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Abstract Endowing robots with the capability of assessing risk and making risk-
aware decisions is widely considered a key step toward ensuring safety for robots
operating under uncertainty. But, how should a robot quantify risk? A natural and
common approach is to consider the framework whereby costs are assigned to
stochastic outcomes—an assignment captured by a cost random variable. Quanti-
fying risk then corresponds to evaluating a risk metric, i.e., a mapping from the cost
random variable to a real number. Yet, the question of what constitutes a “good”
risk metric has received little attention within the robotics community. The goal of
this paper is to explore and partially address this question by advocating axioms that
risk metrics in robotics applications should satisfy in order to be employed as ratio-
nal assessments of risk. We discuss general representation theorems that precisely
characterize the class of metrics that satisfy these axioms (referred to as distortion
risk metrics), and provide instantiations that can be used in applications. We further
discuss pitfalls of commonly used risk metrics in robotics, and discuss additional
properties that one must consider in sequential decision making tasks. Our hope is
that the ideas presented here will lead to a foundational framework for quantifying
risk (and hence safety) in robotics applications.

1 Introduction

Safe planning and decision making under uncertainty are widely regarded as central
challenges in enabling robots to successfully operate in real-world environments.
By far the most common conceptual framework for addressing these challenges is
to assign costs to stochastic outcomes and then to use the expected value of the
resulting cost distribution as a quantity that “summarizes” the value of a decision.
Such a quantity can then be optimized, or bounded within a constrained formula-
tion. However, in settings where risk has to be accounted for, this choice is rarely
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well justified beyond the mathematical convenience it affords. For example, imagine
a safety-critical application such as autonomous driving; would a passenger riding
in an autonomous car be happy to do so if she was told that the average behavior
of the car is not to crash? While one can introduce some degree of risk sensitivity
(i.e., sensitivity to the tails of the cost distribution) in the expected cost framework
by simply shaping the cost function, this can quickly turn into an exercise in “cost
function hacking”. Unless one is careful about the way one shapes the cost func-
tion, this can lead to the robot behaving in an irrational manner [3]. The common
alternative approach, aimed at promoting risk sensitivity, is to consider a worst-case
assessment of the distribution of stochastic outcomes. In practice, however, such
an assessment can often be quite conservative: an autonomous car whose goal is to
never crash would never leave the garage.

The expected value operator and the worst-case assessment are examples of risk
metrics. Informally, a risk metric is a mapping from a random variable correspond-
ing to costs to a real number. The expected cost corresponds to risk neutrality while
the worst-case assessment corresponds to extreme risk aversion. For practical ap-
plications, we would like to explore risk metrics that lie in between these extremes.
This raises the following question: is there a class of risk metrics that lie between
these extremes while still ensuring that the robot quantifies risk (and hence safety)
in a rational and trustworthy manner? This question is central to the problem of de-
cision making under uncertainty since the choice of a risk metric is one that must
be made in any framework that assigns costs to outcomes. Yet, despite the role of
safe decision making under uncertainty as a core theme in practically all areas of
robotics, this question has received very little attention within the robotics com-
munity. As a result, there is arguably no firm theoretical foundation for making an
informed decision about what risk metric to use for a given robotics application.

The goal of this paper is to provide a first step towards such a principled frame-
work. More precisely, we describe axioms (properties) that a risk metric employed
by a robot should satisfy in order to be considered sensible. To our knowledge, this
is the first attempt to provide such an axiomatic framework for evaluating risk in
robotics applications. Our effort is inspired by a similar effort in the finance com-
munity that led to the identification of coherent risk metrics [4, 29] as a class of
risk metrics that have desirable properties for assessing the risk associated with a
financial asset (e.g., a portfolio of stocks). The influence that these ideas have had
can be gauged by the fact that in 2014 the Basel Committee on Banking Supervision
changed its guidelines for banks to replace the Value at Risk (VaR) (a non-coherent
risk metric) with the Conditional Value at Risk (CVaR) (a coherent risk metric) for
assessing market risk [22].

We believe that the question of what properties a risk metric should satisfy in
robotics applications is a fundamental one: a robot’s inability to assess risks in a ra-
tional way could lead to behavior that is harmful both to itself and humans or other
autonomous agents around it. Our hope is that the ideas presented in this paper can
help the community converge upon a set of properties that risk metrics must satisfy
in order for the robot’s decision-making system to be considered rational and trust-
worthy, paralleling a similar effort in the financial industry. Indeed, it is conceivable
that in the not-so-distant future, robots such as autonomous cars or unmanned aerial
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vehicles (UAVs) deployed in safety-critical scenarios will be subject to regulatory
frameworks that mandate the use of “officially-approved” risk metrics.

Related Work: Our work here is inspired by the efforts over the last two decades
towards the development of an axiomatic theory of risk in finance and operations re-
search. These efforts have resulted in widespread acceptance of the class of coherent
risk metrics as “rational” measures of risk for financial assets. Coherent risk metrics
are defined by four axioms that any sensible assessment of financial risk must sat-
isfy (see Section 4). Additional axioms beyond the four characterizing coherent risk
metrics have also been studied and lead to more refined classes of risk metrics. We
refer the reader to [12, 29] for an introduction to this vast literature. Our main con-
tribution here is to parallel the efforts in the finance community on proposing and
characterizing axioms that any sensible assessment of risk in a robotics application
should satisfy. We propose these axioms in Section 3 and provide interpretations for
them in a robotics context. As we will see, the class of risk metrics fulfilling these
axioms corresponds precisely to the class of distortion risk metrics, which form
a subset of coherent risk metrics and have previously been studied in the finance
literature [32, 16, 12, 5].

As discussed previously, the most commonly used risk metrics in robotics are
the expected cost and worst-case metrics. While these risk metrics are justifiable in
certain contexts (e.g., expected cost in applications where the distribution of costs
is known to not have a long tail or worst-case assessments in low-level control tasks
such as trajectory tracking), many robotics applications call for a more nuanced
assessment of risk. Chance constrained programming [7] provides one avenue to-
wards such assessments. In particular, a chance constraint specifies an upper bound
on the probability of incurring a cost higher than a given threshold. Chance con-
straints have been widely studied in robotics for motion planning under uncertainty
[6, 10, 23]. While chance constraints are suitable for capturing risk corresponding to
boolean events (e.g., collisions with obstacles), they do not take into account varia-
tions in the tails of cost distributions (since they are not affected by changes to the
value of the cost above the given threshold). Chance constraints are thus not suitable
for capturing risk in settings where one must consider a range of cost outcomes (in
contrast to boolean events).

Another popular way to quantify risk in control theory and decision making is
through the notion of distributional robustness [9, 34, 30]. Distributional robustness
captures the idea that the underlying distribution from which random outcomes of
the world are generated may itself be uncertain. Such scenarios are referred to as
ambiguous in the literature on human decision making [14]. In such scenarios, while
the precise distribution may be unknown, one may know certain properties of the
underlying distribution (e.g., its first few moments, or that it lies in a given set of
possible distributions). One can then compute the worst-case expectation of the cost
function over the set of distributions that satisfy the known properties (e.g., the set
of all distributions that have the given moments). As we will see in Section 4, the set
of risk metrics fulfilling the axioms advocated in this paper have an interpretation
in terms of distributional robustness. However, not all distributionally robust risk
metrics satisfy the proposed axioms.

Beyond robotics and finance, the notion of risk is of central concern to the the-
ory of human decision making under uncertainty. A historically prominent theory
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is subjective expected utility (SEU) theory [31], where humans make decisions that
maximize the expected value of a utility function. This is analogous to the method
for taking into account risk aversion in autonomous agents by “shaping” the cost
function. However, SEU theory is inconsistent with a number of experimental ob-
servations [11, 17, 2]. In particular, SEU theory does not take into account the ex-
perimentally observed fact that humans are ambiguity averse [11, 2], i.e., averse to
situations where there is uncertainty about the underlying probability distribution
from which outcomes are drawn (previously discussed in the context of distribu-
tional robustness). Models of ambiguity aversion include prospect theory, which
has risen to prominence over the last several decades, along with more recent and
sophisticated theories [14] that model the human as minimizing a distributionally
robust risk metric. These theories are thus closely related to the class of distortion
risk metrics (which we advocate for in this paper for use in robotics) since they can
also be interpreted as a special class of distributionally robust risk metrics.

Outline: The outline of this paper is as follows. Section 2 formally introduces
the notion of a risk metric (Section 2.1) and proposes an interpretation of risk in
robotics applications (Section 2.2). In Section 3 we advocate axioms that risk met-
rics in robotics applications should satisfy in order to be considered sensible (Sec-
tions 3.1), provide examples of metrics that satisfy them, and discuss pitfalls stem-
ming from using risk metrics that do not satisfy these axioms (Section 3.2). Section
4 discusses representation theorems that precisely characterize the class of risk met-
rics fulfilling the axioms we propose. Section 5 proposes additional properties that
one must consider in sequential decision making tasks. Section 6 concludes the pa-
per with directions for future research. We note that we highlight a number of points
of discussion throughout the paper. Our hope is that these will form the basis for dis-
cussion and debate at the Blue Sky session during the conference and will provoke
new directions for future research.

2 Assessing Risk: Preliminaries

In this section, we formally introduce risk metrics and propose an intuitive interpre-
tation of risk quantification in robotics contexts. This interpretation will form the
basis for the axioms we advocate in Section 3.

2.1 Risk Metrics

We denote the set of possible outcomes that may occur when a robot operates in
uncertain settings as £2. In order to avoid heavy use of measure theoretic notions, we
take € to be finite. Denote by IP a probability mass function that assigns probabilities
P(w) to outcomes @ € 2. Consider a cost function Z : 2 — R that assigns costs
Z(w) to outcomes. The cost Z is then a random variable, namely the cost random
variable. Let 2 denote the set of all random variables on Q. A risk metric is a
mapping p : Z — R. In other words, a risk metric maps a cost random variable to a
real number.

2.2 Interpretation of Risk in Robotics Applications

Imagine a fictional government agency known as the Robot Certification Agency
(RCA) that is responsible for certifying if a given robot is safe to operate in the real
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world. How should the RCA quantify the risk faced by this robot? As an example,
consider an autonomous car driving from one city to another. While performing
this task, the robot will incur random costs Z (e.g., due to fuel consumption, time,
crashes, mechanical wear and tear, etc.). In order to provide clear interpretations of
the axioms for risk metrics discussed below, we will take the following axiom as a
key starting point.

A0. Monetary costs. The costs Z are expressed in monetary terms.

This axiom ensures that the costs assigned to outcomes have a tangible and in-
terpretable value, which will be instrumental in defining a meaningful notion of risk
below. Such an axiom may also provide a handle on reasoning about insurance poli-
cies for safety-critical robots (e.g., autonomous cars). We note that our starting point
contrasts with one where one considers a more abstract and subjective notion of cost
(e.g., quadratic state and control costs for Linear Quadratic Regulator problems).

Given this assumption, suppose that the RCA demands that the robot’s owner
must deposit an amount of money p(Z) before the robot is deployed such that the
RCA is satisfied that the owner will be able to cover the potential costs incurred
during operations (e.g., making repairs to the robot due to an accident) with the
amount p. We define the amount p(Z) as the perceived risk from operating the
robot. The particular risk metric p : 2 — R the RCA uses will depend on its attitude
towards risk and may depend on the application under consideration. For example,
the RCA may ask for a deposit p(Z) = E[Z] if it is risk neutral. If it wants to be
highly conservative, the RCA may demand a deposit equal to the worst-case cost
outcome. The question we will pursue in Section 3 is the following: what properties
must p satisfy in order for it to be considered sensible?

We note that we are using the RCA here as a pedagogical tool to provide an
interpretation of risk in robotics applications and to motivate the axioms described
in Section 3. In reality, the robot’s decision-making system will assess risks and
make decisions based on those assessments.

3 An Axiomatization of Risk Metrics for Robotics Applications

3.1 Axioms and their Interpretations

We now parallel results in finance [12, Chapter 4] [29] and propose six axioms for
risk metrics. Specifically, we make the case that these axioms should be fulfilled
by any risk metric used in a robotics application in order for it to be considered a
sensible assessment of risk. For each axiom, we first provide a formal statement and
then an intuitive interpretation based on the interpretation of risk from Section 2.2.

A1. Monotonicity. Let Z,Z' € % be two cost random variables. Suppose Z(®) <
7' (o) for all € Q. Then p(Z) < p(Z').

Interpretation: If a random cost Z’ is guaranteed to be greater than or equal to a
random cost Z no matter what random outcome occurs, then Z' must be deemed
at least as risky as Z. One can think of the random costs as corresponding to two
different robots, or the same robot performing different tasks, or executing different
controllers. Given our interpretation of risk, this axiom states that the RCA must
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Fig. 1 Monotonicity. Consider two robot cars that incur random costs Z and Z’ respectively. The
situation consists of two outcomes @; and @, corresponding to sunny and rainy weather, respec-
tively. If the car that incurs costs Z (first column) incurs a lower cost than the other car (second
column) no matter what the weather is, monotonicity states that it should be considered less risky.

demand at least as large a deposit for covering costs for the robot (or task) cor-
responding to Z' as for the robot (or task) corresponding to Z. This is a sensible
requirement since we are guaranteed to incur at least as high a cost in the second
scenario as the first no matter which outcome @ €  is realized. An example is
illustrated in Figure 1, where we have two robot cars corresponding to Z and Z’ and
two outcomes ®; and @, corresponding to sunny and rainy weather, respectively.
If the car corresponding to Z incurs a lower cost no matter what the weather is,
monotonicity states that it should be considered less risky.

A2. Translation invariance. Let Z € 2 and ¢ € R. Then p(Z+c¢) = p(Z) +c.
Interpretation: If one is charged a deterministic cost ¢ (in addition to the random
costs incurred when the robot is operated), then the RCA should demand that this
amount c¢ be set aside in addition to money for covering the other costs from oper-
ating the robot:

~—— —

pleet==) = p(Se) + ==
Z+c Z

C

Note that this axiom also implies that p(Z — p(Z)) = 0. Thus, p(Z) is the smallest
amount that must be deducted from the costs in order to make the task risk-free.
A3. Positive homogeneity. Let Z € 2° and § > 0 be a scalar. Then p(BZ) = Bp(Z).
Interpretation: If all the costs incurred by the robot (regardless of the random out-
come) are scaled by 3, the RCA demands that the deposit is scaled commensurately.
This is reasonable since this corresponds to simply changing the units of cost (recall
that we assumed that the costs are expressed in monetary terms).

A4. Subadditivity. Let Z,Z' € 2. Then p(Z+Z') < p(Z) + p(Z).
Interpretation: This axiom encourages diversification of risk. For example, imag-
ine a system with two robots. Suppose that Z and Z’ are costs incurred by Robot 1
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and Robot 2 respectively. The left-hand side (LHS) of the inequality corresponds to
the deposit that the RCA demands when both robots are run simultaneously, while
the right-hand side (RHS) corresponds to the sum of the deposits when the robots
are deployed separately. Axiom A4 then states that deploying both robots simulta-
neously is at most as risky as deploying them separately:

PG < p(&w) + o (%)
—~— -~ -
YA 7 7'

This captures the intuition that one robot acts as a hedge against the other robot
failing (i.e., if one of the robot fails in some way, then the other will make up for this
loss). Another interpretation is that this axiom promotes redundancy in the system.
The exact interpretation of the LHS and RHS of the inequality in A4 will depend
on the particular application under consideration. For example, the two sub-costs Z
and Z' may correspond to two separate sub-tasks that the robot must perform. In this
case, the LHS corresponds to the robot performing both tasks simultaneously while
the RHS corresponds to performing them independently. A4 encodes the intuition
that performing both tasks simultaneously is less risky since one sub-task can act as
a hedge against the other.

We note that A3 and A4 together imply convexity:

PAZ+(1=21)Z") < Ap(Z)+(1—A)p(Z)), forall A € [0, 1].

AS5. Comonotone additivity. Suppose Z and Z' are comonotone, i.e., (Z(®) —
Z(0"))(Z'(0) —Z' (")) > 0, for all (0,0") € 2 x Q. Then p(Z+Z')=p(Z)+
p(Z").

Interpretation: This axiom supplements A4. In particular, A5 states that if two
costs rise and fall together, then there is no benefit from diversifying (e.g., if one
robot always performs poorly at a task when the other does or when a robot performs
poorly at a sub-task when it also performs poorly at another one).

A6. Law invariance. Suppose that Z and Z’ are identically distributed. Then p(Z) =
p(Z").

Interpretation: If two tasks have the same distribution of costs, then the RCA de-
mands an equal deposit in both cases. For example, suppose Q = {®,®’} with
both outcomes having probability 0.5. Further, suppose Z(®) = 1, Z(®') = 10,
Z'(w) =10, Z' (') = 1. The two situations must be considered equally risky even
though the assignment of costs to events is different.

Taken together, Axioms A1 — A6 capture a fairly exhaustive set of essential prop-
erties that we believe any reasonable quantification of risk in robotics should obey
given the interpretation of risk we proposed in Section 2.2. A hypothetical RCA
that quantifies risk in a manner that is consistent with these axioms would be con-
sidered a sensible one. Moreover, robots that assess risks according to risk metrics
that fail to satisfy some of these axioms can behave in a manner that would be con-
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sidered extremely unreasonable and arguably very unsafe, as illustrated in Section
3.2. We thus advocate risk metrics that satisfy Axioms Al — A6 for use in robotics
applications.

3.2 Examples and Pitfalls of Commonly Used Risk Metrics

In this section, we first discuss examples of existing risk metrics that fulfill Axioms
A1l — A6. We then discuss commonly used risk metrics that do not fulfill some of
these axioms, along with pitfalls stemming from their use. Collectively, the discus-
sion provided here motivates the formal introduction in the next section of distortion
risk metrics (equivalently, risk metrics satisfying A1 — A6) as a general class of risk
metrics for robotic applications.

An important risk metric that satisfies Axioms Al — A6 is the Conditional Value
at Risk (CVaR) [24]. The CVaR, for a random cost Z at level « is defined as:

1 /!
CVaRg(Z):=— [ VaR,_¢(Z) dx, (1)
aJi-oa
where VaR (Z) is the Value at Risk (VaR) atlevel ., i.e., simply the (1 — a)-quantile
of the cost random variable Z:

VaRy(Z) :=min{z | P[Z > 7] < a}. 2)

Intuitively, CVaRy, is the expected value of Z in the conditional distribution of Z’s
upper (1 — @)-tail. It can thus be interpreted as a risk metric that quantifies “how
bad is bad.” We note that the expected cost and worst-case assessment also satisfy
Al — AG6. Figure 2 provides a visualization of the expected cost, worst case, VaR,
and CVaR. Axioms Al — A6 thus define a broad class of risk metrics that capture
a wide spectrum of risk assessments from risk-neutral to worst-case. In Section 4,
we will discuss theorems that allow us to precisely characterize all risk metrics that
satisfy A1 — A6 and easily generate new examples of such metrics.

N
>

Frequency

m—h < Probability o
..

Expected cost VaR CVaR Worst case

Cost

Fig. 2 An illustration of four important risk metrics, namely: expected cost, worst case, Value at
Risk (VaR), and Conditional Value at Risk (CVaR). Intuitively, VaR is the (1 — ot)-quantile of the
cost distribution. CVaR is the expected value of costs in the conditional distribution of the cost
distribution’s upper (1 — a)-tail and is thus a metric of “how bad is bad.” The CVaR, expected
cost, and worst case metrics satisfy Axioms Al — A6, but VaR does not.
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However, there are many examples of popular risk metrics that do not fulfill the
axioms we advocate. For example, a very popular metric to quantify risk in robotics
applications is the mean-variance risk metric: E[Z] 4+  Variance[Z] (see, e.g., [18,
13, 21]). The mean-variance metric satisfies A6 but fails to satisfy the other axioms.
This can lead to a robot that utilizes the mean-variance metric making decisions
that would be considered unreasonable. Consider the setup in Table 1 (based on
[19]), where @;,m, @3, w4 are disturbance outcomes, and Z and Z’ are the costs
resulting from executing two different controllers 7 and 7. Which controller should
the robot execute? Controller 7 results in lower costs no matter what the disturbance
outcome is and hence should be preferred by any sensible decision maker. However,
computing the mean-variance risk metric with B = 1, we see that:

E([Z] + Variance[Z] = 3.75 > E[Z'] + Variance[Z'] = 3.4375.

The robot would hence strictly prefer . This unreasonable behavior is a result of
the mean-variance risk metric failing to satisfy Axiom Al (monotonicity).

Outcome | @) | @ | @3 | @y Outcome || wr | a3
Probability|0.25(0.25{0.25]0.25 Probability|0.4| 0.4 | 0.2
Z 1121314 Z 11213
7’ 21213 |4 7 1 [1.99[10™°
Table 1 Issues with the mean-variance risk Table 2 Issues with the Value at Risk (VaR)
metric. Any rational agent would choose con- metric. Any reasonable agent would prefer
troller 7 (with associated costs Z) since it re- costs Z to Z'. However, utilizing VaR results
sults in lower costs no matter what the dis- in choosing Z'.

turbance outcome is. But, using the mean-
variance risk metric results in choosing 7’
(with associated costs Z').

The Value at Risk (VaR) (defined in Equation (2)) is another example of a risk
metric that does not satisfy all the axioms (it is easily verified that VaR does not
satisfy A4 (subadditivity), but satisfies the other axioms). VaR is closely related to
chance constraints (see Section 1) since the constraint VaR(Z) < 0 corresponds to
the chance constraint P[Z > 0] < a. Using the VaR metric can also lead to behavior
that is arguably very unreasonable and unsafe. For example, consider the costs Z
and Z' in Table 3.2. Any reasonable agent would prefer costs Z to Z’ due to the
extremely large costs associated with 3. However, we see that VaR 3(Z) = 2, while
VaRg3(Z") = 1.99. Thus, utilizing VaR results in a strict preference for Z'. We note
that using CVaR instead results in a preference for Z.

Table 3 lists the axioms satisfied by popular risk metrics in the literature (we
refer the reader to [29] for definitions). We note that the standard semi-deviation
is widely used in finance [29], while the entropic risk metric has been popular in
control theory for risk-averse control [33, 15].

4 Distortion Risk Metrics

Risk metrics satisfying Axioms Al — A6 have been studied in the context of portfo-
lio optimization in finance and are known as distortion risk metrics [32, 16, 12, 5].
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Axioms
Conditional Value at Risk (CVaR) Al - A6
Expected Cost Al - A6
Worst case Al - A6
Mean—Variance A6
Entropic risk Al, A2, A6
Value at Risk (VaR) Al - A3, A5, A6
Standard semi-deviation Al - A4, A6

Table 3 Axioms satisfied by popular risk metrics.

These risk metrics are also equivalent to the class of spectral risk measures [1]. They
enjoy an elegant characterization, which we discuss below, in terms of the CVaR
metric. Before doing so, we first discuss representations for risk metrics satisfying
subsets of the above axioms. In particular, Axioms Al — A4 correspond to those of
coherent risk metrics (CRMs). CRMs enjoy a universal representation theorem:

p(Z) = %%EP[Z], 3)

where & is a compact convex set of probability mass functions. In other words, any
coherent risk metric can be represented as an expectation with respect to a worst
case probability mass function, chosen adversarially from a given compact convex
set (referred to as a risk envelope). An example of a risk envelope is visualized in
Figure 3. Coherent risk metrics thus capture, as a by-product, the notion of distribu-
tional robustness (see Section 1), i.e., robustness to uncertainty over the underlying
distribution itself.

b3

Probability

/ simplex

Fig. 3 Any coherent risk
metric (and thus any distor-
tion risk metric) can be repre-
sented as an expectation with
respect to a worst-case prob-
ability mass function, chosen
adversarially from a compact
convex subset (referred to as
a risk envelope) of the proba-
bility simplex.

D2

Risk
envelope

D1

Risk metrics satisfying Axioms Al — AS are known as comonotonic risk metrics
[12, Chapter 4.7]. These risk metrics have a characterization in terms of Choquet
integrals, which we now discuss with the help of additional terminology.

Definition 1. A set function g : 2> — [0, 1] is called monotone if g(A) < g(B) for
all A C B C Q, and normalized if g(@) = 0 and g(Q2) = 1. If, in addition, g satisfies

8(AUB)+g(ANB) < g(A)+(B),

g is called submodular.
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Recall that Q corresponds to the set of outcomes that may occur when the robot
operates (see Section 2.1). The set 29 is the power set (i.e., set of all subsets) of
Q. We now define the Choquet Integral [8] and state a representation theorem for
comonotonic risk metrics in terms of these integrals.

Definition 2. The Choquet Integral of a random variable Z € Z with respect to a
monotone, normalized set function g : 2* — [0, 1] is
0 {e]
/ng::/ (g(Z>z)—1)dz+/0 g(Z>z)dz.
Here, the integrals in the RHS are Riemann integrals. Informally, the Choquet
integral is a generalization of the Lebesgue integral that allows the integration op-

eration to have a nonlinear dependence on Z (in contrast to the Lebesgue integral,
which is a linear operator).

Theorem 1 (Representation of comonotonic risk metrics [27]). A coherent risk
metric p : Z — R is comonotonic if and only if it can be written as a Choquet
Integral [Z dg, where g : 2* — [0,1] is a monotone, normalized, and submodular
set function.

Risk metrics satisfying Axioms Al — A6 are known as distortion risk metrics.
These metrics inherit the representation theorems for coherent and comonotonic risk
metrics and enjoy a further elegant characterization in terms of the CVaR metric.

Theorem 2 (Representation of distortion risk metrics [12]). A risk metric p :
Z — R is a distortion risk metric if and only if there exists a function v : [0,1] —
[0, 1], satisfying folc=0 v(da) =1 (i.e., v defines a probability measure on the set

[0,1]), such that:
1

p(Z)= . CVaRy(Z) v(da). )
o=

This theorem provides us with a precise mathematical characterization of all dis-
tortion risk metrics and allows us to generate examples of such metrics by choosing
functions Vv satisfying the assumptions of the theorem.

To summarize our discussion so far, based on our arguments in Section 3.1 we
advocate the use of distortion risk metrics (i.e., risk metrics satisfying Al — A6, or
equivalently risk metrics of the form (4)) for evaluating risk in robotics applications.
This is in contrast to popular risk metrics used in the robotics literature (e.g., mean-
variance, or VaR) and other popular classes of risk metrics used in finance (e.g.,
coherent risk metrics, or comonotonic risk metrics). However, we end this section
by noting the possibility that for certain applications distortion risk metrics may
constitute too restrictive a class of risk metrics. We leave the following as a point
for discussion and future work.

Discussion 1 (Axioms A1 — A6). The axioms of monotonicity (A1), translation in-
variance (A2), positive homogeneity (A3), and law invariance (A6) should arguably
be applicable in any robotics application. Subadditivity (A4) and comonotone ad-
ditivity (AS) are also intuitively appealing, particularly for applications that involve
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some degree of high-level decision making (since a high-level decision making sys-
tem should ideally diversify risks). However, the interpretation of diversification is
somewhat unclear in certain applications. For example, imagine a humanoid robot
whose goal is to minimize a cost function that is a sum of two components Z and Z’,
where Z penalizes one aspect of the robot’s motion (e.g., deviations of the robot’s
torso from the vertical orientation) while Z’ penalizes another aspect (e.g., deviation
of the robot’s gaze from a target). For such low-level control tasks, the interpretation
of p(Z) + p(Z’) is not entirely clear since it is not possible to perform the different
subtasks corresponding to Z and Z’ independently of each other. The following is
thus a question for discussion and future work: should A4 and A5 be abandoned (or
replaced by other axioms) for such tasks?

5 Sequential Decision Making and Time Consistency

The sequential nature of many decision-making tasks in robotics gives rise to ad-
ditional important considerations beyond the ones discussed in Section 3. Again
paralleling results in finance [28, 26, 29], we discuss properties that ensure the tem-
poral consistency of risk assessments in sequential decision-making tasks.
Local property. At every state of the system, the
optimal decision taken by the robot should not de-
pend on scenarios that the robot knows cannot occur
in the future (see [28, 26] for a formal discussion!).
This concept is illustrated in Figure 4. The optimal
decision taken by the robot at state x should not de-
pend on the scenarios shaded in red.
Time consistency of risk assessments. Intuitively,
time consistency stipulates that if a certain situation ~Fig- 4 Local property. The opti-
is considered less risky than another situation in all ™ decision taken by the robot at
) . state x should not depend on sce-

states of the world at time-step k + 1, then it should .06 that the robot knows cannot
also be considered less risky at time-step k. Before occur in the future (shaded in red).
providing a formal definition, we note that failure
to satisfy time consistency or the local property can lead to “irrational” behavior,
including: (1) intentionally seeking to incur losses [21], or (2) deeming states to
be dangerous when in fact they are favorable under any realization of the underly-
ing uncertainty (we discuss an example of this below), or (3) declaring a decision-
making problem to be feasible (e.g., satisfying a certain risk threshold) when in fact
it is infeasible under any possible realization of the uncertainties [25].

As an example, consider the following planning problem with a CVaR cost.
Given a Markov Decision Process (MDP) with initial state xy and time horizon
N > 1, solve:

T = rr;tin CVaRy (en(xn)) )

where o = 2/3 and xy is the state at time-step N. Consider the scenario tree (based
on [4]) in Figure 5. Suppose we consider the solution of (5) acceptable if 7% < 0.

1 We note that the local property is sometimes referred to as “time consistency”. However, here we
use terminology that is consistent with the dynamic risk measurement literature [26].
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One can then show that the optimization problem (over a single policy) results in an
unacceptable solution since 7* is positive. However, CVaRy (cy(xy)) < 0 is satisfied
in every state of the world from the perspective of time-step k = 1. In other words,
the decision maker would deem the solution of (5) unacceptable even though the
solution appears acceptable from the perspective of the second stage (k = 1) under
any realization of the uncertainties.

CVa R2f3 =1

—22 —22 20 —14 -12 10

Fig. 5 Failure to satisfy time consistency can lead to “irrational” behavior. The numbers along the
edges represent transition probabilities in the MDP, while the numbers below the terminal nodes
represent the terminal costs ¢y (xy). The problem involves a single control policy and there is thus
a unique decision tree. The optimal cost appears acceptable at states x; and x|, but unacceptable
from the perspective of time-step O at state xo. In other words, the decision maker would deem
the solution unacceptable even though the solution appears acceptable from the perspective of the
second stage (k = 1) under any realization of the uncertainties.

We note that there is nothing special about this example. In general, simply ap-
plying a risk metric to the sum of all costs incurred at each time-step does not gen-
erally lead to time consistency. In order to obtain time-consistent measures of risk,
we need to construct a sequence of risk metrics {pk_,N}Q’:O, each mapping a future
stream of random costs into a risk assessment at time-step k (visualized in Figure
6). Such risk metrics are known as dynamic risk metrics [26] since they assess risk
at multiple points in time (in contrast to static risk metrics, which only assess risk
from the perspective of the initial stage as in the example above). A dynamic risk
metric {pk7N}1,y:0 is called time-consistent if, for all time-steps 0 </ < k < N and
all sequences of stage costs {Z;}Y_, and {Z/}? ,, the conditions

Zi((l)) :Z{(w),Vw € Q,Vi:l, ...,k—1, and Pk,N(Zk, - 7ZN) Spk,N(Z]/@-“aZ}/\]),

imply that
oiN(Zi,- . Zn) < pin(Z), .. Zy).
Remarkably, it can be shown that one can construct a time-consistent risk metric
by compounding one-step risk metrics [26]:

PN = Zi+ Pk (Zit1 + Pri1 (Ziy2 + -+ pv—2(Zn-1 + pn-1(ZN)) ---)),  (6)
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where the pi(-) functions are a set of single-period risk metrics (satisfying mild
technical conditions which are satisfied by distortion risk metrics). These single pe-
riod metrics assess the risk of a random cost incurred at time-step k + 1 from the
perspective of time-step k (we refer the reader to [26] for a more thorough introduc-
tion to time consistency of risk metrics). Moreover, under certain mild conditions,
any time consistent risk metric is of the form (6) [26]. It can also easily be shown
that in addition to time-consistency, compounding distortion risk metrics also leads
to the local property being satisfied [29, Chapter 6.8.5].

Discussion 2 (Time consistency). If one adopts a distortion risk metric as the one-
step risk metric that is compounded over time as in Equation (6), one inherits the
“rationality” of the one-step assessments while also ensuring time consistency. This
is the form of risk metric we advocate for sequential decision making tasks. How-
ever, imposing time consistency still comes at a conceptual cost. In particular, while
a risk metric of the form p (ZQ’:O Z;) is easy to interpret, the composition of one-step
metrics in Equation (6) stipulated by time consistency is more difficult to interpret.
A direction for future work is thus to establish if this tension between time consis-
tency and interpretability is an avoidable one.

Fig. 6 Dynamic risk metrics assess risk at multiple points in time and lead to time-consistent
risk assessments. Each p; y maps a future stream of random costs to a risk assessment from the
perspective of time-step k.

6 Discussion and Conclusions

Our goal in this paper has been to provide preliminary directions towards an ax-
iomatic theory of risk for robotics applications. We have advocated properties that
risk metrics employed by robots should satisfy in order for them to be considered
sensible. These axioms define a class of risk metrics, known as distortion risk met-
rics, which have been previously used in finance. We further discussed properties
that ensure the temporal consistency of risk assessments in sequential decision mak-
ing tasks. We end with some questions that highlight areas for future thought in
addition to the discussion points highlighted in Discussions 1 and 2 above.

Discussion 3 (Further axioms). While we have highlighted a number of axioms
that we believe are particularly important, the identification of other axioms is an



How Should a Robot Assess Risk? Towards an Axiomatic Theory of Risk in Robotics 15

important direction for future work. These may depend on the particular domain of
application. Moreover, for certain applications it may not be necessary to impose
all the axioms described here. For example, A4 and A5 (concerning diversification
of risks) will generally be relevant to high-level decision making tasks where it is
possible to diversify risks and may not be relevant for low-level control tasks where
diversification may not be possible.

Discussion 4 (Choosing a particular risk metric). For a given application, we may
wish to choose a particular risk metric from the class of metrics described here. How
should such a metric be chosen? One possibility is to learn a distortion risk metric
that explains how humans evaluate risk in the given application domain and then
employ the learned risk metric. We describe first steps towards this in [20], where
we have introduced a framework for risk-sensitive inverse reinforcement learning
for learning humans’ risk preferences from the class of coherent risk metrics.

Discussion 5 (Legal frameworks). The question of safety for Al systems has re-
ceived significant attention recently (see, e.g., [3] for a recent review). An important
component of this discussion has been the consideration of legal frameworks and
guidelines that must be placed on Al systems to ensure that they do not pose a threat
to our safety. Such considerations for robots such as unmanned aerial vehicles are
already extremely pressing for government agencies such as the Federal Aviation
Administration (FAA). It is not difficult to imagine a future where the Robot Certi-
fication Agency (RCA) is in fact a real entity that certifies the safety of new robotic
systems. How can we effectively engage lawmakers and government officials in
discussions on how to evaluate risks in robotic applications?

Our hope is that the ideas presented in this paper will spur further work on this
topic and eventually lead to a convergence upon a particular class of risk metrics
that form the standard for assessing risk in robotics.
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