
for the sake of contradiction, that weights’ trajectories are
unbounded. This means that

VR>0 3t >0and3j €I, suchthat |w;(t)]> R.

For simplicity, assume that w;(0) = 0 for all ¢ € I,,, (the ex-
tension to arbitrary initial conditions in S is straightforward).
Choose R = 2mB and let t5 be the time instant such that
|lw;(t2)] = R, for some j € I,,. Without loss of generality,
assume that w;(¢2) > 0. Because of constraint (14), we have
S wi(ta) > Zm(3m+1). Let t; be the last time before 5
such that wj(t) = mB; because of continuity of trajectories,
t1 is well defined. Then, because of constraint (14), we have
() Y wilt) < EmBm — 1) < 37 wi(te), and (i)
W < 0 for t € [ty, to] (since w;(t) > mB for all
t € [t1, t2] and equation (14) implies min;ey,, w;(¢) > 0 for
all t € [t1, t2]); thus, we get a contradiction.

Finally, by Theorem 4.1, Hy is continuously differentiable
in S. Hence, by the LaSalle invariance principle, under the
descent flow (13) the generators’ positions and weights will
converge asymptotically to the set of critical points of Hy,
which is not empty as confirmed by Theorem 3.1. [ |

C. On Approximating Equitable and Median Voronoi Dia-
grams

In many applications, it is desirable to obtain approxima-
tions of equitable and median Voronoi diagrams. For exam-
ple, such diagrams are intimately related to the solution of
the well-known dynamic vehicle routing problem, where the

= = Z w;sate, o, (”UBIL ||) satg e, <dist(gi, GVZ-)).
i=1

objective is to plan optimal multi-vehicle routes to perform
tasks that are generated over time by an exogenous process
(see Section V-A). Moreover, as the number of generators
increases, equitable and median Voronoi diagrams assume
an hexagonal honeycomb structure where each cell has the
same area (assuming that A is uniform) [17]. This fact has
interesting applications in the context of wireless ad hoc
networks (see Section V-B). In general, equitable and median
Voronoi diagrams provide subregions having the same measure
and whose shapes show circular symmetry.

In light of Theorems 4.2 and 4.3, it is possible to obtain
a power diagram approximating an equitable and median
Voronoi diagram by combining control laws (10) and (13). In
particular, we set up the following spatially distributed control
law:

wi :u;ned,w + u;/or,w’

e (15)
Next theorem shows that algorithm (15) is still guaranteed to
provide an equitable power diagram, whose closeness to an
equitable and median Voronoi diagram will be discussed in
section VI

Theorem 4.4 (Correctness of algorithm (15)): Consider

the vector field on S defined by equation (15). Then
generators’ positions and weights starting at ¢ = 0 at
Gw(0) € S and evolving under (15) remain in S and
converge asymptotically to the set of critical points of the
objective function Hy (i.e., to the set of vectors of generators’
positions and weights that yield an equitable power diagram).

Proof: The proof of this theorem is a straightforward
combination of the proofs of Theorems 4.2 and 4.3. [ ]
To the best of our knowledge, this is the first algorithm
to compute approximations of equitable and median Voronoi
diagrams. We observe that one can obtain a power diagram
approximating an equitable and centroidal Voronoi diagram
by simply replacing the motion toward the median with a
motion toward the centroid (see [18] for an introduction to
centroidal Voronoi diagrams and for a discussion on their
practical importance).

We conclude this section with a remark about the validity
of our algorithms when the environment is more general than
a compact, convex subset of R2,

Remark 4.5 (General environments): Both the existence
theorem 3.1 and the convergence theorems 3.7, 4.2, 4.3, and
4.4 indeed hold for any compact, connected environment in
R<. In particular, the existence theorem 3.1 and the con-
vergence theorems 3.7, 4.2, 4.3, and 4.4 hold even if the
environment Q has “holes”, namely it is not simply connected
or it has nontrivial homology. In fact, in the presence of
“holes”, the map associating weight vectors with vectors of
measures is still surjective to the boundary of the measure
simplex; then, since in the “weight space” there are no “holes”
and for the measure simplex one needs to prove surjectivity
only on the boundary, the argument relying on the topological
degree carries over. Of course, if the environment is non-
convex, some of the power cells might be non-convex.



V. APPLICATIONS

In this section we present two application domains for
the partitioning algorithms presented in Sections III and IV.
The discussion of these applications serves also to illustrate
a systematic approach to devise spatially distributed control
policies for the class of multi-robot coordination problems that
admit equitable partitioning policies as a solution.

A. Dynamic Vehicle Routing

An important application of the algorithms presented in this
paper lies in the context of dynamic vehicle routing problems,
where the objective is to plan optimal multi-vehicle routes to
perform tasks that are generated over time by an exogenous
process.

Specifically, we consider the following general model of
dynamic vehicle routing problem, know in the literature as the
m-vehicle Dynamic Traveling Repairman Problem (m-DTRP)
[1]: m vehicles operating in a bounded environment Q and
traveling with bounded velocity must service demands whose
time of arrival, location and on-site service are stochastic.
The objective is to find a routing policy to service demands
over an infinite horizon that minimizes the expected system
time (wait plus service) of the demands. There are many
practical settings in which such problem arises; e.g., any
distribution system which receives orders in real time and
makes deliveries based on these orders (e.g., courier services)
is a clear candidate. Surveillance missions where a team
of unmanned aerial vehicles must visit locations of events
dynamically originating within a protected environment is a
second important example.

The key concept linking the algorithms presented in this
paper with routing policies for the m-DTRP is that of -
partitioning policy. Given a single-vehicle routing policy m
for the 1-DTRP (e.g., a first-come first-served policy) and m
vehicles, a m-partitioning policy is a multi-vehicle policy such
that 1) the environment Q is partitioned according to some
partitioning scheme into m openly disjoint subregions Q;,
1€ {1,...,m}, whose union is Q, 2) one vehicle is assigned
to each subregion (thus, there is a one-to-one correspondence
between vehicles and subregions), and 3) each vehicle executes
the single-vehicle policy 7 to service demands that fall within
its own subregion.

The following two results, valid under the assumption that
the measure A is uniform, characterize the optimality of two
types of m-partitioning policies [19].

Theorem 5.1 (Optimality of w-partitioning policies):
Assume 7" is a single-vehicle optimal policy for the 1-DTRP.
For m vehicles,

1) a m-partitioning policy using a partitioning scheme
whereby {Q;}™, is an equitable and median Voronoi
diagram is an almost optimal policy in light load (i.e.,
when the arrival rate of demands is “small”’) and an
optimal policy in heavy load (i.e., when the arrival rate
of demands is “large”);

2) a m-partitioning policy using a partitioning scheme
whereby {Q;}7, is an equitable partition is an optimal
policy in heavy load.

Light and heavy load can be defined more formally in terms
of load factor; we refer the interested reader to [19]. The
almost optimality in light load is to be understood as follows:
in light load, the average system time becomes a function of
the loitering locations of the vehicles [1], and the generalized
median locations that give rise to a median Voronoi diagram
correspond to local minima or saddle points of this function.
One can state a similar set of results for the general case where
the measure A is not uniform; the details are omitted in the
interest of brevity and can be found in [19].

In light of Theorem 5.1, a systematic approach to ob-
tain multi-vehicle routing policies with provable performance
guarantees and amenable to distributed implementation is to
combine the partitioning algorithms presented in this work
with the optimal single-vehicle routing policies developed in
[19]. Note that an equitable power diagram guarantees optimal
performance in heavy load, while an equitable and median
Voronoi diagram provides almost optimal performance in light
load and optimal performance in heavy load.

Accordingly, the first step to obtain a spatially distributed
multi-vehicle routing policy is to associate each vehicle ¢ with
a power generator (g;,w;), which is an artificial variable
locally controlled by the i-th vehicle. We define the region of
dominance for vehicle i as the power cell V; = V;(Gw ), where
Gw = ((gl,wl), ol (gm,wm)) (see Figure 5). Then, each
vehicle applies to its generator one of the previous partitioning
algorithms (e.g. control law (15), if one desires performance
guarantees in both light and heavy load), while simultaneously
performing within its own region of dominance the optimal

single-vehicle routing policies described in [19] (see Figure
).

Generator’s weight

Demand

Vehicle

Generator’s position

Region of dominance

Fig. 5. Vehicles, demands, power generators, and regions of dominance. Radii
of light (dark) grey circles represent the magnitudes of positive (negative)
weights.

B. Hybrid Networks

A wireless ad-hoc network consists of a group of nodes
which communicate with each other over a wireless channel
without any centralized control; in situations where there is
no fixed infrastructure, for example, battlefields, catastrophe
control, etc., wireless ad hoc networks become valuable alter-
natives to fixed infrastructure networks for nodes to commu-
nicate with each other. To improve throughput capacity, one



can add a sparse network of more sophisticated nodes (su-
pernodes) providing long-distance communication. Assuming
that normal nodes are independently and uniformly located in
the environment, supernodes should divide the area according
to a hexagonal tessellation [3], where all hexagonal cells
have the same area. One can design a spatially distributed
algorithm to deploy the supernodes into an equitable partition
with hexagonal cells as follows. Each supernode is associated
with a power generator, and we let the physical position of
each supernode coincide with the position of its correspond-
ing power generator. Then, setting A = 1, each supernode
updates its power generator (and, hence, its physical position)
according to algorithm (15). Since, when A is uniform, algo-
rithm (15) provides equitable partitions with almost-hexagonal
polygonal cells (see Section IV-C), the supernodes will deploy
themselves into a near optimal configuration.

VI. SIMULATIONS AND DISCUSSION

The algorithms presented in Section IV are designed to
provide approximations of equitable power diagrams with
additional features (note that equitability of the partition is
always guaranteed). In this section we study by simulation
the quality of such approximations. Due to space constraints,
we focus on algorithm (15), which is designed to provide
approximations of equitable and median Voronoi diagrams
(again, equitability is a guaranteed property).

We introduce three criteria to judge, respectively, closeness
to a median power diagram, closeness to a Voronoi diagram,
and circular symmetry of a partition (in particular, closeness
to partitions with hexagonal cells).

A. Closeness to Median Power Diagrams

Consider ~a  power  diagram  V(Gw) =
Vi(Gw),...,Vim(Gw)), and let g be the median of
power cell V;, ¢ € I,,. We consider the following metric to

measure closeness to a median power diagram:
1 m

dmed = —
e m diam(
=

lg; — gill
Vi(Gw))

Clearly, dmeq equals zero when a power diagram coincides
with a median power diagram. We will also refer to dy,eq as
the median defect of a power diagram.

B. Closeness to Voronoi Diagrams

In a Voronoi diagram, the intersection between the bisector
of two neighboring generators g; and g; and the line segment
joining g; and gj is the midpoint g}7* = (g; + g;)/2. Then,
if we define g % as the intersection, in a power diagram,
between the blsector of two neighboring generators (g;, w;)
and (gj,w;) and the line segment joining their positions g;
and g;, a possible way to measure the distance do, of a power
diagram from a Voronoi diagram is the following:

pow vor | |

B llgi;™ —gi5"ll
vor — Z Z 0. 572-] )

i=1jEN;

where N is the number of neighboring relationships and, as
before, v;; = ||g; — gi||. Clearly, if a power diagram is also
a Voronoi diagram (i.e., if all weights are equal), dyor = 0.
We will also refer to dyo, as the Voronoi defect of a power
diagram.

C. Circular Symmetry of a Partition

A quantitative manifestation of circular symmetry is the
well-known isoperimetric inequality, which states that among
all planar objects of a given perimeter the circle encloses
the largest area. More precisely, given a planar region Q
with perimeter po and area |Q|, then pg — 47|Q| > 0, and
equality holds if and only if Q is a circle. Then, we can
define the isoperimetric ratio as follows: Rg = 47;)|2Q|; by
the isoperimetric inequality Ro < 1, with equality o%ly for
circles. Interestingly, for a regular n-gon the isoperimetric ratio
R, is R, - tmﬂ , which converges to 1 for n — oc.
Accordingly, given a partition {Q;}7,, we consider as a
measure for the circular symmetry of a partition the “average

-1
A EZRQz

isoperimetric ratio” Ryg,ym

D. Simulation Results

All simulations are performed on a machine with a 2.4GHz
Intel Core Duo processor and 4GB of RAM. The code is
written in C++ and makes use of the C++ Computational
Geometry Algorithms Library CGAL?.

We apply algorithm (15) to ten power generators, whose
initial positions are independently and uniformly distributed in
the unit square Q, and whose weights are initialized to zero.
Time is discretized with a step dt = 0.01, and each simulation
run consists of 600 iterations (thus, the final time is 7" = 6).
Define the area error € as € = (\;, — ;... )/(Ag/m), evaluated
at time 7" = 6; in the definition of €, A; , is the measure of the
power cell with maximum measure and A, is the measure
of the power cell with minimum measure. We perform two
sets of simulations. In the first set of simulations we consider
a measure \ uniform over Q, i.e., A = 1, while in the second
set of simulations we consider a measure A that follows a gaus-
sian distribution, namely A(z,y) = e %((z=0. 8)*+(y—0.8)%)
(z,y) € Q, whose peak is at the top-right corner of the unit
square. Each set of simulations consists of 50 simulation runs.

Tables I and II summarize simulation results for the uniform
A (A=unif) case and for the gaussian A\ (A=gauss) case. In
both cases, average and worst-case values of the area error
€, median defect dyeq, Voronoi defect d,.;, and average
isoperimetric ratio Ryg,}~ —are with respect to 50 simulation
runs. Notice that for both measures, after 600 iterations, (i) the
worst-case area error is below 8%, (ii) the worst-case values
of dyor and dp,eq are very small, and, finally, (iii) cells have,
approximately, the circular symmetry of squares (since Ry ~
0.78). Hence, simulation results show that algorithm (15)
consistently provides very good approximations of equitable
and median Voronoi diagrams. In both cases, the positions of
the generators always stayed within their corresponding power

2CGAL is freely available for academic research use at

http://www.cgal.org/.



TABLE 1
AVERAGE PERFORMANCE OF CONTROL LAW (15).

[ X T El[] Eldme] Eldvod E[R{g;] ]
unif 0.1% 2.8% 0.2% 0.75
gauss 1.4% 2.2% 1% 0.74

TABLE 11

WORST-CASE PERFORMANCE OF CONTROL LAW (15).

[ A “ maxe maXdmed MaxXdvor minRyo.y ]
unif 0.5% 3.4% 0.4% 0.7
gauss 7.7% 3.8% 2.7% 0.7

cells. Figure 6 shows some typical equitable partitions that are
achieved with control law (15) (the number of generators is
10 and Q is an irregular convex polygon).

We have also performed extensive simulations of algorithms
(7), (10), and (13). In general, these algorithms provide equi-
table power diagrams with “long and skinny” power cells (i.e.,
with a low value of the average isoperimetric ratio Ryg,3m ).
Moreover, they sometimes lead to partitions where some of
the generators’ positions are outside their corresponding power
cells.

(Ov 1) _*

(a) Typical equitable partition of (b) Typical equitable partition

Q for A(z,y) = 1 (¢ = 0.01%, of QO for X(z,v) =
dmed = 2.3%, dvor = 0.4%, e—5((z—0.8)2+(y—0.8)%)
R(g,3=0.76). (e = 0.7%, dpeda = 2.1%,

dvor = 2.2%, R{Qz} = 074)

Fig. 6. Typical equitable partitions achieved by using control law (15) after
1500 iterations. The squares represent the positions of the generators, while
the circles represent the medians. Notice how each bisector intersects the
line segment joining the two corresponding power neighbors almost at the
midpoint; hence both partitions are very close to Voronoi partitions.

VII. CONCLUSION

We have presented provably correct, spatially distributed
algorithms for the computation of a convex and equitable
partition of a convex environment. We have also considered the
issue of computing convex and equitable partitions with addi-
tional features (e.g., convex and equitable partitions that are
approximations of equitable and median Voronoi diagrams).
Finally, we have discussed how the algorithms devised in
this paper represent a building block instrumental to design
spatially distributed control policies for several multi-agent
coordination problems, including dynamic vehicle routing, and
deployment of wireless networks.

This paper leaves numerous important extensions open for
further research. First, all the algorithms we proposed are
synchronous: we plan to devise algorithms that are amenable

to asynchronous implementation. Second, it is of interest to
consider the setting where the measure A evolves in time. This
would require a characterization of the convergence rate of our
algorithms. Finally, to assess the closed-loop robustness and
the feasibility of our algorithms, we plan to implement them
on a network of unmanned aerial vehicles.
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APPENDIX
A. Definition of Degree of a Map

We start with the simplest definition of degree of a map.
Let f : X — Y be a smooth map between connected compact
manifolds X and Y of the same dimension, and let p € Y
be a regular value for f (regular values abound due to Sard’s
lemma [20]). Since X is compact, f~1(p) = {x1,..., 2} is
a finite set of points, and since p is a regular value it means
that fy, : U; — f(U;) is a local diffeomorphism, where
U; is a suitable open neighborhood of z;. Diffeomorphisms
can be either orientation preserving or orientation reversing.
Let d* be the number of points z; in f~!(p) at which
f is orientation preserving (i.e., det(Jac(f)) > 0, where
Jac(f) is the Jacobian matrix of f) and d~ be the number
of points in f~1(p) at which f is orientation reversing (i.e.,
det(Jac(f)) < 0). Since X is connected, it can be proved that
the number d™ —d~ is independent of the choice of p € Y and
one defines the degree of f as d™ —d~. The degree can be also
defined for a continuous map f : X — Y among connected
oriented topological manifolds of the same dimensions, this
time using homology groups or the local homology groups at
each point in f~!(p) whenever the set f~!(p) is finite. For
more details see [21].

B. Proof of Theorem 2.1

Proof: Since f as a map from S™ ! to S™ ! is different
from zero, then the map fgm-1 is onto the sphere. If f is not
onto B™, then it is homotopic to a map B — S™=1 and
then fgm-1 : S™~1 — S™~1 is homotopic to the trivial map
(since it extends to the ball). Therefore fgm-1 : S™~ ! —
S™~1 has zero degree, contrary to the assumption that it has
degree different from zero. ]

C. Proof of Lemma 2.2

Proof: The map f is a continuous bijective map from
a compact space to a Hausdorff space, and therefore it is a
homeomorphism. By observing that a homeomorphism f :
S™ — S™ has degree 1 (see, for instance, [21, page 136]),
we obtain the claim. [ |

D. Proof of Inductive Step in Theorem 3.1

Proof: Here we suppose that we have proved that the map
f is surjective for m — 1 power generators and we show how
to use this to prove that the map f is surjective for m power

generators.
If we have m power generators, the weight space is given by
an m dimensional cube C = [—D, D]™, in complete analogy

with the case of 3 generators. The m-simplex of measures is
again defined as a set A = {(Ag,,...,Ag,,) € R} such that
Ao, >0forie{l,...,m}and >", A\g, = 1. Note that A
is homeomorphic to the (m — 1)-dimensional ball B~1. As
before, a power diagram can be viewed as a continuous map
f:C — A. Ttis easy to see that f is constant on sets of the
form W = {{W +¢(1,...,1)}NC, t¢e& R}, where W is a
weight vector in C. Moreover, fixing a point p € 4 we have
that f~1(p) is given by a set of the form W for a suitable
W. Indeed, assume this is not the case, then the vector of
measures (Ag,,...,Ag,,) is obtained via f using two sets of
weights: W' = (wi,...,wl) and W2 = (wf,...,w2,), and
W' and W2 do not belong to the same WV, namely it is not
possible to obtain W2 as Wl+t(1,..., 1) for a suitable ¢. This
means that the vector difference W2 —W! is not a multiple of
(1,...,1). Therefore, there exists a nonempty set of indices .J
such that wf —wjl- > wi —wj, whenever j € J and for all k €
{1,...m}, and such that the previous inequality is strict for at
least one k* € {1,...m}. Now, among the indices in J there
exists at least one of them, call it 5%, such that the generator j*
is a neighbor of generator £*, due to the fact that the domain Q
is connected. Indeed, if for all neighbors of £* the inequality
is not strict, choose as new k* (denoted with a slight abuse of
notation k*’ - in general their number is larger than one) each
neighbor of k* and look for neighbors of k*’ in the set J. If
the search provides no result, repeat taking as new k* each
neighbor of £*’ and keep looking for a j*. Since there are
finitely many generators and the set is connected, eventually
with this procedure one explores the entire set, and if no j* is
found then W2 is expressible as W1+¢(1,...,1) for a suitable
t, contrary to the current assumption. Therefore, without loss
of generality, we can assume that among the indices in J there
exists at least one of them, call it j*, such that the generator
j* is a neighbor of generator k*. However, since wJQ-* - wjl >
w,% —w,lf*, and w?* —w}* > w,% —w,i forall k € {1,...,m},
then the measure A\g ., corresponding to the choice of weights
W?2 is strictly larger than the measure Ag,. corresponding to
the choice of weights W1, This proves that f~!(p) is given
only by sets of the form W.

Accordingly, we introduce an equivalence relation on C,
declaring that two sets of weights W' and W? are equivalent
if and only if they belong to the same W. Let us call = this
equivalence relation. It is immediate to see that f descends
to amap f:C/ =— A (still called f by abuse of notation),
and that f is now injective. It is easy to identify C/ = with
the union of the (m — 1)-dimensional faces of C given by
F =U,(Cn{w; = —D}) (see Figure 7). In this way we get
a continuous injective map f : F — A that has the same image
as the original f. Notice also that F is homeomorphic to the
closed (m—1)-dimensional ball, thus, up to homeomorphisms,
f can be viewed as a map f: B! — B™ 1,

We want to prove that the map fgr, given by the restriction
of f to OF, is onto O.A. To see this, consider one of the (m —
2)-dimensional faces 0.A; of J.A, which are identified by the
condition Ao, = 0 (see Figure 7). Consider the face F; in F,
where F; is given by F; = CN{w; = —D}. We claim that the
set S; = OF;NOF is mapped onto 0.A4; by f. Observe that set
S; is described by the following equation: S; = Uj, ({w; =



—D,w; = D}NF), so S; is exactly equivalent to a set of type
F for m — 1 generators. Moreover, observe that 9.4; can also
be identified with the measure simplex for m — 1 generators.
By inductive hypothesis the map f : S; — 9.A; is surjective,
and therefore also the map fgr is onto d.A.

F ’—'SQ : set of type F corresponding to 2 generators
So

ez : {Ag, =0}

Face Fy : {wy = —D} V
0As : measure simplex with 2 generators

Fig. 7. The set Sz and f : So — 9.A2 for the case m = 3. Unfortunately,
for m > 3, visualization is not possible. Notice that Sg is indeed a set of
type F for m = 2 generators.

Since fsr is a bijective continuous map among (m — 2)-
dimensional spheres (up to homeomorphisms), it has degree
+1 by Lemma 2.2. Finally, we conclude that f is onto A,
using Theorem 2.1. ]

E. Proof of Theorem 3.12

Proof: The proof mainly relies on [22]. Let v be the unit
vector introduced in the definition of the Unimodal Property.
Then, there exist unique values sy < s; < ... < S, such that
so = inf{s; Q% # 0}, s, = sup{s; Q° # 0}, and

k

MoeQ;va<s,} = E)\Q, k=1,... (16)

,m— 1.

Consider the intervals L; = [s;_1, S;], ¢ € I,,,. We claim that
one can choose points g; = t;v € R4, i € I,,, such that
t; € L; and the corresponding Voronoi diagram is
Q; ={z € Q| ||z — gil| = min ||z — gxl|}
k 17)
={xeQ|lv-z€si_1,s]}
Together, equation (16) and equation (17) yield the desired
result.

Since, by assumption, Q enjoys the Unimodal Property,
there exists an index ¢ € {1,...,m} such that the length of
the intervals L; = [s;_1, s;] decreases as ¢ ranges from 1 to 7,
then increases as 4 ranges from i to m. Let L; = [s;_1, s7] be
the smallest of these intervals, and define t; = % € L;.
By induction, for ¢ increasing from ¢ to m — 1, define ¢;11 as
the symmetric to ¢; with respect to s;, so that t; 1 = 2s; — t;,
i=1,i+1,...,m—1. Since the length of L;, 1 is larger than
the length of L;, we have

t; € L; = tit1 € Li+1. (18)
Similarly, for i_d_ecreasing from i to 2, we define t;_; =
25,1 —t;, i =14,i—1,...,2. Since the interval L;_1 is now
larger than the interval L;, we have

tie Ly =>1t;_1 € L;_1. (19)

Equations (18)-(19) imply ¢; € L; for all: = 1, ..., m. Hence
the second equality in equation (17) holds. ]
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