
Reach-Avoid Games Via Mixed-Integer
Second-Order Cone Programming

Joseph Lorenzetti, Mo Chen, Benoit Landry, Marco Pavone

Abstract— Reach-avoid games are excellent proxies for study-
ing many problems in robotics and related fields, with applica-
tions including multi-robot systems, human-robot interactions,
and safety-critical systems. However, solving reach-avoid games
is difficult due to the conflicting and asymmetric goals of agents,
and trade-offs between optimality, computational complexity,
and solution generality are commonly required. This paper
seeks to find attacker strategies in reach-avoid games that re-
duce computational complexity while retaining solution quality
by using a receding horizon strategy. To solve for the open-loop
strategy fast enough to enable a receding horizon approach, the
problem is formulated as a mixed-integer second-order cone
program. This formulation leverages the use of sums-of-squares
optimization to provide guarantees that the strategy is robust
to all possible defender policies. The method is demonstrated
through numerical and hardware experiments.

I. INTRODUCTION

Many important problems in robotics involve interactions
with dynamic environments, such as robot-robot interactions
and human-robot interactions. Game theoretic methods are
often useful for modeling these types of interactions; some
examples include two-player drone racing [1], autonomous
driving [2], and control of robotic swarms [3]. In particular,
differential games are of specific interest to applications
involving dynamical systems evolving in continuous state
spaces and time, and has been effective in analyzing practical
scenarios such as aircraft collision avoidance [4], multi-
vehicle routing [5], and robust trajectory planning [6].

Related work: A challenging class of differential games
is known as reach-avoid games, in which Player 1 aims
to reach a desired target set of states while staying away
from an avoid set, typically induced by Player 2. Reach-
avoid games are especially difficult to analyze, since unlike
other differential games such as pursuit-evasion games, both
a target set and avoid set must be taken into account [7].
Despite this difficulty, reach-avoid games have been applied
to robotics competitions such as the Robocup [8], as well as
practical scenarios such as unmanned airspace management
[9] and rogue vehicle interception [10]. Due to the intricacies
of the problem, solution methods tend to involve trade-offs
in several axes of consideration: computational complex-
ity, solution optimality, generality of system dynamics, and
generality of the problem setup. Trading off computational
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complexity for solution optimality involves making various
assumptions on the information patterns between the two
players, with the two ends of the spectrum being open- and
closed-loop formulations.

One crucial benefit of closed-loop strategies is that the
players are able to react to new information in real-time;
this is especially important in many practical scenarios such
as autonomous driving, in which a goal may be considered
infeasible until more information is collected over time. Dy-
namic programming methods based on Hamilton-Jacobi (HJ)
reachability analyses sacrifice computational complexity to
produce optimal closed-loop strategies for players operating
in a large variety of problem setups [11]. However, HJ
methods are only computationally tractable when the two
players have single integrator dynamics, although higher
level logic such as maximum matching can be used to obtain
approximations to multiplayer reach-avoid games [12].

Since finding optimal closed-loop strategies is very com-
putationally expensive, some work has looked at using open-
loop control. One approach considers a pair of simpler
differential games where, in each, one player selects their
control strategy in an open-loop fashion [13]. With the
other player having access to that strategy, the information
pattern provides a conservative solution. There are many
other methods for analyzing reach-avoid games that make
different trade-offs [10], [14]–[21]. These methods rely on
geometrical arguments and analytic solutions for special
problem setups and system dynamics [10], [14], [18]. This
produces computationally tractable solutions, but only for
particular application domains.

Open-loop reach-avoid strategies are closely related to
obstacle avoidance in dynamic environments, although the
notion of an adversarial opponent is not considered. In this
area, velocity obstacles [22] and reciprocal velocity obstacles
[23] have been used to reactively plan trajectories for avoid-
ance, but cannot guarantee being able to find a collision-
free trajectory to the goal. The authors in [24] propose a
planning method that guarantee collision avoidance for a
finite horizon, assuming a priori knowledge of the object’s
motion. More recently, with advances in computation speed,
several model-predictive control and reinforcement learning
methods have also been used [25]–[27].

Statement of Contributions: In this paper, we present a
receding horizon strategy for reach-avoid games that takes
advantage of both the computational simplicity of open-loop
formulations and the ability to react to new information as
in closed-loop formulations. The key theoretical insight of
our work is to parametrize Player 1 trajectories as piece-



wise low-order polynomials, which allows us to obtain an
MISOCP that can be solved in real-time. The advantages
of our real-time solution are demonstrated through hardware
experiments. For example, we include a scenario where an
autonomous robot using our proposed strategy plays against
a human-controlled robot and is able to win, despite the
scenario being initially not winnable.

In addition, our method considers Player 1 models that
belong to the class of differentially flat systems, which pro-
vides a rich set of interesting nonlinear dynamics. Therefore,
our approach offers more problem generality than methods
restricted to simple dynamics by computational challenges,
and open-loop methods that assume special dynamics re-
quired to obtain analytical solutions. Our formulation also
allows generalized problem setups, and could be applied
to multi-agent reach-avoid games or reach-avoid games in
environments with static and dynamic obstacles, unlike other
computationally efficient methods which rely on special
geometries to obtain analytical solutions.

Organization: The rest of this paper is organized as
follows. In Section II-A, we formulate the reach-avoid game
and state our assumptions. In Section II-B, we provide back-
ground on sums-of-squares (SOS) programming. In Section
III, we show how the reach-avoid game can rewritten as
an optimization problem with SOS constraints. In Section
IV, we show how the problem from Section III can be
reduced to a MISOCP. In Section V, we present results
from numerical experiments. In Section VI, we present
results from hardware experiments. In Section VII, we draw
conclusions and discuss directions for future work.

II. PRELIMINARIES

A. Problem formulation
In a two player reach-avoid game, the dynamics of the

players are

ẋ1 = f1(x1, u1), u1 ∈ U1, x1 ∈ X1, (1)

ẋ2 = f2(x2, u2), u2 ∈ U2, x2 ∈ X2, (2)

where x1 and x2 are the states of the players, and u1 and
u2 are their control inputs.

Player 1 tries to reach the target set ST in minimum time
while avoiding capture by Player 2. The capture region is
denoted by SA. Therefore the optimization problem becomes

minimize
u1

tf

subject to x1(tf ) ∈ ST ,
x1(t) /∈ SA, ∀t ∈ [0, tf ], ∀u2(t) ∈ U2,

u1(t) ∈ U1, ∀t ∈ [0, tf ],

ẋ1 = f1(x1, u1), ẋ2 = f2(x2, u2),

x1(0) = x1,0, x2(0) = x2,0.

(3)

We assume the dynamics f1 for Player 1 are differentially
flat. A system has differentially flat dynamics with flat output
z when there exists a function α that is a function of the state
x, control u, and the first q derivatives of the control

z = α(x, u, u̇, . . . , u(q)), (4)

such that the solutions of the system can be written in terms
of z and its first r derivatives

x = β(z, ż, . . . , z(r)), u = γ(z, ż, . . . , z(r)). (5)

Explicit trajectory generation for differentially flat sys-
tems is comparatively simple because the trajectory can be
planned in output space and then algebraically mapped to
the appropriate control inputs. This enables the trajectories
of the flat outputs z to be parametrized using any set of
smooth basis functions, such as polynomials. For a concrete
example see Section V-A, and for further details see [28].
Examples of differentially flat systems include integrator
systems, quadrotors, and kinematic cars. We also assume that
the control bounds for Player 1 can be written as constraints
on the flat outputs in the form of a convex polytope.

For clarity, we simplify the dynamics f2 for Player 2 to be
integrators, which allows for an analytical representation of
the boundary of Player 2’s forward reachable set (FRS) as a
polynomial in time. However, our method extends to general
nonlinear dynamics for Player 2 using any tool that produces
polytopic representations of FRSs such as [29]–[31].

B. Background on Sums-of-Squares Programming

We will rewrite the optimization (3) using concepts from
sums-of-squares (SOS) programming. SOS programming is
a technique to check whether polynomials are globally non-
negative by demonstrating that they can be written as sums
of squared polynomials. SOS programs can also be solved
as semidefinite programs (SDPs), and in special cases as
second-order cone programs, and have been used in many
applications [32]. We refer the reader to [33] for additional
details on SOS programming.

A polynomial φ(t) is SOS if

φ(t) =

l∑
i=1

p2i (t), (6)

where pi(t) are also polynomials. The condition (6) can also
be written as φ(t) = ρT (t)Qρ(t), Q � 0, with ρ(t) being
a vector of polynomial basis functions (such as monomials)
up to half the order of φ(t). Expanding the right hand side
and matching coefficients with the polynomial φ(t) results
in affine constraints on the elements of Q. Therefore, when
considering polynomials of SOS form, we can convert SOS
programs to semidefinite programs (SDPs):

minimize
X∈Sn

Tr(CTX)

subject to AT
i X = bi, i = 1, 2, . . . ,m,

X � 0,

(7)

where C, X , and Ai are symmetric matrices.
SOS programming is a useful tool in optimization because

in general, checking non-negativity of a polynomial φ(t) is
NP-hard, but checking whether φ(t) is SOS, a sufficient
condition for non-negativity, can be done efficiently. This
paper makes extensive use of constraints of the form “φ(t)
is SOS” to certify state and input constraints to model, for
example, Player 1’s avoidance of Player 2.



Another practical use of SOS constraints is in guaranteeing
non-negativity over a set. Given sets that are defined by zero
superlevel sets of polynomials,

A = {x(t) : φA(x(t)) ≥ 0} , B = {x(t) : φB(x(t)) ≥ 0} ,
(8)

the constraint x(t) ∈ B ⇒ x(t) ∈ A can be written as

φA(x(t))−L(x(t))φB(x(t)) is SOS, L(x(t)) is SOS. (9)

This leads to an SDP with bilinear constraints due to the
L(x(t))φB(x(t)) terms. These types of SDPs are solved by
alternating between fixing the coefficients of the polynomials
(L(x(t)) or φB(x(t))) and solving the resulting problem until
convergence.

III. FORMULATION WITH SOS CONSTRAINTS

Problem (3) contains several set constraints on the state
and control. Using zero superlevel sets of polynomials to
represent sets as in, (8), we are able to naturally rewrite
these set constraints as SOS constraints. This conversion is
discussed in Sections III-B and IV-A.

In this paper we represent trajectories as piecewise low-
order polynomials, although in general using a single polyno-
mial of any order is sufficient to formulate SOS constraints.
Piecewise polynomials are introduced here for consistency
of presentation, since in Section IV we will show that
using low-order piecewise polynomials allow the problem
to reduce to an MISOCP.

A. Parameterizing Player 1’s Policy

As mentioned in Section II-A, when considering the class
of differentially flat systems for Player 1 we can construct
feasible trajectories from flat outputs that are parameterized
by polynomial basis functions. More specifically, we choose
to represent Player 1’s trajectory in flat output space as a
piecewise polynomial in time. This provides two benefits:
first it helps enable the mixed-integer formulation discussed
later, and second (and more importantly) each piecewise
component can be a low-order polynomial but the resulting
trajectory can still have rich features.

The full trajectory is defined with N segments for each
of n state space dimensions. Each polynomial segment j of
state space dimension i is of degree d, and thus is defined by
d+1 coefficients cij = [cj,0, . . . , cj,d] and a set of polynomial
basis functions ρ = [1, t, t2, . . . , td]. Thus the jth segment of
the ith dimension is defined by

pij(t) =

d∑
k=0

cij,kρk, t ∈ [tj−1, tj ].

B. Control Bounds

We assume the control bounds can also be written as
constraints that are linear functions of the polynomials pij(t)
or their derivatives:

AU

[
pij(t), ṗ

i
j(t), . . . , p

(d),i
j (t)

]T
− bU is SOS. (10)

For example, a 1D double integrator system with polyno-
mial pij(t) = x(t), dynamics ẍ = u, and control bounds u,
u the constraint would simply be

ẍ(t)− u is SOS, −ẍ(t) + u is SOS.

C. Target Region

The target region ST ⊂ X1 is defined in the state space as
a convex polytope with P sides that inner approximates the
true target region. The polytope is defined by a set of linear
constraints such that a point is in the target region (p1 ∈ ST )
if AT p1 ≥ bT , where AT ∈ RP×N and bT ∈ RP .

With Player 1’s trajectory parameterized as a piecewise
polynomial this constraint can be rewritten by evaluating the
N th segment at the final time tf , that is

AT

[
p1N (tf ), . . . , pnN (tf )

]T − bT ≥ 0. (11)

Since the objective is to minimize final time, tf , this
constraint is nonlinear. To remove the nonlinearity we fix the
final time1 (i.e. treat tf as a constant), and instead introduce
slack variables {γk}k and minimize their sum, that is

min
P∑

k=1

γk; (12)

in particular, we use the slack variables {γk}k to relax the
reach constraints

AT

[
p1N (tf ), . . . , pnN (tf )

]T − bT
+ [γ1, . . . , γP ]

T ≥ 0,

γk ≥ 0 ∀k ∈ [1, . . . ,P ],

(13)

so that they become simple linear constraints. Note that by
relaxing the reach constraints in this way, the surrogate objec-
tive (12) is always nonnegative. Specifically,

∑P
k=1 γk = 0

only if the fixed final time tf is large enough for the trajectory
to reach the target region. Therefore, the minimum time
trajectory can be found through a search over fixed final times
(while minimizing the surrogate objective (12)) to find the
smallest tf such that

∑P
k=1 γk = 0.

D. Avoid Region

Avoiding capture requires staying outside of the avoid
set SA for all time and for all possible Player 2 actions.
This is accomplished by ensuring Player 1 is outside of the
FRS of Player 2, with SA as the initial set. We consider a
polytopic outer approximation for the FRS, which could be
computed via methods such as [29]–[31]. As our focus is not
on any specific approximation method, we assume integrator
dynamics for Player 2 and an avoid set SA defined as

SA = {x : ||x− x2||∞ < w} , (14)

where x2 is the position of Player 2 and w is based on
physical parameters such as capture range or robot size.

1Fixing the final time is also needed to split the trajectory into time
segments so that the mixed integer formulation can be used, which is
discussed later.



Using this avoid set and integrator dynamics yields a poly-
nomial representation of the FRS. For a concrete example
see Section V-B.

Let the polynomials defining the boundaries of the FRS
along state space dimension i be given by θ

i
(t) and θi(t),

and define polynomials φij(t) for each trajectory segment j
in the following manner:

φij,1(t) ≥ 0⇔ pij < θi(t),

φij,2(t) ≥ 0⇔ pij > θ
i
(t).

(15)

Collecting all polynomials φij,1 and φij,2 for a given
state space dimension i yields 2N polynomials. Together,
they define the capture condition for a particular trajectory
segment j as follows:

φij,1/2(t) < 0, ∀i, (16)

which means that polynomials φij,1(t) and φij,2(t) for all
i ∈ [1, . . . , n] have to be negative at a point in time in
order to have Player 1 captured by Player 2. Therefore, a
sufficient condition to avoid capture is that at least one of
the polynomials φij,1/2(t) ≥ 0 for a given segment j

φ1j,1(t) ≥ 0 ∨ φ1j,2(t) ≥ 0 ∨ · · · ∨ φnj,1(t) ≥ 0 ∨ φnj,2(t) ≥ 0.
(17)

IV. REDUCTION TO MISOCP

Even with the simplifications presented in Section III, the
resulting optimization is still complicated due to the avoid
constraints (17) being non-convex or-constraints.

A. Formulating Mixed Integer Avoid Constraints

Reach-avoid games from the perspective of the Player 1
are in some sense similar to path planning with collision
avoidance requirements, which has been studied using mixed
integer programming. The authors of [34], [35] use this
technique by discretizing the path and guaranteeing collision
avoidance using mixed-integer constraints. In [36], the au-
thors utilize SOS and mixed integer programming to require
polynomial trajectory segments to lie in convex safe regions.

Similar to [36], we propose to introduce binary slack vari-
ables zj,k to handle the non-convexity in the or-constraints
given by (17) and convert them into a set of mixed-integer
and-constraints using the big-M method,

∀j ∈ [1, . . . , N ] :

φ1j,1(t) +M(1− zj,1) is SOS,

φ1j,2(t) +M(1− zj,2) is SOS,

. . .

φnj,1(t) +M(1− zj,2n−1) is SOS,

φnj,2(t) +M(1− zj,2n) is SOS,
2n∑
k=1

zj,k = 1, zj,k ∈ {0, 1}.

(18)

The value of M can be determined by considering rea-
sonable limits of φij(t) for a given problem. Note that there
are 2n mixed integer SOS constraints for each trajectory

segment, and with N segments we end up with 2nN total
binary variables.

B. Mixed Integer Semidefinite Program

We are now ready to write the full optimization problem,
which takes on a form that can be converted to a mixed
integer semidefinite program (MISDP).

minimize
P∑

k=1

γk

subject to

AU [pij(t), ṗ
i
j(t), . . . , p

(d),i
j (t)]T − bU is SOS, ∀ i, j,

AT pN (tf )− bT + γ ≥ 0,

γk ≥ 0, ∀k ∈ [1, . . . , P ]

Eqs.(18),

p1(0) = x1,0, x2(0) = x2,0.
(19)

This optimization problem can be written as a MISDP,
which can be globally solved using a branch and bound
algorithm. Additionally, when trajectory polynomials pij(t)
are of order two or three (d = 2 or d = 3) the SOS
constraints reduce to rotated second-order cone constraints
and the problem can be solved as a MISOCP.

C. Reduction to MISOCP

Consider writing a constraint for a general low-order
polynomial φ(t) defined over the interval [tj−1, tj ] as

φ(t) =

{
(t− tj−1)σ1(t) + (tj − t)σ2(t) d = 3,

σ1(t) + (tj − t)(t− tj−1)σ2(t) d = 2,

σ1(t), σ2(t) are SOS,

(20)

where if d = 3 both σ1(t) and σ2(t) are second-order, and
if d = 2, σ1(t) is second-order and σ2(t) is a constant. Now
the decision variables would be the coefficients of σ1(t) and
σ2(t), which identify the original polynomial φ(t).

Note that we have considered a polynomial over a specific
time interval [tj−1, tj ], which in our problem corresponds
to a specific trajectory segment pij(t). Therefore writing
a polynomial SOS constraint using (20) relaxes it from
being globally non-negative to being non-negative over the
appropriate time interval, which is less restrictive.

Since both σ1(t) and σ2(t) are at most second-order
polynomials, the SOS constraints can be written instead as
rotated second-order cone constraints.

σ(t) = c0 + c1t+ c2t
2 =

[
1 t

] [c0 c1
2

c1
2 c2

] [
1
t

]
,

so σ(t) is SOS ⇔
[
c0

c1
2

c1
2 c2

]
� 0, which is also equivalent

to c21 − 4c0c2 ≤ 0, c0, c2 ≥ 0.
Under these conditions the optimization problem (19) can

be solved as a MISOCP instead of as a general MISDP,
which also allows us to take advantage of MOSEK’s [37]
mixed integer optimization methods, enabling real-time com-
putations needed for our receding horizon approach. The



receding horizon approach is discussed in Section VI-A and
is outlined in Algorithm 1.

V. NUMERICAL EXAMPLES

We now consider an example reach-avoid game and
demonstrate how to formulate it as an MISOCP. Consider a
kinematic car trying to reach a safety box around the origin
while avoiding capture by a single integrator opponent.

A. Kinematic Car (Player 1)

The dynamics of the kinematic car are given by

ẋ1 = v cos(θ1), ẏ1 = v sin(θ1), θ̇1 = ω,

where the control variables are the speed v and turn rate
ω. We use a control constraint |v| ≤ v1,max and a friction
constraint that is translated into a constraint on ẍ and ÿ. The
full non-linear constraints are outer-approximated as follows:

−v1,max√
2
≤ ẋ1 ≤

v1,max√
2
, −µsg√

2
≤ ẍ1 ≤

µsg√
2
,

−v1,max√
2
≤ ẏ1 ≤

v1,max√
2
, −µsg√

2
≤ ÿ1 ≤

µsg√
2
,

where µs is the coefficient of static friction.
This system is differentially flat with flat outputs z(t) =

(x(t), y(t)); a trajectory in the output space is mapped to the
corresponding control using z(t) and its first two derivatives:

θ1(t) = tan−1
(
ẏ1
ẋ1

)
v(t) =

√
ẋ21 + ẏ21

ω(t) = −1

v
sin(θ1)ẍ1 +

1

v
cos(θ1)ÿ1

(21)

B. Single Integrator (Player 2)

We constrain the control input of the single integrator
opponent as follows:

−v2,max ≤ ẋ2 ≤ v2,max, −v2,max ≤ ẏ2 ≤ v2,max.

For an avoid set defined by (14) the boundaries of the FRS
can be expressed as

x2 = x2(0) + w + v2,maxt, x2 = x2(0)− w − v2,maxt,

y2 = y2(0) + w + v2,maxt, y
2

= y2(0)− w − v2,maxt.

(22)

C. Baseline Solution Method (SDP)

As a performance baseline for the MISOCP method we
look to solve the problem in its SDP form (before the
addition of integer variables). Recall that the integer variables
were introduced to handle the non-convex or-constraints
given by (17). An alternative solution method is to utilize
the fact that we can write implications of the form x(t) ∈
B ⇒ x(t) ∈ A using (9).

In the SDP formulation, we also consider a single higher-
order polynomial (N = 1, d = 6) for the trajectory rather
than piecewise low-order polynomials. Therefore, in our
problem, if all φi1/2(t) < 0 (from (17)) except for one, which
we can call φ0(t), then to satisfy the avoidance condition it
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Fig. 1: Comparison between the baseline SDP solution
method (left) and the MISOCP solution method (right). The
MISOCP method reduces computation time and improves
solution quality.

is required that φ0(t) ≥ 0. Further, we need to write this
requirement 2n times, considering each φi1/2(t) to be φ0(t).
Each of these implications are written in the form (9):

φ0(t)−
∑
r

Lr(t)φr(t) is SOS, Lr(t) is SOS, ∀r, (23)

where the index r represents each other φi1/2(t) that is not
φ0(t). Note that when writing the avoid constraints in this
form, bilinear terms are introduced. The problem is then
written as an SDP with bilinear terms and solved with an
iterative method as mentioned in Section II-B.

D. Performance Comparison

We now compare the computation time and solution
quality between the baseline SDP method and the proposed
MISOCP method described in Section IV. “Solution quality”
refers to how small the fixed final time tf can be and still
give a winning solution. The total MOSEK solver time is
given as tsolver. In this case the SDP method required about
60 iterations to converge. Note that the red box in the figures
presented show the FRS at the time when the car (the red
circle) is at the location indicated.

TABLE I: Results Comparison
SDP MISOCP

tf (s) 0.035 0.02
tsolver (s) 4.95 1.13

As can be seen in Figure 1, and in Table I the MISOCP
solution yields both a faster trajectory as well as a lower
computation time. It is also worth noting that the scale
of this problem is quite small (final time on the order
of milliseconds). We had difficulty finding solutions when
using the SDP method, except for small time-scale problems
such as shown here. However, the MISOCP method had no
difficulties in finding solutions (when they exist). This is
likely due to the iterative nature of solving the bilinear SDP
problem, as well as additional flexibility afforded through
the use of piecewise polynomials in the MISOCP method.

E. MISOCP Performance

Three examples with varying difficulty are explored to
demonstrate performance of the MISOCP method. In Case 1,
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Fig. 2: Comparison showing the effect of number of tra-
jectory segments on solution. The path when N = 3
corresponds to a larger tf than when N = 6.

Player 2 starts far enough away from both Player 1 and the
goal region that it has no effect on the path of Player 1, and
the optimal solution is a straight line. In this simple example
the MISOCP does in fact recover this straight line path. In
Case 2 and Case 3, Player 2 begins directly between Player
1 and the goal region. In Case 1 and Case 2 the problem
parameters are v1,max = 40, µsg = 100, v2,max = 2. In Case
3, the max velocity of Player 2 is increased to v2,max = 6.
All experiments are done on a Dell XPS laptop with a 2.5
GHz Intel Core i5 processor and 8GB of memory.

Table II shows the results for these problems. We see the
computation times vary depending on the difficulty of the
problem. In each of these problems the number of trajectory
segments was N = 6.

TABLE II: MISOCP Performance

Case 1 Case 2 Case 3
tf (s) 0.53 0.59 0.775

tsolver (s) 0.03 0.37 0.83

The number of trajectory segments used also has an affect
on computation time and solution quality. Figure 2 shows
the resulting trajectory after solving the MISOCP for Case
3 with N = 6 and when the number of trajectory segments
was cut in half. We see the trajectory is less direct since the
time to get to the goal region increases from tf = 0.775 s to
tf = 0.915 s. However with less complexity the solver time
decreased from tsolver = 0.83 s to tsolver = 0.34 s.

F. Effect of Segmenting the Trajectory

Intuitively, changing the number of segments should have
an impact on the solution quality and computation time. To
quantify these relationships, consider a problem similar to
Section V-E. However now we choose a final time such that
the trajectory cannot easily reach the goal region, so that the
magnitude of the slack variables γ can indicate the effects
of changing N . Figure 3 shows the effect of changing the
number of segments on the solver time and objective value.
In general we see that adding segments gives better solutions,
at the expense of solver time.

VI. HARDWARE EXPERIMENTS

A. Receding Horizon Scheme

A receding horizon scheme provides the ability to react
to new information. At each iteration our receding horizon
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Fig. 3: Solutions to a reach-avoid problem with varying num-
ber of trajectory segments. A larger mixed-integer program
results in increased computation time and better solution
quality.

scheme updates position information of Player 2, solves an
MISOCP, and executes the first ∆t portion of the solution.

Since the optimal final time t∗f is not known a priori we
choose to fix the time horizon tf as the minimum required
time to traverse a path directly to the target region, which is a
lower bound on the true optimal final time. When using this
time horizon the open-loop plan may not necessarily find a
winning strategy (

∑P
k=1 γk > 0). However, once a winning

solution is found no more planning is required.
During each time interval, the MISOCP being solved (the

solution is a plan for the next time interval) requires the
positions of both Player 1 and 2 at the beginning of the next
interval. Player 1’s future position is known, but Player 2’s
current path is unknown. To handle this, we add a buffer
to the initial set of Player 2’s FRS which compensates for
all possible motions during the current interval ∆t. For the
single integrator case from Section V-B, the expressions for
the boundary of the buffered FRS is given by (22), with t
replaced by t+ ∆t.

Algorithm 1 Receding Horizon MISOCP

1: procedure REACHAVOID(N , tf , ∆t, AT , bT , AU , bU )
2: Set Player 1 IC: p1(0), ṗ1(0)
3: Measure Player 2 position: x2(0) = x2,0
4: Define Player 2 FRS, θ

i
(t), θi(t), using x2(0), ∆t

5: Define φij,1/2(t) using (15)
6: Re-parameterize (18) as cone constraints using (20)
7: Solve MISOCP (19)
8: if

∑P
k=1 γk = 0 in (19) then

9: Follow full trajectory p(t) to target region
10: else
11: Execute first ∆t of p(t), and repeat procedure

The receding horizon scheme is outlined in Algorithm 1.
First the appropriate initial conditions are set. Then the avoid
set boundaries are computed based on Player 2’s measured
position and the replanning rate ∆t. The MISOCP (19) is
defined by using (20) to rewrite φij,1/2(t) such that the SOS



P1: T=0

P1: T=15

P1: T=24

P2: T=0

P2: T=15
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Fig. 4: An example experiment with an autonomous Player
1 (blue) and Player 2 (red) being human-controlled. The
planning horizon is ∆t = 1 s, v1,max = 0.2 m/s, and
v2,max = 0.1 m/s. Both players had no initial velocity. The
trajectory plot includes some time snapshots of the player’s
locations, denoted with solid color circles.

constraints in (18) can be written as cone constraints. Then
the MISOCP is solved and the process repeats.

We now demonstrate the receding horizon scheme using
two Turtlebot 3 platforms with position information from
a Vicon system. Player 1’s paths are computed off-board,
and Player 2 is human-controlled. Player 2’s maneuvers were
limited to constant forward/backward velocity and constant
angular velocity motions. Several experiments were per-
formed while varying the capabilities of the two Players by
changing their maximum velocities. In all of the experiments
the planning horizon was ∆t = 1 s and N = 4.

Figure 4 shows an experiment where the autonomous
robot was fast enough to be able to get around the hu-
man controlled robot relatively easily. Figure 5 shows an
experiment where the max velocity of the autonomous
robot is decreased such that the open-loop MISOCP method
is not able to initially find a winning path, but is able
to eventually succeed. The latter experiment demonstrates
the potential of our receding horizon strategy in situ-
ations in which the game may not be winnable un-
til more observations about other agents are made; such
situations frequently occur in practical applications such
as autonomous driving. Videos from these experiments
can be found at: https://www.youtube.com/playlist?list=PL8-
2mtIlFIJpmqQYN2nwMjEoTWwrXpXWS

VII. CONCLUSIONS AND FUTURE WORK

Summary: This paper presents a novel receding horizon
strategy for reach-avoid games. By representing Player 1

P1: T=0

P1: T=34

P1: T=57

P2: T=0

P2: T=34

P2: T=57

Fig. 5: Player 1 (blue) is autonomous and Player 2 (red)
is human-controlled. The planning horizon is ∆t = 1 s,
v1,max = 0.18 m/s, and v2,max = 0.1 m/s. Both players had
no initial velocity. Player 2’s speed advantage keeps Player
1 from winning, until a mistake is made by the human-
controlled robot. This example demonstrates the advantage
of using a receding horizon strategy. The time-lapse of the
experiment is split into two images for better clarity.

trajectories as piecewise low-order polynomials, we formu-
lated an MISOCP that significantly reduces computation
time compared to formulations involving sums-of-squares
constraints. This allows open-loop trajectories based on the
current two-player joint state to be computed for Player 1 in
real-time, enabling us to take advantage of both the compu-
tational simplicity of open-loop formulations and the ability
to react to new information in closed-loop formulations. In
addition, our method allows generalized problem setups and
is applicable whenever the dynamics of Player 1 are differ-
entially flat. Our numerical simulations show the benefits of
the MISOCP over a general SDP, and provide some example
MISOCP solutions that demonstrate the characteristics of
our method. Finally, we demonstrated the ability to use the
approach in a receding horizon planner on a robotic platform
to win a game against a human-controlled robot.

https://www.youtube.com/playlist?list=PL8-2mtIlFIJpmqQYN2nwMjEoTWwrXpXWS
https://www.youtube.com/playlist?list=PL8-2mtIlFIJpmqQYN2nwMjEoTWwrXpXWS


Future Work: Immediate future work includes extending
our approach to multi-player systems, comparing the per-
formance of our receding horizon strategy (using single
integrators) to the optimal closed-loop strategies given in
[11], and considering a more general class of dynamics for
Player 2, perhaps using the work presented in [29]–[31].
In addition, the assumption that Player 2’s dynamics are
precisely known may not always be realistic. This could
potentially be addressed using techniques similar to [38].
Incorporating robustness to sensor noise and disturbances
should also be considered.
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