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This paper proposes a two-level, data-driven, digital
twin concept for the autonomous landing of aircraft,
under some assumptions. It features a digital twin
instance for model predictive control; and an innovative,
real-time, digital twin prototype for fluid-structure
interaction and flight dynamics to inform it. The latter
digital twin is based on the linearization about a pre-
designed glideslope trajectory of a high-fidelity, viscous,
nonlinear computational model for flight dynamics; and
its projection onto a low-dimensional approximation
subspace to achieve real-time performance, while
maintaining accuracy. Its main purpose is to predict
in real-time, during flight, the state of an aircraft and
the aerodynamic forces and moments acting on it.
Unlike static lookup tables or regression-based surrogate
models based on steady-state wind tunnel data, the
aforementioned real-time digital twin prototype allows
the digital twin instance for model predictive control
to be informed by a truly dynamic flight model, rather
than a less accurate set of steady-state aerodynamic force
and moment data points. The paper describes in details
the construction of the proposed two-level digital twin
concept and its verification by numerical simulation.
It also reports on its preliminary flight validation in
autonomous mode for an off-the-shelf unmanned aerial
vehicle instrumented at Stanford University.
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1 Introduction

In a fully autonomous mode, the control of an aircraft is usually performed via an autonomous
flight control system (AFCS), together with auxiliary information that allows a pilot to monitor
the maneuver’s progress. Historically, the design of an AFCS has followed two main approaches.
In one of them, the equations of motion of the aircraft are linearized about equilibrium (trim)
conditions – such as unaccelerated level flight conditions, steady coordinated turns, and steady
roll [1]. Then, stability and control augmentation systems as well as autopilots are designed using
techniques from linear control theory [2], modern multivariable state-space control [3], or robust
control (H∞ – and µ – synthesis) [4,5]. In the second approach, tools from nonlinear control
and stability theory are used. In this context, a popular control technique is dynamic inversion
or, alternatively, feedback linearization: such a technique inverts the nonlinear dynamics of the
aircraft to yield a multivariable linear dynamical system that may then be stabilized using linear
control tools [6]. All of these control techniques require either the linearization or the inversion
of the aircraft dynamics at some operating point. Consequently, they parameterize control laws
based on the operating conditions and rely on lookup tables and interpolation or adaptive
control [7] to switch between different operating points. However, the aforementioned control
techniques neither allow the direct inclusion of hard performance constraints (e.g. sink rate below
a given desired threshold), nor incorporate a state prediction capability to increase the robustness
of the control process. More critically, they neither leverage high-fidelity computational models to
predict the aerodynamics loads acting on an aircraft during the fluid-structure interaction (FSI),
nor include a provision for autonomous emergency abort maneuvers.

On the other hand, model predictive control (MPC) is a principled method in optimal control
theory that accounts for complex state/control constraints while optimizing performance criteria.
At the core, it generates online (i.e. real-time) optimal control inputs for the feedback control of a
system. For this purpose, MPC relies on a model of the system to predict and optimize its future
behavior. Its key advantage is that it allows a system such as an aircraft to adapt to a large set of
operating conditions. As in this approach the control inputs are obtained in real-time by repeatedly
solving an optimization problem, updates can be made to the cost function to reflect changes in:
mission requirements (e.g. wave-off versus continued approach); in the model to reflect parameter
changes; and in the constraints to reflect new limitations due to exogenous events (e.g. gust wind).
Most importantly, the predictive nature of MPC enables control at the performance limits, as
required during contingency maneuvers and in the presence of uncertainty in both the sensor
measurements and environmental conditions. These characteristics have made MPC a promising
technology for a variety of autonomous systems, including autonomous cars, aircraft, and space
vehicles [8].

Nevertheless, the successful application of MPC to the problem of autonomous aircraft
landing requires the availability of: a low-dimensional computational model capable of accurately
predicting in real-time the aerodynamic forces and moments over a large set of operating
conditions; a control algorithm equipped with correctness guarantees for solving online the MPC
optimization problem; and a real-time implementation of this algorithm on a miniature computer
based on, for example, graphics processing units (GPUs). This paper considers the case where the
aircraft of interest is an unmanned aerial vehicle (UAV). It focuses on the part of the final approach
that occurs roughly two minutes prior to touchdown, where the altitude drops, for example, from
90m to ground level. It addresses the aforementioned requirements in the form of a digital twin
(DT) for the MPC of autonomous UAV landing.

A DT is a virtual replica of a physical object such as a UAV, or a process such as
its manufacturing and/or certification. The underlying concept typically integrates artificial
intelligence, machine learning, and/or software analytics with physics-based modeling, to create
a digital simulation model that can mirror the states and behaviors of the DT’s physical
counterpart. For this purpose, such a model may have to be continuously trained and/or updated
using sensor data and a probabilistic computational framework that accounts for uncertainties
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[9,10]. Most recently, DTs were divided in three types [11]: the DT Prototype (DTP); the DT
Instance (DTI); and the DT Aggregate (DTA). A DTP consists of the designs, analyses, and
processes used to realize the physical product; hence, it exists before there is a physical product
and data generated by sensors mounted on the product. On the other hand, a DTI is the DT of
each individual instance of the product, once it is manufactured and equipped with sensors that
generate data for it. As for the DTA, it is an aggregation of DTIs that allows for a larger set of data
to be collected and processed for interrogation about the physical product. In other words, a DTP
is often a rebranding of important but nevertheless conventional, well-established technologies
such as computer-aided design (CAD) and simulation-based engineering. As a former managing
director at McLaren Applied Technologies wrote “we used a digital twin – though we just called
it a computer simulation” [12]. A DTI however embodies the concept of customization which
is central to its vision and involves three distinct parts: a physical asset (or a process); the
corresponding virtual product; and data that flows between them. The same holds true for a
DTA, which furthermore offers the opportunity to enhance prognostics and learning processes
beyond what can be achieved using a DTI.

Using the nomenclature highlighted above, the DT proposed in this paper is a DTI for the
MPC of autonomous UAV landing, where the computational model for state prediction and
aerodynamic forces and moments post-processing is a low-dimensional surrogate of a high-
fidelity, physics-based, computational model and therefore a special form of a DTP that can
operate in real-time. Hence, this DT can be described as a two-level DT, where a DTI for MPC of
autonomous landing (AL) is wrapped around an innovative, real-time DTP (RT-DTP) for FSI (see
Figure 1). The design of this DT features three innovations that constitute the main contributions
of this paper: the formulation of the governing coupled FSI equations in an arbitrary Lagrangian-
Eulerian (ALE) setting and their linearization about a pre-designed glideslope trajectory, rather
than a mere equilibrium point, albeit using a reasonable simplifying assumption; the construction
of a linearized, computational fluid dynamics (CFD)-based, fluid PROM [13] and its coupling
with a linearized six-degrees-of-freedom (6dof) representation of the rigid dynamics of the UAV;
and the training of the resulting FSI PROM for any deflection of any of the UAV’s control surfaces.
Hence, in this work, the UAV is assumed to be sufficiently stiff to justify its representation by
a 6dof rigid body equipped with deployable control surfaces. This assumption is mild, as it is
satisfied by many UAVs, particularly in the context of landing. Linearization is also justified
by the fact that the controller can be expected to maintain the UAV within small perturbations
about a pre-designed glideslope, except if it has to deal with an exogenous event just before
touchdown – a scenario that is not considered in this work. On the other hand, linearization about
a steady-state equilibrium point would not be effective in this case, because the fluid state at such
a point is time-dependent. For this reason, a more suitable linearization is performed instead.
As for relying on a low-dimensional, physics-based DTP instead of a lookup table or a regression-
based surrogate model based on steady-state wind tunnel data for predicting the aerodynamic
forces and moments needed by the MPC controller, it offers the following advantage. It allows
the DTI for MPC to be informed by a truly dynamic FSI model, rather than a less accurate
set of steady-state aerodynamic force and moment data points, and interpolation/extrapolation
between/away from these points. Other contributions of this paper include: the description
of a high-dimensional DTP for FSI and controlled flight dynamics, and its application to the
verification by simulation of the proposed DT; and a brief report on the preliminary flight
validation in autonomous mode of the proposed DT using a commercial off-the-shelf UAV
instrumented at Stanford University.

To this end, the remainder of this paper is organized as follows. Section 2 presents a
physics-based, high-dimensional, high-fidelity computational framework for the simulation
of FSI problems that is suitable for: constructing the low-dimensional, linearized, RT-DTP
appropriate for informing an MPC controller; and performing a class of nonlinear flight dynamics
computations including those relevant to the verification of the proposed two-level DT for
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Figure 1: Schematic of a two-level DT for autonomous UAV landing: DTI for MPC (outerset); and
RT-DTP for FSI (innerset).

autonomous UAV landing. Section 3 describes the computational technology underlying the RT-
DTP proposed for state prediction and aerodynamic forces and moments post-processing, which
is grounded in robust, linear, projection-based model order reduction (PMOR). Hence, this section
also presents a novel approach for training a linear FSI PROM for arbitrary motions and control
inputs. Section 4 describes the proposed DTI for MPC. Section 5 describes the verification process
of the proposed DT for autonomous UAV landing using a high-dimensional DTP for nonlinear
flight dynamics. Section 6 reports on the in-flight validation of this DT and Section 7 concludes
this paper.

2 High-Dimensional Computational Models for FSI
The DT computational technology presented in this paper is grounded in a physics-based, high-
dimensional, high-fidelity, ALE computational framework for the simulation of a class of FSI and
flight dynamics problems characterized by small to moderate structural rotations, deformations,
and/or topological changes – such as those induced by the opening of a control surface [14]. This
framework is associated with the three-field formulation [15] of the aforementioned class of FSI
problems, which represents a body-fitted CFD mesh as a pseudo-structural system and models
all interactions of the fluid, structural, and dynamic CFD mesh subsystems. For this purpose,
this framework is typically equipped with advanced mesh motion algorithms that maintain at all
times body-fitted an initially body-fitted CFD mesh.

Numerical stability and higher-order spatio-temporal accuracy can be guaranteed [16,17] for
this computational framework that furthermore facilitates linearization about many entities [18]
and eases linear PMOR [13]. In the linearized case, it accounts for structural motions and
deformations via transpiration conditions rather than CFD mesh motion and therefore avoids
altogether the potential issue of mesh entanglement associated with control surface deflections.
In the nonlinear case, for a UAV system undergoing small to moderate rotations and deflections
due to the flight control system, advanced mesh motion algorithms such as those presented
in [19,20] are capable of circumventing mesh entanglements. Hence, for all these reasons, the
ALE computational framework associated with the three-field formulation [15] of FSI problems
and flight dynamics is chosen here for both: building a linearized, low-dimensional DTP capable
of accurately predicting in real-time aerodynamic forces and moments, and therefore informing
an MPC controller; and verifying the proposed two-level DT for autonomous UAV landing.

The rigid UAV is represented by a 6dof system equipped with deployable control surfaces.
Specifically, this system is modeled by an assembly of rigid and phantom1 finite elements that
leads to: six, and only six, unconstrained, translational and rotational dofs; as many internal
Lagrange multiplier dofs as needed to enforce the constraints arising from the rigid elements and

1Phantom elements are zero mass and stiffness elements that serve no other purpose but transferring to a computational
structural dynamics (CSD) model the flow-induced loads computed using CFD.
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their assembly – if the Lagrange multiplier method is used to enforce these constraints; and for
each modeled deployable control surface, a rotation variable around its hinge line to be prescribed
by the MPC controller. Such a finite element (FE) representation of a rigid dynamic system is
easily extendible to flexible aircraft and facilitates a CFD / computational structural dynamic
(CSD)-based FSI analysis.

Due to space limitation, the computational framework outlined above are described below at
the semi-discrete level: while they can be equipped with any preferred temporal approximation,
the discretization of the corresponding final product is discussed in Section 4(a).

(a) Nonlinear Semi-Discrete Base Models

i Reference Frames and Rigid Body Dynamics

i.1 Inertial, Relative, and Body-Fixed Frames

For the stated application of interest, three reference frames are relevant (assuming the flat-
earth approximation):

(i) An inertial frame I fixed to the flat-Earth, described by its unit vectors (̂i, ĵ, k̂).
(ii) A non-accelerating relative frame R traveling at the constant free-stream velocity vector

v̂∞ along a nominal glideslope (constructed in Section 2(b).i), described by its unit vectors
(x̂, ŷ, ẑ).

(iii) A body-fixed frame B, described by its unit vectors (b̂x, b̂y, b̂z).
The unit vectors of I and those ofR are related by a fixed rotation of magnitude ψ0 about the axis
ĵ = ŷ. A natural choice of this angle is

ψ0 = θy,0 = γ0 + α0

where θy,0 is the initial pitch of the UAV, γ0 is the glideslope flight path angle, and α0 is the initial
angle of attack. When ψ0 = 0° and the roll, pitch, and yaw of the UAV relative to I are also zero,
the three sets of unit vectors become identical – with b̂x pointing nose to tail, b̂y pointing out the
right wing, and b̂z pointing upwards.

Throughout this paper, the equations governing the dynamic equilibrium of the assumed rigid
UAV are written in I for the translational dofs and in B for the rotational ones; however, in both
cases, the governing equations are explicitly expressed in terms of the unit vectors (x̂, ŷ, ẑ).

i.2 FE Representation of a 6dof System

As stated above, for the purpose of a CFD / CSD-based FSI analysis, a rigid UAV can
be modeled by a 2NCSD-dimensional FE model comprising an arbitrary number of rigid and
phantom elements leading to 6 unconstrained and (2NCSD − 6) constrained dofs. In this case, the
governing nonlinear semi-discrete equations of dynamic equilibrium can be written as [21]

Mc(θ)ϕ̈+Dc(θ, θ̇)ϕ̇+ f int(λ, ϕ)− faero
c (w, θ)− fg − f thrust

c (cT , θ) = 0 (2.1)

where

Mc(θ) =

[
MCM 0

0 Ta,T (θ)JCMT
a(θ)

]

Dc(θ, θ̇) =

[
0 0

0 Ta,T (θ)JCMṪ
a(θ, θ̇) + Ta,T (θ)[Ta(θ)θ̇]×JCMT

a(θ)

]

MCM =block_diag

([
0 · · · mI · · · 0

])
, JCM =block_diag

([
0 · · · J · · · 0

])

faero
c (w, θ) =

[
I 0

0 Ta(θ)

][
faero

for (w, θ)

faero
mom(w, θ)

]
, f thrust

c (cT , θ) =

[
I 0

0 Ta(θ)

][
f thrust

for (cT , θ)

f thrust
mom (cT , θ)

]
(2.2)
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and:
• A dot designates a time derivative.
• The 2NCSD-dimensional solution of Eq. (2.1) can be written in vector form as

ϕ=
[
uT θT

]T
where u and θ denote the vectors of translational and rotational dofs attached to the nodes of
the FE model, respectively, and the superscript T designates here, above, and throughout the
remainder of this paper the transpose operation.

• Ta,T (θ) = Ta(θ)Λa(θ).
• All 2× 2 partitionings in (2.2) correspond to the partitioning of the dofs of the 2NCSD-

dimensional system in NCSD translational and NCSD rotational dofs.
• The mass of the UAV m and its moment of inertia tensor J (in B) about the center of mass
CM are lumped at CM , where a FE node can be conveniently positioned: this results in the
NCSD-dimensional FE matrices MCM and JCM.

• I is the identity matrix of dimension NCSD, except in the definition of MCM, where it is of
dimension 3.

• Dc is the configuration-dependent matrix associated with the velocity-dependent inertial
forces.

• Ta(θ) is the matrix defined by

Ta(θ) =


Ta1 0 . . . 0

0 Ta2 . . . 0
...

...
. . .

...
0 0 . . . TanFE


where: Tai ∈R3×3 = Ta(θi) =

sinψi
ψi

I− 1− cosψi
ψ2
i

[θi]× +
ψi − sinψi

ψ3
i

(
θiθ

T
i

)
, i= 1, · · · , nFE,

is the material tangential transformation operator [22] that arises when the rotational components
of the dynamic equations of equilibrium at a node i of the FE model are written in terms of θ̇i
and θ̈i (instead of the convected angular velocities and accelerations); ψi = ‖θi‖; [(·)]×, where (·)
is a generic vector in R3, is the skew-symmetric matrix in R3×3 defined by ([(·)]×) η= (·)× η,
where η is an arbitrary vector in R3 and × designates in this case the vector (cross) product;
nFE is the total number of nodes in the FE model; the pre-multiplication of the second NCSD
equations of (2.1) by Ta(θ) is performed to ensure the symmetry of Mc(θ) (see Section 4.2
of [21]); and [Ta(θ)θ̇]× in (2.2) is to be understood as the block diagonal matrix [Tai θ̇i]×,
i= 1, · · · , nFE.

•
[
faero

for faero
mom

]T is the vector of aerodynamic forces and moments (expressed inR).
• fg is the vector of gravitational forces (which, considering that the aircraft mass m is lumped

at the CM , do not create a moment about the CM ).

•
[
f thrust

for f thrust
mom

]T
is the vector of thrust-induced forces and moments, and cT is the magnitude

of f thrust
for .

• Propulsion is not explicitly modelled and therefore f thrust
c is considered to be independent of

the fluid state vector w.
• f thrust

c is applied at a single node j of the FE model, along y= 0, and in the direction of −b̂x:
hence, it can be written as

f thrust(cT , θ) =
[
0 · · ·

[
−cT 0 0

]
ΛT (θj)

[
0 −cT∆zT,CM 0

]
ΛT (θj) · · · 0

]T
where

Λ(θj) = exp[θj ]× = I+
sinψj
ψj

[θj ]× +
1− cosψj

ψ2
j

[θj ]
2
×

is the rotation matrix representation of the rotation vector and ∆zT,CM is the vertical offset of
the thrust from the center of mass (see Figure 2).
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• When the Lagrange multiplier method is used to enforce the constraints arising from the FE
modeling and assembly of rigid elements, λ is the vector of Lagrange multiplier dofs and f int is
the associated vector of internal forces. If the penalty method is used however for this purpose,
f int = 0 and several of the terms of Eq. (2.1) are affected by a penalty parameter but otherwise
keep the same physical meaning.

Figure 2: Free-body diagram of a (rigid) UAV.

During the solution of the discrete counterpart of Eq. (2.1) – in this case, using either the
midpoint rule or the generalized-αmethod [23] – the (2NCSD − 6) constrained dofs are eliminated
(in terms of the 6 unconstrained dofs) to obtain the discrete solution of the classical equations
governing the dynamics of a rigid body subsystem with 6 dofs.

ii RANS-based CFD Prediction of Aerodynamic Loads in the ALE Setting

Air is modeled as a perfect gas and its flow past the UAV is assumed to be compressible, and
governed by the three-dimensional (3D) Reynolds-averaged Navier-Stokes (RANS) equations
equipped with the Spalart-Allmaras turbulence model [24]. The convective terms of these
equations are semi-discretized on unstructured CFD meshes by a vertex-based, second-order,
finite volume (FV) method with dual cells (or control volumes); and the diffusive and source
terms (due to turbulence modeling) are semi-discretized on the primal cells of the CFD mesh by
a piecewise linear FE method.

In the ALE setting, the FV-FE semi-discretization of the governing RANS equations is
performed on a dynamic, body-fitted, CFD mesh. It leads to the following system of ordinary
differential equations of dimension NCFD

˙(
A(X )[wT wTt ]

T
)∧
+ Φcv

(
[wT wTt ]

T ,X , Ẋ
)
− Φds

(
[wT wTt ]

T ,X
)

= 0 in ΩF (t)

K̃X − K̃cu = 0 on ΓF/S(t)

(2.3)
whereΩF (t) and ΓF/S(t) denote the computational fluid domain and fluid / structure interface,
respectively, and their dependence on time t is emphasized; and the second equation models the
ALE CFD mesh as a quasi-static pseudo-structural system and enforces a semi-discrete version of
the no-penetration condition on ΓF/S(t) [25]. In Eq. (2.3) above, X = (x, y, z)T denotes the semi-
discrete, time-dependent, position vector of the ALE, body-fitted, CFD mesh; A is a diagonal
matrix containing the time-dependent cell volumes of this mesh; wt is the vector of semi-discrete,
conservative, time-dependent, turbulence model variables; Φcv denotes the vector of numerical
convective flux functions; Φds is the vector of numerical diffusive flux functions and source terms
due to turbulence modeling; K̃ is in general a time-dependent, FE stiffness matrix arising from the
structural analogy chosen for representing the CFD mesh as a pseudo-structural system; K̃c is a
time-dependent, transfer matrix representing the effect of the motion of the real structural system
at ΓF/S(t) on that of the ALE CFD mesh; and u denotes as before the vector of semi-discrete,
time-dependent structural displacements.
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From here on, the vectors of semi-discrete, conservative, time-dependent, fluid state and
turbulence model variables w and wt are merged and denoted simply by w.

It is noted that:
• Here and throughout the remainder of this paper, the numerical convective flux function

at any vertex i of the CFD mesh is based on the second-order extension of Roe’s
approximate Riemann solver and thus can be written as

Φcv
i =

∑
j ∈N (i)

∣∣∣∂ΩFij(t)∣∣∣φRoe
ij

(
wij , wji, νij(X ), κij(X , Ẋ )

)

where N (i) denotes the set of vertices of the CFD mesh connected to vertex i; for each
j ∈N (i),

∣∣∣∂ΩFij(t)∣∣∣ denotes the area of the facet defined by the intersection of the dual

cells ΩFi (t) and ΩFj (t) – that is,
∣∣∣ΩFij(t)∣∣∣= ∣∣∣∂ΩFi (t) ∩ ∂ΩFj (t)

∣∣∣; φRoe
ij is the ALE version of

the Roe numerical flux function; wij and wji are the linearly reconstructed values of wi
and wj at ΩFij(t), respectively; and νij and κij are defined as

νij(X ) =
1∣∣∣∂ΩFij(t)∣∣∣

∫
∂ΩF

ij(t)
µij(X )ds

κij(X , Ẋ ) =
1∣∣∣∂ΩFij(t)∣∣∣

∫
∂ΩF

ij(t)
Ẋ · µij(X )ds

where µij(X ) is the unitary normal to ∂ΩFij(t) and thus is a time-dependent quantity.
• K̃c can be constructed whether the discrete representation of the wet surface of the UAV

matches or not that of the wall boundary of ΩF [25].
• The time-discretization of Eq. (2.3) is performed using a DGCL (discrete geometric

conservation law)-preserving – and thus numerically stable – and provably second-order
time-accurate scheme [17].

• The deflection of a control surface shears the CFD mesh along the edges between the
lateral sides of the control surface and the parts of the main wing facing them. When these
deflections are small to moderate, the motion of the dynamic CFD mesh is sustainable by
advanced mesh motion algorithms [19,20]; and the inability of the ALE computational
framework to account for the air flow crossing underneath the opened control surface,
from its lateral sides, does not significantly affect accuracy.

(b) Linearized Semi-Discrete Base Models
Next, the physics-based coupled equations (2.1) and (2.3) governing an FSI problem are

linearized around a glideslope constructed as a planned equilibrium trajectory, as motivated and
justified in Section 1. For this purpose and the sake of notational simplicity, the variable θ is
redefined below for various purposes designated by various subscripts.

i Linear Perturbation Analysis About a Dynamic Equilibrium Trajectory

The linearization procedure described in [18] is adopted here, except for the following major
differences: as stated above, linearization is performed about a planned equilibrium trajectory
rather than a mere equilibrium point; and structural flexibility effects are not accounted for,
since the UAV is reasonably assumed to be rigid. Here, the planned equilibrium trajectory is
the glideslope defined in the inertial frame I and the absence of a cross wind by: the free-
stream velocity magnitude v∞; the constant flight-path angle γ0; zero roll and yaw angles; a
time-dependent angle of attack αp; and the associated pitch angle θI,pR,y = γ0 + αp, where the
superscripts p and I designate the planned aspect of the trajectory and a quantity measured in
the inertial frame I, respectively. Specifically, the glideslope is determined so that each point of
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this trajectory is a trim point where the following conditions hold

üpR = u̇pR = upR = 0, θ̈pR,x = θ̇pR,x = θpR,x = 0, θ̈pR,z = θ̇pR,z = θpR,z = 0

θ̇pCS,a = θpCS,a = 0, θ̇pCS,r = θpCS,r = 0
(2.4)

Here, the subscript R designates the translations and rotations due only to rigid body motion –
and therefore not to control surface deflections; the subscript CS designates a quantity pertaining
to a control surface or their entire set; and θCS,a and θCS,r designate the deflections of the
ailerons and rudders, respectively. Observe that this choice of glideslope implies that if the UAV
has ailerons, elevators, and rudders, the pitch angle at each point of this planned equilibrium
trajectory is determined by deflecting only the elevators appropriately. Observe also that this
choice of glideslope incorporates all necessary information for tracking the evolution of the
relative reference frameRwith respect to the inertial reference frame I (see Section 2(a).i.1).

During descent, when the altitude drops from 90m to ground level, the atmospheric
density [26] changes only by∼ 1%. For this reason, along the glideslope, the variations of the pitch
angle and control surface deflections can be expected to be small, and the following relations

θ̈pR,y ≈ 0,
∣∣∣θ̇pR,y∣∣∣� 1,

∣∣∣θpR,y∣∣∣� 1,
∣∣∣θ̇pCS,e

∣∣∣� ∣∣∣θpCS,e

∣∣∣� 1 (2.5)

where θCS,e designates the deflections of the elevators, can be expected to hold. Similarly, the rate
of change of the fluid state along the glideslope can be expected to be negligible – that is,∣∣ẇp∣∣� 1 (2.6)

Reference [27] provides an algorithm for generating the glideslope described above.
Then, the structural and fluid perturbations are defined as

δφ(t) := φ(t)− φp(t), δw(t) :=w(t)− wp(t), δc(t) := c(t)− cp(t)

where

c=
[
cT θ̇CS,1 · · · θ̇CS,nCS

]T
(2.7)

θ̇CS,i, i= 1, · · · , nCS, is the deflection rate of each i−th control surface, and c is the vector of control
inputs.

After some calculus, the linearization of Eq. (2.1) about the planned glideslope leads to

Mc
(
θp
)
δφ̈ − ∂faero

c

∂w

(
wp, θpR

)
δw − ∂faero

c

∂φ

(
wp, θpR

)
δφ

− ∂f thrust
c

∂φ

(
cpT , θ

p
R

)
δφ− ∂f thrust

c

∂cT

(
cpT , θ

p
R

)
δcT = 0 (2.8)

Again, the dimension 2NCSD of problem (2.8) is artificially large due to the convenient
representation of the UAV as an assembly of rigid and phantom finite elements. However, in
the linearized setting, the computational overhead associated with eliminating the (2NCSD − 6)

constrained dofs in terms of the 6 unconstrained dofs can be avoided altogether without losing
accuracy, simply by performing the Galerkin projection of the above problem onto the basis

X =
[
XR XCS

]
where the columns of XR ∈R2NCSD×6 are the rigid body modes of the UAV and those of XCS ∈
R2NCSD×nCS are its control surface modes2. This leads to re-writing the solution δφ as

δφ=Xδy=
[
XR XCS

] [ δyR
δyCS

]
(2.9)

2A control surface mode is defined here as a mode that is zero everywhere except at the dofs attached to the nodes located on
a particular control surface, where its values are given by a deflection of that surface.
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which transforms problem (2.8) into

Mp
c,rδÿR − P pRδyR − P

p
wδw − pthrust,p

cT δcT − P pCSδyCS = 0 (2.10)

where (noting that the thrust is not applied on any control surface)

Mp
c,r =XT

RMc
(
θp
)
XR, P

p
R =

(
P aero,p
R + P thrust,p

R

)
, P aero,p

R =XT
R
∂faero
c

∂φ

(
wp, θpR

)
XR

P thrust,p
R =XT

R
∂f thrust
c

∂φ

(
cpT , θ

p
R

)
XR, p

thrust,p
cT =XT

R
∂f thrust
c

∂cT

(
cpT , θ

p
R

)
P pCS =XT

R
∂faero
c

∂φ

(
wp, θpR

)
XCS

Next, the linearization of Eq. (2.3) about the glideslope and the considerations expressed
in (2.4–2.6) lead to

A
(
X p
)
δẇ +Hpδw +BpδẊ + CpδX = 0 (2.11)

whereE(w) is the matrix with components eik =
∂aij
∂Xk

wj [18], aij denotes the entries of the matrix

A, and

Hp =
∂
(
Φcv − Φds

)
∂w

(
wp,X p, Ẋ p

)
, Bp =E

(
wp
)
+
∂
(
Φcv − Φds

)
∂Ẋ

(
wp,X p, Ẋ p

)
Cp =

∂(Φcv − Φds)

∂X

(
wp,X p, Ẋ p

)
Furthermore, the substitution of the second of Eqs. (2.3) and (2.9) into the linearized
equations (2.11) transforms these into

A
(
X p
)
δẇ +Hpδw +BpRδẏR +BpCSδẏCS + CpRδyR + CpCSδyCS = 0 (2.12)

where

BpR =BpK̃−1K̃cXR, C
p
R =CpK̃−1K̃cXR, B

p
CS =BpK̃−1K̃cXCS, C

p
CS =CpK̃−1K̃cXCS

In summary, from Eqs. (2.12) and (2.10), it follows that the linearization of the governing
coupled fluid-structure equations (2.3) and (2.1) can be written in first-order form as follows

Ap 0 0 0

0 Mp
c,r 0 0

0 0 I 0

0 0 0 I

 δq̇ −

−Hp −BpR −CpR −CpCS
P pw 0 P pR P pCS
0 I 0 0

0 0 0 0

 δq −


0 −BpCS
pthrust
cT 0

0 0

0 I

 δc= 0 (2.13)

where

Ap =A
(
X p
)
, δq=

[
δwT δẏTR δyTR δyTCS

]T
∈RNCFD+12+nCS

ii Constant Operator Approximation and Justification

In principle, the building blocks of Eq. (2.13) are altitude-dependent and therefore require
updating during the descent trajectory, which unfortunately cannot be performed analytically
and therefore increases computational complexity. However, as previously mentioned, the free-
stream atmospheric conditions vary slowly with altitude. Hence, the aforementioned building



11

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

blocks are approximated here with their initial descent values, thereby transforming (2.13) into
A0 0 0 0

0 M0
c,r 0 0

0 0 I 0

0 0 0 I

 δq̇ −

−H0 −B0

R −C0
R −C0

CS
P 0
w 0 P 0

R P 0
CS

0 I 0 0

0 0 0 0

 δq −


0 −B0
CS

pthrust
cT 0

0 0

0 I

 δc= 0 (2.14)

Unless deemed necessary for the sake of clarity, the subscript c, r introduced in (2.10) and
superscript 0 introduced in (2.14) are dropped in the remainder of this paper for the sake of
notational simplicity.

3 Real-Time DTP for State Prediction Based on Linear PMOR
Due to its fluid component, the DTP for FSI (2.14) is a linearized high-dimensional model (HDM)
– specifically, of dimension NHDM =NCFD + nCS + 12. As such, this DTP cannot perform in real-
time. Linear PMOR is performed here to reduce the dimension of its fluid component from NCFD
to nCFD�NCFD – and therefore reduce NHDM to (nCFD + nCS + 12)�NHDM – and obtain an
RT-DTP for FSI state and loads predictions.

(a) Subspace Approximation
Fundamental to PMOR is the assumption that the solution – in this case, the flow perturbation

solution – may be well-approximated in a low-dimensional affine subspace V of dimension
nCFD�NCFD, represented by a right reduced-order basis (ROB) V ∈RNCFD×nCFD . This can be
written as

δw≈ δwref + V δwr (3.1)

where δwr ∈RnCFD is the vector of reduced coordinates of the fluid state perturbation and δwref ∈
RNCFD is a reference fluid state perturbation vector typically chosen so that the approximation (3.1)
captures well the initial condition δw(0). In the context of the application discussed in this paper,
δw(0) = 0 and therefore δwref is set to zero.

Substituting the approximation (3.1) (with δwref = 0) into the HDM (2.14) and applying a
subscript r to δc to emphasize in this case the dependence of its optimal value (see Section 4(c))
on the reconstructed approximation V δwr rather than δw leads to

AV 0 0 0

0 M 0 0

0 0 I 0

0 0 0 I

 δq̇r −

−HV −BR −CR −CCS
PwV 0 PR PCS
0 I 0 0

0 0 0 0

 δqr −


0 −BCS

pthrust
cT 0

0 0

0 I

 δcr (3.2)

where

δqr =
[
δwTr δẏTR δyTR δyTCS

]T
∈RnCFD+12+nCS

(b) Training for Arbitrary Control Inputs
From its expression given in (2.14), it follows that the linearized HDM is parameterized only by

rigid body motions and control inputs. Hence, the right ROB V to be constructed for transforming
this HDM into a PROM – that is, an RT-DTP – needs to be trained only for these parameters. Since
in this work cT is assumed to be independent of w and therefore influences the fluid subsystem
implicitly via its effort on the dynamics of the rigid body subsystem, it follows from (2.7) that it
suffices to train V specifically arbitrary rigid body motions and control surface deflections. This is
performed here by tailoring the frequency domain procedure developed in [13] for constructing
and training a right ROB to aircraft rigid body and control surface modes, as follows:

(i) Consider the harmonic expansions δw= δwae
Jωt and δy= δyae

Jωt, where J is the
purely imaginary number (J 2 =−1), ω is a circular frequency, and the subscript a
designates the amplitude.
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(ii) Substitute the above expansions into the fluid subsystem to obtain

δwa =−
(
JωA+H

)−1(
Jω

[
BR BCS

]
+
[
CR CCS

] )
δya (3.3)

(iii) Select an appropriate frequency band Bω =
[
0 ωmax

]
– e.g. choose ωmax to be slightly

higher than the highest frequency of the aircraft’s dynamic stability modes (see [28]) –
and sample Bω (e.g. uniformly) to obtain (k + 1) circular frequencies {0, ω1, . . . , ωk}.

(iv) Let nmodes = nRB + nCS = 6 + nCS denote the total number of rigid body and control
surface modes. For each sampled frequency ωm ∈Bω , m= 1, · · · , k, and each amplitude
δya ∈ {e1, . . . , enmodes}, where el denotes l-th column of the identity matrix of dimension
nmodes, solve Eq. (3.3) (i.e. train for each rigid body motion and control surface deflection
separately).

(v) Collect the real and imaginary parts of the computed solutions of (3.3) into the snapshot
matrix S ∈RNCFD×nmodes(2k+1) – that is,

S =
[
. . . δwl0a <

{
δwl1a

}
=
{
δwl1a

}
. . . <

{
δwlka

}
=
{
δwlka

}
. . .
]

where< and= designate the real and imaginary parts of a complex number, respectively,
and

δwlma =−
(
JωmA+H

)−1(
Jωm

[
BR BCS

]
+
[
CR CCS

] )
el ,

l= 1, · · ·nmodes; m= 0, · · · k; and ω0 = 0

(vi) Compress the snapshot matrix S using the singular value decomposition method (SVD)
– that is, perform S =UΣZT – and truncate U ∈RNCFD×nmodes(2k+1) using the relative
singular value energy criterion [29] to obtain a right ROB V ∈RNCFD×nCFD , where nCFD ≤
nmodes(2k+1).

The right ROB construction and training procedure described above is equivalent to a
proper orthogonal decomposition (POD) method of snapshots [30]. It can also be viewed as
approximating the transfer function between the states of the structure and fluid subsystems at
the set of sampled frequencies. Thus, as long as this set includes the frequencies that dominate
the response of the fluid subsystem, the computed solution snapshots will contain the information
necessary for constructing an accurate right ROB V .

(c) Stabilization via Petrov-Galerkin Projection
To complete the construction of the RT-DTP for FSI state and load predictions, the first row

of Eq. (3.2), which is associated with the fluid component of this HDM, must be projected
onto a left ROB W ∈RNCFD×nCFD representing a subspace of constraints W , to transform this
HDM component, in general, into a Petrov-Galerkin fluid PROM. Indeed, this leads to a
low-dimensional DTP for FSI that can be written as

δq̇r −


−Hr −BR,r −CR,r −CCS,r

M−1Pw,r 0 −M−1PR M−1PCS
0 I 0 0

0 0 0 0


︸ ︷︷ ︸

ART-DTP

δqr −


0 −BCS,r

M−1pthrust
cT 0

0 0

0 I


︸ ︷︷ ︸

BRT-DTP

δcr = 0

(3.4)

where
Hr =A−1r WTHV, Ar =WTAV, BR,r =A−1r WTBR, CR,r =A−1r WTCR

BCS,r =A−1r WTBCS, CCS,r =A−1r WTCCS, Pw,r = PwV

Specifically, the dimension of the linear fluid PROM represented by the first row of Eq. (3.4) is
nCFD�NCFD and that of the RT-DTP for FSI is nRT-DTP = (nCFD + nCS + 12)�NHDM. However,
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the numerical stability of the fluid PROM represented by the building block Hr is not guaranteed
by default – that is, due to projection,−Hr may have eigenvalues in the right-half of the complex
plane even when−H does not have such eigenvalues. This is particularly true when W is chosen
to be W = V , in which case the linear fluid PROM is known as a Galerkin PROM. However, a
procedure was presented in [31] for constructing a left ROBW 6= V that guarantees the numerical
stability of the fluid PROM, which is necessary for guaranteeing the stability of the RT-DTP (3.4)
for FSI state and load predictions. This procedure is adopted here for constructing the left ROB
W .

4 DTI for MPC
The MPC controller adopted in this work is that described in details in [32]. Here, it is overviewed
in order to keep this paper as self-contained as possible. Because this MPC controller is informed
by the RT-DTP (3.4) for FSI state and load predictions, it is referred to in this paper as a
digital twin. Because it interacts with sensor data about the rigid body state and control surface
deflections of the individual UAV it is applied to, it is more specifically referred to as a DTI.

(a) Discretization
To implement the control scheme in a digital flight computer, the semi-discrete model (3.4) is

discretized by the matrix exponential method under the assumption of a zero-order hold (ZOH)
control (see Appendix W8.7 of [33]), where ZOH control refers to the hypothesis of constant
control inputs during a single time-step. Given a time-step size ∆t, this method updates δqr from
time-index k to time-index k + 1 as follows

δqk+1
r =AdRT-DTP δq

k
r +BdRT-DTP δc

k,?
r (4.1)

where

AdRT-DTP = e∆tART-DTP , BdRT-DTP =

( ∫∆t
0

eηART-DTPdη

)
BRT-DTP

and the superscript ? in δck,?r emphasizes that this control input is optimal (an determined in
Section 4(c)).

As pointed out in [34], the matrix exponential method under the assumption of a ZOH control
utilizes the exact solution of a first-order system of linear ordinary differential equations over a
single sample period. Therefore, it represents a discrete equivalent of the exact solution, provided
that the applied control is constant over the sample period.

(b) State-Estimator for State Feedback
To form a closed-loop system, the control scheme is equipped with a state-estimator and the

vector of control inputs δckr is adjusted appropriately. Typically, the state-estimator is chosen of
the form

δ ˙̂qk+1
r =ASE,d

RT-DTP δq̂
k
r +BSE,d

RT-DTP δc
k + Ldδzk (4.2)

where Ld ∈RnRT-DTP×(nCS+12) is the state-estimator gain matrix whose evaluation is mentioned
below, δzk ∈RnCS+12 is the vector of measured rigid body state perturbations (displacements
and rates) and control surface deflection perturbations at time-index k,

ASE,d
RT-DTP =AdRT-DTP − L

dC, C =

0 I 0 0

0 0 I 0

0 0 0 I

 , and BSE,d
RT-DTP =BdRT-DTP

Hence,C is the output matrix that extracts from δq̂kr only the rigid body states and control surface
deflections – that is, no measurements of the fluid state are assumed to be available. As for the
vector of adjusted control inputs δck – that is, the inputs that are actually applied to the UAV and



14

rsta.royalsocietypublishing.org
P

hil.
Trans.

R
.S

oc.
A

0000000
..................................................................

the state-estimator – it can be written as

δck = δck,?r +Kd
c (δq̂

k
r − δqk,?r ) (4.3)

where δck,?r is, again, the vector of optimal control inputs, Kd
c is the controller gain matrix

mentioned below, and δqk,?r is computed using the RT-DTP (4.1) as well as δck,?r . Therefore, the
state-estimator is designed to track both the UAV, via feedback from sensor measurements, and
the trajectory produced by the optimal control, via the reduced-order state feedback.

Ideally, the gain matrices Ld and Kd
c would be computed based on a discretized (2.14) using

standard techniques from control theory, then reduced according to the subspace approximation
(3.1). However, given the typical size of a CFD mesh, such techniques are not computationally
tractable. Therefore, Ld and Kd

c are computed in this work using the reduced-order Riccati
method for time-discrete systems described in [32].

(c) Robust Reduced-Order MPC Controller

All that remains to fully describe the MPC controller is to describe the computation of δc k,?r .
For this purpose, it is noted that at the core of the controller is the real-time open-loop trajectory
δq jr , j = 1, 2, · · · , computed using the time-discrete RT-DTP (4.1). This trajectory is generated by
solving a receding horizon optimal control problem (OCP), which may be written as

δc k,?r = min
δqjr, δc

j
r

∥∥∥δqk+nT |k
r

∥∥∥2
QT

+

k+nT−1∑
j=k

∥∥∥δqj|kr ∥∥∥2
Q
+
∥∥∥δc j|kr ∥∥∥2

R

subject to δq
i+1|k
r =AdRT-DTP δq

i|k
r +BdRT-DTP δc

i|k
r

Qcδq
i|k
r ∈Q, δc

i|k
r ∈ C

δq
k+nT |k
r ∈QT , δq

k|k
r = δqkr

(4.4)

where: the superscript k, ? emphasizes that even though the above OCP computes nT optimal
solutions, only that indexed by k (the first one in the time horizon) is retained by the MPC
controller; nT denotes the length of the time horizon;Q andR are two positive-definite weighting
matrices for the state and control, respectively;QT is the positive-definite terminal cost weighting
matrix; the matrix Qc describes the state constraints; the sets Q and C describe the state and
control constraint sets, respectively; and QT describes the terminal set. The superscript i|k
designates the dependence of a quantity on the state at the time-index k and therefore in general,
δq
k+i|k
r 6= δqk+ir . The solution of the above OCP consists of the optimal vector of control inputs

computed at time-index k, δc k,?r . The optimal reduced-order state at time-index k + 1 is generated
by advancing (4.1) using δc k,?r and δqk,?r = δqkr . Hence, to generate a trajectory, problem (4.4) is
first solved using the initial condition δq0r . Then, using the computed optimal input δc0,?, δq1r is
computed by time-advancing the RT-DTP (4.1) and the OCP (4.4) is solved again for k= 1. This
process is repeated until the trajectory returns to the glideslope – that is, all perturbations are
eliminated (see below). Because each instance of the OCP (4.4) has different start and end times,
the resulting control scheme is referred to as a receding horizon control scheme.

The OCP (4.4), the discrete state-estimator (4.2), and the control adaptation (4.3) are collectively
referred to as the control scheme. Because this scheme is informed by the RT-DTP (4.1), which is
a PROM, it can be described as a reduced-order MPC (ROMPC) control scheme.

Solving the OCP (4.4) is significantly more computationally intensive than computing the
updates (4.1) and (4.2). For this reason, two different time-step sizes are used: 1) one time-step
size ∆tOCP for the solution of problem (4.4) that is ideally roughly equal to the wall-clock time
required to solve this problem (though it may be chosen to be larger to obtain a sufficiently
long time horizon without an excessive number of time steps); and 2) a finer time-step size
∆tSE =∆tOCP/m for performing the updates (4.1) and (4.2), where m is an integer that can be
tuned for real-time performance. Additionally, the solution of the OCP (4.4) may be accelerated
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by observing that the variables δqi|kr are entirely dependent upon the initial condition δqkr and
the optimal control inputs δci|k,?r : therefore, δqi|kr may be eliminated and (4.4) may be rewritten
entirely in terms of the variables δci|kr and the known initial condition.

5 Verification and Demonstration
Here, the two-level DT for AL graphically depicted in Figure 1 is verified by numerical simulation.
Specifically, the objective is set to tracking a constructed glideslope and correcting lineup errors
during the approach induced by a specified initial offset. In this context, the DTI for MPC receives
“sensor” measurements from a high-dimensional, nonlinear DTP for flight dynamics based on
the ALE computational framework described in Section 2(a).ii; and applies the control inputs
determined by the ROMPC scheme defined by (4.2)–(4.4) and informed by the RT-DTP (3.4).
Note that even when the side-slip angle is zero and the CFD mesh is symmetric, numerical
imperfections (errors) lead to a nonzero lateral force and nonzero roll and yaw moments. Thus,
regardless of the specific initial conditions, the numerical simulation includes the following
disturbances:

(i) The presence in the high-dimensional, nonlinear DTP of nonlinear effects that are not
accounted for in the construction of the RT-DTP, which is a linear PROM.

(ii) Projection and modeling errors due to PMOR.
(iii) Nonzero lateral force and roll and yaw moments, even when the side-slip angle is zero.

In all numerical experiments discussed below, the glideslope is defined by: the flight-path
angle γ0 = −3.5°; the free-stream velocity v∞ = 15m s−1; the initial altitude of 90m; and the
slowly time-varying pitch angle θI,pR,y , thrust cpT , and elevator deflection θpCS,e computed as
described in [27]. The initial angle of attack is set to α0 = αp0 = 1.79◦.

(a) High-Dimensional and Low-Dimensional Computational Models

i Nonlinear High-Dimensional CFD and 6dof CSD Models

The UAV considered in this work is an off-the-shelf hobby UAV that the authors have laser-
scanned to obtain a discrete representation of its surface. It has a single propeller and four control
surfaces (see Figure 3): two ailerons that are coupled to deflect opposite one another; one elevator;
and one rudder. Treating the coupled ailerons as a single control surface mode results in nCS = 3.
The nonlinear ALE CFD HDM underlying the construction of the linearized RT-DTP for FSI – that
is, the nonlinear DTP for flight dynamics – is based on a CFD mesh with 2,930,804 grid points
and 17,223,270 tetrahedral primal elements, extending in a sphere of radius 30m that encloses
the aircraft: this mesh leads to the high dimension NCFD = 17, 584, 824. Figure 4a depicts a slice
of the CFD mesh at y= 0 (note the absence of the propeller) and Figure 4b zooms on a region
of the boundary layer (BL). The CFD mesh is built so that y+ ≈ 30 and the BL is discretized
by twelve prism layers. The Reichardt nonlinear wall function [35] is used to model the wall
boundary effects below y+ ≈ 30. The resulting nonlinear, semi-discrete fluid HDM is discretized
in time using the three-point backward difference (BDF2) scheme [36]. On the other hand, the 6dof
semi-discrete CSD model representing the rigid body dynamics of this UAV is time-discretized
using the generalized-α method [23]. The FSI coupling is performed using the improved serial
staggered (ISS) algorithm described in [37]. The time-step size for the structural subsystem and
that for the coupled FSI system are set to∆tSE (see Section 5(b)). Hence, at each coupled time-step,
the time-step size for the fluid subsystem is either set to ∆tSE or the fluid subsystem is subcycled
to meet nonlinear numerical stability requirements.

ii Low-Dimensional Linearized CFD Model and Accuracy Verification

The linearized RT-DTP (3.4) is trained in the frequency band Bω =
[
0 10π

]
rad s−1 that is

uniformly sampled for this purpose inm= 10 steps of size π rad s−1. This results in 189 snapshots
(126 corresponding to the group of rigid body modes and 63 to that of control surface modes). In
order to ensure that during their compression using SVD, the snapshots corresponding to the
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Figure 3: Off-the-shelf hobby UAV with a single propeller and four control surfaces.

(a) (b)

Figure 4: RANS CFD mesh: slice at y= 0 (a); and zoomed view on the region of the boundary
layer (b).

group of rigid body modes do not dominate their counterparts corresponding to the group of
control surface modes which typically have much smaller magnitudes, each group is normalized
by its average two-norm. Compressing the computed solution snapshots and truncating the
resulting left singular vectors according to the relative singular value energy criterion with the
tolerance of 99.9999% (i.e. only 10−6 of the relative energy is truncated) leads to a fluid right ROB
and then a fluid PROM of dimension nCFD = 88 (which represents a reduction of the dimension
of the fluid HDM by a factor of 2× 105). Thus, the dimension of the constructed RT-DTP (3.4) is
nCFD + 12 + nCS = 103.

As mentioned in Section 3(c), the left ROB W is computed using the stabilization algorithm
presented in [31], which is implemented in MATLAB [38] using the convex optimization solver
package CVX [39,40].

The accuracy of the constructed linear RT-DTP is verified here for the flow response problem
to the following prescribed rigid body motion of the UAV

δyR = δyR,a

(
1− e−ω

2t2
)
sin (ωt), δyCS = δyCS,a

(
1− e−ω

2t2
)
sin (ωt)

where

δyR,a =
[[
0.01 0.01 0.01

]
m

[
8.73 8.73 8.73

]
× 10−3rad

]T
δyCS,a =

[
8.73 8.73 8.73

]T
× 10−2rad, ω= 4π rad s−1
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Figure 5: Numerical predictions of the vertical force (a) and lateral moment (b) perturbations
using the linearized fluid HDM (solid) and linearized RT-DTP (dashed).

The amplitudes δyR,a and δyCS,a are set such that the amplitude of the resulting force and
moment perturbations are of similar magnitudes. Given in this case the continuous nature of the
forcing function, the ZOH is not appropriate for the treatment of the control surface deflection
rate. For this reason, the RT-DTP (3.4) is also time-discretized using BDF2 [36] and the constant
time-step ∆t= 0.001 s. The flow response is computed for nT = 2, 000 time-steps – that is, four
periods of the excitation – using both the linearized version of the fluid HDM and the linearized
RT-DTP.

Figures 5a and 5b report on the computed perturbations to the aerodynamic vertical force and
lateral (i.e. pitch) moment, respectively. They show that for this problem at least, the linearized
RT-DTP reproduces well the solution computed using the linearized HDM, particularly in the

later part of the numerical simulation where
(
1− e−ω

2t2
)
≈ 1.

To measure the accuracy delivered by the linearized RT-DTP, the following definitions leading
to a force / moment-based measure of the RT-DTP-based global solution error are introduced

υRT-DTP =

nT∑
i=0

ξRT-DTP,i

∣∣∣Pw,rδwir + PRδy
i
R + PCSδy

i
CS

∣∣∣
υHDM =

nT∑
i=0

ξHDM,i

∣∣∣Pwδwi + PRδy
i
R + PCSδy

i
CS

∣∣∣
εRT-DTP,j =

∣∣υRT-DTP,j − υHDM,j
∣∣ /υHDM,j , j = 1, . . . , 6

where for (·)∈ {RT-DTP,HDM}, υ(·) is the discrete approximation of the integral

∫nT∆t

0

∣∣∣∆faero
c,(·)

∣∣∣ dt,
the weights ξ(·),i are determined using Simpson’s Rule [41], ∆faero

c is the vector of perturbations
to the aerodynamic forces and moments, and εRT-DTP,j is the relative error of the approximated
integral for each component of the aerodynamic forces and moments.

Tables 1 and 2 report the values of υ(·) and εRT-DTP for all forces and moments, respectively.
The largest relative error is in the lateral force, at 4.4%; the smallest one is in the horizontal force,
at 0.3%. These values demonstrate that the RT-DTP is sufficiently accurate and therefore may be
used as part of the proposed two-level DT for AL.
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Force−x Force−y Force−z
(·) HDM RT-DTP HDM RT-DTP HDM RT-DTP

υ(·),j (N) 0.239 0.238 0.910 0.950 2.136 2.179
εRT-DTP,j (%) – 0.287 – 4.357 – 2.029

Table 1: Approximate integrals of the force perturbation magnitudes predicted using the RT-DTP
and corresponding relative errors.

Moment−x Moment−y Moment−z
(·) HDM RT-DTP HDM RT-DTP HDM RT-DTP

υ(·),j (Nm) 1.069 1.078 1.891 1.912 0.478 0.493
εRT-DTP,j (%) – 0.865 – 1.112 – 3.270

Table 2: Approximate integrals of the moment perturbation magnitudes predicted using the RT-
DTP and corresponding relative errors.

(b) OCP Constraints, Parameters, Gains, and Solution

To completely specify the controller – that is, the OCP (4.4) and gain matrices Ld and Kd
c , the

constraints and cost function parameters must be specified. Table 3 lists the constraints based on
the total values of the various variables rather than their perturbations. To obtain the constraints
on the perturbations (which are needed for the solution of the OCP (4.4)), the minimum and
maximum values of the variables along the glideslope are subtracted from their lower and upper
bounds, respectively; these values are listed in Table 4. Using these constraints, the state constraint
matrix becomes Qc =C; and the state constraint set Q and control constraint set C become
polyhedra.

The parameters Q and R of the cost function are set to

Q=CTWT
z WzC + 10−5I, R=WT

u Wu (5.1)

where I∈R(nCFD+12+nCS)×(nCFD+12+nCS),

Wz = diag
([

50 50 50 100 100 100 25 25 25 750 750 750 1 1 1
])
,

Wu = diag
([

10 150 150 150
])
,

and the role of the regularization term inQ is to ensure thatQ is symmetric positive definite, given
that the assumption of no fluid measurements leads to CTWT

z WzC being symmetric positive
semi-definite. The terminal cost QT is computed using its definition, namely, the solution of the
time-discrete algebraic Riccati equation using AdRT-DTP and BdRT-DTP, as well as the parameters Q
andR specified in (5.1). To this end: bothAdRT-DTP andBdRT-DTP are evaluated using the larger time-
step size ∆tOCP rather than its smaller counterpart ∆tSE, and ∆tOCP and ∆tSE are set to ∆tOCP =

0.1 s and ∆tSE = 0.01 s, respectively; and QT is computed using the SciPy [42] implementation of
the Riccati equation solver.

To compute the gain matrix Kd
c , the same matrices Q and R used in the definition of the

OCP (4.4) are used in the time-discrete reduced-order Riccati method [32]. To compute Ld, two
new cost matrices are introduced

Qw = 100I and Qy=WT
y Wy

where I∈R(nCFD+12+nCS)×(nCFD+12+nCS) and

Wy =
[
1 1 1 1 1 1 1 1 1 1 1 1 10−5 10−5 10−5

]
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Again, SciPy is applied to compute the solution of the time-discrete algebraic Riccati equations
involved in the process of computing the gain matrices Kd

c and Ld.
As for the terminal constraint set QT , it is generated as follows. First, the matrix Ad,KRT-DTP =

AdRT-DTP +BdRT-DTPK
d
c is formed. If the polyhedron control constraints are expressed in the

form Ccδc
k
r ≤ bc, they may be appended to the state constraints as CcKd

c δq
k
r ≤ bc. Then, QT

is computed using the algorithm presented in [43], Ad,KRT-DTP, and the combined state / control
constraints (assuming an identity output matrix). The optimization problem underlying the
aforementioned algorithm is solved in MATLAB using YALMIP [44] – which in turn invokes
CPLEX [45] and MPT3 [46].

Finally, the OCP (4.4) is solved using a fork of qpOASES [47] that can be found at [48].

u̇R (ms−1) uR (m) θ̇R (° s−1) θR (°) θ̇CS (° s−1) θCS (°) cT (N)
±2 ±10 ±1.0 ±2.5 ±150 ±30 [0 10]

Table 3: Total state and control constraints.

θ̇pR,y (° s−1) θpR,y (°) θ̇pCS,e (° s−1) θpCS,e (°) cpT (N)
Minimum −1.24× 10−3 −0.11 −7.79× 10−4 0.24 1.07
Maximum −1.23× 10−3 0 −7.56× 10−4 0.31 1.09

Table 4: Minimum and maximum values of the nonzero components of the state along the
glideslope.

(c) Numerical Simulation Results
The state of the structural subsystem is initialized with the perturbation offset defined by

δuR(0) =
[
I 0

]
δyR(0) =

[
1.0 −1.0 1.0

]
m,

δθ̇R,y(0) = 1.24× 10−3 ° s−1, θCS,e(0) =−0.307 °

and zero initial perturbations for all other state variables. The initial free-stream velocity and
angle of attack are kept unchanged: however, the initial altitude of the UAV after application of
the above offset becomes 91.03m. The state of the fluid subsystem is initialized by the HDM-based
steady-state solution (or in other words, the steady-state solution produced by the nonlinear DTP
for flight dynamics) of the flow problem around the UAV after the the above offset is applied.
The initial perturbation of the state of the fluid subsystem is then determined by subtracting from
the aforementioned steady-state solution the state associated with the initial condition for the
glideslope. Using this FSI initialization, the simulation of the controlled flight dynamics of the

UAV is performed in the time-interval
[
0 25

]
s, which is approximately the time it takes for the

designed controller to eliminate the perturbations.
Figures 6 and 7 report on the longitudinal (δx, δz and δθR,y) and lateral (δy, δθR,x and δθR,z)

components of the dynamic state of the UAV, respectively. Specifically, they display: the time-
histories of the optimal open loop state corrections – measured with respect to the counterpart
states along the glideslope – computed by the RT-DTP (using the finer time-step size ∆tSE ,
to have the same resolution used to compute δck); and the corresponding optimal closed-loop
deviations predicted by the nonlinear DTP for flight dynamics. These figures reveal that as
desired, the MPC controller reduces the initial offset and stabilizes the UAV’s state components
at final values close to zero. The most notable discrepancies are the small, steady-state offsets
in the rotation parameters and a corresponding steady-state offset in the vertical direction. This
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is unsurprising, because of the additional intrinsic disturbances listed at the beginning of this
section – and in particular, the nonzero lateral force and nonzero roll and yaw moments that arise
from numerical errors at a zero side-slip angle.
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Figure 6: Longitudinal dynamics: optimal open-loop corrections computed by the RT-DTP
(dashed); and achieved closed-loop deviations as predicted by the nonlinear DTP for flight
dynamics (solid) – corrections and deviations are measured with respect to the glideslope.

Note that in the computation of the glideslope and control inputs, trim is achieved using the
thrust, angle of attack, and elevator deflection as parameters. Specifically, due to the symmetry
of the considered UAV, its CFD mesh, and therefore the flow with respect to the x-z plane, only
the equations of equilibrium associated with the x− translation, z− translation, and y− rotation
are considered for computing the trim point. However, because of round-off and other numerical
errors, the other force and moments are relatively negligible but nonzero. Hence, they generate
disturbances that simulate noise and therefore render the simulation even more realistic. Thus, it
is unsurprising that at any time t∈

[
0 25

]
s: the largest discrepancies between the optimal open-

loop corrections and optimal closed-loop deviations occur in the lateral components of the UAV’s
state; and both δθR,x and δθR,z end with relatively negligible but nonzero steady-state offsets
as a result of the aforementioned spurious forces and moment. The similar steady-state offsets
for δz and δθR,y can be explained by observing that the small steady-state offsets in the other
rotations affect both the angle of attack and side-slip angle: thus, they result in less lift, which
in turn requires a small pitch correction to achieve equilibrium. However, it is more desirable to
have no deviations from the glideslope: this can be achieved by modifying the control scheme
to include, for example, an integrator that helps reducing steady-state offsets in the presence of
disturbances.

The time-histories of the optimal open-loop control input corrections δck,?r and closed-loop
deviations δck are reported in Figure 8: here, the discrepancies between the two signals are
much smaller and the convergence of each signal to zero is faster that in Figures (6)–(7). The
time-histories of the optimal open-loop control surface deflections are displayed in Figure 9: the
reader can observe that for the deflections (which are the integral of the deflection rates), the
aforementioned discrepancies are larger; however they are only of the order of a small fraction
of a degree and therefore of not much practical significance. The reader can also observe that
the steady-state offsets seen in Figures (6)–(7) also appear here: this is expected, given that any
offset in the trajectory would either be caused by offsets in the control surface deflections, or
counteracted by offsets in these deflections to prevent them from amplifying in time.

Table (5) highlights the real-time capability of the proposed two-level DT for AL. It reports
the execution time of both: the control updates consisting of evaluating (4.1)–(4.3) (where, as
mentioned above, (4.1) is evaluated using∆tSE); and the solution the OCP (4.4). More specifically,
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Figure 7: Lateral dynamics: optimal open-loop corrections computed by the RT-DTP (dashed); and
achieved closed-loop deviations as predicted by the nonlinear DTP for flight dynamics (solid) –
corrections and deviations are measured with respect to the glideslope.
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Figure 8: Optimal open-loop control input corrections computed by the RT-DTP (orange) and
achieved closed-loop deviations as predicted by the nonlinear DTP for flight dynamics (blue):
(a) thrust; (b) aileron deflection rate; (c) elevator deflection rate; and (d) rudder deflection rate –
corrections and deviations are measured with respect to the glideslope.

it reports the number of function calls for both sets of control updates and the corresponding
average execution wall clock time. For reference, the numerical simulation described above was
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Figure 9: Optimal open-loop control input corrections computed by the RT-DTP (orange) and
achieved closed-loop deviations as predicted by the nonlinear DTP for flight dynamics (blue): (a)
aileron deflection; (b) elevator deflection; and (c) rudder deflection – corrections and deviations
are measured with respect to the glideslope.

performed on fourteen Intel© Xeon© Gold 5118 processors [49]. Each of these has twelve physical
cores, with two hyperthreads per core and therefore a total of 336 cores: 335 hyperthreads were
allocated to the fluid subsystem and one to the structural subsystem. The MPC controller, which
is managed by the analysis software for the structural subsystem, was executed on the same
hyperthread. As expected, the overall two-level DT delivered a real-time performance. This
implies that: the updates of the state estimator and all other control-relevant updates perform
extremely fast, which is not surprising considering that they incur mostly GAXPY (General matrix
A multiplied by a vector X plus a vector Y) operations; and the chosen OCP solver is also very
fast.

Model Average wall clock time (ms) Number of calls
(4.1), (4.2) and (4.3) 6.7× 10−2 2,490

(4.4) 8.4 250
Total 8.467 2,940

Table 5: Average two-level DT (DTI + RT-DTP) wall clock timings, where the average is
computed over the number of function calls: closed-loop and RT-DTP equipped with the finer
time-integration (1st row); and OCP solver (2nd row).
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6 Preliminary Flight Validation
A preliminary flight validation of the proposed two-level DT for AL was conducted at Stanford
University in the simpler context of steady-level flight (i.e γ0 =0°). For this purpose, the thrust
and rigid body rotation rates were used as control parameters – instead of the thrust and
control surface deflection rates – and an autopilot with a low-level PID controller was used to
convert the rotation rate commands into control surface deflections [50]. The obtained preliminary
results established the feasibility of the proposed two-level DT concept. In [50], Figures 5.14–
5.17 report the time-histories of the velocity, position, Euler angle (instead of rotation vector
components), thrust, and rotation rate (in terms of the roll, pitch, and yaw rates) errors of the
hobby UAV. They show similar results to those discussed in Section 5, namely: steady-state offsets
are noticeable in the position and rotation of the UAV, but much smaller in the rates. Again,
this is unsurprising given the presence of various disturbances. Chief among these is the the
presence of a wind, which, as previously mentioned, is not accounted for in the computational
model guiding the MPC controller. This can be seen in the thrust, which is reported in Figure
5.17 of [50] to be significantly higher than its counterpart determined during the computation of
trim. This issue can be mitigated by adding an integrator to the control scheme, as mentioned
above. Alternatively, it can be addressed by adopting a database DB of pre-computed RT-DTPs
associated with a parameter space D representing flight conditions (for example, see [51–53]),
where each RT-DTP is constructed at a parameter point adaptively sampled in D by a greedy
procedure (design of experiments). Then, at any queried but unsampled parameter point in D, a
linear RT-DTP is constructed in real-time by interpolation on matrix manifolds [52] of the content
of DB and used to inform the MPC controller.

7 Summary and Conclusions
A two-level digital twin (DT) in which a digital twin instance (DTI) for model predictive control
(MPC) of autonomous landing (AL) is wrapped around an innovative, real-time digital twin
prototype (RT-DTP) for fluid-structure interaction (FSI) and flight dynamics (see Figure 1) is
proposed in this paper. Its design features three innovations: the formulation of the governing
coupled FSI equations in an arbitrary Lagrangian-Eulerian (ALE) setting and their linearization
about a pre-designed glideslope trajectory, rather than a mere equilibrium point; the construction
of a linearized, computational fluid dynamics (CFD)-based, projection-based reduced-order
model (PROM) and its coupling with a linearized six-degrees-of-freedom (6dof) representation
of the rigid dynamics of an aircraft; and the training of the resulting FSI PROM for any deflection
of any control surface. The main purpose of the RT-DTP is to predict in real-time, during
flight, the state of an aircraft and the aerodynamic forces and moments acting on it. It is an
alternative to static lookup tables or regression-based surrogate models based on steady-state
wind tunnel data that allows the DTI for MPC to be informed by a truly dynamic FSI / flight
model, rather than a less accurate set of steady-state aerodynamic force and moment data
points (and interpolation/extrapolation between/away from these points). Both components
of the proposed DT for AL are data-driven: the DTI for MPC is driven by sensor data about
the rigid body state and control surface deflections of the aircraft it pertains to; and being
essentially a PROM, the RT-DTP is built from the knowledge of solution snapshots collected
in a parameter space of interest then compressed. The proposed two-level DT for AL has been
amply demonstrated and verified by numerical simulation. Even though its RT-DTP component is
based on a three-dimensional Reynolds-averaged Navier-Stokes (RANS) computational model, it
delivers real-time performance. The potential for flight control of the overall two-level DT concept
has also been demonstrated in autonomous mode during a preliminary flight test.

Data Accessibility. The data required for the simulation of the controller is located at [54] (the
temporary link for use in the submission/review process is https://datadryad.org/stash/share/

XlCmljroFllTBxiu73Wo2xxa-awkt0eoO3t4ByqYVIA). The submission also includes the scripts used
for: stabilizing the PROM; interfacing with the code for finding the terminal set (see below); and generating

https://datadryad.org/stash/share/XlCmljroFllTBxiu73Wo2xxa-awkt0eoO3t4ByqYVIA
https://datadryad.org/stash/share/XlCmljroFllTBxiu73Wo2xxa-awkt0eoO3t4ByqYVIA
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as well as utilizing the controller. Other needed utility scripts may be found at [55]. The flow solver and
structural analyzer used throughout this work are AERO-F [56] and AERO-S [57], respectively. Associated pre-
and post-processing auxiliary codes are SOWER [58], CD2TET [59], and MATCHER [60]. Metis [61], version
5.1.0 (modified to accept the mesh format expected by SOWER), was used to decompose the CFD mesh into
subdomains; the mesh partitioning file is included in the Dryad dataset. Other used software packages are
SciPy [42], NumPy [62], Matplotlib [63], Matlab [38], YALMIP [44], CPLEX [45], MPT3 [46], and a fork of
qpOASES [47] that can be found at [48]. The code for finding the terminal set can be found at [64] and that for
interfacing with qpOASES can be found at [65].
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