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The control problem associated with autonomous aircraft carrier landings for UAVs is
challenging due to requirements on safety, high-performance operation, and uncertain and
highly dynamic environments. This work proposes a control scheme for such problems that
enables safe operation of the UAV at the limits of its performance by utilizing amodel predictive
control (MPC) approach. While real-time computation requirements typically limit the fidelity
of the models used in optimization-based control, in this work it is demonstrated that high-
fidelity computational fluid dynamics (CFD) models can be used within an MPC framework
via the construction of a projection-based reduced order model (ROM). An application of a
CFD-based MPC scheme to the glideslope tracking problem is then developed to demonstrate
the effectiveness of the proposed approach.

I. Introduction

As the technology surrounding Unmanned Aerial Vehicles (UAVs) has developed, the tasks that they are expected to
perform have become increasingly complex. One such task, recognized for its importance by the US Department of

Defense [1], is fully autonomous carrier landing. Automation systems currently in use, such as the Automatic Carrier
Landing System (ACLS) and the Precision Approach and Landing System (PALS) [2, 3], still require significant human
supervision or action, can only operate in nominal conditions, and are tailored to piloted aircraft. Approaches that
have been proposed for fully autonomous carrier landings have utilized robust linear control methods [4, 5], adaptive
control, fuzzy logic, neural networks [6], dynamic inversion [6, 7], linear quadratic gain-scheduling [8], and model
reference adaptive control [9]. While these methods find success for nominal landing scenarios, they do not satisfactorily
address situations requiring high performance control, constraint handling, time-varying objectives, and autonomous
abort decision making. Enabling safe and fully autonomous landings requires that the control scheme account for such
situations, for example to land in high sea states, recover from bolters (unarrested landings), handle wave-offs, and
minimize dispersions and sink rates prior to landing. To address these complex considerations we propose the use of a
model predictive control (MPC) scheme.

Model predictive control [10] is a flexible, model-based control approach that can explicitly handle state and control
constraints while optimizing performance. For the autonomous carrier landing problem, the inclusion of state and
control constraints in MPC provides an important advantage over existing techniques. Specifically, it allows the UAV
to safely operate at its performance limits, and provides an implicit capability to make autonomous abort decisions
when constraint violation is unavoidable. From a performance standpoint, the MPC cost function provides a flexible
avenue for handling time-varying mission objectives. For example during the initial descent phase the deviation from a
nominal glideslope trajectory could be minimized, and then upon final approach the objective could be switched to a
more landing-specific performance metric such as landing dispersion or sink rate.

Model predictive control has already been shown to be an effective control scheme for aerospace applications [11].
Of particular interest are previous works that have applied MPC-based control schemes to the autonomous carrier
landing problem. The approach in [12] addresses the glideslope tracking problem (i.e. tracking a nominal approach to
the carrier) by designing an MPC controller based on a linearized longitudinal aircraft dynamics model and a linear
carrier motion model, but does not consider the effect of disturbances. Then, in [13] a stochastic MPC scheme is
proposed which focuses on glideslope tracking in the presence of uncertain wind gusts, described by a Dryden turbulence
model. This work was then extended in [14] to consider measurement uncertainty, a carrier airwake model, and a carrier
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motion model. A dynamics model with slightly higher fidelity is used in [15], which addresses a helicopter ship-based
landing problem. Specifically, the helicopter model incorporates dynamics from rigid-body motion, a simplified rotor
blade structural model, and a simplified rotor aerodynamics model. Additionally, a carrier airwake model built from
computational fluid dynamics (CFD) data is included, but only by interpolation with piecewise polynomial functions.
In these approaches [12–15] the inclusion of models beyond the nominal aircraft rigid-body dynamics reflects the
fact that MPC control in such a high performance environment requires models with increased sophistication. Yet
the computational requirements of MPC have still limited these approaches to relatively simple models. This work
seeks to overcome some of these challenges by leveraging both the modeling power of computational fluid dynamics
techniques and the efficiency gained from reduced order modeling. Specifically, we demonstrate the use of a CFD-based
reduced order aerodynamics model within an MPC control scheme. This extends previous approaches by showing that
principled, high-fidelity models generated from CFD methods can be used for model-based aircraft control.

Model order reduction techniques [16], such as balanced truncation or proper orthogonal decomposition (POD), are
principled methods for generating approximate dynamics models of reduced order from potentially very high-dimensional
systems (e.g. arising from discrete approximations to infinite-dimensional systems). In particular, CFD-based reduced
order models (ROMs) have been successfully used for tasks such as simulation, optimization, and control. For example
[17] uses a CFD-based aeroelastic ROM to include flutter constraints for an aircraft trajectory optimization problem
solved through dynamic programming. Also, similar to our proposed approach, a CFD-based MPC controller is used in
[18] for shock position control in a supersonic jet engine inlet. However this work assumes full state observability, the
stability and robustness of the control scheme are not discussed, and only soft constraints are imposed so as to ensure
persistent feasibility of the MPC algorithm. In this work, we leverage recent advances in reduced order model predictive
control (ROMPC) [19, 20] to design a CFD-based MPC scheme that can track a nominal glideslope, has guarantees on
robust constraint satisfaction and stability, and incorporates a state observer.

Contributions: In this work we show that high-fidelity CFD models describing the aerodynamics of a UAV can be
utilized within a model predictive control scheme via the construction of reduced order models. A CFD-based MPC
scheme for glideslope trajectory tracking is then designed using a reduced order CFD model generated via balanced
truncation with dimension nROM = 20 where the original CFD model had nCFD = 10, 410 degrees of freedom, and the
effectiveness of the controller is demonstrated in simulation. In addition, guarantees are provided on robust state and
control constraint satisfaction of the UAV system in the presence of state estimation error, bounded disturbances, and
model reduction error.

Organization: In Section II we begin by describing at a high level the objectives associated with the controller
design and some relevant assumptions made about the system. The description of the system dynamics begins with
the definition of relevant reference frames in Section II.A and then continues in Section III where the linearized
aerodynamics and rigid-body models are described in detail. The resulting combined rigid-body/fluid system model,
referred to as the full order model, is then given in Section III.D and is followed by the definition of the reduced order
model in Section III.E. In Section IV the CFD-based MPC scheme is described, including the reduced order MPC
problem, the reduced order state estimator, and the UAV control law. Finally, in Section V we demonstrate the ability of
the proposed control scheme to drive a UAV to track a glideslope trajectory in simulation.

II. Problem Formulation
The problem considered in this work is to design a control scheme that allows a UAV to track a predefined glideslope

trajectory during the approach phase of a carrier landing. We restrict our attention to longitudinal plane motion and
define the nominal glideslope trajectory (fixed relative to Earth) by a flight path angle γ0 and a constant desired UAV
velocity V0. We assume the aircraft operates under constraints on its physical state (e.g. angle-of-attack, distance from
glideslope) and with limited control authority (e.g. limited thrust), and that we have access to measurements of position,
velocity, pitch angle, and pitch rate. Additionally, it is assumed that the available measurements may be corrupted by
bounded noise and that unknown but bounded disturbances (e.g. wind) may influence the system dynamics.

A. Reference Frames
Using a flat-earth assumption, we define a series of coordinate systems: (1) an Earth-fixed inertial frame I, (2) a

body-fixed frame B, aligned with the principal axes of the aircraft, and (3) an (inertial) relative frame R that moves
along the glideslope at the constant velocity V0 and with a constant angular offset θ0 from I. The relationship between
I and R is given in Figure 2, where the glideslope is defined by the flight path angle γ0, and α0 is the equilibrium angle
of attack for the UAV. In the definition of the angles in Figure 2, arrows indicate direction of increasing angle and an
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Fig. 1 Schematic representing a standard carrier landing approach profile. This includes the glideslope
trajectory, defined by a flight path angle γ0 and nominal velocity V0, which is used to guide the UAV into the
final landing maneuver.
angle is zero when the vector is parallel to the horizontal, such that θ0 = α0 + γ0.

Figure 3 shows the relationship between the relative frame R and the body-fixed frame B. The coordinates δpx , δpz ,
and δθ are with respect to the relative frame R. The dynamics of the UAV, described in Section III, will be written with
respect to the relative frame.

Fig. 2 Relationship between the earth-fixed frame
I and the (inertial) relative frame R.

Fig. 3 Relationship between the (inertial) relative
frame R and the body-fixed frame B.

III. UAV Dynamics Model
Now that the relevant reference frames have been defined, we can discuss the dynamics model for the UAV system.

While classical approaches to modeling aircraft dynamics typically require aerodynamic coefficients regressed from
data, we use a principled CFD model of the aerodynamics that is directly coupled with the rigid-body motion. This
model is then exploited in the construction of the control scheme in Section IV.

A. Aerodynamics
In this work we assume inviscid, compressible flow, neglect atmospheric changes in altitude, and write the fluid

dynamics using the Arbitrary Lagrangian Eulerian (ALE) framework for mesh motion, following the approach discussed
in [21]. The compressible Euler equations are therefore written in a semi-discretized form as

∂

∂t
(
A(δξ)w

)
+ F(w, δξ, δ Ûξ) = 0,

where w ∈ RnCFD is the discretized fluid state vector, δξ B [δpx, δpz, δθ]T ∈ R3 is the rigid-body state vector written
with respect to the relative frame, A ∈ RnCFD×nCFD is a diagonal matrix of cell volumes, and F ∈ RnCFD is the flux
function. Additionally, the first term can be expanded to yield

A(δξ) Ûw + E(w)δ Ûξ + F(w, δξ, δ Ûξ) = 0. (1)
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B. Longitudinal Rigid-Body Dynamics
The force and moment vectors acting at the center of mass of the UAV, written in relative frame coordinates, are

given by

F =
(
−Tc cos(δθ) +mg sin(θ0) + f aeror̂x

(w)
)
r̂x +

(
Tc sin(δθ) −mg cos(θ0) + f aeror̂z

)
r̂z, M =

(
Mc +Tc∆zTc +Maero) r̂y,

where Tc is the thrust control input, m is the UAV mass, g is acceleration due to gravity, f aero ∈ R2 represents the
aerodynamic force vector in relative frame coordinates, Mc is the moment control input, ∆zTc is the perpendicular offset
of the thrust vector with respect to the center of mass, and Maero represents the aerodynamic moments in the relative
frame. The resulting rigid-body dynamics are therefore given by

mδ Üpx = −Tc cos(δθ) + mg sin(θ0) + f aeror̂x
+ dx,

mδ Üpz = Tc sin(δθ) − mg cos(θ0) + f aeror̂z
+ dz,

Jyδ Üθ = Mc + Tc∆zTc + Maero + dθ,

(2)

where Jy is the moment of inertia about the r̂y axis and d(·) is an exogenous disturbance.

C. Glideslope Linearization
Given the desired flight path angle γ0 and desired velocity V0, the constant motion of the relative frame with

respect to the earth-fixed frame is defined. The angular offset θ0 is then chosen as the equilibrium pitch angle for the
UAV corresponding to that glideslope. Therefore with respect to the relative frame, the desired equilibrium requires
δ Üξ0 = δ Ûξ0 = δξ = 0 and the remaining equilibrium quantities are given by Tc,0, Mc,0, and w0 for the thrust input,
moment input, and fluid state respectively.

Linearizing the fluid dynamics equations (1) about this glideslope equilibrium results in

A0δ Ûw +H0δw + C0δ Ûξ +G0δξ = 0, (3)

where A0 = A(δξ0), H0 =
∂F
∂w (w0, δξ0, δ Ûξ0), C0 =

∂F
∂δ Ûξ (w0, δξ0, δ Ûξ0), and G0 =

∂F
∂δξ (w0, δξ0, δ Ûξ0).

Then, linearizing the rigid-body dynamics (2) with respect to this equilibrium gives

Mδ Üξ = E0δξ + P0δw + B0δτ + D0d, (4)

where δτ B [δTc, δMc]T with δTc = Tc − Tc,0 and δMc = Mc − Mc,0 denotes the deviation in control from the
equilibrium values, δw = w − w0 is the fluid state perturbation, d B [dx, dz, dθ ]T is the disturbance vector and

M =


m 0 0
0 m 0
0 0 Jy

 , E0 =


0 0 0
0 0 Tc,0

0 0 0

 +

∂ f aero

r̂x

∂δξ

��
0

∂ f aero
r̂z

∂δξ

��
0

∂Maero

∂δξ

��
0

 , P0 =


∂ f aero

r̂x

∂w

��
0

∂ f aero
r̂z

∂w

��
0

∂Maero

∂w

��
0

 , B0 =


−1 0
0 0
∆zTc 1

 , D0 = I

where (·)|0 denotes a quantity evaluated at the equilibrium state.

D. Full Order Model
The linear, full order model (FOM) of the UAV system can now be defined using the coupled equations (3) and (4).

Defining the state vector x f B [δξ, δ Ûξ, δw]T ∈ Rn f where n f = 6 + nCFD, and the control vector u B δτ ∈ Rm where
m = 2, the dynamics for the UAV are given by

Ûx f = Af x f + B f u + B f
d

d, Af =


0 I 0

M−1E0 0 M−1P0

−A−1
0 G0 −A−1

0 C0 −A−1
0 H0

 , B f =


0

M−1B0

0

 , B f
d
=


0

M−1D0

0

 (5)

where I is the appropriately sized identity matrix. Additionally, it is assumed that measurements of the rigid-body state
(δξ, δ Ûξ) are available and therefore a measurement model is given by

y f = C f x f + v, C f =
[
I 0

]
, (6)

where y f ∈ Rp with p = 6 is the measurement vector and v ∈ Rp represents the measurement noise.
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E. Reduced Order Model
High-fidelity CFD models require fine spatial discretizations, which result in very high-dimensional fluid state

vectors δw and coupled dynamics models defined by (5). This poses a significant challenge to controller design, which
we show can be overcome by designing the controller based on a reduced order model.

Using a projection-based model order reduction method (i.e. balanced truncation or POD), the Petrov-Galerkin
projection matricesV ∈ Rn f ×n and W ∈ Rn f ×n can be defined where n � n f . The projection matrix P = V(WTV)−1WT

can then be used to project a vector in Rn f onto the subspace spanned by the columns of V , and the low-dimensional
approximation of x f is given by x ∈ Rn where x f ≈ V x. Substituting x f = V x in the full order model (5) and left
multiplying by the matrix (WTV)−1WT then gives

Ûx = Ar x + Bru, Ar = (WTV)−1WT AfV, Br = (WTV)−1WT B f , (7)

which is referred to as the reduced order model and the state vector x is referred to as the reduced order state. Note that
we have omitted the disturbance term as they are unknown and since we will only use this reduced order model for
nominal trajectory planning. A reduced order measurement model can also be defined, and is given by

y = Cr x + v, Cr = C fV, (8)

where y ∈ R6 is an approximation of the true measurement vector y f .

IV. CFD-Based Model Predictive Control

A. Control Problem Definition
As mentioned in Section II, the overall objective is to design a controller that enables the UAV to track the desired

glideslope while obeying constraints that are imposed on the UAV’s rigid-body state and control inputs. These constraints
are assumed to be expressed as

z f ∈ Z, u ∈ U, (9)
where z f = H f x f will be referred to as performance variables andZ B {z f | Hz z f ≤ bz} andU B {u | Huu ≤ bu}
are compact, convex polytopes that contain the origin. Additionally, we choose H f = C f such that the performance
variables correspond to the rigid-body states (i.e. position, velocity, pitch angle, and pitch rate). We also make the
assumption that the disturbances that act on the UAV satisfy

d ∈ D, v ∈ V, (10)

where D B {d | Hdd ≤ bd} andV B {v | Hvv ≤ bv} are compact, convex polytopes that contain the origin.
As the system dynamics have been expressed with respect to the relative frame (which moves along the glideslope at

the desired velocity), glideslope trajectory tracking is accomplished by driving the coupled system (5) to its origin. The
cost of a given trajectory that the system takes is then evaluated by the tunable cost function

J =
∫ ∞

0
(x f )TQ f x f + uT R f u dt, (11)

where Q f and R f are positive definite weighting matrices, and ideally the controller should be designed to minimize J.
As discussed previously, model predictive control is a powerful framework for approaching constrained optimal

control problems such as this. In this work we use an implicit MPC framework, which requires the online solution of
optimization problems typically formulated as quadratic programs (QPs). Standard off-the-shelf interior-point methods
for solving these QPs generally require O

(
(nx + nu)3

)
operations per step with respect to the state and control dimensions

nx and nu [22], which for moderately sized problems is computationally tractable. However, designing an MPC scheme
based on the FOM (5) would be intractable for real-time control since n f � 1.

Therefore, we propose to use the reduced order model (7) to design a computationally efficient MPC scheme that
still exploits the fidelity of the full order CFD model. Our proposed MPC scheme consists of three main components:
(a) a constrained optimal control problem using the reduced order model that defines a nominal open-loop trajectory,
(b) a state estimator that computes an estimate of the reduced order state from the available measurements, and (c) an
ancillary linear feedback control term that uses the reduced order state estimate to close the loop and drive the UAV to
track the nominal trajectory. The reduced order MPC (ROMPC) problem that produces the nominal trajectory is defined
in Section IV.B, followed by definition of the state estimator in Section IV.C, and finally the UAV control law is defined
in Section IV.D.
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B. Reduced Order Model Predictive Controller
The ROMPC problem produces a trajectory for a simulated nominal ROM system

Û̄x = Ar x̄ + Br ū, ȳ = Cr x̄, z̄ = Hr x̄, (12)

where z̄k are the reduced order performance variables and Hr = H fV = Cr . Note that the input ū to this simulated
system is not the same as the input u to the UAV, but their relationship is given by the control law in Section IV.D. To
design the ROMPC problem, a discrete-time version of (12) is given by

x̄k+1 = Ax̄k + Būk, ȳk = Cx̄k, z̄k = Hx̄k, (13)

where A = e∆t A
r , B =

( ∫ ∆t
0 eτA

r
dτ

)
Br , C = Cr , and H = Hr are the discrete equivalents assuming a zero-order hold

input, k is the discrete time index, and ∆t is the discretization time step.
The ROMPC problem is then defined using a standard MPC formulation to compute the control inputs ūk for the

discrete-time ROM (13). Specifically the ROMPC problem computes at each time step k ∈ Z≥0 a trajectory over a finite
horizon N ∈ Z>0, given by the state and control sequences x̄∗k := [x̄∗

k |k, . . . , x̄∗
k+N |k] and ū∗k := [ū∗

k |k, . . . , ū
∗
k+N−1 |k].

The notation (·)i |k denotes the trajectory quantity associated with time i ∈ [k, . . . , k + N] computed at time k, and the
notation (·)∗ denotes optimality with respect to the defined cost function and associated constraints. At each time step
the control ūk is then given by ūk = ū∗

k |k and the input ū to the continuous time ROM (12) is the zero-order hold of ū∗
k |k

over the discretization time step. The ROMPC optimization problem computed at time k is defined as

(x̄∗k, ū
∗
k) := arg min.

x̄k,ūk

| | x̄k+N |k | |2P +
k+N−1∑
j=k

| | x̄j |k | |2Q + | |ū j |k | |2R,

subject to x̄i+1 |k = Ax̄i |k + Būi |k,

z̄i |k = Hx̄i |k
z̄i |k ∈ Z̄, ūi |k ∈ Ū,
x̄k+N |k ∈ X̄f , x̄k |k = x̄k,

(14)

where i = k, . . . , k + N − 1 and the decision variables are the nominal trajectory quantities (x̄k, ūk). It is important to
note that the initial condition constraint uses x̄k , which is the current state of the discrete ROM (13) that is initialized
as x̄0 = x̄(0). The cost function is quadratic and is defined by the positive definite penalty weighting matrices P, Q,
and R where we choose Q = VTQ fV and R = R f to attempt to minimize the true cost function (11). The terminal
cost weighting matrix P, along with the convex polytopic terminal set X̄f , are designed using the techniques presented
in [10] in order to guarantee recursive feasibility and exponential stability of the controlled discrete-time ROM (i.e.
convergence of (13) to the origin under the control ūk = ū∗

k |k). Finally, the constraint sets Z̄ and Ū are tightened
versions of the constraints setsZ andU from (9). Constraint tightening is a common technique in classical tube-based
robust MPC to account for unpredictable disturbances that might make the controlled system deviate from the nominal
trajectory planned by the MPC scheme. In our case the tightening also takes into account the model reduction error
induced by using the ROM in the MPC scheme. A more thorough discussion on the computation of Z̄ and Ū is given
in Section IV.E.

C. Reduced Order State Estimator
Now that the ROMPC problem (14) is defined the reduced order state estimator is introduced. This estimator, which

is also based on the ROM (13) for computational efficiency, is defined by

Û̂x = Ar x̂ + Bru + L(y f − Cr x̂), (15)

where x̂ is the reduced order state estimate, y f is the measurement of the UAV rigid-body state given by (6), u is the
control applied to the UAV, and L is the estimator gain matrix.

D. Reduced Order Controller
The control law that is applied to the UAV system is then defined for t ∈ [k∆t, (k + 1)∆t] as

u = ū∗k |k + K(x̂ − x̄), (16)

6



where ū∗
k |k is the zero-order hold input to the continuous time ROM computed by the ROMPC problem (14) at time k, x̄

is the state of the continuous time ROM under the zero-order hold input ū = ū∗
k |k , and K is the controller gain matrix.

E. Robustness and Stability Guarantees
We now address in more detail the performance of the control scheme, focusing on guarantees of constraint

satisfaction and stability of the real UAV system while accounting for the error induced by the use of the reduced order
model, disturbances acting on the system, and state estimation error. To guarantee robust constraint satisfaction we use
the method proposed by [20] where we consider the approximation error e = x f − V x̄ and the control error d = x̂ − x̄
whose joint dynamics are given by

Ûε = Aε ε + Bεr + Gεω, Aε =

[
Af B f K

LC f Ar + BrK − LCr

]
, Bε =

[
P⊥AfV P⊥B f

0 0

]
, Gε =

[
B f
d

0
0 L

]
, (17)

where P⊥ = I − V(WTV)−1WT , r = [x̄T , ūT ]T , and ω = [dT , vT ]T . Note that in these continuous time dynamics the
term x̄ represents the continuous time trajectory of the nominal ROM (7) and where the control ū is the zero-order hold
of the control computed by the ROMPC problem in Section IV.B.

We now make the assumption that over the time interval [k∆t, (k + 1)∆t] the quantities x̄, d, and v are constant and
compute the discrete equivalent of the error dynamics assuming a zero-order hold. With this discrete equivalent the
method described in [20] can be used to compute the tightened constraint sets Z̄ and Ū that are used in the ROMPC
problem. In particular, these tightened sets are computed by finding bounds on how much the constraints might be
violated due to disturbances, state estimation error, and model reduction error.

This method also requires some additional assumptions, including that Aε is a stable matrix, that the initial error
ε(0) is bounded, and that the nominal ROM system satisfies the constraints z̄ ∈ Z, ū ∈ U for a predefined “burn in”
period before the constraint satisfaction guarantees are valid. The first assumption can be satisfied by appropriately
choosing the gain matrices K and L, and the others can be satisfied in practice by initializing the simulated continuous
time ROM (12) and state estimator (15) before the glideslope sequence begins to give them time to converge.

For an analysis of stability and convergence of the closed loop system we use the results from [20]. Specifically we
note that since the gain matrices K and L are designed such that Aε is a stable matrix and since the ROMPC controller
is designed such that the nominal ROM exponentially converges to the origin, then in the disturbance free scenario the
error ε → 0 which in turn implies that x f → 0 and x̂ → 0.

V. UAV Glideslope Tracking
We now present simulation results that demonstrate the capabilities of our proposed CFD-based MPC scheme. For

this problem we utilize a model of the mAEWing2 [23] shown in Figure 4, for which the methods presented in Section
III.A were used to build a CFD model with 2,082 nodes and a fluid state vector with nCFD = 10,410. The glideslope
to be tracked is defined by a flight path angle γ0 = −3.5◦ and a nominal velocity of V0 = 30.48 m/s. The dynamic
equilibrium of the UAV corresponding to this glideslope is defined by an equilibrium pitch angle of θ0 ≈ −2.9◦, an
equilibrium thrust of T0 ≈ 147 N, and an equilibrium pitch moment of M0 ≈ 14 Nm. Both the fluid and rigid-body
dynamics are linearized using these equilibrium conditions to give a linear FOM for the coupled rigid-body/fluid system
given by (5) where n f = 10,416. A visualization of the pressure distribution generated by the fluid across the surface
of the UAV at this equilibrium condition is given in Figure 10. It is interesting to note that for this UAV the coupled
rigid-body/fluid dynamics are unstable.

The constraints imposed on the rigid-body state and control include

|δpx | ≤ 50 m, |δpz | ≤ 10 m, |δθ | ≤ 10◦,
|δ Ûpx | ≤ 20 m/s, |δ Ûpz | ≤ 5 m/s, |δ Ûθ | ≤ 10◦/s,
|δTc | ≤ 100 N, |δMc | ≤ 50 Nm,

which define the polytopesZ andU. The assumed bounds on the disturbances are given by

|dx | ≤ 1 N, |dz | ≤ 10 N, |dθ | ≤ 0.1 Nm,
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to account for wind gusts or other disturbances that effect the rigid-body dynamics and

|vδpx | ≤ 0.1 m, |vδpz | ≤ 0.1 m, |vδθ | ≤ 0.5◦,
|vδ Ûpx | ≤ 0.1 m/s, |vδ Ûpz | ≤ 0.1 m/s, |vδ Ûθ | ≤ 1◦/s,

where v(·) denotes the noise associated with the measurement of the rigid-body state (·). For simplicity the cost function
(11) is defined with Q f and R f both being diagonal and where the first six elements of Q f (associated with the rigid-body
state perturbations) are chosen to be [10, 10, 1000, 100, 100, 100] and the remaining diagonal terms set to 0.001. The
control penalty R f is simply chosen to be R f = I. No cost function tuning was performed for this problem.

Fig. 4 The mAEWing2 model used to develop the
CFD aerodynamics model for the results presented
in Section V.

Fig. 5 The surface mesh of the mAEWing2 CFD
model, which in total contained 2,082 nodes.

A. Model Reduction
The CFD model given by (3) is reduced using balanced truncation where the terms including the rigid-body states

are considered inputs and the effect of the fluid on the rigid-body states (i.e. the P0δw term from (4)) are considered
the system output. Balanced truncation [16] is used as it is a principled technique applicable to stable systems that
intuitively seeks to capture the most controllable and observable modes of the system, and has the nice theoretical
property that the H∞-norm of the error system can be bounded by the sum of the neglected Hankel singular values
(which can be used as a metric for the quality of the model reduction). For the CFD model of the mAEWing2 UAV we
choose nROM = 20, such that the sum of the neglected Hankel singular values is approximately 0.1% of the total sum,
and we denote the model reduction matrices VCFD and WCFD.

Once the CFD model is reduced it is coupled with the rigid-body dynamics to yield a ROM with dimension n = 26.
Note that this coupled system can also be defined as the model reduction of the FOM (5) where the model reduction
matrices are

V =

[
I 0
0 VCFD

]
, W =

[
I 0
0 WCFD

]
.

As we mentioned previously the coupled FOM is unstable (even though the fluid sub-system is stable), and therefore it is
not surprising that the coupled ROM is also unstable.

Note that in this particular case balanced truncation is a computationally viable option since the FOM only has
around 10, 000 degrees of freedom. However for increased resolution or more complex fluid problems (e.g. including
viscosity effects), the resulting CFD models may have millions of degrees of freedom. Reducing these models with
balanced truncation is not computationally tractable and therefore in the future we would like to also consider models
generated using data-driven techniques such as POD [24].

B. Controller Design
Once the ROM is defined, the controller and estimator gains K and L are chosen such that Aε is a stable matrix. This

is accomplished by defining the cost matrices Q = VTQ fV and R = R f and choosing K and L as the infinite horizon
linear quadratic regulator gains based on the ROM dynamics. This method for defining K and L is chosen because in
the case that Ar = Af , Br = B f and Cr = C f the separation principle can be used to make the Aε block triangular with
diagonal blocks Af + B f K and Af − LC f . Therefore our choice of K and L is guaranteed to make Aε stable. While no
guarantees can be made that this procedure will make Aε stable when using the actual ROM dynamics, the approach
seems to work well in practice and can be validated by simply computing the eigenvalues of Aε .
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Next we compute the tightened constraint sets Z̄ and Ū for the ROMPC problem as discussed in Section IV.E.
Specifically, using the method from [20] we choose τ = 1000, compute M and γ by eigenvalue decomposition, G
is computed using the geometric programming approach (solved with batch coordinate descent), and Cr and Cw are
computed using vertex enumeration. Since this method requires the assumption that the ROM satisfies the constraints
Z andU for a predefined burn-in period we also increase the constraints on |δpx | and |δpz | (for error computation
only) to be less than 500 since they are integrator modes and therefore may not stay within a small region before the
control scheme is activated. However these bounds will still be valid to tighten the actual constraint setsZ andU.

Additionally, the time discretization of the error system as discussed in Section IV.E is performed using ∆t = 0.05 s,
which is also the time step used to discretize the ROM for the ROMPC problem. Finally, as mentioned in Section IV.B
the terminal cost and terminal set P and X̄f are computed using standard techniques from [10], the cost matrices Q and
R are the same used to compute K and L, and the time horizon is chosen to be N = 20 (corresponding to 1 second).

The tightened constraints in the ROMPC problem, computed using the method from [20], are given in Table 1. In
particular, the first row shows the original constraints which define Z and U, the second row shows the tightened
constraints that define Z̄ and Ū used in the ROMPC scheme, the third row shows the bounds on the constraint violations
computed by the method from [20] that are used to tighten the constraints, and the fourth row shows the percent of those
bounds that are a result of the exogenous disturbances d and v that act on the system. It is interesting to see that in the r̂x

|δpx | |δpz | |δθ | |δ Ûpx | |δ Ûpz | |δ Ûθ | |δTc | |δMc |
Original Constraint 50 m 10 m 10◦ 20 m/s 5 m/s 10◦/s 100 N 50 Nm

Tightened Constraint 28.9 m 8.0 m 8.0◦ 13.2 m/s 4.0 m/s 3.3◦/s 32.8 N 41.4 Nm
Difference (Error Bounds) 21.1 m 2.0 m 2.0◦ 6.8 m/s 1.0 m/s 6.7◦/s 67.2 N 8.6 Nm

% From Disturbances 4% 55% 51% 4% 57% 64% 5% 43%
Table 1 Comparison between original and tightened constraints.

direction (specifically δpx , δ Ûpx , and δTc) the amount of constraint tightening due to errors from model reduction and
state estimation are much higher (around 95% of the total) while for the other constraints the tightening due to errors
from model reduction and state estimation are approximately equal to the errors from the exogenous disturbances. This
could be a result of model reduction error, but it is likely also an effect of the chosen gain matrix K .

C. Simulation
Using the control scheme discussed in Section V.B the full order linearized coupled rigid-body/fluid model (5) can

be simulated with the controller in the loop. This simulation is performed by integrating the continuous time FOM
using an implicit backwards-Euler scheme with a time step of 0.01 seconds. The control input (16) is also computed
every 0.01 seconds by also updating the nominal ROM state x̄ and state estimate x̂ at the same rate. As mentioned
before the discrete time ROM was designed assuming a zero-order hold over ∆t = 0.05 s and therefore the ROMPC
problem is only solved once every 5 steps in the simulation.

1. Scenario A
To demonstrate the performance of the controller, the system is first initialized at an equilibrium condition with

δpx = 10 m and δpz = −5 m, and the controller’s simulated ROM and state estimator are also initialized at their
corresponding equilibrium conditions with the same positions δpx and δpz . This initial condition corresponds to the
UAV following a glideslope with the same desired speed V0 and flight path angle γ0, but shifted with respect to the
Earth-fixed inertial frame I. Figure 6 shows results from a simulation with no external disturbances and where the
nominal ROM trajectory computed by the ROMPC problem is also shown, and Figure 7 shows the case where the UAV
is also subject to external disturbances described earlier in this section, where at each time step the disturbance vectors
are drawn randomly from a uniform distribution. In these simulations the average time to solve the ROMPC QP using
CPLEX was approximately 0.04 seconds on a machine with a 2.5 GHz Intel Core i5 processor and 8GB of memory.

As can be seen in Figure 6 the system converges to the origin as desired and satisfies the constraints. Note that
in this particular case the tightened constraint |δ Ûθ | ≤ 3.3◦/s is active in the ROMPC problem at the beginning of the
simulation. We can also see that the UAV tracks the trajectory defined by the ROMPC problem very well, except for δpx

and δ Ûpx which has some error. This aligns with our observations from the error bound results in Table 1 where we saw
that the error bounds for these variables were significantly larger than than the others. We hypothesize that this is more
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Fig. 6 Results from the Section V.C.1 simulation of the linear CFD-based full order model for the mAEWing2
UAV without disturbances.
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Fig. 7 Results from the Section V.C.1 simulation of the linear CFD-based full order model for the mAEWing2
UAV with sensor noise and external disturbances.

of a result of the choice of the controller gains K than it is due to model reduction error, and exploring this observation
further as well as more robust options for choosing K and L is planned future work. In Figure 7 we see the effect of the
disturbances and sensor noise on the UAV. Since the assumed bounds on the disturbances d presented at the beginning
of this section are much larger for dz we would expect to see the larger deviations in δ Ûpz than in δ Ûpx , and we can also
see the effect of the moment disturbances dθ quite clearly in the pitch and pitch rate trajectories.

2. Scenario B
To consider another realistic scenario we also simulate the case where the UAV has intercepted the desired glideslope

trajectory defined by (V0, γ0), but is currently flying at an equilibrium condition corresponding to a glideslope trajectory
given by (V, γ) where V = 35 m/s and γ = −2◦. In other words the UAV is approaching with too shallow of a trajectory
and is 5 m/s too fast. We also initialize the state estimator and the nominal ROM in a more general way. Specifically we
start the simulation 50 seconds before the glideslope is intercepted and the CFD-based control scheme is applied, and
initialize x̄ = x̂ where the rigid-body states in x̂ are set using the current UAV rigid-body state measurement y f and the
reduced order fluid states are initialized to be zero. Note that during this period the control for the ROM system is
defined as ū = u − K(x̂ − x̄) where u is the control being applied to the UAV. Once again we run a simulation with and
without the disturbances acting on the system, which are shown in Figures 8 and 9, respectively. Once again, in these
simulations the average time to solve the ROMPC problem was approximately 0.04 seconds.

First, to evaluate the effect of initializing the state estimator and ROM as described we consider their initial conditions
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Fig. 8 UAV simulation results for the scenario discussed in Section V.C.2, without disturbances.
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Fig. 9 UAV simulation results for the scenario discussed in Section V.C.2, with sensor noise and external
disturbances.

when the proposed control scheme takes over the track the desired glideslope, which occur at t = 0 in Figures 8 and
9. We can see that at t = 0 the ROM’s rigid-body states closely match the UAV’s rigid-body states except for δpx

(however as expected the error is still smaller than the 21.1 m bound presented in Table 1), which seems to follow a
similar trend as seen in Section V.C.1 that we hypothesize is caused by the choice of K . However, even in the presence
of the initial condition error we can see that the UAV converges to the origin and tracks the ROMPC trajectory quite
well, and certainly satisfies the bounds presented in Table 1. Once again we also provide results when disturbances are
included, presented in Figure 9, where we see that the UAV noisily converges to the origin.

VI. Conclusion
This work presents a CFD-based MPC scheme for controlling a UAV during autonomous aircraft carrier landing

maneuvers, namely for the glideslope tracking problem. While classical MPC schemes are computationally constrained
to using low-fidelity models of the UAV aerodynamics, we have shown that high-fidelity CFDmodels can be incorporated
through the use of projection-based reduced order modeling. Specifically, a CFD-based model predictive control scheme
that leverages a reduced order CFD model for the online optimization problem and the state estimator is presented and
demonstrated in simulation. Through an analysis of the possible constraint violations that could arise due to the state
estimation error, bounded disturbances, and model reduction error, the proposed control scheme is also designed such
that constraint satisfaction is robustly guaranteed for the UAV.

Future Work: Additional work to improve the performance and applicability of this approach includes studying the
use of different model reduction techniques as well as more rigorous methods from computing the controller gains K
and L. For example, the use of proper orthogonal decomposition techniques such as in [24] should be explored so that
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Fig. 10 Interpolated pressure distribution heat map across the UAV surface at the glideslope equilibrium state.

higher fidelity CFD models can be utilized (since balanced truncation can be computationally intensive). Regarding the
controller gains, we hypothesized in the discussion on the simulation results that the choice of K and L have a significant
impact on the ability of the controller to make the FOM track the nominal ROM trajectory, and therefore their design
should be considered in more detail.
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