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Abstract— This paper presents a novel risk-constrained
multi-stage decision making approach to the architectural
analysis of planetary rover missions. In particular, focusing
on a 2018 Mars rover concept, which was considered as part
of a potential Mars Sample Return campaign, we model the
entry, descent, and landing (EDL) phase and the rover traverse
phase as four sequential decision-making stages. The problem
is to find a sequence of divert and driving maneuvers so
that the rover drive is minimized and the probability of a
mission failure (e.g., due to a failed landing) is below a user-
specified bound. By solving this problem for several different
values of the model parameters (e.g., divert authority), this
approach enables rigorous, accurate and systematic trade-offs
for the EDL system vs. the mobility system, and, more in
general, cross-domain trade-offs for the different phases of
a space mission. The overall optimization problem can be
seen as a chance-constrained dynamic programming problem,
with the additional complexity that 1) in some stages the
disturbances do not have any probabilistic characterization,
and 2) the state space is extremely large (i.e, hundreds of
millions of states for trade-offs with high-resolution Martian
maps). To this purpose, we solve the problem by performing
an unconventional combination of average and minimax cost
analysis and by leveraging high efficient computation tools from
the image processing community. Preliminary trade-off results
are presented.

I. INTRODUCTION

Future planetary missions, such as those involving any
potential Mars Sample Return (MSR), would be expected
to employ rovers to reach scientifically interesting sites after
landing. In order to minimize the risk of mission failure, it
is critical to land the rover in a place that is safe and in close
proximity to the science targets.

Traditionally, the entry, descent, and landing (EDL) prob-
lem (e.g., where to place the landing ellipse) [1] and the mo-
bility problem (e.g., how to drive to scientifically interesting
sites, and how long it would take) are studied independently,
and only in the late development phase is the overall perfor-
mance of the integrated system analyzed [2]. Without being
able to perform system-level trade-offs or know the overall
system performance at an earlier phase, such approach could
lead to highly suboptimal design decisions [3].
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The goal of this paper is to develop a systematic approach
to perform quantitative mission-level trade-offs of improved
EDL systems vs. improved mobility systems, and, more in
general, cross-domain trade-offs for the different phases of
a planetary rover mission. Given a fixed funding to invest in
various technologies, and given a fixed landing mass that the
spacecraft can carry, is it better to carry more fuel to land the
rover closer to the target, or design a better and potentially
heavier mobility system that can go over larger rocks or
go around hazards? In order to answer such questions, it
is important to address key couplings between different
domains. What makes this problem even more challenging
is that landing a rover on a planet or a moon is not a de-
terministic operation due to various sources of uncertainties,
such as dispersions in the entry states (position and velocity),
initial attitude uncertainty, vehicle aerodynamics, navigation
error build-up from inertial sensor noise, and variability in
atmospheric density and winds.

In the proposed approach, we model the EDL phase and
the rover traverse phase as four sequential decision making
stages. The problem is to find a sequence of divert and driv-
ing maneuvers so that the rover drive is minimized and the
probability of a mission failure (e.g., due to a failed landing)
is below a user-specified bound. By solving this problem
for several different values of the model parameters (e.g.,
divert authority), this approach enables rigorous, accurate and
systematic trade-offs for the EDL system vs. the mobility
system. The optimization problem can be seen as a chance-
constrained dynamic programming problem (see, e.g., [4]
and [5] for the closely related problem of chance-constrained
model predictive control), with the additional complexity that
1) in some stages the disturbances do not have any proba-
bilistic characterization, and 2) the state space is extremely
large (i.e, hundreds of millions of states for trade-offs with
high-resolution Martian maps). To this purpose, we solve
the problem by performing an unconventional combination
of average and minimax cost analysis and by leveraging
high efficient computation tools from the image processing
community, such as morphological dilation and erosion. By
using this approach, we accurately characterize the inherent
trade-offs between, e.g., the power descent guidance control
authority and the hazard detection avoidance control author-
ity, or between spacecraft divert and rover drive distance.

In summary, the contribution of this paper is threefold.
First, we present a novel risk-constrained multi-stage deci-



sion making approach to the architectural analysis of plane-
tary rover missions. This approach can be seen as a multi-
stage development of authors’ previous work [6], where the
objective was to compute trade-offs between the location of
the landing ellipse and rover’s driving capabilities. Second,
we show how this approach can be made computational
efficient by using image processing techniques. Third, we
compute several trade-offs instrumental to the development
of the mission architecture for a 2018 Mars rover concept.

The rest of the paper is organized as follows. Section II
presents a more detailed formulation of the problem and de-
scription of the approach. Section III presents the algorithmic
flow to solve the problem, and Section IV presents several
trade-offs relevant to the 2018 Mars rover concept. Finally,
in Section V, we draw our conclusions and discuss directions
for future research.

II. SYSTEM MODELING

In this section we first describe the sequence of control
actions during the terminal phase of a mission to Mars; then,
we consider the problem of finding a sequence of divert and
driving maneuvers so that the rover drive is minimized and
the probability of a mission failure is below a user-specified
bound. Finally, we show how the results of such optimization
problem can be used to perform an architectural analysis for
a mission to Mars (or to other planetary bodies).

A. Mission Sequence
Figure 1 shows the mission sequence of the aforemen-

tioned 2018 Mars rover concept. Assume for now that the
nominal landing target location has been selected. During the
inter-planetary guidance phase, several trajectory correction
maneuvers (TCMs) are performed, which guides the space-
craft to enter the Martian atmosphere with the planned pose
and velocity. During the entry phase, the spacecraft controls
its bank angle to maintain its course to the target. Then, it
jettisons the heat shield and deploys the parachute. During
the parachute descend, the spacecraft drifts significantly due
to wind. Once it reaches an ignition altitude, the spacecraft
ignites thrusters to initiate the terminal descent phase, which
brings the velocity down to zero at the surface.

Recent efforts [7] have looked into a way to divert the
spacecraft closer to the final target during the terminal
descent phase. In this paper, we refer to this technology
as Powered Descent Guidance (PDG). The two primary
purposes of the PDG are to bring the lander closer to the
target and to avoid landing hazards. The PDG divert makes
a decisions using a map generated offline and stored onboard.
For missions to Mars, images taken from the HiRISE (High
Resolution Imaging Science Experiment) camera on the Mars
Reconnaissance Orbiter can provide Digital Elevation Maps
(DEMs) at about 1m resolution [8].

Near the final stage of landing, on-board sensors start to
detect small hazards that could not be detected from the
orbital imageries. The lander can make a final divert to avoid
these hazards. This stage is called Hazard Detection and
Avoidance (HDA) [9].

Throughout the entire EDL phase, the spacecraft is subject
to uncertain disturbances, such as execution errors. In Fig-
ure 1, the planned trajectory at each stage of the EDL phase
is represented with a solid line, and the actual trajectory is
represented with a dashed line.

Once the vehicle has landed, the rover starts driving to a
science target. Depending on the landing location, the best
science target is selected from a set of candidate targets.

B. Multi-stage Decision Making Formulation

In this section, we aim to simultaneously choose a science
target and design an EDL maneuver so as to minimize
the rover drive distance while ensuring a probability of
mission failure below a given threshold. One could model
the detailed vehicle dynamics and optimize the decisions
over the entire mission in continuous time, from atmospheric
entry to reaching a science target. Such formulation however
would lead to a prohibitively complex trajectory optimization
problem. Instead, we abstract the entire EDL phase into a
small number of key sequential stages. More specifically, we
subdivide the mission sequence presented in Figure 1 into
four stages: placement of ignition target, placement of PDG
target, placement of HDA target, and rover path planning to
the nearest science target.

Fig. 1. Multi-stage model for the EDL phase of 2018 Mars rover concept.

Accordingly, the system evolves according to the follow-
ing discrete-time equation, where k = 0, 1, 2, 3:
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to the general case is possible, but leads to a deterioration in
computation time.) The following subsections specify state,
control, and disturbances at each stage, and also the stage and



terminal costs. In the following, let M ⇢ R2 be a (rectified)
map of a landing site on Mars.

1) Initial Entry to Ignition (k = 0): The state x0 is
the position of the spacecraft before the entrance into the
Mars atmosphere, and is assumed to be given. The control
u0 2 M corresponds to the placement of the chosen ignition
target. The disturbance w0 mainly models the effect of winds
during the parachute descent phase, although it could include
other uncertainty sources such as IMU errors and attitude
initialization errors of the entry state.

2) PDG (k = 1): The state x1 2 M is the position of
the spacecraft at an altitude right before the ignition of the
rockets for the PDG phase. The control u1 2 R2 corresponds
to the placement of the chosen PDG target, or, equivalently,
to the foreseen landing site assuming nominal behavior (i.e.,
in absence of subsequent control actions and disturbances).
The control u1 is constrained to take values in a non-empty
set U1(x1) ⇢ M, which models the limited divert maneuver
capability. The disturbance w1 models the execution error of
the PDG divert maneuver.

3) HDA (k = 2): The state x2 2 M is the position of
the spacecraft at an altitude right before the ignition of the
rockets for the HDA phase. The control u2 2 R2 corresponds
to the placement of the chosen HDA target or, equivalently, to
the foreseen landing site assuming nominal behavior (i.e., in
absence of subsequent control actions and disturbances), and
is constrained to take values in a non-empty set U2(x2) ⇢
M.

When the vehicle lands on the surface, the mission could
fail due to landing hazards XHazLander ⇢ M. We model this
situation with an additional state F , and the dynamics (1)
for k = 2 are replaced with the following
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4) Driving (k = 3): The state x3 2 M is the landed
position. The control u3 2 R2 corresponds to the location
of the science target that the rover will visit. The constraint
u3 2 U3(x3) models the maximum drive distance constraint,
and given a set of science target regions X

S

2 M, we have
U3(x3) ⇢ X

S

.
There are three cases where this stage results in a failure

state F : the vehicle has already failed due to a catastrophic
landing in stage k = 2; no feasible path exists from its
landing position x
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to the desired science target u
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; and
the rover fails to reach any science target due to a mobility
failure, modeled with w
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, f3(x3, u3, w3) (5)
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Dijkstra’s algorithm that starts from all states in X
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the case of visiting n(> 1) science targets, l(x
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) returns
the path length of the Prize Collecting Traveling Salesman
Problem (PCTSP) [10], where the TSP tour starts from x

k

and ends at u
k

while visiting a subset of the target regions in
X

S

. Indeed, the analysis and results presented in this paper
consider the case where w3 is identically equal to zero, i.e.,
we neglect rover’s failures (the techniques presented in this
paper easily extend to this case, which will be the subject of
a future trade-off analysis).

The terminal state x4 2 M is the final location of the
rover.

Note that once the system enters the failure state F , it
will remain F throughout, i.e., if x

k0 = F for some k0, then
x

k

= F 8k � k0.
5) Cost: We define the terminal cost as

g4(x4) =

(

+1 if x4 = F ,

0 if x4 6= F .

(6)

where the failure state corresponds to the infinite penalty.
Because the goal is to deliver the lander as close to the

science target as possible, the stage cost exists only for
driving, as defined as

g3(x3, u3) =

(

0 if x3 = F ,

l(x3, u3) otherwise.
(7)

In this paper, we define the traversability cost as the length
of the path going from the landing position x3 to the science
target u3 while avoiding rover hazards XHazRover.

C. Optimization Problem

The mission is considered to be a failure if

x4 = F. (8)

Since a mission designer desires a low failure probability,
we consider the following risk constraint:

P(x4 = F )  ✏, (9)

where P(·) denotes the probability of the event, and ✏ is a
user-specified risk threshold.

We consider the class of feedback-control policies consist-
ing of a sequence of functions:

⇡ = {µ0, µ1, µ2, µ3}, (10)
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Then, in principle, one would like to solve the following

optimization problem:

min

⇡

E
n

g3(x3, u3) + g4(x4)

o

s.t. P(x4 = F )  ✏

(11)

where the operation E{·} takes an expected value with
respect to the uncertainties w

k

’s represented in (3). This



problem can be seen as a chance-constrained dynamic pro-
gramming problem, which could be solved (at least approx-
imately) by using Lagrangian methods.

However, within the context of EDL mission analysis,
one has to face the challenge that while the disturbance
during the entry phase (i.e., w0) is fairly well modeled,
the subsequent disturbances w1 and w2 that are associated
with the new technologies PDG and HDA are, currently, not
well characterized and no probability distribution function
is available for them. Therefore, we consider the following
combination of average and minimax cost analysis. Let

J

⇤
1 (x1) , min

µ1, µ2, µ3

max

w12W1, w22W2

h

g3(x3, u3) + g4(x4)

i

.

The function J

⇤
1 (x1) is the optimal worst-case cost to reach a

designated scientific target (recall that we are assuming that
w3 is identically equal to zero). Clearly, for some states x1,
J

⇤
1 (x1) = +1; accordingly, we define a failure set:

F1 , {x1 2 M | J⇤
1 (x1) = +1},

in other words, F1 contains the set of states at stage 1 that
will end up (in the worst case) into a mission failure. For
a fixed set of modeling parameters (e.g., slope tolerance for
the rover or divert authority for the PDG), we then consider
the following optimization problem:

Optimization problem OPT : let U

s

0 be the set
of safe controls at stage 0, defined as
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Then, given all model parameters and a given risk
bound ✏, the problem is to solve
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If set Us

0 is empty, then we say that the problem
is infeasible for the given risk threshold ✏.

Note that in problem OPT we consider a conditional ex-
pectation in order to optimize only on the non-failure states.
Roughly, Problem OPT finds the smallest expected (over
pre-ignition disturbances) worst-case cost to reach a scientific
target. The following straightforward lemma characterizes
the probability that x4 = F .

Lemma 1: Given an optimal control policy determined by
solving problem OPT , the probability that at stage 4 the
state is a failure state (i.e., x4 = F ) is: P(x4 = F ) < ✏.

Proof: This is a trivial consequence of the law of total
probability.

D. Trade-off Analysis

The overall approach consists in solving a family of
optimization problems OPT , one for each combination of
model’s parameters (e.g., divert capabilities, slope tolerance
for the rover, etc.). Imperative to this approach is a fast
solution of problem OPT , which entails possibly hundreds
of millions of states: solution techniques leveraging image
processing algorithms are presented in Section III. A pre-
liminary application of this approach to the trade-off analysis

for the 2018 Mars rover concept is presented in Section IV.

III. ALGORITHM

The optimization problem OPT is solved in two steps:
in the first step we compute, by using backward recursion,
the function J

⇤
1 (x1); in the second step we perform the

minimization of the conditional expected value. As described
below, even though the state space is extremely large (i.e,
hundreds of millions of states for trade-offs with high-
resolution Martian maps), each step can be performed in
a reasonable amount of time by using highly-optimized
techniques from the image processing community, which
collectively lead to substantial speedups.

A. Step 1: computation of J⇤
1 (x1)

As stated above, the computation of J

⇤
1 (x1) proceeds by

backward recursion (this is, in fact, a standard dynamic
programming problem).

1) Stage 4, terminal stage:

J

⇤
4 (x4) , g4(x4). (13)

2) Stage 3, rover driving: At stage k = 3,

J

⇤
3 (x3) , min

u32U3(x3)

h

g3(x3, u3) + J

⇤
4 (f3(x3, u3, 0))

i

. (14)

Cost function J

⇤
3 (x3) embeds the information of traversabil-

ity cost and mission failure (that has cost +1).
3) Stage 2, HDA: In this step, we solve the equation

J

⇤
2 (x2) , min

u22U2(x2)
max

w22W2

J

⇤
3 (x3). (15)

This step is computationally intensive and we use image
processing techniques for its solution. Specifically, we first
carry out a dilation on the terminal cost map J

⇤
3 (·) with

a “mask” I

W2(w), where I

W2(w) is the indicator function
that takes value one if w 2 W2 and zero otherwise. The
dilated map, called J

D
3 (·), represents for each u2 the worst-

case cost that would ensue. This procedure is possible since
the bounds on the disturbance do not depend on x2 or u2,
and the underlying state space is a gridded square map. Then,
we find the minimizing controller by performing an erosion
on the dilated map J

D
3 (·). The dilation (the “max” operation)

accounts for errors in the HDA stage. The erosion (the “min”
operation) accounts for corrections made during the HDA
stage. Both dilation and erosion are key functions in image
processing, and efficient algorithms exist for them.

4) Stage 1, PDG: In this step, we solve the problem

J

⇤
1 (x1) , min

u12U1(x1)
max

w12W1

J

⇤
2 (x2), (16)

which has the same form of (15) and is solved by using the
same sequence of dilation and erosion operations.

B. Step 2: computation of J⇤
0 (x0)

Given the knowledge of J

⇤
1 (x1), this step minimizes the

conditional expected value in equation (12).
This step is, again, computationally intensive and we use

image processing techniques for its solution. Specifically,



define the “success probability map” Msucc according to
the assignment: Msucc

(u0) = P(x1 /2 F1|u0) for all
u0 2 M. The map Msucc can be efficiently computed by
cross-correlating the distribution of w0 (that has compact
support and is viewed here as a “convolution mask”) with a
boolean map that takes value 1 at cell x1 if x1 /2 F1 (i.e.,
J

⇤
1 (x1) < +1) and value 0 otherwise (for all x1 2 M).

The cross-correlation is implemented by using the Fourier
transform, which leads to dramatic speedups. Given the map
Msucc, one can easily compute the conditional distribution

P(w0 | x1 /2 F1, u0) =
P(w0)

Msucc
(u0)

,

which is used to take the conditional expectation in (12).
Define the “cost map” Mcost according to the assignment:
Mcost

(u0) = E
n

J

⇤
1 (x1)

�

�

x1 /2 F1

o

if u0 2 U

s

0 (where the
expectation is with respect to the distribution P(w0 | x1 /2
F1, u0)) and Mcost

(u0) = +1 otherwise. The map Mcost

can be efficiently computed by 1) cross-correlating J

⇤
1 (x1)

(where the +1 cells are set to zero since they need to be
excluded given the conditioning) with the distribution of w0

(that, as before, is viewed as a “convolution mask”), and
2) normalizing the resulting map through an entry-by-entry
division with Msucc with the rule that if Msucc

(u0) < 1� ✏,
the result of the division is set equal to +1. Finally, one
performs the minimization in (12) by exhaustively searching
Mcost over all feasible values of u0 (i.e., all values in U

s

0 ).
Computation times are discussed in detail in Section IV.

IV. NUMERICAL EXAMPLES

A. Algorithmic Steps
This subsection illustrates the algorithmic steps in Sec-

tion III using a rectangular grid-map M of size 3000⇥3000.
1) Input Maps and Lists: We consider two types of

hazards in this paper: local slopes and rocks. The slope map
is defined over M, and each cell has a value equal to the
slope of the surface at its corresponding position. All the
rocks are modeled as circles and they are represented as a
set of center positions and radii within M [11]. Other types
of hazards such as ripples and scarps can be provided as
additional maps. Figure 2 shows a pair of orbital images
of Mars taken with the HiRISE camera onboard the Mars
Reconnaissance Orbiter, from which our input terrain data
such as slope maps, rock lists, and ripple maps are obtained
through computer vision pipelines. The examples in Sec-
tion IV-A and Section IV-B use a terrain data in Ebersewalde
and East Margaritifer, respectively.

2) Derived Products: The hazard sets XHazRover and
XHazLander are a combination of rocks beyond a certain size
and excessive slopes. Different thresholds are used for the
rover and the lander. In order to treat the vehicle as a point,
the slope map is dilated by the vehicle radius. The rock radius
is also enlarged by the vehicle radius, and then the rocks are
rasterized onto the grid map M. Each cell of the hazard map
has value +1 if the local slope exceeds the design tolerance
of the vehicle or if a rock larger than the design tolerance
touches the cell.

(a) Left image (b) Trimmed right image
Fig. 2. A pair of HiRISE stereo images. Note that the right image is taken
with a slanted view.

(a) Rover hazard map (b) Lander hazard map

Fig. 3. Hazard maps of size 3km-by-3km for a rover and a lander. The
original hazard map is dilated by the radius of the vehicle. The color
represents the local slope, and the infeasible cells are left blank white.

Figure 3 shows the hazard maps for the rover and the
lander. The color of each cell corresponds to the slope value,
and the infeasible cells are marked with blank white in the
figures. The lander has a tighter tolerance for hazards, and
hence larger blank regions.

3) Stage 3: This example has a target region X

S

near
the upper left corner of the figure. Figure 4 shows the cost
map J

⇤
3 (x3) obtained by running Dijkstra’s algorithm from

each cell in X

S

and taking the minimum (i.e., the closest
target). The positions corresponding to J

⇤
3 (x3) = +1 are

shown in blank white. For Figure 4–8, the figures on the left
with caption (a) show the 3km-by-3km map, and the figures
on the right with caption (b) show the zoom-in of a smaller
region to better illustrate how the cost map evolves in the
subsequent computations.

4) Stage 2: Figures 5 and 6 show the cost map for stage
2 (HDA). From J

⇤
3 (x3), we first perform dilation to obtain

J

D

3 (x3), then erosion to obtain J

⇤
2 (x2).

5) Stage 1: The stage 1 (PDG) goes through the same
sequence as the stage 2, and the results are shown in



(a) 3km-by-3km map (b) Zoom-in of a 150⇥150 patch

Fig. 4. The cost map J

⇤
3 (x3). The color bar indicates the cost value.

(a) 3km-by-3km map (b) Zoom-in of a 150⇥150 patch

Fig. 5. The cost map J

D
3 (x3), after the dilation for 1m HDA error

(a) 3km-by-3km map (b) Zoom-in of a 150⇥150 patch

Fig. 6. J

⇤
2 (x2) after the erosion for 2m HDA corrections

Figures 7 and 8. In this example, the control authority of
PDG is an ellipse which has a semimajor axis of 75m and a
semiminor axis of 30m and is tilted by 0.2 radians. The PDG
execution error is a circle of radius 10m. Note that the order
of the operations is important: if the erosion were performed
with Figure 6(b) first, the entire map in Figure 8(b) would be
feasible after the dilation. The dilation performed first could
have an impact much larger than its mask size, especially
when the dilation eliminates feasible “islands”, leaving all
cells with +1 cost for erosion.

6) Stage 0: Figure 9 shows the placement of the optimal
landing ellipse. A Gaussian distribution is used for P0, which
has 4-� semimajor axis and semiminor axis of 200m and
120m respectively, and is rotated by 0.2 radian.

B. Trade-off Examples
The examples in this section illustrate some of the trade-

offs that can be computed with the proposed approach. A
slightly larger terrain of size 5,000m-by-5,000m gridded at
1m resolution is used. The HDA error is 1m, and the HDA

(a) 3km-by-3km map (b) Zoom-in of a 150⇥150 patch

Fig. 7. The cost map J

D
2 (x2), after the dilation for 10m PDG error

(a) 3km-by-3km map (b) Zoom-in of a 150⇥150 patch

Fig. 8. J

⇤
1 (x1) after the erosion for PDG corrections

Fig. 9. The optimal landing ellipse drawn on the cost map J

⇤
3 (x3)

control authority is 2m. The PDG error is 100m, and the PDG
control authority is 300m. The ignition ellipse is a circle of
1,000m radius, and the risk threshold is 1%. The rover’s
mission is to visit 7 out of 12 science targets.

1) HDA vs PDG: The first example shows a trade-off
between HDA and PDG. By turning on and turning off
each technology, we can generate a total of four cases. The
left figures show the probability of mission success (i.e., no
landing failure, and no rover entrapment) P(x1 /2 F1), the
right figures show the optimal rover route to visit multiple
targets, and the optimal landing ellipse, plotted on top of the
cost map J

⇤
3 (x3) for rover driving.

Figure 10 shows a case where neither HDA nor PDG is
used. This is equivalent to the landing strategy adopted by
the current Mars missions such as Mars Science Laboratory



Fig. 10. Mission success map (left) and the optimal placement of a landing
ellipse (right). No PDG, No HDA.

Fig. 11. Mission success map (left) and the optimal placement of a landing
ellipse (right). No PDG, With HDA.

(MSL). The optimal landing ellipse is placed in the top
middle portion of the map, and the expected driving distance
is 10,443m.

Figure 11 shows a case where only the HDA is enabled.
Although the mission success map does not look very dif-
ferent from the first case, the optimal landing ellipse is now
placed at the lower left corner of the map. This is because
the HDA erosion step takes out many small rocks scattered
in the map. The expected driving distance has decreased to
9,145m.

Figure 12 shows a case where both PDG and HDA are
enabled. The mission success map has changed dramatically,
and the safe area to place the landing ellipse center has
significantly enlarged. The expected drive distance has been
further reduced to 8,657m.

Figure 13 shows a case where only the PDG is enabled.
The safe region to place the landing ellipse has significantly
reduced. In fact, none of the cells in the map has a probability
of success greater than a risk threshold and no feasible
landing ellipse was found. It may appear counterintuitive that
enabling PDG makes it less safe compared to the first case
shown in Figure 10. This result is due to the execution error
associated with the PDG, as discussed below.

2) PDG error vs PDG control authority: This example
shows the effect of the execution error and the control
authority during the PDG phase, by varying these parameters
and solving the OPT several times. The HDA was disabled

Fig. 12. Mission success map (left) and the optimal placement of a landing
ellipse (right). With PDG, With HDA.

Fig. 13. Mission success map (left) and the optimal placement of a landing
ellipse (right). With PDG, No HDA.

Fig. 14. Probability of mission success as a function of the PDG execution
error and the divert distance.

in this example.
Figure 14 shows the probability of mission success P(x1 /2

F1) given the solution of OPT . One can notice that the
relation between the execution error and the divert distance is
highly nonlinear. As the execution error becomes larger, the
dilation process in Stage 1 of the algorithm grows hazards
by a larger amount. When there are small rocks scattered
around in the terrain, each rock is dilated by the execution
error, making wide portions of the region infeasible. When
HDA is enabled, small rocks are completely eroded away
first in Stage 2 of the algorithm, and the dilation due to the
PDG execution error does not shrink the feasible region as
much as the case with HDA.

To land on a rocky terrain, it is important to use HDA. In
fact, although not plotted in the figure, when HDA is enabled,



Fig. 15. Trade-off between divert distance and rover drive distance. With
HDA and PDG.

(a) Dilation/Erosion (b) Cross-correlation
Fig. 16. Log-log plot of the computation time vs. the mask size. Different
lines represent different map sizes.

any combination of execution error and divert distance can
still ensure 100% mission success in this example.

3) PDG divert vs Rover driving: In this example, the
divert distance of the PDG is varied in order to study the
effect on the rover drive distance. HDA is enabled in this
case. Figure 15 plots the expected rover driving distance
as a function of the PDG divert distance. One can notice
that a smaller divert distance can make the drive distance
significantly longer. As the divert distance increases, the
expected drive distance decreases, but there is a diminishing
return once the divert distance becomes large enough.

C. Computation Times
Figure 16 shows the computation times of the key image

processing functions, dilation/erosion and cross-correlation,
as a function of the map size and the mask size. The plots
are in log scales. The dilation and erosion take, respectively,
the maximum and minimum value within a mask, and they
can be reduced to the same operation with a flip of the sign.
They were run on a machine with 192GB RAM and Intel(R)
Xeon(R) X5690@3.47GHz that has 12 cores.

For the purpose of Mars missions, the largest mask for
the dilation corresponds to PDG execution error w1, which
is about 100m. The PDG control authority u1 can be as large
as 1,000m, but if a faster computation is desired, the erosion
operation can be performed at a reduced resolution. This
subsampling would degrade the optimality of the solution,
but the risk constraint is still ensured. The distribution of the
ignition ellipse w0 can be as large as several kilometers,
but as Figure 16(b) shows, the cross-correlation is still
orders of magnitude faster than the dilation/erosion. This is
because the cross-correlation is a linear operation and can
be performed efficiently using Fourier transforms.

V. CONCLUSION
This paper presented a multi-stage stochastic optimization

framework for the combined EDL-Mobility analysis of plan-
etary rover missions. By formulating the problem within a
dynamic programming framework and by leveraging highly-
optimized image-processing tools, we were able to perform
trade-off analyses on real data with several hundred million
states. Numerical examples illustrated how this tool would
enable systems engineers and stake holders to make more
informed decision based on quantitative analysis. Future
work includes extending the decision making steps further
backwards, such as to the entry insertion maneuver and to
the trajectory correction maneuvers during orbital navigation.
Another research direction is to extend this approach to
missions with multi-landing opportunities, for example a
potential Mars Sample Return mission or a lunar exploration
mission with multiple vehicles.
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