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In systems where collisions can be tolerated, permitting and optimizing collisions in vehicle

trajectories can enable a richer set of possible behaviors, allowing both better performance

and determination of safest courses of action in scenarios where collision is inevitable. This

paper develops an approach for optimal trajectory planning on a three degree-of-freedom free-

flying spacecraft having tolerance to collisions. First, we use experimental data to formulate a

physically realistic collision model for the spacecraft. We show that this model is linear over

the expected operational range, enabling a piecewise affine representation of the full hybrid-

vehicle dynamics. Next, we incorporate this dynamics model along with vehicle constraints into

a mixed integer program. Experimental comparisons of trajectories with and without collision-

avoidance requirements demonstrate the capability of the collision-tolerant strategy to achieve

significant performance improvements in realistic scenarios. A simulated case study illustrates

the potential for this approach to find damage-mitigating paths in online implementations.

Nomenclature

0n = n × n zeros matrix

aj, bj = parameters defining the half-plane for the j th wall

A = net obstacle avoidance region

FI = inertial reference frame defined for the testbed

F j
w = inertial reference frame defined for the j th wall

î, ĵ, k̂ = basis vectors for inertial frame

In = n × n identity matrix

J = cost function
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m = mass of spacecraft [kg]

M = large scalar defined according to the Big-M method

O = origin of inertial frame

P = polygon defining an obstacle avoidance region

R = radius of spacecraft [m]

sT , sN = position tangent and normal to a wall [m]

S, S̄ = half-plane and polygon defining surfaces with which collision is permitted

t̂j, âj, k̂ j = basis vectors for the local frame F j
w defined tangent, normal, and upwards from the j th wall

u = spacecraft control vector

vT , vN = components of velocity tangent and normal to a wall [m/s]

xi = state of the vehicle on the ith iteration, expressed in the inertial testbed frame FI

z = generic vector used to define sets

γi, j = event variable indicating the vehicles location with respect to the j th wall of S̄

δ = effective distance of a collision surface from the origin of the inertial testbed frame FI [m]

∆t = fixed time period between instants in discrete time horizon [s]

ζi = event variable used to indicate collisions with S on the ith iteration

θ = orientation of the spacecraft with respect to the inertial frame [rad]

κT , κN, κω = tangential, normal, and angular restitution coefficients

λi, j = event variable indicating which wall of S̄ the vehicle is closest to on the ith iteration

Ξi, j = event variable indicating collision with the j th wall of S̄ on the ith iteration

τ = number of steps in discrete time horizon

ω = angular velocity of spacecraft [rad/s]

I. Introduction

Assistive robotic spacecraft have the potential to enable the automation of many tasks that are not well-suited to be

directly performed by astronauts, either because they are too dangerous or overly tedious [1]. Within this context,

extravehicular platforms have been proposed for missions such as on-orbit monitoring [2, 3], component assembly [4],

and debris removal [5]. Likewise, intravehicular assistive robotics [6] are being developed to fulfill many housekeeping

duties inside the International Space Station (ISS). For instance, the Astrobee robot [7], a successor to NASA’s highly

successful SPHERES [8] testbed, has stated goals of (i) providing a microgravity research platform, (ii) performing

mobile camera tasks, and (iii) performing mobile sensor tasks for environment monitoring and inventory management.

As with most mobile autonomous platforms, safe and efficient navigation is key to the successful integration of these
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vehicles into mission operations.

A common approach to mobility for microgravity robots is propulsive free-flying, where vehicles expend propellant

to actuate their movement. However, propellant is often expensive to acquire or in limited supply. As a consequence of

this, fuel-efficiency has become one of the primary performance characteristics for spacecraft. The desire to reduce

costs has motivated the development of two alternate navigation modalities. The first is zero-g climbing [9], where the

vehicle uses grasping contact in the surrounding environment to traverse between locations. A proposed faster and

simpler alternative is the hopping modality [10, 11]. In this case, the vehicle uses a robotic arm to propel itself between

some fixed handrails. While this strategy is attractive in the sense that it is completely propellantless, it is also much

more restrictive than the propulsive free-flying strategy as it requires the precise coordination of a robotic arm and

requires handrails to be present over the operational region.

This paper presents a new approach to mobility for assistive spacecraft: supplementation of propulsive free-flying

with planned collisional contact (bouncing). We show that this approach offers a strategy that is both less restrictive

than the propellant-free approaches, and more efficient (with respect to a given cost function) than its collision-free

counterpart. In contrast to hopping, where a robotic arm interacts with the environment to provide the energy needed to

change the momentum of the spacecraft, bouncing achieves similar maneuvers passively though impulsive contact. For

example, a spacecraft needing to redirect itself inside a corridor may do so swiftly with a single well planned collision,

rather than executing the series of maneuvers needed for coordinated hopping. Since the interaction is passive, bouncing

poses very little requirements on the vehicle or the surrounding environment itself. Hence the main challenge stems

from the task of developing an effective motion planning strategy to leverage this capability. Focusing specifically on the

case of small, assistive intravehicular spacecraft, we assume that the vehicle operates in the proximity of fixed surfaces

with which it may collide, and that it is able to withstand low speed impact.

There is a rich body of work related to impulsive contact in robotics, spanning applications such as running [12],

jumping [13], batting [14], air hockey [15], etc. In addition, the problem appears in the aerospace context, within

landing [16], docking [17], grasping [18], and bouncing on planetary bodies [19]. Looking specifically at the case of

vehicle collisions, there has been foundational work in analyzing the stability and robustness of a colliding vehicle [20],

designing vehicles that are tolerant to collisions [21], and even extracting localization information from instances of

impact [22]. Collisions can further be harnessed as a practical means of improving the effectiveness of trajectories.

Through dissipation of energy or redirection of momentum, colliding agents are endowed with greater maneuverability.

One can observe many examples of this phenomenon in competitive situations e.g. swimming, parkour, or in nature

e.g. animals pushing off of [23] or jumping between objects. However, the use of planned impulsive contact explicitly

for performance gains has only recently been considered in the context of robot trajectory planning. In [24], the

authors use a mixed integer linear programming (MILP) formulation to derive a time-optimal trajectory incorporating

planned collisions for a point mass. In this paper, we utilize these initial results to develop a collision-tolerant, optimal
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trajectory-planning formulation for in-plane motion of a free-flying spacecraft. Note that since the allowable set of

trajectories tolerant to collisions encompasses all collision-free trajectories as well, the optimal performance with respect

to any objective function must either remain the same or improve when compared to the case where collisions are always

avoided.

In addition to performance benefits, collisions may be utilized to improve the safety of a vehicle in the presence of

observed changes in the surrounding environment. Intuitively: in situations where collisions cannot be avoided, a safe

plan of action incorporating the collision may be found. Looking specifically at the case of online model predictive

control (MPC), hard collision-avoidance constraints may render the problem infeasible when collisions cannot be

avoided. This problem can be addressed by either resorting to a backup controller when the MPC is not feasible [25]

or softening the constraints (i.e. replacing constraints with penalties in the objective function) such that feasibility is

preserved [26]. We extend this prototypical constraint-softening approach with the addition of an explicit model of the

collision dynamics formulated in the constraints. In addition to remaining feasible in the presence of an inevitable

collision, this allows the vehicle to plan around the collision, all while minimizing a penalty function that captures

the estimated damage cost. Such capabilities may offer a particularly useful tool for platforms proposing autonomous

operation in the presence of humans.

The remainder of the paper is outlined as follows: In Section II, we review the mathematical preliminaries required

to develop the main results. In Section III.A, we introduce the spacecraft, hardware, and environment used in the

analysis and experimental case studies. Experimental collision data is obtained in this environment and used to derive a

realistic collision model for the spacecraft in Section IV. Section V uses this information to specify an optimal strategy

for moving between states. In Section VI an experimental case study is considered to compare the strategy to the

collision-free case. It is shown that the proposed method is capable of significantly reducing a chosen objective function.

Finally, Section VII explores potential safety applications with a simulated scenario.

II. Mixed Integer Programming for Control of Hybrid Systems
Mixed Integer Programming (MIP) denotes an optimization problem that is composed of both real and integer

decision variables. This type of problem provides a very general framework for capturing many types of practical

control objectives. Specifically, the inclusion of integer variables allows for the expression of discrete decisions. This

makes it naturally well suited to optimizing the actions over systems governed by interdependent dynamic modes, logical

statements, and operational constraints [27]. For our purposes, this is leveraged to optimize trajectories for a spacecraft

experiencing unique dynamic modes encountered during collision and free flight. By modelling this hybrid behavior,

integer variables to encode the choice of whether or not to collide.

We consider programs where the objective function J(z) is optimized over piece-wise affine (PWA) constraints,
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fitting the form below.

min
z

J(z)

s.t. Dczc + Dbzb ≤ g, Aczc + Abzb = h

zc ∈ Rnc , zb ∈ {0, 1}nb , z = [zc, zb] ∈ Rn

(1)

where, Dc ∈ Rm×nc , Db ∈ Rm×nb , g ∈ Rm, Ac ∈ Rp×nc , Ab ∈ Rp×nb , h ∈ Rp. Though the problem is not convex in

general, one can in principle compute globally optimal solutions whenever J is convex by solving a finite number of

convex subproblems [28]. Formulations with linear, quadratic, or second order cone objectives are commonly applied

in a variety of practical applications [29–31]. Although in theory these problems are difficult to solve [32], solutions

can readily be found with good average case performance using off-the-shelf optimization software (e.g. CPLEX [33],

Gurobi [34], MOSEK [35]).

MIP allows for the representation of hybrid systems by associating integer variables with the current mode of the

system. Specifically, integer variables (also known as event variables) allow for the direct expression of first order logic

over the constraints. These variables may be assigned a unique value based on the location of the state vector, and in

turn used to relax a different set of constraints over the continuous variables. To demonstrate this, let us consider the

following case where an inequality condition cT z < d is used to activate distinct equality constraints,


aT0 z = b0 if cT z < d

aT1 z = b1 if cT z ≥ d,
(2)

with z, ai, c ∈ Rn, bi, d ∈ R, i = 0, 1. The main tools at our disposal for representing hybrid systems as programs in

the form of Eq. (1) come from the lemmas below, which define relationships between implications and inequalities of

real and binary decision variables. Let ζ ∈ {0, 1}, z ∈ Z ⊂ Rn, and parameters a, c ∈ Rn, b, d ∈ R. We then have the

following results [36–38].

Lemma 1 [27] Given M ∈ R such that maxz∈Z (d − cT z) < M , the following are equivalent:

(i) [cT z < d] =⇒ [ζ = 1] (ii) cT z + Mζ ≥ d

Proof: If maxz∈Z (d − cT z) < M holds, then the statement (ii) is true for all z ∈ Z when ζ = 1. Given ζ = 0, (ii) is

true when cT z < d holds, and is false otherwise. Thus, the truth values for (ii) are identical to the implication (i) for all

assignments. �
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Lemma 2 [27] Given M ∈ R such that maxz∈Z (cT z − d) < M , the following are equivalent:

(i) [ζ = 1] =⇒ [cT z < d] (ii) cT z − M(1 − ζ) < d

Proof: If maxz∈Z (cT z − d) < M holds, then (ii) is true for all ζ = 0. Given ζ = 1 (ii) is equivalent to cT z < d. �

Note that we can apply these together to form an equivalency. Likewise, application to inequalities of opposing

sense (in conjunction) extends the result to the case of equality constraints.

Lemma 3 [39] (Sec. 16.4) Given M ∈ R such that maxz∈Z (aT z − b) < M , the following are equivalent:

(i) [ζ = 1] =⇒ [aT z = b] (ii) [aT z − M(1 − ζ) ≤ b] ∧ [aT z + M(1 − ζ) ≥ b]

Proof: If maxz∈Z (aT z − b) < M holds, then (ii) is trivially satisfied for ζ = 0. Given ζ = 1, (ii) is equivalent to

aT z = b. Equivalence then follows from the truth table. �

From here we can combine these results to represent Eq. (2),

Theorem 1 [39] (Sec. 16.4) Given M ∈ R sufficiently large such that max(maxz∈Z (|cT z − d |),maxz∈Z (aT z − b)) < M

holds, then the system Eq. (2) is equivalent to:

[aT0 z − Mζ ≤ b0] ∧ [aT1 z − M(1 − ζ) ≤ b1] ∧ [cT z − Mζ < d]

[aT0 z + Mζ ≥ b0] ∧ [aT1 z + M(1 − ζ) ≥ b1] ∧ [cT z + M(1 − ζ) ≥ d]

In practice, the parameter M should be chosen carefully. While values that are too low may not satisfy the above

conditions, excessively large values will decrease computational efficiency, and may introduce numerical error. For

notational simplicity, the sequel uses the same parameter M in all instances of this method. Note that from a

computational viewpoint it is often better to avoid strict inequalities in implementation. This may be accomplished by

using a non-strict inequality and adding a small number ε to the side with lesser value.

III. Description of the Free-Flyer Spacecraft and Testbed

A. Hardware and Environment

Experiments were conducted for this work in the Stanford Space Robotics Facility on the free-flyer spacecraft robot

testbed. A set of robots is designed to hover frictionlessly on air bearings, thus emulating microgravity dynamics in the

plane of a table. Though previous generations of the free-flyer robot used in this experiment operated on compressed air

[40], the current iteration of the free-flyer operates on CO2, owing to CO2’s ability to be stored in liquid form at room

temperature at only 1000 psi, resulting in a much higher fuel density than can be achieved at comparable pressures
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Fig. 1 Free-Flyer spacecraft and testbed. The avoidance region for the experimental scenario in Section VI is
outlined in adhesive tape.

Table 1 Free-Flyer Spacecraft Parameters

Parameter Value Unit

average mass (m) 18.08 kg
radius (R) 0.157 m

max individual thruster output (uT,max) 0.20 N
body inertia about spin axis (Ib) 0.184 kgm2

reaction wheel inertia (Iw) 0.029 kgm2

max acceleration of reaction wheel 0.628 m/s2

reaction wheel speed range [60,340] RPM

with compressed air. The robots are also equipped with actuators commonly used in spacecraft, namely a reaction

wheel for attitude control and 8 cold-gas thrusters primarily for translational control. Due to high capacity of the CO2

tanks, the robots can perform aggressive thrust maneuvers for over an hour and can hover without thrust for over 10

hours continuously. Further parameters for the free-flyer robot can be found in Table 1, where average mass is reported

due to a range based on the state of the tanks. The robots use an Odroid XU4 for its primary onboard computation,

as well as an mbed microcontroller for low-level control of various subsystems. Additionally, the free-flyer software

stack is implemented in ROS and is connected to an offboard hub computer, where more heavy computation can be run

as needed for planning and control. The ROS stack also gives access to real-time data from a motion-capture system,

giving position and velocity information at 120 Hz. Finally, the granite table used for experiments is 9’ × 12’, allowing

ample room for complex planning scenarios.

B. Vehicle Constraints and Nominal Dynamics

The motion of the spacecraft described in Section III.A is expressed in an inertial frame FI = (O, î, ĵ, k̂) with

right-handed orthogonal basis vectors: î, ĵ tangent to the surface of the testbed, and k̂ = î × ĵ pointing upwards from
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the surface. The position of the vehicle’s center of mass OB with respect to the origin O is s = sx î + sy ĵ and the

translational velocity v = vx î + vy ĵ. We may also define a body frame FB = (OB, îB, ĵB, k̂B), with basis vectors îB, and

ĵB aligned with the orientation of the thrusters, and k̂B = k̂. The orientation of FB with respect to FI is θ and angular

velocity of the vehicle is ω = Ûθ k̂. The nominal —i.e. collision-free— spacecraft dynamics are then,

Üsx = ux, Üsy = uy, Üθ = uθ (3)

where, ux , uy are the translational accelerations due to applied thrust, uθ is the rotational acceleration from an applied

moment, which is generated by changes in the reaction wheel speed from a lower level controller. The thruster

arrangements on the spacecraft are such that the maximum accelerations achievable in the î, ĵ directions are functions

of the body orientation θ. We can simplify this with the use of a conservative inner approximation on the maximum

acceleration from thrust umax(θ), which generates a condition that is uniform (not dependent on orientation) in the

inertial frame.

u2
x + u2

y ≤ u2
max, umax = min

θ
(umax(θ))), (4)

With this geometry, we have that umax =
2
muT,max , where uT,max is the maximum force output of a single thruster, and m

the body mass.

IV. Collision Model for Free-Flyer Spacecraft
In order to develop a framework for optimizing trajectories that allow collisions, we must first develop a model for

the collision effects on the spacecraft. Collisions are generally difficult to understand and model conceptually, as a

first principles analysis requires the consideration of many interacting physical phenomena relating to the geometric,

material, and inertial properties of each body involved; many of which are in themselves difficult to model accurately.

Many approaches that have been proposed to model general collision behavior over a wide range of scenarios [41, 42].

However, since we use a specific pair of objects over a relatively limited range of conditions, we are able to develop an

algebraic collision model empirically, by directly considering the relationship between the velocities immediately before

and after the instant of contact with no thrust commanded. Figure 2 shows the effects of 82 individual collisions for the

spacecraft and environment described in Section III.A. Within the tested range, the data suggest that the changes in

rotational velocity (∆ω), translational velocity normal to the wall (∆vN ) and tangent to the wall (∆vT ), all follow a linear

relationship with the pre-collision normal velocity (v−N ) and relative velocity of the point of contact (v−rel). Furthermore,

we observe that effects in the normal direction are uncoupled from the tangential and rotational effects, leading to the
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following model, 
∆vT

∆vN

∆ω

 =


0 κT

κN 0
0 κω


[
v−N
v−rel

]
(5)

where,

v−rel , v−T + Rω− (6)

and (κT , κN, κω) = (−0.29,−1.43,−5.0). These coefficients are obtained via a least squares regression on the model

error.

If we assume that the collision occurs instantaneously, the positions after the collision can be obtained by integrating

the equations of motion with pre-collision velocities until the point of contact, and post-impact velocities afterward. Let

∆t = ∆t− + ∆t+ be the period between the state measurements, and δ be the effective location of the wall along the

orthogonal axis (inflated by R, as seen in Figure 3a). Then the experimental model of Eq. (5) yields the following

position update equations,

∆sT = (1 + κT )∆tv−T + κT R∆tω− − κT (v−T + Rω−)∆t−

∆sN = (1 + κN )∆tv−N + κN (s−N − δ)

∆θ = (1 + κωR)∆tω− + κω∆tv−T − κω(v−T + Rω−)∆t−

(7)

where the time until collision is,

∆t− =
(δ − s−N )

v−N
(8)

Note that the term ∆t− introduces a nonlinearity in the tangential and rotational update laws. Making the approximation

that collision occurs midway through the interval ∆t− = 0.5∆t allows us to obtain a linear form of these equations.

The bounds on error from this assumption can be calculated from the maximum difference between the exact and

approximated equations, which yields,

eT ≤
κT
2
|v−rel |∆t , eN = 0 , eθ ≤

κω
2
|v−rel |∆t , (9)

where eT , eN, eθ are the errors in the tangential, normal, and angular directions respectively. Note that errors vanish

both as |v−rel | decreases, and for finer resolutions ∆t. The basic collision geometry is illustrated in Figure 3a.

V. Problem Formulation
This section formulates the problem of generating optimal trajectories for a spacecraft in the presence of (i) an obstacle

avoidance region A, composed of NP convex polygons Pk , with k ∈ {1, ... , NP}, and (ii) surfaces S, S̄ with which

collisions are permissible. For both P and S, S̄, we will use the convention that the interior of the walls is denoted by the
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Fig. 2 Observed data from 82 collisions, with linear interpolations taken with respect to the least squares error.

union of sub-level surfaces of some defined planes in R3, and the exterior is the complement of the interior. It is shown

that the combined dynamics of the spacecraft, saturation constraints, and obstacle avoidance conditions are all amenable

to approximation with piecewise affine constraints. In light of this, we choose to pose the trajectory optimization

problem as a MIP. We consider the discrete time approximations of the models developed in previous sections over a

horizon of i = 1, ... , τ. The state of the vehicle at the ith time-step is defined as xTi = [sx,i, sy,i, θi, vx,i, vy,i, ωi], and

control vector as uTi = [ux,i, uy,i, uθ,i]. For completeness, we expound upon some basic control and obstacle avoidance

constraint formulations found in [38].

A. Obstacle Avoidance and Saturation Constraints

The saturation constraint Eq. (4) can be represented by approximating the Euclidean norm with an NU sided polygon,

ux,i sin
(2πn

NU

)
+ uy,i cos

(2πn
NU

)
≤ umax, n = 1, ... , NU, i = 1, ... , τ. (10)

While the approximation improves with the number of sizes in the polygon, the added constraints may increase the

amount of time required to calculate the solution. The aggregate obstacle avoidance regionA can be constructed from a

set of NP convex polygons Pk ,

A = {z ∈ R2 |
NP∨
k=1

z ∈ Pk}, where, Pk = {z ∈ R2 | cTk,qz < dk,q, q = 1, ... , NQ,k} (11)

where ck,q ∈ R2, dk,q ∈ R specify the qth side of the k th polygon, which has NQ,k sides. We can construct the avoidance

constraint s < A by using defining event variables ψk,q,i ∈ {0, 1} such that cT
k,q

si < dk,q =⇒ ψk,q,i = 1, and ensuring

that the position of the vehicle lies in the positive end (exterior) of at least one of half-spaces defining the walls of each
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polygon Pk . This is accomplished with the following constraints,

NQ,k∧
q=1

cTk,qsi + Mψk,q,i ≥ dk,q ∧
NQ,k∑
q=1

ψk,q,i ≤ NQ,k − 1, k = 1, ... , NP, i = 1, ... , τ. (12)

Note that each conjunct is an application of Lemma 1, and the summations enforce the condition that there is at least

one side q in each polygon such that cT
k,q

si ≥ dk,q .

Example: Rectangular Boundary Let’s consider the simplified case of a rectangle A = P1 = {z ∈ R2 | z1 ∈

(zmin
1 , zmax

1 ), z2 ∈ (zmin
2 , zmax

2 )}. The equivalent MIP constraints for the condition s < A are,

− sx + Mψ1 ≥ −zmin
1 ∧ sx + Mψ2 ≥ zmax

1 ∧ −sy + Mψ1 ≥ −zmin
2 ∧ sy + Mψ2 ≥ zmax

2 ∧
4∑

q=1
ψq ≤ 3. (13)

♦

B. Representing Dynamics in the Presence of a Single Collision Surface

For notational simplicity, will assume for this case that the basis vectors of FI are oriented with the wall S such that

ĵ points away from the wall, î is tangent, and k̂ = î × ĵ remains pointed upwards (see Figure 3a). The discrete time

equations of motion are given by,

xi+1 − xi =


Axi + Bui if ζi+1 = 0

Ac xi + bc if ζi+1 = 1 ,
i = 1, ... , τ − 1 (14)

where A, B represent the nominal dynamics,

A =

[
03 I3∆t

03 03

]
, B =

[
0.5I3∆t2

I3∆t

]
(15)

and Ac , bc represent the collision dynamics,

Ac =



0 0 0 (1 + 0.5κT )∆t 0 0.5κT R∆t

0 κN 0 0 (1 + κN )∆t 0
0 0 0 0.5κω∆t 0 (1 + 0.5κωR)∆t

0 0 0 κT 0 κT R

0 0 0 0 κN 0
0 0 0 κω 0 κωR


, bc =



0
−κN δ

0
0
0
0


. (16)

The period between steps i and i − 1 is ∆t.
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Let the wall be located at a distance δ′ from the origin of the inertial frame FI , and define δ , δ′ + R. Then we can

define the wall by the set S = {z ∈ R2 | z2 < δ}. The occurrence of a collision can be associated with an event variable

ζi ∈ {0, 1}. This triggers the switch between the nominal and collision dynamics; it is activated (equal to one) on an

iteration i if the nominal dynamics predict that the vehicle will enter S on that iteration, i.e.

sy,i + vy,i∆t + uy,i0.5∆t2 < δ ⇐⇒ ζi+1 = 1, i = 1, ... , τ − 1 (17)

Using Lemmas 1,2, we can express Eq. (17) with the equivalent set of constraints,


sy,i + vy,i∆t + uy,i0.5∆t2 + Mζi+1 ≥ δ

sy,i + vy,i∆t + uy,i0.5∆t2 − M(1 − ζi+1) < δ,

i = 1, ... , τ − 1 (18)

and from Theorem 1, we see that Eq. (14) is equivalent to,



xi+1 − xi − Axi − Bui + MI6ζi+1 ≥ 0

xi+1 − xi − Axi − Bui − MI6ζi+1 ≤ 0

xi+1 − xi − Ac xi − bc + MI6(1 − ζi+1) ≥ 0

xi+1 − xi − Ac xi − bc − MI6(1 − ζi+1) ≤ 0,

i = 1, ... , τ − 1. (19)

Section VIII.B provides an example implementation of this method for the simple case of an idealized bouncing ball.

Note that collisions may have the undesirable effect of imparting an external moment onto the spacecraft. While

this may be useful for translating stored angular momentum into lateral momentum in safety critical scenarios, it

could also lead to saturation of the reaction wheels over time. As such, it may be desirable to minimize momentum

transfer by constraining the relative velocity of the contact point to zero at the time of collision: ζi = 1 =⇒ vrel,i = 0 .

Equivalently, from Lemma 3,

vx,i + Rωi − M(1 − ζi) ≤ 0 ∧ vx,i + Rωi + M(1 − ζi) ≥ 0, i = 2, ... , τ. (20)

Note that meeting this condition preserves the initial tangential and angular velocity over the collision.

C. Representing Dynamics in the Presence of Polygonal Collision Surfaces

At the expense of introducing some complexity, we can generalize collision surfaces S from half-planes to convex

polygons,

S̄ = {z ∈ R2 | aTj z < bj , j = 1, ... , NS̄} (21)
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Fig. 3 (a) Collision geometry for flat wall S; (b) Example triangular collision polygon S̄

where NS̄ is the number of sides in the polygon and the indices j label the walls in a counterclockwise order (see Fig. 3).

In contrast to the previous case, the basis vectors î, ĵ are not restricted to a particular orientation. We will assume that

the vehicle collides into the j th wall of S̄ on iteration i if: (i) the position at timestep i − 1 is closest to the boundary of

the j th wall, and (ii) the nominal update equation predicts that the vehicle will enter the interior of S̄ on iteration i. It is

convenient to represent the second condition as s̃i , Asxi−1 + Bsui−1 ∈ S̄, where As, Bs are the first two rows of A, B,

corresponding to the position update. Likewise we can represent the first condition as si−1 ∈ Cj where Cj is the region

exterior to the polygon, closest to wall j. This can be defined as,

Cj = {z ∈ R2 | αTj z < βj , α
T
σ(j)z ≥ βσ(j) , aTj z ≥ bj } (22)

where σ( j) is the j th element of σ , (NS̄, 1, 2, ... , NS̄ − 1), and αj, βj define the half-space bisecting wall j and the

next wall in the counterclockwise rotation, such that αTj z < βj is satisfied for points closer to the j th edge. An example

configuration is shown in Figure 3b.

Our goal is to define event variables Ξi, j ∈ {0, 1} such that,

Ξi, j = 1 ⇐⇒ s̃i ∈ S̄ ∧ si−1 ∈ Cj, i = 2, ... , τ, j = 1, ... , NS̄ . (23)

These variables are used to activate the collision dynamics for the wall involved in the collision. We begin by introducing

constraints,

aTj s̃i + Mγi, j ≥ bj ∧ aTj s̃i − M(1 − γi, j) < bj, i = 2, ... , τ, j = 1, ... , NS̄ (24)

which fixes γi, j = 1 when the constraint aTj s̃i < bj is satisfied. We can use constraints of the same form to indicate the

position of the vehicle with respect to the half-spaces defined by (αj, βj),

αTj si + Mλi, j ≥ βj ∧ αTj si − M(1 − λi, j) < βj i = 2...τ, j = 1, ... , NS̄ (25)
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which expresses λi, j = 1 ⇐⇒ αTj s̃i < βj for the appropriate values of i, j. The equivalencies in Eq. (23) can then be

enforced by the constraints,

NS̄∑
p=1

γi,p +λi−1, j −λi−1,φ(j) − γi−1, j +M(1−Ξi, j) ≥ NS̄ + 1 ∧
NS̄∑
p=1

γi,p +λi−1, j −λi−1,φ(j) − γi−1, j −MΞi, j ≤ NS̄ (26)

which is applied for i = 2, ... , τ, j = 1, ... , NS̄ .

The dynamics for this system are then,

xi+1 − xi =


Axi + Bui if

∑NS̄
j=1 Ξi+1, j ≤ 0

Aj
c xi + bj

c if Ξi+1, j = 1, j = 1, ... , NS̄,
i = 1, ... , τ − 1 (27)

where Aj
c, bj

c are the collision dynamics for the j th wall. To represent these dynamics, let us first define a local frame

for the j th wall F j
w = (O, t̂j, âj, k̂) with t̂j, âj pointing tangent and normal to wall j, and k̂ j = t̂j × âj upwards. Each

local frame is a rotation of FI = (O, î, ĵ, k̂) about k̂ by an angle φ j . Let L3(φ j) ∈ R3×3 be the rotation matrix converting

vectors in FI to vectors in F j
w . Then we can express the collision dynamics for each wall in FI by rotating the position

and velocity vectors to and from this local frame,

Aj
c = Λj AcΛ

T
j bj

c = Λj[0, −κN
bj

‖aj ‖2
, 0, 0, 0, 0]T where, Λj =

[
L 3(φ j) 03

03 L 3(φ j)

]
(28)

The dynamics in Eq. (27) are then represented by the following MIP constraints,

xi+1 − xi − Axi − Bui − M
( NS̄∑
j=1
Ξi+1, j

)
≤ 0 ∧ xi+1 − xi − Axi − Bui + M

( NS̄∑
j=1
Ξi+1, j

)
≥ 0

xi+1 − xi − Aj
c xi − bj

c − MΞi+1, j ≤ 0 ∧ xi+1 − xi − Aj
c xi − bj

c + MΞi+1, j ≥ 0, j = 1, ... , NS̄

(29)

which are applied at i = 1, ... , τ − 1.

D. Example Objective Functions

In practice, the appropriate choice of an objective function depends on the specific needs of the mission. While

the proposed methodology does not assume a particular form for the objective, vehicle efficiency is commonly of

critical importance to real-world missions. We review here two common approximations for penalizing actuation using

quadratic and linear functions. A simple option is to use the power limiting cost function [43, 44],

J1 =

τ∑
i=1
(u2

x, i + u2
y, i) (30)
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Fig. 4 Paths taken by collision free (green) and collision tolerant (blue) planners in 60 second experimental
scenario. Video at https://youtu.be/4kOOn6TPuDI.

which forms a Mixed Integer Quadratic Program (MIQP). With the introduction of additional constraints, is also possible

to use a PWA approximation of the Euclidean norm of commanded translational acceleration [29]. The resulting cost

function is linear,

J2 =

τ∑
i=1

Gi , s.t .
NJ∧
n=1

Gi ≥ ux, i sin
(2πn

NJ

)
+ uy, i cos

(2πn
NJ

)
, i = 1, ... , τ. (31)

The constraints here approximate the second order cone constraints Gi ≥ ‖[ux,i, uy,i]‖2, i = 1, ... , τ.

VI. Experimental Performance Comparison
Consider the spacecraft and testbed described in Sections III-V with S taken as the lower wall of the testbed and the

origin of FI at the lower left corner, as shown in Figure 4. We now compare the performance of vehicles navigating from

rest at initial position s1 = [0.46, 2.32]T to rest at final position sτ = [3.20, 2.32]T , while remaining in the boundary of

the testbed, and avoiding a central rectangular region P = {z ∈ R2 | z1 ∈ [1.50, 2.15], z2 ∈ [0.70, 2.75]}. We minimize

the cost J1 introduced in Eq. (30). The performances of the vehicle are compared both in terms of this approximation,

and a fuel cost measured through pulse width modulation (PWM) signals sent to the thruster. Assuming constant mass

flow rate through the thrusters, the latter cost is directly proportional to fuel consumption. The relative velocity of the

contact point is constrained to zero in order to minimize angular momentum transfer with the wall (Eq. (20)). A small

penalty on angular velocity is also included to reduce unnecessary spin of the spacecraft, which, due to the limited

update rate of the thrust controller —approximately 2 Hz— may diminish the accuracy of acceleration commands.
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Table 2 Experimental Cost Values

Specification PWM Cost [s] Percent Reduction J1 Cost [m2/s4] Percent Reduction

Collision Free, 45s 6.50e+1 N/A 1.82e-2 N/A
Collision Tolerant, 45s 4.44e+1 31.7 1.01e-2 44.3
Collision Free, 60s 4.38e+1 N/A 3.17e-3 N/A

Collision Tolerant, 60s 3.33e+1 23.8 2.44e-3 22.8

The trajectory is generated with Gurobi optimization software using the formulation in Section V with the parameters

listed above. The ideal state is tracked using a Linear Quadratic Regulator (LQR) as the ancillary control law. The net

control at time t ∈ R is,

u(t) = u∗(t) + Klqr(x∗(t) − x(t)) (32)

where Klqr ∈ R3×3 is the LQR gain matrix, u∗ ∈ R3, x∗ ∈ R6 are the ideal control and state at time t, taken from a

polynomial interpolation of the control and state solutions returned from the MIP. The input u is then mapped to PWM

signals on the thrusters upwm ∈ [0, 1]8. An inner PID loop regulates the speed of the reaction wheel, which is used to

achieve the desired moment.

Experiments are conducted for this scenario with the time-horizons fixed to 45 and 60 seconds. The respective

trajectories taken are shown in Figure 4, and the efficiency measures are plotted against time in Figure 5. Note that

despite having a significant effect on the total cost, the difference in time allocated to reach the goal has virtually no

effect on the shape of the planned path. Table 2 shows the total costs for each experiment. We see that the collision

tolerant approach is capable of demonstrating significant improvements in overall efficiency for a given time horizon.

As a result of this, we see that for a given allocation of fuel, this approach allows the vehicle to traverse to its final

location in less time. The main boost in efficiency occurs midway through the trajectory. As the collision free vehicle

requires increased thrust to reduce its velocity, and redirect its momentum, the collision tolerant spacecraft is able to

minimize its thrust at this point, gaining the required momentum transfer directly from an impulsive force at the wall.

There appears to be some trade-off when using this approach in that a spike in thrust is seen to occur directly after

collision. This might be attributed to a number of factors which could potentially lead to increased model error on the

collision iteration. For example: sensitivity to modelling the precise location of the wall (δ) or vehicle radius (R); to

precisely matching the commanded tangential and angular velocities at the time of collision; or from the zero thrust

approximation made in the update equations.

VII. Safety Through Collision Tolerance
If collision avoidance is posed as a hard constraint in the problem formulation, then online MPC becomes vulnerable

to being rendered infeasible in situations where collisions can no longer be avoided. This situation might arise from

16



0 10 20 30 40

0.5

1

1.5

2

0 10 20 30 40 50 60

0.5

1

1.5

0 10 20 30 40

2

4

6

8

10 -4

0 10 20 30 40 50 60

1

2

3

4

5

6

10 -4

Fig. 5 PWM and J1 costs vs time for collision free (green) and collision tolerant (blue) approaches in 45 s and
60 s experiments

Fig. 6 Original (green) and updated path (red) taken to evade observed obstacle. An outline of the vehicle is
shown at the point where the nominal MPC is rendered infeasible, and the point of the planned collision. Video:
https://youtu.be/B8VU9IS12WU.
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a number of factors including model error, external perturbations, or movement of objects in the environment. The

problem is exacerbated by the tendency of optimal trajectories to lie near the boundary of the infeasible region (see for

example, Figure 4). On the other hand, if the constraint to avoid collisions is replaced by a term in the cost function

capturing the damage from this event and the effects of the collision are considered in the constraints, then the planner

can not only remain feasible, but direct the vehicle toward an optimal mitigating action. In this section we turn to a

simulated scenario to demonstrate the potential of the collision tolerant planner to bring about enhanced safety in this

sense.

Consider the case where a robot must traverse across a cluttered environment, consisting of a number of walls

whose locations are known to the spacecraft via an internal map. The vehicle also performs online sensing which it

may use to detect unmapped objects in the environment. Collision with the walls is known to cause minor damage to

the robot, while collision with a newly detected object is considered more damaging, as neither the type of object nor

consequences of hitting it are known in advance. We now compare the two strategies for this case in the environment

shown in Figure 6. Here the spacecraft (with parameters from previous sections) is given the goal of reaching the point

in the top right corner while avoiding obstacles. The vehicle starts on the green trajectory shown in Figure 6, however

it discovers that its path is blocked by an obstacle (red box), and is not able to stop in time to prevent collision. For

the collision free case, the MPC is rendered infeasible. Without an update, the vehicle may simply continue on its

original course and hit the object at high velocity. A more thoughtful implementation might include a backup controller

that brings the vehicle to rest as quickly as possible, however even this backup strategy will result in inevitable and

uncontrolled collisions with both the wall and obstacle [38].

As an alternate strategy, we may incorporate the presence of the various objects in the program through penalties

in a multi-objective cost function. The total cost J will be taken as the sum of some nominal cost Jnom (e.g. fuel

consumption) and a damage cost Jdam. Here we will take the damage cost to be a weighted sum of the impact speeds,

defined for the j th wall on the ith iteration as follows,

v
impact
i, j , −Ξi, j[vx,i, vy,i]

aj

| |aj | |
(33)

where Ξi, j = 1 indicates collision with wall defined by aj on iteration i. Note that impact speed is a quadratic function

of the problem variables. Letting σ1 be the set of indices for the mapped walls (blue) and σ2 be the indices for the

unmapped walls (red). Then we can express the total cost as follows,

J = Jnom +

τ∑
i=2

∑
j∈σ1

K1v
impact
i, j +

τ∑
i=2

∑
j∈σ2

K2v
impact
i, j (34)

where, K1, K2 ∈ R weight the collision penalties for each type of object. For this situation, we specify that K1 is much
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less than K2, directing to vehicle to avoid the unknown object as much as possible. The red path in the Figure 6 shows

the new trajectory that is calculated using this cost function once the red box is discovered. Here the spacecraft is able to

leverage the collision dynamics with the blue box to avoid collision with the unknown obstacle altogether. In addition to

simply applying thrust to push itself away from the object, the vehicle increases its angular speed before the collision,

and utilizes stored angular momentum to push itself away on impact. Additional simulation parameters are listed in

Section VIII.A.

VIII. Conclusion
A framework is proposed for optimizing spacecraft trajectories comprising planned collisions using a mixed integer

programming formulation. An empirical collision model is developed and the algorithm is implemented on a three

degree-of-freedom frictionless testbed designed to replicate spacecraft motion. Experiments comparing the efficiency

of collision free and collision tolerant approaches demonstrate the capability of this approach to bring about practical

performance enhancements. Moreover, a simulated case study shows the potential for application of the method as an

online safety measure. Though modelling of the collision in the constraints and penalizing a metric of damage in the

cost, the vehicle is able to find novel solutions to mitigate scenarios where collisions are inevitable.

Appendix

A. Parameters used in Simulated Safety Scenario

The vehicle navigates from the initial state xT1 = [0.30, 0.40, 0.00, 0.15, 0.15, 0.00 ], to the final state xTτ =

[0.30, 0.40, 0.00, 0.15, 0.15, 0.00 ]. The time resolution is ∆t = 0.06 s. The vehicle is initially commanded to reach its

goal location in 25 s, and the time horizon is appended by 10 s until a feasible solution is found. The collision and

vehicle parameters are taken as those found for the real vehicle. The location of the boxes are listed in Table 3. Indices

1-3 correspond to the boxes that were previously mapped out by the object, and box 4 is the box that is discovered by the

vehicle. This obstacle is observed at t = 21.37 s from the start of the simulation.

Table 3 Location of Boxes in Safety Scenario

xmin [m] ymin [m] xmax [m] ymax [m] Index

1.20 1.40 2.00 2.80 1
2.80 0.50 3.80 1.50 2
2.60 2.05 3.50 2.90 3
3.23 1.65 3.43 1.85 4
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B. Example: 1-D Modelling of Bouncing Particle with MIP

Here we consider the simple case of a free floating particle being released from rest at sy = 1 m and pulled down at

gravitational acceleration g = 9.8 m/s until it experiences a collision with the ground at sy = 0. The particle responds to

the collision according to the update law ∆v+y = κN v−y , where κN = −1.55 and ∆v+y , v−y indicate the change in velocity,

and velocity immediately before collision respectively. We can model the motion of the particle with,

xi+1 − xi =


Ac xi if sy,i + vy,i∆t − 0.5g∆t2 < 0

Axi + b if sy,i + vy,i∆t − 0.5g∆t2 ≥ 0,

where,

Ac =


κN (1 + κN )∆t

0 κN

 , A =

[
0 ∆t

0 0

]
, b =

[
−0.5g∆t2

−g∆t

]
, xi =

[
sy,i
vy,i

]
,

and ∆t is the timestep. Note that since this model is uncontrolled, the objective function plays no role here. The set of

constraints used to model these dynamics is given as follows.

First the condition that collision is predicted to occur on the next iteration can be associated with the event variable

ζ ∈ {0, 1}, leaving us with the condition: ζi = 1 ⇐⇒ sN,i + vN,i∆t − 0.5g∆t2 < 0. This is transformed to the

constraints,

sy,i + vy,i∆t + Mζi+1 − g0.5∆t2 ≥ 0 ( [sy,i + vy,i∆t − g0.5∆t2 ≥ 0] =⇒ [ζi+1 = 1] )

sy,i−1 + vy,i−1∆t − M(1 − ζi) − g0.5∆t2 < 0 ( [sy,i + vy,i∆t − g0.5∆t2 < 0] ⇐= [ζi+1 = 1] )

with i = 1, ... , τ − 1. Next, the nominal position and velocity dynamics constraints are,

sy,i+1 − sy,i − ∆tvy,i + Mζi+1 ≥ 0.5g∆t2 ( [∆sy,i+1 ≥ ∆tvy,i − 0.5g∆t2] =⇒ [ζi+1 = 0] )

sy,i+1 − sy,i − ∆tvy,i − Mζi+1 ≤ 0.5g∆t2 ( [∆sy,i+1 ≤ ∆tvy,i − 0.5g∆t2] ⇐= [ζi+1 = 0] )

vy,i+1 − vy,i + Mζi+1 ≥ −g∆t ( [∆vy,i+1 ≥ −g∆t] =⇒ [ζi+1 = 0] )

vy,i+1 − vy,i − Mζi+1 ≤ −g∆t ( [∆vy,i+1 ≤ −g∆t] ⇐= [ζi+1 = 0] )

sy,i+1 − (1 + κN )sy,i − (1 + κN )∆tvy,i − Mζi+1 ≥ −M ( [∆sy,i+1 ≥ κN sy,i + (1 + κN )∆tvy,i] =⇒ [ζi+1 = 1] )

sy,i+1 − (1 + κN )sy,i − (1 + κN )∆tvy,i + Mζi+1 ≤ M ( [∆sy,i+1 ≤ κN sy,i + (1 + κN )∆tvy,i] ⇐= [ζi+1 = 1] )

vy,i+1 − (1 + κN )vy,i − Mζi+1 ≥ −M ( [∆vy,i+1 ≥ κN vy,i] =⇒ [ζi+1 = 1] )

vy,i+1 − (1 + κN )vy,i + Mζi+1 ≤ M ( [∆vy,i+1 ≤ κN vy,i] ⇐= [ζi+1 = 1] )

which are applied at i = 1, ... , τ − 1. The system is simulated with a MIP using ∆t = 0.01, and τ = 150. The solution to
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Fig. 7 Position and velocity of bouncing particle with normal restitution coefficient κN = −1.55 released 1 m
from the ground. Points found with the collision update equation are represented in red, and nominal update
equation in blue. The system is modelled with a MIP with a time resolution of 0.01 s, and horizon of τ = 150.

this is plotted in Figure 7.

C. Truth Tables for Lemmas 1 and 2

Table 4 Lemmas 1 and 2

cT z < d ζ = 1 cT z + Mζ ≥ d cT z − M(1 − ζ) < d cT z < d =⇒ ζ = 1 ζ = 1 =⇒ cT z < d

T T T T T T
T F F T F T
F T T F T F
F F T T T T

As shown in Table 4, Lemmas 1, 2 may be conveniently expressed in the form of a truth table. The constant M is

assumed to have a value satisfying the appropriate assumptions from these lemmas over the variable domains.
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