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Abstract Spacecraft equipped with gecko-inspired dry adhesive grippers can dy-
namically grasp objects having a wide variety of featureless surfaces. In this paper
we propose an optimization-based control strategy to exploit the dynamic robust-
ness of such grippers for the task of grasping a free-floating, spinning object. First,
we extend previous work characterizing the dynamic grasping capabilities of these
grippers to the case where both object and spacecraft are free-floating and compa-
rably sized. We then formulate the acquisition problem as a two-phase optimization
problem, which is amenable to real time implementation and can handle constraints
on velocity, control, as well as integer timing constraints for grasping a specific tar-
get location on the surface of a spinning object. Conservative analytical bounds for
the set of initial states that guarantee feasible grasping solutions are derived. Fi-
nally, we validate this control architecture on the Stanford free-flyer test bed—a 2D
microgravity test bed for emulating drift dynamics of spacecraft.

1 Introduction

Recently, in an effort to alleviate some of the tasks performed by astronauts, there
has been increased interest in the use of small assistive free-flying robots (AFF) for
grasping and manipulating objects inside and outside spacecraft. One such exam-
ple is the Smart SPHERES teleoperated test bed, which was developed to perform
various intra-vehicular activities aboard the International Space Station (e.g., cam-
era work and environmental monitoring), as well as to serve as a robotics research
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Fig. 1: Autonomous free flying spacecraft equipped with dry adhesion surface grippers may assist
astronauts inside and outside the space station. This paper investigates optimal control strategies
for autonomous perching and acquisition of free-floating, tumbling objects.

platform in microgravity [1]. Enabling AFFs to autonomously grasp and manipulate
objects has the potential to make many human operations safer and more efficient
by reducing time spent performing repetitive tasks and on EVAs (see Fig. 1). Au-
tonomous object manipulation may also enable a wide range of new applications
that are too dangerous, complex, or expensive for astronauts, such as the assembly
of large-scale space structures or the removal of space debris [2].

Traditionally, most grasping devices, especially in space, have relied on robotic
hands that either pinch opposing faces of the target (“force closure”) or grapple
around its features to secure it (“caging grasp”). The precision of this operation
typically requires that the target be stationary relative to the gripper for successful
acquisition. For example, in [3] and [4], the authors assume that target objects have
a grappling fixture for caging [3] or pinching [4] and plan the spacecraft’s trajectory
such that its end effector velocity matches that of the grappling feature. However,
velocity matching often imposes a heavy burden on control precision and fuel ex-
penditure.

Grippers that utilize dry surface adhesion represent a promising alternative. In-
spired by the adhesive properties of geckos’ feet, several grippers have been de-
veloped using gecko-like materials that can adhere to any smooth, flat or curved
surface simply by touching them [5, 6]—thus, broadening the class of possible grasp
locations from a small set of features to a larger (continuous) space of feature-less
surfaces. Furthermore, when paired with a compliant wrist mechanism, these grip-
pers can dynamically engage objects with high relative velocity—a key advantage
for capturing drifting objects in space [7]. Previous work by the authors investigated
the performance of one such gripper designed to grasp a translating and rotating
object [6] (see Fig. 2). A passive cylindrical object, free-floating on frictionless air
bearings, was thrown at a stationary gripper on Stanford’s planar microgravity test
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bed (see Fig. 4). The gripper, fixed to the inertial frame, was able to catch the object
over a wide range of contact velocities. By systematically probing the dynamic lim-
itations of the gripper in simulations and experiments, an envelope of contact states
amenable for reliable grasping was empirically constructed—henceforth referred to
as the “grasping envelope.” In this paper, we investigate how such dynamic surface
grasping can be leveraged to develop robust control laws for grasping objects in
space.

Fig. 2: A curved-surface gripper utilizes
gecko-inspired adhesive materials to ro-
bustly grasp a variety of objects. Two op-
posing fingers passively collapse onto any
curved smooth surface upon contact, by
triggering a bistable mechanism.The grip-
per is mounted on a passive compliant
wrist that allows it to absorb impact en-
ergy. See [8] for details.

From a control standpoint, adhesive grippers eliminate the need to deliberately
coordinate finger contact forces, allowing the precision grasping task to be simpli-
fied to a rendezvous and docking problem—a well-studied problem having a rich
body of literature. Specifically, a variety of optimization-based approaches have
been devised for the problem of spacecraft rendezvous and docking, including [9],
which treats some of the constraints as soft penalties in the cost function. This al-
lows the problem to be formulated as a Quadratic Program (QP), thus enabling real-
time implementation. Similarly, [10] restricts each phase of the problem (long-range
rendezvous, short-range docking, etc.) to be formulated as either a Linear Program
(LP) or a QP for fast, online execution. In [11], the authors applied MPC to the ren-
dezvous and docking of a spacecraft with a non-rotating platform in circular orbit
around the Earth. They extended this work in [12] to the case of a rotating/tumbling
object, imposing state constraints to avoid debris. In a similar vein, we propose an
optimization-based approach to the related problem of dynamic grasping, consist-
ing of a two-phase optimal control architecture that is amenable to the complex dy-
namics and terminal constraints characterizing adhesive grippers, and integer timing
constraints for grasping a specific location on a spinning body.

Specifically, the contribution of this paper is threefold. First, in Section 2, we
extend our previous work in [6] on characterizing the grasping envelope of a curved
surface gripper to the case where both spacecraft and object are free floating and in
relative motion. Second, in Section 3 we formulate the problem of grasping spin-
ning, featureless objects as a two-phase optimal control problem and derive conser-
vative analytical bounds for the set of initial states that guarantee feasible grasping
solutions. Finally, we validate the controller in simulation and through a variety of
experiments on a custom free-floating spacecraft test bed (Section 4).
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2 Grasping Envelope

In order to leverage the dynamic grasping capabilities of adhesive grippers for robust
object acquisition, some model of the set of “graspable” contact states is required.
This grasping envelope is a complex function of the gripper design, object shape and
surface, and the highly nonlinear behavior of the dry adhesives. First order insights
for defining this envelope can be derived from analytical models and simulations (as
was done in [6]), but a more complete characterization relies on systematically prob-
ing the boundaries experimentally. In previous work, Estrada et al. [6] characterized
the envelope of a gripper fixed to the inertial frame through a passive compliant
wrist, which is akin to the case in which the target object is significantly less mas-
sive than the spacecraft. However, for small AFFs that often perch or grasp larger
objects, this is often not the case. Accordingly, our first step is to extend those re-
sults to the more general case in which both object and spacecraft are floating and
of comparable mass.

For planar motion, the contact state can be uniquely described by four param-
eters, namely, the offset of the contact from the center of the gripper (d), and the
relative velocity, decomposed as the linear (v) and angular (Ω ) speeds and angle of
attack (φ ) (see Fig. 3). Thus, the grasping envelop can be viewed as a closed set
(v,Ω ,φ ,d) ∈ R4 centered at (µv,0,0,0) and symmetric about d = 0.

Fig. 3: The contact state between the
spinning cylindrical object and free-
flyer is parameterized with four vari-
ables as show in this top-down view:
relative speed (v), angular velocity
(Ω ), angle of attack (φ ), and offset
(d). Note that these parameters are
defined with respect to the free-flyer,
which may also be moving.

For imposing terminal velocity constraints in the grasping problem, it is most
important to characterize the relationship between speed and angle of attack, which
can then be translated into normal and lateral velocity constraints. In other words, by
varying v and φ and holding d and Ω constant, one can experimentally construct a
2D slice within the 4D grasping envelope by observing successful and unsuccessful
grasps.

All experiments were conducted on the Stanford free-flyer test bed—a 3x4 m
granite table calibrated to be extremely flat and level—on which robotic platforms
can float using frictionless air bearings, simulating a 2D microgravity environment
(See Fig. 4). In nearly the exact same setup as in [6], a smooth cylindrical object
(1.6 kg, 11 cm radius) was fixed to a floating platform such that it could be spun
and launched towards a gripper, which was also mounted on a floating platform. An
OptiTrack motion capture system was used to measure the trajectories of the object,
free-flyer robot, and its attached gripper to sub-millimeter precision at 120 Hz.

About fifty trials were run, varying the object’s speed and angle of attack for each
of two scenarios: (1) a high-mass free-flyer (4.2 kg or roughly 2.5 times the mass of
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Fig. 4: Grasping experiment on
the Stanford free-flyer test bed.
A cylindrical object mounted on
a frictionless air-bearing platform
collides and attaches to another
free floating platform equipped
with a curved surface gripper.
The dry adhesive fingers and
compliant wrist are able to reli-
ably secure the object over a wide
range of dynamic contacts.

the object), and (2) a low-mass free-flyer (1.7 kg or roughly the same mass as the ob-
ject). The results in Fig. 5 show the data for both of these scenarios compared with
data for a fixed gripper from [6]. Two analytical bounds were proposed in [6] to seg-
ment the successful and unsuccessful grasps and correlate them to the two dominant
failure modes, which were: (A) a minimum normal impulse that was required to de-
press the gripper’s passive trigger mechanism2, and (B) a maximum angular impulse
that the gripper’s compliant wrist could absorb after attaching. These bounds are still
good predictors of failure for a floating free-flyer, however the normal and angular
impulse must now also account for the movement of the free-flyer after collision.
Thus, as the mass of the free-flyer is reduced, the minimum speed needed for the
object to passively engage the gripper increases, the tolerable angular momentum of
the object decreases, and overall, the grasping envelope shrinks.

Fig. 5: Grasping envelopes relating speed (v) and angle of attack (φ ) for a non-spinning object con-
tacting the gripper with zero offset (d). The left three plots show data collected for a light (1.7 kg),
heavy (4.2 kg), and fixed free-flyer, respectively. The green o’s and red x’s depict successful and
unsuccessful trials. The right plot overlays the approximate envelope bounds for each of the three
cases, indicating generally tighter bounds for lighter free-flyers.

For high-speed collisions, an additional failure mode was observed, whereby the
floating free-flyer rebounds before the gripper can fully close around the object.
This phenomenon involves the mechanical response of gripper’s compliant mount
and the response time of the bistable closing mechanism. In [13], Yoshida discusses
the contact dynamics between a robotic arm and a floating satellite and shows that
appropriate impedance matching can mitigate this effect. Future work will consider

2 Future gripper designs will incorporate an automatic trigger, eliminating the minimum normal
impulse requirement.
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similar methods of impedance matching using tunable wrist compliance [8] to re-
duce this rebound effect. For the grasping controller discussed in Sect. 3, we will
simply enforce a constraint on the maximum speed.

3 Autonomous Grasping

In this section we formally state the control problem we wish to address, devise a
two phase formulation for its solution using optimal control techniques, and discuss
feasibility guarantees and implementation details. We highlight that our problem
formulation and tests are limited to planar motion; the generalization to 3D is pos-
sible and will be addressed in future work. Furthermore, we make two key assump-
tions: (1) the environment is obstacle-free, and (2) orbital dynamics can be ignored.
In practice, the full motion planning problem for grasping would be decoupled into
an initial rendezvous phase using a kinodynamic motion planner (e.g., [14]) to ne-
gotiate obstacles over an arbitrary distance, which transitions to this final controller
within a close, obstacle-free vicinity. Similarly, the short timescales for this grasp-
ing problem make higher-order effects due to orbital dynamics negligible. Sect. 3.1
states the dynamics of the problem, Sect. 3.2 discusses the decoupled control ar-
chitecture and desired contact geometry, Sect. 3.3 derives the control law for phase
1, Sect. 3.4 derives the control law for phase 2, and Sect. 3.5 derives conservative
analytical bounds for the region of attraction.

3.1 System Dynamics

We consider an autonomous docking between a target object (T) and a spacecraft
(S) equipped with a dry adhesive gripper. The target object has a circular shape of
radius rT , mass mT , and rotates with constant angular velocity ωT. The spacecraft
has a gripper located distance lS from its center of mass Scm, and rotates with angular
velocity ωS(t). We define a point Tg on the surface of T that represents the target
point for contact (e.g., a part of the target surface that is particularly suitable for
grasping). Right-handed orthogonal bases, n, t, and s are fixed in the inertial frame,
target object, and spacecraft, respectively, rotated by angles θS and θT . The position
vector from Tcm to Scm can be written as rS = xn̂x + yn̂y and its derivative, vS =
ẋn̂x+ ẏn̂y. This notation is summarized in Fig. 6. The double-integrator dynamics of
the spacecraft are simply,

ẍ = ux, ÿ = uy, θ̈S = uθS , (1)

where ux and uy represent the translational control inputs (actuated, e.g., via thrusters),
and uθS represents the independent angular control input (actuated, e.g., via a reac-
tion wheel). For convenience, we can rewrite the dynamics with respect to a new
basis, e, as

v̇r−
v2

θ

r
= ur, v̇θ +

vrvθ

r
= uθ , (2)

where rS = rêr, and vS = vθ êθ + vr êr. This form will be useful for deriving the
alignment controller in Sect. 3.3. Note that thruster arrangements on spacecraft typ-
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ically yield nonuniform maximum thrust capabilities in the body frame. Thus, most
generally, ur,max and uθ ,max are functions of θS. However, for simplicity, we will
impose a conservative inner approximation on the control constraints:

u2
r +u2

θ ≤ u2
max, umax = min[umax(θS)], (3)

which allows the exact mapping to thruster firings to be abstracted as a lower level
controller.

Fig. 6: Geometry of the grasping problem. The initial alignment phase (left) steers the spacecraft
towards some desired approach trajectory, defined by β , at which point the final approach phase
(right) tracks a straight-line to ensure proper timing and contact geometry.

3.2 Control Architecture

The grasping problem is constrained in three fundamental ways: (1) constraints on
the control input, (2) a constraint on the contact location on the surface of the ro-
tating target, and (3) dynamic contact constraints imposed by the gripper, as char-
acterized in [6] and Sect. 2. For a spinning object, the constraint on the contact lo-
cation imposes a coupled relationship on the pose and timing of contact, according
to t f =

θTg+2πn
ωT

, where n is an integer number of rotations before collision, and θTg

encodes the contact pose. This integer constraint on the final time, combined with
the complex 4D grasping envelope, makes this problem challenging to solve end-to-
end as a single optimal control problem. We note that for ωT→ 0,wehave t f → ∞,
which leads to prohibitively slow solutions. Indeed this control approach is tailored
for the case in which the target’s angular velocity is faster than a simpler linear con-
troller can handle (e.g. by “chasing” the target point). In other words, our control
approach should be considered complimentary to a controller that can handle static
or quasi-static cases.

Accordingly, we decompose the grasping problem into two phases. Phase 1
aligns the spacecraft’s velocity vector with the desired approach vector (Fig. 6, left)
and phase 2 simply tracks this straight line trajectory and ensures proper contact
timing (Fig. 6, right). Importantly, the phase switch is assumed to occur sufficiently
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far from the target as to guarantee a feasible, time-optimal solution—thus imposing
constraints on initial conditions, as discussed in Sect. 3.5.

To define this switching condition, we must work backwards from the desired
contact state within the grasping envelope. In principle, an appropriate selection of
approach trajectory can map to any desired point in the grasping envelope. Practi-
cally, however, the spacecraft cannot spin arbitrarily fast to match the object. In fact,
it is often desired for the spacecraft to have zero angular velocity for robust trajec-
tory tracking (i.e. so that thrusters are not spinning). Therefore, by forcing ωS = 0,
the relative angular velocity at contact is simply that of the target object, ωT.

There are many ways in which the remaining contact states (v∗,φ ∗,d∗) may be
chosen. Given some estimate of the grasping envelope, one strategy would be to
inscribe a maximum radius sphere within the (3D) slice defined by Ω = ωT. The
center of this sphere is one measure of the most robust target point. Therefore, given
some appropriate selection of contact state (v∗,ωT,φ

∗,d∗), the geometry of the ap-
proach trajectory in phase 2 (see Fig. 6, right) can be uniquely defined as:

v = v∗, φ = φ
∗, ωS = 0, β = sin−1

(
d∗ cosφ ∗+(lS + rT)sinφ ∗

R

)
, (4)

where R is the distance of the spacecraft at the beginning of phase 2. Interestingly,
as discussed in [6], this optimal target point often corresponds to a non-zero offset
and angle of attack for spinning objects—a key difference from traditional grippers.

Note that this paper does not address attitude control, which is a function of the
specific arrangement of actuators for a given spacecraft. For the planar motion with
a reaction wheel considered here, the (1D) solution is trivial. We simply assume that
the spacecraft is able to rotate to the desired heading for grasping within t f .

3.3 Phase 1: Alignment

The goal of the initial alignment phase is to drive the spacecraft to the desired ap-
proach vector computed by (4) in minimum time. Specifically, the final switching
condition is met at ts when,

vθ (ts)
−vr(ts)

= tanβ . (5)

Intuitively, this can be thought of as applying some control input to effectively “ro-
tate” the velocity vector until it points at the desired contact location. Note from
Eq. (4) that β is a function of R, which is time-varying. Thus, while β cannot be
computed exactly a priori, Eq. (5) can easily be evaluated at each time step to check
for the switching condition.

The control input to achieve this in minimum time is simply a maximum thrust
normal to the approach vector, specifically:

u∗θ (t) = umax cosβ
−vθ (t)
|vθ (t)|

, u∗r (t) = umax sinβ
vr(t)
|vr(t)|

. (6)
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Since β is often small (within 10o for typical parameters and zero in the nominal
case), the dominant component of thrust is normal to the the spacecraft’s position
vector (rS), effectively arresting the spacecraft’s angular momentum about the tar-
get. Furthermore, the geometry of this thrust is such that the spacecraft’s speed will
always decelerate. Thus, a total speed constraint (that is not initially violated) will
remain obeyed. An apparent drawback of this approach is the inability to directly
consider position constraints, which may arise due to, e.g., narrow corridors within
the ISS. However, as a last stage in a higher level planning framework, this con-
troller can make some assumptions about the allowable set of initial states (e.g.
from a kinodynamic planner) that guarantee a collision-free “approach corridor.”

3.4 Phase 2: Final Approach

After aligning the velocity vector (along êβ ) in phase 1, the goal for phase 2 (starting
at t0) is to track this straight-line trajectory to intercept the target object at state
(v∗,φ ∗) and location Tg using minimum fuel. Indeed, a periodic constraint is imposed
on the final time:

t f =


θTg (t0)+2πn

ωT
, ωT < 0

2π(1+n)−θTg (t0)
ωT

, ωT > 0
, θTg(t0) = θT(t0)−θ(t0)−φ

∗+β +
d∗

rT
, (7)

where n is the integer number of full revolutions of the target object before contact.
The minimum feasible n also corresponds to the minimum time solution. For some
choice of n, we can formally state the 1D input-constrained minimum fuel optimal
control problem:

min
∫ t f

0
|u(t)|dt

s.t. Ẋ = AX +Bu

X(0) = [r,v0]
T

X(t f ) = [D,v f ]
T

umin ≤ u(t)≤ umax

(8)

where X = [r,v], ṙ = v, D = 1
cosβ

[R− rT cos(φ −β )− lS cos(β −φ)−d sin(β −φ)],
and A and B represent the dynamics of a 1D double integrator. It is known that the
solution to an input constrained minimum-fuel optimal control problem (where the
system is controllable) will have a bang-off-bang form [15]. Additionally, for our
specific problem, there are a family of fuel-optimal solutions corresponding to the
choice of n. For an initial radius (D) sufficiently large, an optimal solution is to fire
the thrusters one time in an off-bang-off regime, whereby the timing and duration of
the firing determines the impact speed (v f ) and time (t f ). The total time is given by
the sum of the initial coast phase (τ1), acceleration phase (τ2), and final coast phase
(τ3). Similarly, the total distance traveled (D) can be decomposed into three phases.
With appropriate manipulation, this allows the timing to be computed as:
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τ1 =
D+ v f (τ2− t f )−

|v2
f−v2

0|
2umax

|v f − v0|
, τ2 =

|v f − v0|
umax

. (9)

Note that this solution is only valid for 0≤ τ1 ≤ t f −τ2 and τ2 < t f . In other words, a
single-fire solution may not exist for spacecraft that starts too far away, approaches
too fast, too slow, or when v0 ≈ v f . For this case when τ1 ≥ t f − τ2, a two-fire,
bang-off-bang control is optimal, whereby the spacecraft immediately thrusts for
duration τ∗1 , coasts for τ∗2 at speed v2, and thrusts for the remaining τ∗3 . Similar to
(9), the timing of the firing can be computed as:

τ
∗
1 =
|v2− v0|

umax
, τ

∗
3 =
|v f − v2|

umax
, v2 =

Dumax− 1
2 |v

2
2− v2

0|−
1
2 |v

2
f − v2

2|
umaxt f −|v2− v0|− |v f − v2|

. (10)

This solution is also only valid for τ∗1 + τ∗3 ≤ t f . Otherwise, the timing mismatch at
t0 is too large for a bang-off-bang regime to compensate. However, an appropriate
constraint on the initial state (discussed in Sect. 3.5), can guarantee that either a
single-fire solution (Eq. (9)) or two-fire solution (Eq. (10)) exists.

3.5 Approximate Region of Attraction

In summary, given some initial state, the two-phase control proceeds as follows:

1. Select a desired location on the surface of the target to grasp, Tg.
2. Using some model for the grasping envelope, select a robust target point (v∗,ωT,φ

∗,d∗)
as the desired contact state.

3. Execute the control for phase 1 according to (6).
4. Watch for terminal condition given by (5) and switch to phase 2 when triggered.
5. Compute optimal single-fire control inputs according to (9).
6. If infeasible, compute the two-fire optimal control solution according to (10).
7. Execute phase 2 controller, optionally with a closed-loop tracking controller

(e.g., LQR), to drive the spacecraft to the desired contact state.

In order to stitch this controller to a preceding planner, we would like to formally
characterize the set of initial states from which a feasible solution is guaranteed—
corresponding to, for example, the goal region of a kinodynamic planner. First,
Eqs. (9) and (10) will be used to derive a minimum distance, Dmin at which phase
2 must begin to guarantee a feasible solution for any possible target point. Then, a
conservative linearizion of the dynamics given by Eqs. (2) and (6) will provide an
inner approximation of the backwards reachable set to achieve this transition.

3.5.1 Region of Attraction for Phase 2

To derive the minimum distance Dmin for phase 2, we start by realizing that in order
to guarantee feasibility for any choice of Tg (i.e. at least one feasible choice of n),
then it is sufficient to guarantee that a solution exists for all t f ,min ≤ t f ≤ t f ,min +
2π/ωT (i.e., the time the target takes to complete one full rotation).
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For the single-fire solution given by eq. (9), the minimum distance Dmin can be
derived be setting the difference in timing between the slowest solution and fastest
solution exactly equal to one rotation period: t f ,max− t f ,min =

2π

ωT
. For example, in

the case when the spacecraft needs to slow down (i.e. v f < v0), the slowest solution
is to apply umax immediately and coast at v f until impact, and the fastest solution is
to wait until just before impact to apply umax. Substituting this into (9) and (10) and
solving for Dmin, we have

Dmin =
2πv0v f

ωT|v f − v0|
+
|v2

f − v2
0|

2umax
. (11)

The second term corresponds to the distance traveled during thrusting, and the first
term represents the distance required to adjust phasing of contact by up to 2π .

For a two-fire solution, we can take the same approach by computing t f ,max−
t f ,min = 2π

ωT
. In this regime, t f ,min is achieved by accelerating as long as possible

before immediately decelerating to hit T at v f (i.e. τ∗2 = 0), and t f ,max is the exact
opposite. However, in some cases t f ,max = ∞, corresponding to the case when the
spacecraft can fully stop before accelerating. Thus eq. (10) can be manipulated in
a similar way to solve for D∗min, the minimum distance required for a guaranteed
solution in a two-fire regime:

D∗min = min

{
v2

0 + v2
f

2umax
,

∣∣∣∣ π

2ωT
−

v0 + v f

2umax

∣∣∣∣
√
(v0− v f )2 +

2πumax(v0 + v f )

ωT
− π2u2

max
ω2

T

}
. (12)

3.5.2 Region of Attraction for Phase 1

Now that we have characterized the minimum distance required at the phase 2 tran-
sition, we would like to compute the backwards reachable set through the control
input during phase 1 to find a set of initial states for which a solution is guaranteed.
However, the coupled, second order nonlinear dynamics from Eqs. (2) and (6) can-
not be solved in closed form. Instead, we can solve for a conservative approximation
of the minimum time, t̂s ≥ ts by linearizing the dynamics:

v̇r = ur +
v2

θ

r
≈ 0, (13)

v̇θ = uθ −
vrvθ

r
≈ uθ ,eff =

uθ − vr(0)vθ (0)
r(0)

, (14)

where uθ ,eff represents the reduced effective control in the êθ direction. For vr(0)< 0
(i.e. moving towards the target), uθ and C(t) = vr(t)vθ (t)/r(t) always have the same
sign. Furthermore, it can be shown that sgn( dC

dt ) = −sgn(C(t)) ∀ t ∈ (0, ts), if
(v2

θ
+ 2|vrvθ |)/r ≤ umax. In other words, the magnitude of C is monotonically de-

creasing, and |v̇θ | ≥ |uθ ,eff| ∀ t ∈ (0, ts). Thus, v̇θ ≈ uθ ,eff will serve as a conserva-
tive approximation for computing t̂s.

Similarly, since it is assumed that vr < 0, the approximation that v̇r ≈ 0 yields a
conservative approximation of the inward radial distance traveled (∆rmin) if v̇r ≥ 0,
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which is true for β ≤ sin−1(v2
θ
/(rumax)). Finally, we can use the linearized dynamics

given by (13) and (14) to compute t̂s and ∆rmin:

t̂s =
vθ (0)+ vr(0) tanβ

uθ ,eff
, ∆rmin = vr(0)t̂s. (15)

Combining Eqs. (11), (12), and (15), we can express the total initial distance the
spacecraft must be from the target as:

r ≥min(Dmin, D∗min)+∆rmin. (16)

Note that the initial velocity in phase 2 (v0 in Eqs. (11) and (12)) is now approx-
imated by |vr(0)|. In summary, the set of initial states for persistent feasibility is
defined by (16) and the following assumptions:

vr < 0,
v2

θ
+2|vrvθ |

r
≤ umax, β ≤ sin−1

(
v2

θ

rumax

)
. (17)

While these are complicated, interdependent expressions, in the context of a
sampling-based motion planner, they are cheap to evaluate (i.e. query the goal state).

4 Experimental Results

Fig. 7: Autonomous grasping experiments on the Stanford free-flyer test bed. (A) A free-flying
robot floats on frictionless air bearings and is equipped with eight compressed gas thrusters and a
flywheel. (B) The trajectory controller developed in Sect. 3 is executed on-board to dynamically
grasp (C) a translating and spinning target.

The two-phase grasping controller developed in Sec 3 was implemented on the
Stanford free-flyer test bed (see Fig. 7). A simple PD controller was used to control
free-flyer attitude in Phase 2. A passive target object was manually spun and pushed
at some initial coasting velocity. The free-flying robot equipped with eight thrusters
and a reaction wheel was pushed at varying initial velocities (within the region of
attraction), immediately executing the grasping controller. Figure 8 displays five
(of 16) example trajectories overlaid on the (ideal) simulated trajectory. A video of
one example trajectory can be found at: https://www.youtube.com/playlist?
list=PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto.

https://www.youtube.com/playlist?list=PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto
https://www.youtube.com/playlist?list=PL8-2mtIlFIJrHMGNeKmHnkB1XBD0iKvto
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Overall, there is good agreement between the measured and simulated trajec-
tories. Most of the deviation can be attributed to modeling errors—in particular,
the changing mass of the free-flyers as the CO2 tanks drain (to be addressed with
online system identification in future work). We also observed some timing errors
during the second approach phase which caused the free-flyer to occasionally miss
the target point. This is because the reference trajectory for the second phase was
computed immediately after phase one, which can result in mis-timed grasps when
unanticipated modeling errors such as table friction are present. Future experiments
will incorporate an MPC-style implementation of the phase two controller that con-
stantly recomputes the reference trajectory for more robust grasping.

Fig. 8: Measured motion capture data for three example trajectories (solid lines) of a free-flying
robot grasping a spinning target (black) overlaid with simulated predictions (dashed lines). The
points on the surface of the target represent the locations of the target point (Tg) upon impact for
the corresponding color. Gripper orientation is indicated by a straight line.

5 Conclusions
In this paper we presented an optimal control approach for the problem of dynamic
grasping of tumbling objects in space using gecko-inspired adhesive grippers. We
extended the characterized grasping envelope for a curved surface gripper to the
case when both the spacecraft and target object are free floating and of comparable
mass. We developed a two-phase control architecture that decomposes the grasping
problem into an initial alignment phase and final approach phase, each of which
with time optimal solutions. A conservative inner approximation of the region of
attraction for initial states was derived analytically to serve as a terminal goal region
for a preceding motion planner. Experimentation is ongoing, but the preliminary
results constitute one of the first successful demonstrations of autonomous surface
grasping in a high-fidelity spacecraft analog test bed.

This paper leaves numerous important extensions open for future research. First,
it is important to extend the controller to handle non-cylindrical objects, whereby
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surface target selection should be addressed in a more principled way. Second, we
plan to introduce an actuated arm that allows for more robust acquisition through
active damping and impedance matching, and also for manipulation tasks. Third, we
plan to extend this controller and gripper design to allow for out-of-plane motion.
Finally, future experiments will be integrated with a preceding kinodynamic motion
planner to negotiate obstacle-rich environments.
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