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Abstract—The literature on Inverse Reinforcement Learning
(IRL) typically assumes that humans take actions in order to
minimize the expected value of a cost function, i.e., that humans
are risk neutral. Yet, in practice, humans are often far from
being risk neutral. To fill this gap, the objective of this paper is
to devise a framework for risk-sensitive IRL in order to explicitly
account for an expert’s risk sensitivity. To this end, we propose
a flexible class of models based on coherent risk metrics, which
allow us to capture an entire spectrum of risk preferences from
risk-neutral to worst-case. We propose efficient algorithms based
on Linear Programming for inferring an expert’s underlying risk
metric and cost function for a rich class of static and dynamic
decision-making settings. The resulting approach is demonstrated
on a simulated driving game with ten human participants. Our
method is able to infer and mimic a wide range of qualitatively
different driving styles from highly risk-averse to risk-neutral
in a data-efficient manner. Moreover, comparisons of the Risk-
Sensitive (RS) IRL approach with a risk-neutral model show
that the RS-IRL framework more accurately captures observed
participant behavior both qualitatively and quantitatively.

I. INTRODUCTION

Imagine a world where robots and humans coexist and work
seamlessly together. In order to realize this vision, robots must
be able to (1) accurately predict the actions of humans in
their environment, (2) quickly learn the preferences of human
agents in their proximity and act accordingly, and (3) learn
how to accomplish new tasks from human demonstrations.
Inverse Reinforcement Learning (IRL) [41, 32, 2, 29, 38, 50,
16] is a powerful and flexible framework for tackling these
challenges and has been previously used for tasks such as
modeling and mimicking human driver behavior [1, 28, 43],
pedestrian trajectory prediction [51, 31], and legged robot
locomotion [52, 27, 35]. The underlying assumption behind
IRL is that humans act optimally with respect to an (unknown)
cost function. The goal of IRL is then to infer this cost function
from observed actions of the human. By learning the human’s
underlying preferences (in contrast to, e.g., directly learning a
policy for a given task), IRL allows one to generalize one’s
predictions to novel scenarios and environments.

The prevalent modeling assumption made by existing IRL
techniques is that humans take actions in order to minimize
the expected value of a cost function. This modeling as-
sumption corresponds to the expected utility/cost (EU) theory
in economics [47]. Despite the historical prominence of EU
theory in modeling human behavior, a large body of literature
from the theory of human decision making strongly suggests
that humans behave in a manner that is inconsistent with
an EU model. An elegant illustration of this is the Ellsberg
paradox [15]. Imagine an urn (Urn 1) containing 50 red and
50 black balls. Urn 2 also contains 100 red and black balls,
but the relative composition of colors is unknown. Suppose

(a) Visualization of screen seen by human. (b) Joystick setup.

Fig. 1: The simulated driving game considered in this paper. The human
controls the follower car using a joystick and must follow the leader (an
“erratic driver”) as closely as possible without colliding. We observed a wide
range of behaviors from participants reflecting varying attitudes towards risk.

that there is a payoff of $10 if a red ball is drawn (and no
payoff for black). In human experiments, subjects display an
overwhelming preference towards having a ball drawn from
Urn 1. However, now suppose the subject is told that a black
ball has $10 payoff (and no payoff for red). Humans still prefer
to draw from Urn 1. But, this is a paradox since choosing to
draw from Urn 1 in the first case (payoff for red) indicates
that the proportion of red in Urn 1 is higher than in Urn 2,
while choosing Urn 1 in the second case (payoff for black)
indicates a lower proportion of red in Urn 1 than in Urn 2.

Intuitively, there are two main limitations of EU theory:
(1) the standard model assumes that humans are risk neutral
with respect to their utility function, and (2) it assumes
that humans make no distinction between scenarios in which
the probabilities of outcomes are known (e.g., Urn 1 in
the Ellsberg paradox) and ones in which the outcomes are
unknown (e.g., Urn 2). The known and unknown probability
scenarios are referred to as risky and ambiguous respectively
in the decision theory literature. While EU theory does allow
some consideration of risk, e.g., via concave utility functions,
experimental results demonstrate that it is not a good model
for human behavior in risky scenarios [26]. This has prompted
work on various non-EU theories (see e.g., [5, 15, 26, 9]).
Further, one way to interpret the Ellsberg paradox is that
humans are not only risk averse, but are also ambiguity
averse – an observation that has sparked an alternative set of
literature in decision theory on “ambiguity-averse” modeling;
see, e.g., the recent review [18]. The assumptions made by EU
theory thus represent significant restrictions from a modeling
perspective in an IRL context since a human expert is likely
to be risk and ambiguity averse, especially in safety critical
applications such as driving where outcomes are inherently
ambiguous and can possibly incur very high cost.



The key insight of this paper is to address these challenges
by modeling humans as evaluating costs according to an
(unknown) risk metric. A risk metric is a function that maps
an uncertain cost to a real number (the expected value is thus
a particular risk metric and corresponds to risk neutrality). In
particular, we will consider the class of coherent risk metrics
(CRMs) [7, 44, 42]. These metrics were introduced in the
operations research literature and have played an influential
role within the modern theory of risk in finance [40, 4, 3, 39].
This theory has also recently been adopted for risk-sensitive
(RS) Model Predictive Control and decision making [12, 13],
and autonomous exploration [8].

Coherent risk metrics enjoy a number of advantages over
EU theory in the context of IRL. First, they capture an entire
spectrum of risk assessments from risk-neutral to worst-case
and thus offer a significant degree of modeling flexibility (note
that EU theory is a special case of a coherent risk model). Sec-
ond, they capture risk sensitivity in an axiomatically justified
manner; they formally capture a number of intuitive notions
that one would expect any risk metric to satisfy (ref. Section
II-B). Third, a representation theorem for CRMs (Section II-B)
implies that they can be interpreted as computing the expected
value of a cost function in a worst-case sense over a set
of probability distributions (referred to as the risk envelope).
Thus, CRMs capture both risk and ambiguity aversion within
the same modeling framework since the risk envelope can
be interpreted as capturing uncertainty about the underlying
probability distribution that generates outcomes in the world.
Finally, they are tractable from a computational perspective;
the representation theorem allows us to solve both the inverse
and forward problems in a computationally tractable manner
for a rich class of static and dynamic decision-making settings.

Statement of contributions: To our knowledge, the results
in this paper constitute the first attempt to explicitly take into
account risk sensitivity in the context of IRL under general
axiomatically justified risk models that jointly capture risk and
ambiguity. To this end, this paper makes three primary contri-
butions. First, we propose a flexible modeling framework for
capturing risk sensitivity in experts by assuming that the expert
acts according to a CRM. This framework allows us to capture
an entire spectrum of risk assessments from risk-neutral to
worst-case. Second, we develop efficient algorithms based on
Linear Programming (LP) for inferring an expert’s underlying
risk metric for a broad range of static (Section III) and
dynamic (Section IV) decision-making settings. We consider
cases where the expert’s underlying risk metric is unknown
but the cost function is known, and also the more general
case where both are unknown. Third, we demonstrate our
approach on a simulated driving game (visualized in Figure 1)
and present results on ten human participants (Section V). We
show that our approach is able to infer and mimic qualitatively
different driving styles ranging from highly risk-averse to
risk-neutral using only a minute of training data from each
participant. We also compare the predictions made by our
risk-sensitive IRL (RS-IRL) approach with one that models
the expert using EU theory and demonstrate that the RS-
IRL framework more accurately captures observed participant
behavior both qualitatively and quantitatively.

Related Work: Restricted versions of the problems consid-
ered here have been studied before. In particular, there is a
large body of work on RS decision making. For instance,

in [24] the authors leverage the exponential (or entropic)
risk. This has historically been a very popular technique for
parameterizing risk-attitudes in decision theory but suffers
from the usual drawbacks of the EU framework as eluci-
dated in [37]. Other RS Markov Decision Process (MDP)
formulations include Markowitz-inspired mean-variance [17]
and percentile-based risk measures (e.g., Conditional value-
at-risk (CVaR) [10]). This has driven research in the design
of learning-based solution algorithms, i.e., RS reinforcement
learning [30, 46, 36, 45]. Ambiguity in MDPs is also well
studied via the robust MDP framework, see e.g., [33, 49], as
well as [34, 13] where the duality between risk and ambiguity
as a result of CRMs is exploited. The key difference between
this literature and the present work is that we consider the
inverse reinforcement learning problem.

Results in the RS-IRL setting are more limited and have
largely been pursued in the neuroeconomics literature [21].
For example, [25] performed Functional Magnetic Resonance
Imaging (FMRI) studies of humans making decisions in risky
and ambiguous settings and modeled risk and ambiguity aver-
sion using parametric utility and weighted probability models.
In a similar vein, [45] models risk aversion using utility based
shortfalls and presents FMRI studies on humans performing
a sequential investment task. While this literature may be
interpreted in the context of IRL, the models used to predict
risk and ambiguity aversion are quite limited. For example,
shortfall is fixed as the risk metric in [45] while estimating
parameters in a utility model. In contrast, the class of risk
metrics we consider are significantly more flexible.

II. PROBLEM FORMULATION

A. Dynamics
Consider the following discrete-time dynamical system:

xk+1 = f(xk, uk, wk), (1)

where k is the time index, xk ∈ Rn is the state, uk ∈ Rm
is the control input, and wk ∈ W is the disturbance. The
control input is assumed to be bounded component-wise:
uk ∈ U := {u : u− ≤ u ≤ u+}. We take W to be
a finite set {w[1], . . . , w[L]} with probability mass function
(pmf) p := [p(1), p(2), . . . , p(L)], where

∑L
i=1 p(i) = 1

and p(i) > 0,∀i ∈ {1, . . . , L}. The time-sampling of the
disturbance wk will be discussed in Section IV. We assume
that we are given demonstrations from an expert in the form
of sequences of state-control pairs {(x∗k, u∗k)}k and that the
expert has knowledge of the underlying dynamics (1) but does
not necessarily have access to the disturbance set pmf p.

B. Model of the Expert
We model the expert as a risk-aware decision-making agent

acting according to a coherent risk metric (defined formally
below). We refer to such a model as a coherent risk model.

We assume that the expert has a cost function C(xk, uk) that
captures his/her preferences about outcomes. Let Z denote the
cumulative cost accrued by the agent over a horizon N :

Z :=

N∑
k=0

C(xk, uk). (2)

Note that since the process {xk} is stochastic, Z is a random
variable adapted to the sequence {xk}. A risk metric is a



function ρ(Z) that maps this uncertain cost to a real number.
We will assume that the expert is assessing risks according to
a coherent risk metric, defined as follows.
Definition 1 (Coherent Risk Metrics). Let (Ω,F ,P) be a
probability space and let Z be the space of random variables
on Ω. A coherent risk metric (CRM) is a mapping ρ : Z → R
that obeys the following four axioms. For all Z,Z ′ ∈ Z:

A1. Monotonicity: Z ≤ Z ′ ⇒ ρ(Z) ≤ ρ(Z ′).
A2. Translation invariance: ∀a ∈ R, ρ(Z+a) = ρ(Z)+a.
A3. Positive homogeneity: ∀λ ≥ 0, ρ(λZ) = λρ(Z).
A4. Subadditivity: ρ(Z + Z ′) ≤ ρ(Z) + ρ(Z ′).
These axioms were originally proposed in [7] to ensure the

“rationality” of risk assessments. For example, A1 states that
if a random cost Z is less than or equal to a random cost
Z ′ regardless of the disturbance realizations, then Z must be
considered less risky (one may think of the different random
costs arising from different control policies). A4 reflects the
intuition that a risk-averse agent should prefer to diversify.
We refer the reader to [7] for a thorough justification of these
axioms. An important characterization of CRMs is provided
by the following representation theorem.
Theorem 1 (Representation Theorem for Coherent Risk Met-
rics [7]). Let (Ω,F ,P) be a probability space, where Ω is
a finite set with cardinality |Ω|, F is the σ−algebra over
subsets (i.e., F = 2Ω), probabilities are assigned according to
P = (p(1), p(2), . . . , p(|Ω|)), and Z is the space of random
variables on Ω. Denote by C the set of valid probability
densities:

C :=

ζ ∈ R|Ω| |
|Ω|∑
i=1

p(i)ζ(i) = 1, ζ ≥ 0

 . (3)

Define qζ ∈ R|Ω| where qζ(i) = p(i)ζ(i), i = 1, . . . , |Ω|. A
risk metric ρ : Z → R with respect to the space (Ω,F ,P) is
a CRM if and only if there exists a compact convex set B ⊂ C
such that for any Z ∈ Z:

ρ(Z) = max
ζ∈B

Eqζ [Z] = max
ζ∈B

|Ω|∑
i=1

p(i)ζ(i)Z(i). (4)

This theorem is important for two reasons. Conceptually, it
gives us an interpretation of CRMs as computing the worst-
case expectation of the cost function over a set of densities
B (referred to as the risk envelope). Coherent risks thus
allow us to consider risk and ambiguity (ref. Section I) in
a unified framework since one may interpret an agent acting
according to a coherent risk model as being uncertain about
the underlying probability density. Second, it provides us with
an algorithmic handle over CRMs and will form the basis of
our approach to measuring experts’ risk preferences.

In this work, we will take the risk envelope B to be a
polytope. We refer to such risk metrics as polytopic risk
metrics, which were also considered in [14]. By absorbing
the density ζ into the pmf p, we can represent (without loss
of generality) a polytopic risk metric as:

ρ(Z) = max
p∈P

Ep[Z], (5)

where P is a polytopic subset of the probability simplex:

P =
{
p ∈ ∆|Ω| | Aineqp ≤ bineq

}
, (6)

where ∆|Ω| := {p ∈ R|Ω| |
∑|Ω|
i=1 p(i) = 1, p ≥ 0}. Polytopic

risk metrics constitute a rich class of risk metrics, encom-
passing a spectrum ranging from risk neutrality (P = {p})
to worst-case assessments (P = ∆|Ω|). Examples include
CVaR, mean absolute semi-deviation, spectral risk measures,
optimized certainty equivalent, and the distributionally robust
risk [12]. We further note that the ambiguity interpretation
of CRMs is reminiscent of Gilboa & Schmeidler’s Minmax
EU model for ambiguity-aversion [19] which was shown to
outperform various competing models in [22] for single-stage
decision problems, albeit with more restrictions on the set B.

Goal: Given demonstrations from the expert in the form
of state-control trajectories, our goal will be to conservatively
approximate the expert’s risk preferences by finding an outer
approximation of the risk envelope P .

III. RISK-SENSITIVE IRL: SINGLE DECISION PERIOD

In this section we consider the single step decision problem,
i.e., N = 0 in equation (2). Thus, the probability space
(Ω,F ,P) is simply (W, 2W , p).

A. Known Cost Function
We first consider the static decision-making setting where

the expert’s cost function is known but the risk metric is
unknown. A coherent risk model then implies that the expert
is solving the following optimization problem at state x in
order to compute an optimal action:

τ∗ := min
u∈U

ρ(C(x, u)) = min
u∈U

max
p∈P

Ep[C(x, u)] (7)

:= min
u∈U

max
p∈P

g(x, u)T p, (8)

where ρ(·) is a CRM with respect to the space (W, 2W , p)
(i.e., P ⊆ ∆L). In the last equation, g(x, u)(j) is the cost
when the disturbance w[j] ∈ W is realized. Since the inner
maximization problem is linear in p, the optimal value is
achieved at a vertex of the polytope P . Denoting the set
of vertices of P as vert(P ) = {vi}i∈{1,...,NV }, we can thus
rewrite problem (7) above as follows:

min
u∈U,τ

τ (9)

s.t. τ ≥ g(x, u)T vi, i ∈ {1, . . . , NV }

If the cost function C(·, ·) is convex in the control input
u, the resulting optimization problem is convex. Given a
dataset D = {(x∗,d, u∗,d)}Dd=1 of state-control pairs of the
expert taking action u∗,d at state x∗,d, our goal is to deduce
a conservative approximation (i.e., an outer approximation)
Po of P from the given data. The key idea of our technical
approach is to examine the Karush-Kuhn-Tucker (KKT) con-
ditions for Problem (9). The use of KKT conditions for Inverse
Optimal Control is a technique also adopted in [16]. The KKT
conditions are necessary for optimality in general and are also
sufficient in the case of convex problems. We can thus use
the KKT conditions along with the dataset D to constrain the
constraints of Problem (9). In other words, the KKT conditions
will allow us to constrain where the vertices of P must lie in
order to be consistent with the fact that the state-control pairs
represent optimal solutions to Problem (9). Importantly, we
will not assume access to the number of vertices NV of P .

Let (x∗, u∗) be an optimal state-control pair and let J +

and J− denote the sets of components of the control input u∗



that are saturated above and below respectively (i.e., u(j) =
u+(j),∀j ∈ J + and u(j) = u−(j),∀j ∈ J−).
Theorem 2. Consider the following optimization problem:

max
v∈∆L

σ+,σ−≥0

g(x∗, u∗)T v (10)

s.t. 0 = ∇u(j)g(x, u)T v
∣∣∣
x∗,u∗

+ σ+(j),∀j ∈ J+

0 = ∇u(j)g(x, u)T v
∣∣∣
x∗,u∗

− σ−(j),∀j ∈ J−.

0 = ∇u(j)g(x, u)T v
∣∣∣
x∗,u∗

, ∀j /∈ J+, j /∈ J−.

Denote the optimal value of this problem by τ ′ and define the
halfspace:

H(x∗,u∗) := {v ∈ RL | τ ′ ≥ g(x∗, u∗)T v}. (11)

Then, the risk envelope P satisfies P ⊂ (H(x∗,u∗) ∩∆L).

Proof: The KKT conditions for Problem (9) are:

1 =

NV∑
i=1

λi, (12)

0 = λi[g(x∗, u∗)T vi − τ ], i = 1, . . . , NV , (13)
For j = 1, . . . ,m :

0 = σ+(j)− σ−(j) +

NV∑
i=1

λi ∇u(j)g(x, u)T vi

∣∣∣
x∗,u∗

, (14)

0 = σ+(j)[u∗(j)− u+(j)], 0 = σ−(j)[u−(j)− u∗(j)], (15)

where λi, σ+(j), σ−(j) ≥ 0 are multipliers. Now, suppose
there are multiple optimal vertices {vi}i∈I for Problem (9)
in the sense that τ∗ = g(x∗, u∗)T vi, ∀i ∈ I. Defining v̄ :=∑
i∈I λivi, we see that v̄ satisfies:

0 = ∇u(j)g(x∗, u∗(j))T v̄ + σ+(j)− σ−(j), j = 1, . . . ,m, (16)

and τ∗ = g(x∗, u∗)T v̄ since
∑
i∈I λi = 1. Now, since v̄

satisfies the constraints of Problem (10) (which are implied by
the KKT conditions), it follows that τ ′ ≥ τ∗. From problem
(9), we see that τ ′ ≥ τ∗ ≥ g(x∗, u∗)T vi, ∀vi ∈ vert(P) and
thus P ⊂ (H(x∗,u∗) ∩∆L).

Problem (10) is a Linear Program (LP) and can thus be
solved efficiently. For each demonstration (x∗,d, u∗,d) ∈ D,
Theorem 2 provides a halfspace constraint on the risk envelope
P . By aggregating these constraints, we obtain a polytopic
outer approximation Po of P . This is summarized in Algo-
rithm 1. Note that Algorithm 1 operates sequentially through
the data D and is thus directly applicable in online settings.

Algorithm 1 Outer Approximate Risk Envelope

1: Initialize Po = ∆L

2: for d = 1, . . . , D do
3: Solve Linear Program (10) with (x∗,d, u∗,d) to obtain a

hyperplane H(x∗,d,u∗,d)

4: Update Po ← Po ∩H(x∗,d,u∗,d)

5: end for
6: Return Po

As we collect more half-space constraints in Algorithm 1,
the constraint v ∈ ∆L in Problem (10) above can be replaced
by v ∈ Po, where Po is the current outer approximation of the
risk envelope. It is easily verified that the results of Theorem 2

still hold. This allows us to obtain a tighter (i.e., lower) upper
bound τ ′ for τ∗, thus resulting in tighter halfspace constraints.

Once we have recovered an outer approximation Po of P ,
we can solve the “forward” problem (i.e., compute actions at
a given state x) by solving the optimization problem (7) with
Po as the risk envelope.

1) Example: Linear-Quadratic System: As a simple illus-
trative example to gain intuition for the convergence prop-
erties of Algorithm 1, consider a linear dynamical system
with multiplicative uncertainty of the form f(xk, uk, wk) =
A(wk)xk + B(wk)uk. We consider the one-step decision-
making process with a quadratic cost on state and action:
Z := uT0 Ru0 + xT1 Qx1, where x1 = A(w0)x0 + B(w0)u0.
Here, R � 0 and Q � 0. We consider a 10-dimensional state
space with a 5-dimensional control input space. The number of
realizations is taken to be L = 3 for ease of visualization. The
L different A(wk) and B(wk) matrices corresponding to each
realization are generated randomly by independently sampling
elements of the matrices from the standard normal distribution
N (0, 1). The cost matrix Q is a randomly generated psd matrix
and R is the identity. States x∗ are drawn from N (0, 1).

Figure 2 shows the outer approximations of the risk en-
velope obtained using Algorithm 1. We observe rapid con-
vergence (approximately 20 sampled states x∗) of the outer
approximations Po (red) to the true risk envelope P (green).

(a) 5 data points (b) 20 data points

Fig. 2: Rapid convergence of the outer approximation of the risk envelope.

B. Unknown Cost Function
Now we consider the more general case where both the

expert’s cost function and risk metric are unknown. We param-
eterize our cost function as a linear combination of features
in (x, u). Then, the expected value of the cost function w.r.t.
p ∈ ∆L can be written as g(x, u)T p, where:

g(x, u)(j) =

H∑
h=1

c(h)φj,h(x, u), j = 1, . . . , L, (17)

with nonnegative weights c ∈ RH≥0. Since the solution of
problem (7) solved by the expert is invariant to positive
scalings of the cost function due to the positive homogeneity
property of coherent risks (ref. Definition 1), we can assume
without loss of generality that the feature weights sum to 1.

With this cost structure, we see that the KKT conditions
derived in Section III-A involve products of the feature weights
c and the vertices vi of P . Similarly, an analogous version
of optimization problem (10) can be used to bound the
optimal value. This problem again contains products of the
unknown feature weights c and the probability vertex v. The
key idea here is to introduce new decision variables z that



replace each product v(j)c(h) by a new variable zjh which
allows us to re-write problem (10) as an LP in (z, σ+, σ−),
with the addition of the following two simple constraints:
0 ≤ zjh ≤ 1,∀j, h,

∑
j,h zjh = 1. In a manner analogous

to Theorem 2, this optimization problem allows us to obtain
bounding hyperplanes in the space of product variables z
which can then be aggregated as in Algorithm 1. Denoting this
polytope as Pz , we can then proceed to solve the “forward”
problem (i.e., computing actions at a given state x) by solving
the following optimization problem:

min
u∈U

max
z∈Pz

∑
j,h

zjhφj,h(x, u). (18)

This problem can be solved by enumerating the vertices of the
polytope Pz in a manner similar to problem (9).
Remark 1. While the above procedure operates in the space of
product variables z and does not require explicitly recovering
the cost function and risk envelope separately, it may neverthe-
less be useful to do so in order to obtain additional insights
into the expert’s decision-making process and generalize to
novel scenarios. We have explored an approach for doing this,
but will defer the results to an extended version of this work
due to space limitations.

IV. RISK-SENSITIVE IRL: MULTI-STEP CASE

We now consider the dynamical system given by (1) and
generalize the one-step decision problem to the multi-step
setting. We consider a model where the disturbance wk is
sampled every N time-steps and held constant in the interim.
Such a model is quite general and more realistic in high-
level decision-making settings than one where disturbances are
sampled i.i.d. at every time step. A scenario tree for this model
is sketched in Figure 3. We note that the results presented here
are easily extended to aperiodic disturbances where the expert
knows the timing of disturbances. We will consider the more
general case of uncertain timing in future work.

Fig. 3: Scenario tree as visualized at time k = 0. The disturbance is sampled
every N steps. The control look-ahead has two phases: “prepare” and “react”.

We model the expert as planning in a receding horizon
manner by looking ahead for a finite horizon. Owing to
the need to account for future disturbances, the multi-step
finite-horizon problem is a search over control policies (i.e.,
the executed control inputs depend on which disturbance is
realized). We decompose the expert’s policy into two phases
(shown in Figure 3), which we will refer to as “prepare”
and “react”. The “prepare” phase precedes each disturbance
realization by N −nd steps while the “react” phase follows it
for nd steps. Intuitively, this model captures the idea that in
the period preceding a disturbance (i.e., the “prepare” phase)
the expert controls the system to a state from which he/she
can recover well (in the “react” phase) once a disturbance
is realized. Note that this model assumes that the expert

is planning by taking into account only a single branching
of the scenario tree (and not considering further branching
in the future), which will lead to computationally tractable
algorithms. Studies showing that humans have a relatively
short look-ahead horizon in uncertain decision-making settings
lend credence to such a model [11]. The dynamic model used
in the multi-period control setting can be formally written as:

xk+1 = f(xk, uk, wk), k ∈ [nd, N + nd]

wk =

{
w0 for k ∈ [nd, N − 1]
wN for k ∈ [N,N + nd − 1]

(19)

where w0 is the disturbance realization from the sample
preceding the current instantiation of the multi-period problem.
Note that since the system is time-invariant, we state all equa-
tions in this section for the first “prepare” and “react” episode,
with the understanding that the model repeats after N steps.
Define a control policy at time k to be a function πk : X → U
and let Ck:l(x, π(x)) := C(xk, πk(xk)) + . . .+ C(xl, πl(xl))
for k < l. The multi-period optimization problem is then given
as:

min
πnd:N+nd−1

Cnd:N (x, π(x)) +

ρ

(
CN+1:N+nd−1(x, π(x)) + C(xN+nd , 0)

)
,

(20)

where ρ(·) is a CRM with respect to the space (W, 2W , p)
(i.e., the same as in the single-step case since we are planning
over one disturbance sample). While the problem above is
defined as an optimization over Markov control policies, we re-
define the problem as an optimization over history-dependent
policies. This additional flexibility will allow us to reformulate
Problem (20) in a form similar to (9). Consider the following
parameterization of history-dependent control policies. Let j ∈
{0, . . . , L} be the realized disturbance index at time k = N .
Define Xk := xk, Uk := uk for k ∈ [nd, N ] and denote
the (history-dependent) state and control at times k ∈ [N +

1, N + nd] as X
[j]

k and U
[j]

k , for j = 1, . . . , L. The system
dynamics (19) can now be written as:

Xk+1 = f(Xk, Uk, w0), k ∈ [nd, N − 1]

for j = 1, . . . , L : X
[j]
N+1 = f(XN , UN , w

[j]), and

X
[j]
k+1 = f(X

[j]
k , U

[j]
k , w

[j]), k ∈ [N + 1, N + nd − 1].

(21)

For ease of notation, define the vector g(X,U) ∈ RL with jth

element

g(X,U)(j) = CN+1:N+nd−1(X
[j]
, U

[j]
) + C(X

[j]

N+nd
, 0).

Thus, g(X,U)(j) is the net cost accrued over the reaction
phase when wN = w[j]. Extending the notation in (9) to this
setting, problem (20) can be re-formulated as follows:

min
τ,Ūk,k∈[nd,N ]

Ū
[j]
k
,j∈{1,...,L}

k∈[N+1,N+nd−1]

Cnd:N (X,U) + τ (22)

s.t. τ ≥ g(X,U)T vi, ∀vi ∈ vert(P)

Uk ∈ U , k ∈ [nd, N ]

U
[j]
k ∈ U , k ∈ [N + 1, N + nd − 1]

j ∈ {1, . . . , L}
Dynamics (21).



Denote (X
∗
, U
∗
)nd:N to be an optimal state and control

pair preparation sequence, and (X
[j]∗

, U
[j]∗

)N+1:N+nd−1, j ∈
{1, . . . , L}, to be the set of optimal state and control pair
reaction sequences. In similar fashion to the one-step optimal
control problem, we will leverage the KKT conditions for
problem (22) to constrain the risk envelope P . Notice that
since the problem is re-solved every N steps, the agent is
assumed to execute the reaction sequence U

[j]∗

N+1:N+nd−1 in
“open-loop” fashion having observed the disturbance wN =
w[j]. Thus, the observable data from the expert correspond-
ing to each instance of the problem above is the optimal
preparation sequence and the optimal reaction sequence for
the realized disturbance wN = w[j]. However, in order to
deduce the risk-envelope P , we will also require knowledge
of the state and control pairs for the reaction phase for
unrealized disturbances w[l] 6= wN . Accordingly, the data must
be processed in two steps which depend upon whether the cost
function C(x, u) is known or not.

A. Known Cost Function

In the first step, we use the (observed) optimal state and
control pair (X

∗
N , U

∗
N ) to compute the agent’s reaction poli-

cies U
[l]

N+1:N+nd−1 for the unrealized disturbance branches
by application of the Bellman principle which asserts that the
reaction policies (i.e., tail policies for the overall finite horizon
control problem) must be optimal for the tail subproblem
(which is simply a deterministic optimal control problem). In
the second step, we once again leverage the KKT conditions
for problem (22) (omitted here for brevity) to yield the
following maximization problem:

τ ′ = max
v∈∆L

σ+,k,σ−,k,σ
[j]
+,k

,σ
[j]
−,k≥0

g(X
∗
, U
∗
)T v (23)

s.t. KKT conditions (24)

where σ−,k, σ+,k, σ
[j]
−,k, σ

[j]
+,k ≥ 0, k ∈ [nd, N +nd− 1], j =

1, . . . , L are the Lagrange multipliers (defined analogously to
σ+, σ− in problem (10)). It follows then that τ ′ ≥ τ∗ and thus
the bounding hyperplane from this sequence of data is given
by τ ′ ≥ g(X

∗
, U
∗
)T v.

B. Unknown Cost Function

In the case where the cost function C(x, u) is parameterized
as a linear combination of features with unknown weights, i.e.,
similar to equation (17), one may adopt two methods. It can be
shown that the KKT conditions (i.e., equation (24)) are linear
in the products v(j)c(h) and the weights c(h). Thus one could
solve problem (23) with respect to the product variables zjh
and the weights c(h) in a manner analogous to Section III-B.

Alternatively, recall that once a disturbance has been re-
alized, the control policy for the reaction phase is a solu-
tion to a deterministic optimal control problem. Thus, by
leveraging standard IRL techniques [16], one can recover
the cost function weights using the observed tail sequence
only, i.e., U

[j]∗
N+1:N+nd−1, and infer the contingent plans for

the unrealized disturbance tails by solving a simple optimal
control problem. One would then solve (23) as given. This
is the approach adopted for the results in Section V and is
summarized in Algorithm 2.

Algorithm 2 Outer Approximate Risk Envelope: Multi-step

1: Given: sequence of optimal state-control pairs {(x∗k, u∗k)}k
2: Extract (X

∗,d
p , U

∗,d
p ) (“prepare”) and (X

∗,d
r , U

∗,d
r ) (“react”)

phases for d = 1, . . . , D (where D is the total number of realized
disturbances)

3: Infer cost function C(x, u) from “react” phases using standard
IRL techniques

4: Initialize Po = ∆L

5: for d = 1, . . . , D do
6: Compute “tail policies” for unrealized disturbances using

C(x, u) by solving deterministic optimal control problems
7: Solve Linear Program (23) to obtain hyperplane Hd
8: Update Po ← Po ∩Hd
9: end for

10: Return Po

V. EXAMPLE: DRIVING GAME SCENARIO

We now apply our RS-IRL framework on a simulated
driving game (Figure 1) with ten human participants to demon-
strate that our approach is able to infer individuals’ varying
attitudes toward risk and mimic the resulting driving styles.

A. Experimental Setting
The setting consists of a leader car and a follower car.

Participants controlled the follower car with a joystick (Figure
1). The follower’s state [xf , yf ]T ∈ R2 consists of its x
and y positions and its dynamics are given by xf,k+1 =
xf,k+ux,k∆t, yf,k+1 = yf,k+v∆t+uy,k∆t. Here, v = 20 m/s
is a nominal forward speed and the control inputs ux ∈ [−5, 5]
m/s and uy ∈ [−10, 10] m/s are mapped linearly from the
joystick position. The time step ∆t is 0.1s.

The leader car plays the role of an “erratic driver”.
The dynamics of its state [xl, yl]

T are given by xl,k+1 =
xl,k + wx,k∆t, yl,k+1 = yl,k + v∆t + wy,k∆t The leader’s
control input [wx, wy]T is chosen from a finite set W =
{w[1], . . . , w[L]} with L = 5:

W =

{[
0
0

]
,

[
0
5

] [
0
−7.5

] [
2.5
0

] [
−2.5

0

]}
m/s. (25)

These “disturbance” realizations correspond to different speed
settings for the leader and are generated randomly according
to the pmf p = [0.65, 0.025, 0.025, 0.2, 0.1]. The disturbance
is sampled every 20 time steps (2 seconds) and held constant
in the interim. The leader car can thus be viewed as executing
a random maneuver every 2 seconds. The dynamics of the
relative positions xrel and yrel between the leader and follower
cars can thus be written as an affine dynamical system.

Participants in the study were informed that their primary
goal was to follow the leader car (described as an “erratic
driver”), as closely as possible in the y direction. They were
also instructed to track the leader’s x position, but that this
was not as important. A visual input in the form of a scoring
bar (Figure 1) whose height is a linear function of yrel was
provided to them. Participants were informed that this bar
represents an instantaneous score which will be aggregated
over time, but that they will incur “significant penalties” for
crossing the leader’s y position (i.e., when yrel < 0).

The leader car’s five actions were described to participants,
along with the fact that these actions are generated every two
seconds and then held constant. In order to aid the participant
in keeping track of the timing of the leader’s maneuvers, a



visual input in the form of a timer bar (Figure 1) that counts
down to the next disturbance was provided.

The experimental protocol for each participant consisted
of three phases. The first phase (two minutes) involved the
leader car moving forwards at the nominal speed and was
meant for the participant to familiarize themselves with the
simulation and joystick controls. The second and third phases
(one and two minutes respectively) involved the leader car
acting according to the model described above (with actions
being sampled according to the pmf p). These two phases were
identical, with the exception that participants were informed
that the second phase was a training phase in which they
could familiarize themselves with the entire simulation and
the third phase would be the one where they are tested. For
the results presented below, we split the data collected from
the third phase into training and test sets of one minute each
(corresponding to 30 two-second epochs where a disturbance
is sampled for both the training and test sets).

Note that the pmf p is not shared with the participants.
This experimental setting may thus be considered ambiguous.
However, since participants are exposed to a training phase
where they may build a mental model of disturbances, the
setting may also be interpreted as one involving risk.

B. Modeling and Implementation
We model participants’ behavior using the “prepare-react”

framework presented in Section IV with the “prepare” phase
starting 0.3 seconds before the leader’s action is sampled. The
“react” phase thus extends to 1.7 seconds after the disturbance.
This parameter was chosen as being roughly reflective of
observed participant behavior on our game scenario.

We represent our cost function as a linear combination of
the following features (with unknown weights): ψ1 = x2

rel,
ψ2 = (uy,k − uy,k−1)2, ψ3 = log(1 + eryrel) − log(2),
ψ4 = log(1 + e−ryrel) − log(2). The second feature captures
differences in users’ joystick input in the y−direction (which is
a more accurate indication of control effort for a joystick than
its absolute position). The third and fourth features together
form a differentiable approximation to the maximum of two
linear functions and thus allow us to capture the asymmetric
costs when yrel < 0 and yrel ≥ 0. We set r = 10.

We apply Algorithm 2 for inferring the feature weights (us-
ing an implementation of the Inverse KKT approach [16]) and
risk envelopes. The resulting LPs are solved using MOSEK [6]
and take ∼ 0.1 seconds to solve for each 2 second “prepare-
react” period data on a 2.7GHz QuadCore 2015 MacBook
Pro with 8GB RAM. Once the cost and risk envelope have
been inferred from training data, predictions for control actions
taken by participants on test data are made by solving Problem
(22). This is a convex optimization problem since the chosen
features are convex and the dynamical system is affine. Our
MATLAB implementation takes approximately 1-3 seconds to
solve using TOMLAB [23] and the SNOPT solver [20].

C. Results
Interestingly, our simulated driving scenario was rich

enough to elicit a wide variety of qualitative behaviors from
the ten participants. In particular, we observed two extreme
policies. One extreme involved the follower pulling back
significantly from the leader shortly before a disturbance is
sampled and then getting close to the leader again once it

selects a new action (e.g., Figure 4(a)). Another extreme was
to follow the leader very closely with a small separation (e.g.,
Figure 4(b)). These two extremes can be interpreted as reflect-
ing varying attitudes towards risk. The first policy is highly
risk-averse as it always prepares for the worst-case eventuality
(leader slowing down). The second policy corresponds to risk-
neutral behavior, where low probability (but high cost) events
are largely disregarded. We also observed a range of behaviors
that lie between these two extremes.

(a) Risk-averse participant

(b) Risk-neutral participant

Fig. 4: Comparisons of human trajectories with predictions from Risk-
sensitive and Risk-neutral IRL for a risk-sensitive and risk-neutral participant.

(a) Risk envelopes (b) Error histogram

Fig. 5: (a) Extracted risk envelopes (projected onto 3 dimensions) and (b)
Histogram of errors in predictions of relative y-position for a risk-averse
participant aggregated over 30 test trajectories.

Figure 5(a) presents risk envelopes extracted using our
approach for two participants who exhibit these two extreme
behaviors. Note that the polytopes, which are subsets of the
5-dimensional probability simplex, have been projected down
to the first three dimensions (corresponding to the leader
moving at the nominal speed, higher speed, and lower speed
respectively) for visualization. Interestingly, the two polytopes
correspond very well to our intuitive notions of risk/ambiguity
averseness and neutrality. The risk-averse polytope is concen-
trated almost entirely in the region of the simplex correspond-
ing to high probabilities of the leader slowing down, while the
risk-neutral polytope considers only points in the simplex that
assign a very low probability to this outcome.

Figures 4(a) and Figure 4(b) present examples of human
trajectories (green) for the two participants compared with
the predictions using our RS-IRL approach (i.e., by solving



problem (22) using the inferred cost function and polytope) for
a single 2 second prepare-react period. We see that our RS-IRL
approach reproduces the qualitatively different driving styles
of the two participants. For the risk-averse participant, the
predicted trajectory backs off the leader car in the “prepare”
stage and moves close again once the leader chooses its
action. For the risk-neutral participant, the predicted trajectory
remains in close proximity to the leader at all times.

Figure 4 also compares the RS-IRL approach with one
where the expert is modeled as minimizing the expected value
of his/her cost function computed with respect to the pmf
p. Since this risk-neutrality is the standard assumption made
by traditional IRL approaches, it constitutes an important
benchmark for comparison. We refer to this approach as risk-
neutral IRL (RN-IRL). The predicted trajectories (blue) using
this model are generated by solving Problem (20) with the
risk operator ρ replaced by the expected value. As one would
expect, the predictions using RS-IRL and RN-IRL are similar
for the risk-neutral participant (Figure 4(b)). However, as
Figure 4(a) demonstrates, the RN-IRL model does not predict
the significant backing off behavior exhibited by the human
and significantly underestimates yrel over the 2 second period.

Figure 5(b) plots a histogram of errors (ypredictedrel,k −yhumanrel,k )
(k = 0, ..., 20) for the predictions made by RS-IRL and RN-
IRL computed for all 30 trajectories in our test set for the
risk-averse participant. We observe that RN-IRL significantly
underestimates yrel, while the RS-IRL approach makes notice-
ably more accurate predictions. However, we note that RS-
IRL still exhibits a slight bias towards under-predicting yrel.
This is because the risk-averse participant consistently backs
off the leader car by a very large amount (as observed in
Figure 4(a)), which may be explained by the fact that while
our model assumes that the expert has an exact knowledge
of the magnitudes of the disturbances/speeds in the set W ,
this is only approximately true in reality (especially since the
participants experienced the low speed setting quite rarely in
the training phase). Thus, one would expect a more significant
backing off maneuver if the participant overestimates the
difference in the nominal and slow leader speed settings. This
issue could potentially be dealt with by considering additional
“spurious” disturbance settings (e.g., introducing a lower speed
setting in W) when applying our RS-IRL approach.

Table I presents comparisons of the average (over 30 test tra-
jectories) of simulation errors in yrel computed for RS-IRL and
RN-IRL as ∆yrel := 1

30

∑30
i=1

√∑
k(ypredictedrel,k,i − yhumanrel,k,i )2.

Here, ypredictedrel,k,i and yhumanrel,k,i are yrel at time k for trajectory
i for the predicted and actual trajectories respectively (∆xrel
is computed similarly). The RS-IRL predictions for yrel are
more accurate than RN-IRL for 8 out of 10 participants,
with as much as a 30% improvement in some cases. For
comparison, Participants #1 and #8 are the highly risk-averse
and risk-neutral participants respectively from our previous
case studies. As expected, RS-IRL is significantly better than
RN-IRL for the risk-averse participant (and comparable for the
risk-neutral one). The only significant outlier is Participant 9,
for whom we found that the inferred polytope encompassed
almost the entire simplex. This may indicate the need for more
training data for that particular participant. Errors in xrel for
RS-IRL and RN-IRL are comparable for all participants as
expected (since we don’t expect risk aversion along this state).

Participant # 1 2 3 4 5 6 7 8 9 10
∆yrel (RS-IRL) 6.7 8.5 6.3 5.2 5.8 2.6 4.0 3.9 11.6 3.9
∆yrel (RN-IRL) 9.1 9.7 7.4 5.8 6.1 2.7 4.1 3.4 5.6 5.7
∆xrel (RS-IRL) 2.6 2.9 1.9 2.2 2.8 2.0 1.7 3.4 4.9 3.7
∆xrel (RN-IRL) 2.7 2.9 1.8 2.2 3.1 1.9 1.7 3.3 4.1 4.0

TABLE I: Comparisons of average (over 30 test trajectories) of simulation
errors computed for Risk-sensitive and Risk-neutral IRL models. The RS-IRL
predictions for yrel are more accurate than the Expected Value model (RN-
IRL) for 8 out of the 10 participants, with as much as 30% improvement.

VI. DISCUSSION AND CONCLUSIONS

We have presented an approach for IRL that explicitly
accounts for risk sensitivity in experts. We proposed a flexible
modeling framework based on coherent risk metrics that al-
lows us to capture an entire spectrum of risk assessments from
risk-neutral to worst-case for a rich class of static and dynamic
decision-making settings. We developed efficient LP based
algorithms for inferring an expert’s risk preferences from
demonstrations. Results on a simulated driving game with ten
participants demonstrate that our technique is able to infer
and mimic qualitatively different driving styles ranging from
risk-neutral to highly risk-averse in a data-efficient manner,
while more accurately capturing participant behavior than a
risk-neutral model. To our knowledge, the results in this paper
constitute the first attempt to explicitly take into account risk-
sensitivity in IRL under general axiomatically justified risk
models that jointly capture risk and ambiguity.

Challenges and future work: At the modeling level, we
plan to relax some of the assumptions made about the expert
in the multi-step model in Section IV. In particular, while
we can easily handle aperiodic disturbances where the expert
knows the timing of disturbances, handling cases where the
disturbance times themselves are uncertain is important. For
our experiments, we provided participants with a visual aid
to keep track of timing; without this timing knowledge,
we may see qualitatively different behavior (e.g., risk-averse
participants maintaining a large but constant distance from the
leader instead of periodically pulling back and getting closer).
We will also extend our model to the case where the expert’s
look-ahead horizon extends to multiple disturbances. At an
algorithmic level, being able to elegantly handle outliers and
changes in the expert’s policy are important considerations.
For example, if an expert changes his/her policy from risk-
averse to risk-neutral midway through demonstrations, our ap-
proach will conclude that the expert is risk-averse (since once
portions of the simplex have been pruned away, there is no way
to “undo” this in our approach). From a theoretical perspective,
we plan to study the convergence properties of Algorithm 1
with careful consideration to notions of observability of the
risk envelope (and cost). Future experiments will focus on
more realistic driving scenarios and learning risk preferences
of human UAV pilots in cluttered environments. Finally, we
plan on studying the game theoretic IRL setting (e.g., [43, 48]),
where multiple risk-sensitive agents interact.

We believe that the approach described here along with the
indicated future directions represent an important step towards
endowing our robotic systems with the ability to predict, infer,
and mimic risk-sensitive behavior, which is crucial for safety-
critical applications where humans and robots interact.
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