
Distributional Prediction of Human Driving Behaviours
using Mixture Density Networks

Karen Leung Edward Schmerling Marco Pavone

Abstract— Confident predictions of human driving be-
haviours are necessary in designing safe and efficient control
policies for autonomous vehicles. A better understanding of how
human drivers react to their surrounding may avoid the design
of overly-conservative control policies which require greater
cost (e.g., time, traffic flow disruption) to achieve their objective.
In this paper, we explore ways to learn distributions over human
driver actions that are typical of a highway setting. We use
actions filtered from Next Generation SIMulation (NGSIM)
vehicle trajectory data gathered on the US 101 highway as
training data for a Recurrent Neural Network. In particular,
we use a Mixture Density Network (MDN) model to represent
predicted driver actions as a Gaussian Mixture Model. We
present and discuss exploratory results on the filtering of the
raw NGSIM data and design of the MDN model.

I. INTRODUCTION

Advances in artificial intelligence and robotics are being
incorporated into nearly every aspect of daily life. With more
than 13,000 average annual miles driven per person in the
United States [1], it is no surprise that in the future “self-
driving” autonomous cars will have huge impact on everyday
life. This area of research has multi-faceted implications,
particularly the improvement of safety for drivers, reduction
in congestion and carbon emissions, and greater mobility.
There are many avenues one can take in planning the
autonomy of cars. In general, these avenues can be divided
into four hierarchies: (i) route planning, (ii) path planning,
(iii) maneuver choice and (iv) trajectory planning [2]. In
this work, we look at the foundations that support the latter
two hierarchies; in particular we aim to predict how human
drivers behave in order to formulate the optimal maneuver
choice and trajectory planning for an autonomous vehicle.
One central assumption in this work is that the intent of
the human driver is unknown, the actions and reactions of
human drivers are inconsistent even within a fixed driving
scenario. To predict exactly how humans behave is very
difficult because human intent can be random or highly
dependent on external factors (e.g., emotions, distractions).
That is to say that there is no “correct” way to drive,
but rather a distribution of possible actions drivers may
take. Thus a human driving a car may be thought of as a
random process and it is important to model the associated
distributions as accurately as possible. Many approaches have
been taken to learn driver intent and behaviours directly from
the human source, such as using eye and facial trackers [3],
[4]. In this work we approach the modeling problem from an

Karen Leung and Marco Pavone are with the Department of Aeronautics
and Astronautics, Stanford University, Stanford, CA 94305, {karenl7,
pavone}@stanford.edu.

Edward Schmerling is with the Institute for Computational &
Mathematical Engineering, Stanford University, Stanford, CA 94305,
schmrlng@stanford.edu.

Fig. 1: Three nearest longitudinal (green) and lateral (red)
vehicles of a target vehicle (blue) during a lane change
maneuver.

external perspective, that is, learning how drivers act using
only information from outside the vehicle (e.g., position on
the road, neighbouring vehicle states). We use techniques
from machine learning to learn distributions over behaviours
given contextual information. Given these distributions, we
can minimise conservatism in the decision-making policies
of autonomous vehicles that interact with human drivers
by planning around and anticipating possible behaviours
they may take. This has the potential to both improve
safety and efficiency of autonomous vehicles. This paper
investigates the actions of a target vehicle given the state of
its neighbouring vehicles, like the set-up shown in Fig. 1, and
discusses how we can interpret these results and potentially
use them to construct an optimal autonomous control policy.

A. Literature
One of the main problems in creating self-driving cars is

the difficulty of modeling a human driver. To truly capture
how a human thinks, it would require knowing exactly how
the human brain works and knowing how every single driver
in the world drives. Clearly this is not a viable option.
Instead, a common approach is to gather real driving data and
use machine learning to learn driver behaviour from it [5],
[6], [7], [8]. Currently, a state-of-the-art method in learning
driving behaviour is Inverse Reinforcement Learning (IRL)
[9]. A reward function governing human action choice is
learned by maximising the likelihood of expert demonstra-
tions assuming an exponential family distribution [5], [10].

However, this method assumes that the expert demonstra-
tions are locally optimal, which in general is not true for
drivers and it relies on handcrafted features. By formulating

a single reward function from the expert demonstrations, [9]
assumes that all drivers on the road are essentially optimising
over the same reward function which is clearly not entirely
true. Further, the reward function is not unique and depends
on the handcrafted features. Although this promotes the
tractability of the problem, it possesses several limitations,
in particular, it relies on domain knowledge and human
experience in order to select ‘good’ features. Even with well-
selected features, its discriminative power is often unknown
before the learning process, and its effectiveness is very
context-based. In addition, a generic set of features is diffi-
cult to create since driving patterns can differ significantly
in different driving contexts. For example, driving in the
US is different to driving in Australia, India or Vietnam.
Nonetheless, IRL does offer a simple and tractable way of
modeling human drivers, and in a simple setting such as one
ego-vehicle and one human driver on a road, it has shown
to be effective [5], [11].

In [11], the authors use IRL to model human drivers and
construct a control policy using techniques from game theory.
Their central insight is that drivers do not operate in isolation;
the actions of the autonomous vehicle will affect the actions
of the human driver and vice versa. The problem formulation
is set up in a Stackelberg manner [12] and solving for the
optimal control policy is made tractable by using Model
Predictive Control (MPC). The model was derived using
deterministic techniques yet the resulting control policy
was promising when tested with humans in the loop. This
perspective of using game theory is a critical aspect that
should be further investigated because the actions of the
ego-vehicle undoubtedly will affect human drivers and we
can leverage this to create more efficient and communicative
driving.

Alternatively, to enrich the model, uncertainty can be
added into the problem formulation, especially through envi-
ronment sensing and environment predictability [13]. While
there are existing frameworks that readily admit dynamic ob-
stacles [14], the difficulties in the modeling and prediction of
real-world domains such as cars are typically more complex.
One of the main objectives in [13] is to use pattern-based
approaches to predict the trajectories of an observed car and
plan a path with uncertainty in the dynamics. A similar idea
of predicting possible maneuvers of a car is presented in [15].
The authors present an integrated inference and decision-
making approach that models the possible maneuvers of the
car as a discrete set of closed loop policies when reacting
to the actions of other agents. They employ a Bayesian
approach and used observed history of states of nearby
cars to estimate a probability distribution over the potential
maneuvers that each nearby car might be executing. Unlike
the IRL approach where the human drivers are assumed
to be optimal planners, Bayesian-based approaches describe
the actions of a human driver more accurately because it
encapsulates the central assumption of not knowing exactly
the intent of human drivers. As such, this distributional
representation of human driving actions offers a richer model
for the construction of decision-making control policies for
autonomous vehicles.

A Mixture Density Network (MDN) [16] combines ele-
ments from machine learning and probability distributions.

The idea of a MDN is that rather than learning a single output
value using neural networks, it predicts an entire probability
distribution for the output using a Gaussian Mixture Model
(GMM) [17], a convex combination of Gaussians. The GMM
can potentially describe the multimodal nature of driving
behaviours and describe better possible intentions drivers
may have given a situation. The distribution is represented
as a linear combination of kernel functions [16]. Since each
kernel function represents the distribution of a particular
intent, it may reflect upon the driving style of that particular
driver (e.g., aggressive, slow, prone to lane changes). The
advantage of using neural networks over IRL is that the
features are naturally constructed rather than pre-determined.
As such, neural networks are able to extract high level
discriminative features from the input data and combined
with a probability distribution over driving actions, this can
result in a better representation of human driving behaviours.

Relating back to [11], it is very natural to formulate
the problem using game theory [12], [18]. Since we have
some understanding of how human drivers behave given
their surroundings, an autonomous vehicle can exert some
level of control authority over them by moving in some
particular desired state. Since there is uncertainty in the
human driver’s intent, this problem can potentially be placed
in the context of Bayesian game theory, a game of incomplete
information about the intent and behaviours of players. Such
games can be converted into a complete game but with
imperfect information by introducing Nature as a player
[19]. In a Bayesian game, a player, or in this context the
ego-vehicle, has a belief about the intentions other players
(human drivers) and will take actions based on this belief and
may change based on past actions other players have made.
Thus there is a potential to combine MDN and Bayesian
games to help predict the intentions of human drivers and
design an optimal control policy for an autonomous vehicle.
Ideally the policy incorporates some notion of anticipation,
predicting what human drivers might do based on their
intent, and reaction, how they will react to changes in the
surrounding.

B. Motivation of proposed work
The ultimate goal within the autonomous car industry is

to design safer, more efficient and interactive vehicles while
maintaining the persona of an “ideal” realistic human driver.
Interactive driving in particular is an interesting avenue; a
future vision would involve fleets of autonomous vehicles
on the road that can communicate with each other. Possi-
ble applications include improving traffic flow, monitoring
isolated roads and aid in keeping vehicles within the law.

If we anticipate the actions of human drivers by pre-
dicting their intent, we can potentially design less overly-
conservative control policies which can lead to more efficient
traffic flows yet still maintaining an acceptable level of
safety. Thus it is important to develop an accurate model
for predicting driving behaviours. A probabilistic model is
used because it is able to capture all possible actions that
drivers may take.

Even though highway driving poses a more simplistic
environment than city driving, it comprises a large portion
of time spent on the road by drivers in the US. Especially

with a higher speed limit, accidents on highways are often
catastrophic. Thus highway driving is an important domain to
investigate and we aim to develop a model to predict human
driving behaviours based off collected vehicle trajectory data.

C. Statement of work

The work presented in this paper can be separated into
the following components: (i) filtering and state estimation
of the raw NGSIM data, (ii) designing a MDN framework to
produce a probability distribution of driving behaviours and
(iii) formulating a state representation for the MDN model.
The primary contribution is the filtering of relevant informa-
tion from the raw data and using this as training data for the
MDN model. By gaining intuition of the results, we gain a
deeper insight into how we can improve the distributional
model and also methods we can use to construct an optimal
control policy for an autonomous vehicle.

Highway data from NGSIM of the 101 highway [20]
was used as training data for the MDN model. Before
the learning process, the data was filtered using the Ex-
tended Kalman Filter (EKF) [21], [22] and transformed
into Frenet coordinates such that it is highway agnostic.
Then the k−nearest neighbour algorithm was applied in
order to extract contextual information with respect to a
target vehicle. Using this information, we learn an output
probability distribution for the possible control outputs a
human driver may take given its surroundings. A discussion
on the implications and interpretation of the results is given
and this gives more insight into possible avenues we can take
to add more complexity into the model.

II. PROBLEM FORMULATION

Our goal is to produce probability distribution over the
current driving actions of a target vehicle given some rep-
resentation of the state. In particular, we are looking at
vehicles in a highway setting. Essentially we aim to give a
representation of the conditional probability P (u = U|x =
X) where u is the vector of driving actions and x is some
representation of the state which encapsulates information
about the target vehicle and its surroundings.

The continuous time system given in (1) [14] is used to
model the dynamics of the vehicles. The vector of control
inputs is u(t) = [δ(t), a(t)]T and the state (dynamic) vector
is given by xd(t) = [x(t), y(t), θ(t), v(t)]T . δ(t) is the
steering input, a(t) is acceleration, x(t) and y(t) are the
global position coordinates, θ(t) is the global heading angle
and v(t) is the forward velocity of the vehicle. A slight
simplification to the model in [14] is made by defining δ =
tanuφ
L . Further, if the highway is not perfectly straight, we

will later make a transformation which makes the coordinates
highway agnostic.

ẋ(t)
ẏ(t)

θ̇(t)
v̇(t)

 =

v(t) cos θ(t)
v(t) sin θ(t)
v(t)δ(t)
a(t)

 (1)

Fig. 2: Test section of Highway 101 from the NGSIM data.
Vehicles are pink and moving towards the lower right.

III. PROPOSED SOLUTION

The problem can be separated into three parts: filtering
the NGSIM data, constructing a sufficient representation of
the state and designing the MDN model. The following
subsections describe the details of each part.

A. Filtering NGSIM Data
The training data is taken from the NGSIM program [20]

where detailed vehicle trajectory data (position, velocity and
acceleration) on southbound US 101 was collected over a 45
minute period. The study area is approximately 640 meters
in length and include five lanes of traffic plus an auxiliary
lane for the on/off-ramps and this is seen in Fig. 2. The
velocity and acceleration data are very noisy, thus an EKF
is used to give better estimates of the data. For brevity, the
EKF formulation will not be described here but can be found
in [21] and [22]. However, to prepare the training data, the
control inputs δ(t) and a(t) also need to be estimated since
it is not part of the raw data set. To include the control
inputs as part of the EKF estimation, we augment the system
by appending the state vector with the control inputs. The
augmented continuous time system is given in (2).

ẋ(t)
ẏ(t)

θ̇(t)
v̇(t)

δ̇(t)
ȧ(t)

 =

v(t) cos θ(t)
v(t) sin θ(t)
v(t)δ(t)
a(t)

0
0

 (2)

During implementation, the equivalent discrete time sys-
tem (∆t = 0.1s) was used, including terms up to O(∆t2).

Since the portion of highway that is studied is relatively
straight and flat, we assume a zero bias on our prior of δ and
a. Naturally we also need to consider observation noise and
process noise (assume zero mean). Due to the augmentation,
the primary tuning parameters for this EKF are the variances
on the prior and the variances on the process noise on the δ̇
and ȧ components. This will dictate the smoothness of the
state trajectories and controls, and rigidity to the dynamics.

Once the estimation is complete, the states need to be
transformed into Frenet coordinates, an intrinsic coordinate
system which allows the states to be road/highway agnos-
tic [23]. Frenet coordinates are parameterised by (s, τ, φ).

Fig. 3: Illustration of Frenet coordinates, describing the
(s, τ, φ) coordinates.

Essentially the centerline of the road is known from the
NGSIM data and the closest point from the car and centerline
is found. At that point, the distance along the centerline
is s, the distance between the car and centerline is τ and
the difference in angle between the car and the tangent
at the point on the centerline is φ = θ − θroad. This is
illustrated in Fig. 3. In terms of the steering input, the
transformation to this intrinsic coordinate system essentially
becomes δfrenet = δ̂ = δ−δroad where δroad represents the
curvature of the road.

1) EKF Results: The EKF for (2) was tuned to give
physically realistic results. The results for a particular car
ID 2133, is given in Fig. 4. The EKF can be continued to
be tuned for better results, but for the purpose of using it for
an MDN, this is sufficient.

Fig. 4: Estimation of states and control action from EKF.
(Car ID 2133)

The filtered (dynamic) states and the corresponding control
actions are transformed into Frenet coordinates, then the

control actions are normalised to have zero mean and unit
standard deviation. This filtered and normalised data will be
used to generate the training data for the MDN framework.

B. Recurrent Neural Network
Neural Networks are useful in many applications because

they are universal function approximators. They are capable
of extracting hierarchal features from complicated inputs.
A Recurrent Neural Network (RNN) is used rather than a
conventional neural network because it takes into account an
ordered sequence of states rather than just the current state.
In particular, we use a RNN within the MDN model, but this
subsection focuses on the set up of the RNN.

The formulation of the sequence of states used for the
RNN is described here. For a target vehicle at a particular
time t, its vehicle state x

(t)
v is described by

x(t)
v = [s(t), τ(t), l(t), φ(t), v(t)]T (vehicle state)

where (s, τ, φ) are the Frenet coordinates, l is the lane
number and v is the velocity of the vehicle. The actions
of the target vehicle depend on its surrounding environment.
Hence we define a scene state x

(t)
s which is a vector of the

target car’s vehicle state concatenated by the vehicle states
of the k−nearest neighbours (nn1, nn2, ..., nnk).

x(t)
s = [x(t)

vtarget ;x
(t)
vnn1

;x(t)
vnn2

; ...x(t)
vnnk

] (scene state)

The input into the RNN, called the model state x(t), is
composed of a history of scene states (the current scene state
concatenated with the previous T scene states).

x(t) = [x(t)
s ;x(t−1)

s ;x(t−2)
s ; ...x(t−T)

s] (model state)

Using x(t), we can predict the current control actions u(t) =
[δ̂(t), a(t)]T using an MDN model.

Apart from the hyper parameters inherent to a RNN
such as regularisation terms, key parameters to tune are the
number of nearest neighbours and history length. For this
paper, we consider a history length of ten time steps, which
is equivalent to a one second interval and the number of
nearest neighbours will be discussed later. The benefit of
using RNN over other methods that utilise a time series of
states such as a hidden Markov model is that RNNs are
scalable to higher dimensions. Weights can be learned by
training on a particular history length and the same weights
can be used for a different history length by simply adding
more cells into the RNN but not altering the weights.

C. MDN Model
By using a MDN to learn distributions over control inputs

given model states, we obtain a GMM - the weighted
sum of many Gaussians with different means and standard
deviations. The conditional probability of a particular control
action u(t) = (δ̂(t), a(t)) given the model state x(t) is given
by (3). (We drop the superscript t to be concise but this is
for a particular time t.)

P (U = u|X = x) =

K−1∑
k=0

πk(x)φ(u, µk(x), σk(x)) (3)

φ(u, µk(x), σk(x)) is the k-th kernel function; we shall re-
strict ourselves to Gaussians for this problem [16]. µk(x) and

σ2
k(x) are the mean and variance vector of the k-th kernel

function respectively. It is assumed that the components of
the output vector are statistically independent within each
component of the distribution. To add complexity to the
model, each control action is represented by its own standard
deviation. Theoretically, this complication is not necessary
since a Gaussian mixture model can approximate any given
density function to arbitrary accuracy [17]. Thus the kernel
function is simply a multivariate normal distribution. πk(x)
are the weights, or mixing coefficients, on each distribution.
Since they represent the probability of each Gaussian occur-
ring, (4) must be satisfied.

K−1∑
k=0

πk(x) = 1 (4)

Typically, the loss function for the neural network is given
by minimising the negative log-likelihood plus regularisa-
tion terms to prevent over fitting. This assumes that the
training data is drawn independently from the distribution.
Minimising negative log-likelihood is a natural choice for
a loss function because we are trying to produce accurate
predictions. However, to capture the “interesting” cases when
the cars are not simply moving straight and at constant
velocity, weights are used to penalise the interesting cases.
Thus the loss function is given by (5) where Q is the number
of training data, wq is a weighting on each term where

wq = κ|δ̂q|+ |aq|+ 1, κ = 1.5

and Wi are the matrices associated with the RNN. The
Frobenius norm is used on the matrices for regularisation and
is weighted by γi. In other words, we penalise vehicles that
have control actions that are much different to the nominal
(zero steering and acceleration) actions.

E =

Q∑
q=1

wqE
(q) +

W∑
i

γi‖Wi‖F (5)

where E(q) = − ln

(
K−1∑
k=0

πk(x(q))φk(u(q)|x(q))

)
The risk of significantly affecting the prediction of the

nominal behaviour is minimal since they make up a large
portion of the data. An additional weight is placed on the δq
term because steering is more difficult to predict; not only
does it depend on the presence of neighbouring cars, but also
on human intent. For example, in a situation where it is safe
to change lanes, not all drivers do so and this may depend
on factors such as the driver needing to take the next exit
in the next mile, or feeling more safe in lanes farther to the
right.

Once the training is done, we can can obtain all the prob-
ability coefficients πk, µk and σk given some model state
x(t). The output of the neural network, z = (zπ, zσ, zµ),
will be a vector of length (1+2M)K where K is the number
of mixture models, M the number of control inputs. This
is because of the mixing coefficients, standard deviations
and means for each of the control inputs. To ensure that
(4) is satisfied, the softmax function is used on zπ , the π

Fig. 5: Control actions predicted by the MDN model based
on any 3−nearest neighbours configuration. (Car ID 2133)

portion of z. For the standard deviation, it is convenient to
represent them in terms of exponentials, σk = exp(zσk).
While µk is the mean of the control inputs. Within the
Bayesian framework, this corresponds to the choice of an
un-informative Bayesian prior [16].

IV. TRAINING RESULTS

Since we are analysing highway driving data, a majority
of the data will represent straight driving with almost zero
acceleration and steering. A basis for the measure of a good
prediction is to see how well the MDN model predicts
interesting cases of highway driving. In particular, we shall
consider the following interesting cars:

1) Car ID 2133: This car is approaching a traffic jam. It
edges closer to the edge of the lane before executing a
rapid lane change to avoid the jam. This car is in lane
4 and transitions right to lane 5

2) Car ID 181: The car is approaching a traffic jam, but as
it is attempting to execute a lane change, the traffic jam
frees up and the car remains in the lane and accelerates
forward.

In the following sections, we will investigate different
ways to construct the model state in order to best predict
the interesting behaviour on highway driving. Since this is
a preliminary investigation, we will analyse the results qual-
itatively and offer some intuition behind it. Log-likelihood
is not a valid metric to use for performance because we

Fig. 6: Control actions predicted by the MDN model based
on any 3−nearest neighbours configuration. (Car ID 181)

are concerned with only predicting a small portion of the
overall data. Results are presented and accompanied with
brief comments. In Section V a more in depth discussion
and interpretation of the results is given.

From experimentation, it was found that a Long Short
Term Memory (LSTM) network (a type of RNN) was the
most efficient; it was able to offer similar results compared
to using a Gated Recurrent Unit (GRU) network (another
type of RNN) but with significantly fewer mixture density
models (four as opposed to twenty). Thus this is the one that
will be used for the following investigation.

A. Any k-nearest Neighbours
In this set-up the scene state consists of the vehicle

states of the target vehicle and the vehicle states of any k-
nearest neighbours in terms of euclidean distance. This set-up
represents the perspective that the driver is only concerned
with their immediate vicinity regardless of how the k-nearest
neighbours are distributed. We shall consider two cases, (i)
3−nearest neighbours and (ii) 6−nearest neighbours. Case
(i) is a simple case where the scene state is relatively
small yet attempts to maintain a realistic number of nearest
neighbours that drivers remain cognisant of. While case (ii) is
considered to give a fair comparison with the other approach
of decoupling longitudinal and lateral neighbours.

1) Any 3-nearest Neighbours: The three nearest vehicles
were used for the scene state. Three was chosen to represent
the simple ideal scenario of a driver keeping track of the

Fig. 7: Control actions predicted by the MDN model based
on any 6−nearest neighbours configuration. (Car ID 2133)

vehicle directly in front, to the left and right. This is to
represent a “near-sighted” driver. With this set-up, as seen
in Fig. 5, it was able to capture the general trend of the
steering input but the acceleration was not generally very
accurate. Even though the prediction of acceleration followed
the general trend of the true acceleration, it was not very
confident in the prediction. For car ID 181, shown in Fig. 6,
the MDN model predicts the steering actions of car ID 181
quite accurately, but like with car ID 2133, the acceleration
not so well. A possible explanation for this better prediction
in steering is car ID 181 is in an edge lane (lane 1) so the
search space for the nearest three neighbours is smaller than
cars not on the edge lanes. This suggests than in increase in
k could potentially improve the results.

2) Any 6-nearest Neighbours: An increase in the number
of nearest neighbours has the potential to capture cars that
are several cars in front of the target vehicle. This offers
the ability to anticipate the onset of a traffic jam while still
possibly keeping some information about adjacent vehicles.

For car ID 2133, this set-up was able to predict the steering
input and acceleration with much greater confidence than
3−nearest neighbouts, evident in Fig. 8. There is a significant
improvement in the acceleration prediction and the density in
the steering for the lane changing portion is slightly different
(will be discussed later). For car ID 181 on the other hand,
the steering prediction is not as accurate but like the case with
car ID 2133, the acceleration prediction is significantly more
accurate. This is illustrated in Fig. 8. This strongly suggest

Fig. 8: Control actions predicted by the MDN model based
on any 6−nearest neighbours configuration. (Car ID 181)

that greater knowledge of the surrounding vehicles improve
the acceleration prediction, but perhaps not necessarily in
steering.

B. Longitudinal and Lateral k-nearest Neighbours

Here, we discriminate between longitudinal (same lane)
and lateral (adjacent lanes) neighbours. To compare with the
any 6−nearest neighbours set-up, we look at the 3−nearest
longitudinal and lateral neighbours (total 6). The motivation
for this is that it potentially maintains the driver’s awareness
of vehicles both in the same and adjacent lanes. Enforcing
the separation between longitudinal and lateral vehicles give
rise to the possible foresight of an upcoming traffic jam and
possible gap for a lane change. For example, in Fig. 1 the
target vehicle (blue) can see that there it is approaching
a traffic jam since two of its three longitudinal nearest
neighbours (green) are in front. At the same time, it notices
a gap on its right adjacent lane since two of the three lateral
neighbours (red) are on the right.

It was found that this gave similar, if not less reliable
results than the 6−nearest neighbour set-up. For brevity, we
will only show the results for car ID 2133 and this is given
in Fig. 9. A possible explanation may be that because we
separate longitudinal and lateral neighbours, depending on
the situation, not all the longitudinal or lateral vehicles will
be relevant. While the any 6−nearest neighbours set-up have
the benefit that all the neighbours will be somewhat relevant.

Fig. 9: Control actions predicted by the MDN model based
on the nearest longitudinal and lateral neighbours configura-
tion. (Car ID 2133)

V. DISCUSSION

In this section, we discuss the implications of the results
and offer some interpretations. A key observation from
results is the bimodal behaviour in the steering input of both
vehicles (they both execute a lane change, or an attempt
otherwise). Since we are predicting the current single control
action given a sequence of states, we are neglecting correla-
tion between the current and future control actions. Once the
vehicle has begun its lane change, the heading angle is going
to change (away from the heading of the road) due to the
dynamic constraints. The next few time steps (0.1 seconds
each) immediately after the vehicle has begun the steering,
the heading angle is still quite close to nominal and so the
MDN model also predicts steering to be around the nominal
value. Once the heading angle is sufficiently large, our MDN
model predicts that the driver is most likely executing a lane
change thus the steering is most probably away from the
nominal value (zero). Otherwise this would imply the vehicle
is traverse diagonally across the lanes which is very unlikely
and does not exist in the training data. This is most evident
around the five and sixteen seconds mark of car ID 2133
and 181 respectively for the case with 3−nearest neighbours.
We can see that there is a lower probability density around
the region when steering is zero. The 6−nearest neighbour
case gives a greater probability that the vehicle stays in the
nominal driving action which does not abide to this logic

(a) 3−nearest neighbours (b) 6−nearest neighbours

Fig. 10: Steering input δ gaussian mixture model at 2.9
seconds of car ID 2133

(a) 3−nearest neighbours (b) 6−nearest neighbours

Fig. 11: Acceleration a gaussian mixture model at 2.9
seconds of car ID 2133.

and this could be a point for further investigation. This may
perhaps be an artifact of over fitting. The probability density
functions of this swerving action is given in Fig. 10. We can
see that at the peak of the swerve, the 3−nearest neighbour
model has a higher probability of the car swerving back
which follows the above logic. However, using 6−nearest
neighbours is very effective in predicting the acceleration
as it has a higher probability density than the 3−nearest
neighbours set-up. This is evident in Fig. 11. Further the
behaviour is essentially unimodal. A plausible explanation
is that if the vehicle ahead is close, the most obvious action
the target vehicle must take is to slow down in order to avoid
a collision.

VI. CONCLUSIONS

A. Future Work

Immediate future work would include addressing limita-
tions to this MDN model and eventually applying it to a
controls framework. This paper gives qualitative measures of
performance of the model because it was only the outliers
that we were interested in. A next step is to come up
with a more systematic and quantitative measure which
would include an unbiased method of parsing out interesting
vehicle behaviours from the data. With better metrics for
performance, we can tune the system better and produce
more confident predictions. In addition, a more informative
data set could potentially improve the our predictions such
as knowledge of whether neighbouring vehicles have their
turn signals on.

Further, the MDN model explored in this paper only
predicts the current control actions given a sequence of past
states. This does not offer information about the correlation
between consecutive of control actions. A deeper investiga-
tion would include considering the prediction of the next N
number of control actions. This distribution could possibly be
learned by extending the output vector, but this may require
more training data and would not be very scalable as N
increases. Alternatively, since we enforce smoothness on our
control actions through the EKF, a spline could be used
to estimate the sequence of control actions. This reduces
the dimensionality of the problem because it is only the
coefficients that needs to be learned and the size is dependent
on the degree of the spline used and not the prediction
length. This is reminiscent of Gaussian Processes (GP) and
in [24], the authors define Recurrent Gaussian Processses
(RGP) models, a general family of Bayesian nonparametric
models with recurrent GP priors which are able to learn
dynamics patterns from sequential data. We can potentially
apply this model for future work.

Once the driving model is developed, the next step is
to formulate decision-making control policies that optimises
over some cost and test it in interesting scenarios. Based on a
distributional model, we can possibly design control policies
through a Bayesian game framework which is essentially a
game of imperfect information. Ways to validate the policy
would involve having a human driver be surrounded by all
autonomous vehicles which we can control. For example,
in Fig. 1, the blue car could represent the target human
driver and the all the neighbouring green and red cars can be
autonomous vehicles which we can control. We can direct
the autonomous vehicles in certain configurations and see if
the human behaves in the manner we expect it to. Further,
we can use the fleet of autonomous vehicles to interact and
to some extent manipulate the human driver into exhibiting
a certain behaviour, similar to the validation testing done in
[11]. This would represent a situation where we have very
high control authority and further extensions could include
situations with less control authority and where there are
multiple human drivers that share the same neighbouring
autonomous vehicle.

B. Conclusions

A recurrent MDN model was used to predict actions
drivers are likely to take when driving on a highway. Possible
ways to construct the model state was discussed and it was
found that taking any 6−nearest neighbours was effective
in predicting acceleration and to some extent the steering
input. Equipped with intuition of what the results represent,
further complexities can be added to potentially improve the
model. In particular predicting control actions multiple time
steps ahead. With this probabilistic model of human driving
behaviours, future work will be directed towards designing
quantitative measures for performance and constructing a
more complex MDN model. Ultimately, we aim to design
a control policy that anticipates the intent of human drivers
and have methods to validate this.

REFERENCES

[1] Federal Highway Administration U.S. Department of Transportation.
Average annual miles per driver by age group, 2016.

[2] Pravin Varaiya. Smart cars on smart roads: Problems of control. In
IEEE Transactions on Automatic Control, volume 38, February 1993.

[3] Maria E. Jabon, Jeremy N. Bailenson, Emmanuel D. Pontikakis, Leila
Takayama, and Clifford Nass. Facial expression analysis for predicting
unsafe driving behavior. IEEE Pervasive Computing, 10(4):84–95,
2011.

[4] Eric Wahlstrom, Osama Masoud, and Nikos Papanikolopoulos. Vision-
Based methods for driver monitoring, volume 2, pages 903–908.
Institute of Electrical and Electronics Engineers Inc., 2003.

[5] Sergey Levine and Vladlen Koltun. Continuous inverse optimal control
with locally optimal examples. In ICML ’12: Proceedings of the 29th
International Conference on Machine Learning, 2012.

[6] Sergey Levine, Zoran Popovic, and Vladlen Koltun. Nonlinear inverse
reinforcement learning with gaussian processes. In J. Shawe-Taylor,
R. S. Zemel, P. L. Bartlett, F. Pereira, and K. Q. Weinberger, editors,
Advances in Neural Information Processing Systems 24, pages 19–27.
Curran Associates, Inc., 2011.

[7] Karkus Kudere, Shilpa Gulati, and Wolfram Burgard. Learning
driving styles for autonomous vehicleas from demonstration. In IEEE
International Conference on Robotics and Automation (ICRA), May
2015.

[8] W. Dong, J. Li, R. Yao, C. Li, T. Yuan, and L. Wang. Characterizing
Driving Styles with Deep Learning. ArXiv e-prints, July 2016.

[9] Pieter Abbeel and Andrew Y. Ng. Apprenticeship learning via
inverse reinforcement learning. In In Proceedings of the Twenty-first
International Conference on Machine Learning. ACM Press, 2004.

[10] Brian D. Ziebart, Andrew Maas, J. Andrew (Drew) Bagnell, and Anind
Dey. Maximum entropy inverse reinforcement learning. In Proceeding
of AAAI 2008, July 2008.

[11] Dorsa Sadigh, Shankar Sastry, Sanjit A. Seshia, and Anca D. Dra-
gan. Planning for autonomous cars that leverage effects on human
actions. In Proceedings of Robotics: Science and Systems, AnnArbor,
Michigan, June 2016.

[12] Rufus Isaacs. Differential Games: A Mathematical Theory with
Applications to Warfare and Pursuit, Control and Optimization. Dover
books on mathematics. Dover Publications, 1999.

[13] Georges Aoude, Brandon Luders, Joshua Joseph, Nicholas Roy, and
Jonathan P. How. Probabilistically safe motion planning to avoid
dynamic obstacles with uncertain motion patterns. Auton. Robots,
35(1):51–76, 2013.

[14] Steven M LaValle. Planning Algorithms. Cambridge, 2004.
[15] Enric Galceran, Alexander G. Cunningham, Ryan M. Eustice, and

Edwin Olson. Multipolicy decision-making for autonomous driving via
changepoint-based behavior prediction. In Proceedings of Robotics:
Science and Systems (RSS), Rome, Italy, July 2015.

[16] Christopher M. Bishop. Mixture density networks. Technical report,
1994.

[17] G.J. McLachlan and K.E. Basford. Mixture Models: Inference and
Applications to Clustering. Marcel Dekker, New York, 1988.

[18] Tamer Basar and Geert Jan Olsder. Dynamic Noncooperative Game
Theory. Academic Press, 1999.

[19] John Harsanyi. Games with incomplete information played by
”bayesian” players, i-iii part i. the basic model. Management Science,
14(3):159–182, 1967.

[20] Federal Highway Administration U.S. Department of Transportation.
Next generation simulation (ngsim): Us highway 101 dataset, 2016.

[21] Rudolph Emil Kalman. A new approach to linear filtering and
prediction problems. Transactions of the ASME–Journal of Basic
Engineering, 82(Series D):35–45, 1960.

[22] Simon Haykin. Kalman Filtering and Neural Networks. Published
Online, 2002.

[23] Oliver Bauchau. Flexible Multibody Dynamics. Springer, 2011.
[24] César Lincoln C Mattos, Zhenwen Dai, Andreas Damianou, Jeremy

Forth, Guilherme A Barreto, and Neil D Lawrence. Recurrent Gaus-
sian processes. International Conference on Learning Representations
(ICLR), 2016.

