
SUBMODULAR OPTIMIZATION FOR

RISK-AWARE COORDINATION OF MULTI-ROBOT SYSTEMS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL ENGINEERING

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Stefan Jorgensen

June 2018

 http://creativecommons.org/licenses/by-nc/3.0/us/

This dissertation is online at: http://purl.stanford.edu/zc988gf3189

© 2018 by Stefan Timothy Jorgensen. All Rights Reserved.

Re-distributed by Stanford University under license with the author.

This work is licensed under a Creative Commons Attribution-
Noncommercial 3.0 United States License.

ii

http://creativecommons.org/licenses/by-nc/3.0/us/
http://creativecommons.org/licenses/by-nc/3.0/us/
http://purl.stanford.edu/zc988gf3189

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Marco Pavone, Primary Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Mac Schwager

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Benjamin Van Roy

I certify that I have read this dissertation and that, in my opinion, it is fully adequate
in scope and quality as a dissertation for the degree of Doctor of Philosophy.

Jan Vondrak

Approved for the Stanford University Committee on Graduate Studies.

Patricia J. Gumport, Vice Provost for Graduate Education

This signature page was generated electronically upon submission of this dissertation in
electronic format. An original signed hard copy of the signature page is on file in
University Archives.

iii

Abstract

Robots are often designed for dangerous environments such as severe storms, but routing algorithms rarely

are. This dissertation introduces a new class of routing problems with “risky traversal” where a robot may fail

when travelling between two sites. Our key insight is that many objectives in the risky traversal model satisfy

a diminishing returns property known as submodularity. We develop a set of tools based on submodular

optimization which lead to efficient solutions for a wide variety of problems:

1. The “Team Surviving Orienteers” (TSO) problem, where the size of the team is fixed and we seek routes

which maximize the expected rewards collected at nodes, subject to survival probability constraints on

each robot.

2. The “On-line TSO” problem, where observations are incorporated to update the paths on-line in a

parallel fashion (in response to survival events).

3. The “Heterogeneous TSO” problem, which allows robots to have different capabilities such as sensors

(affecting rewards collected), actuation (affecting ability to traverse between sites), and robustness

(affecting survival probabilities).

4. The “Matroid TSO” problem, where the set of routes must satisfy an ‘independence’ constraint repre-

sented by a matroid, for example limits on the number of each type of robot available, traffic through

regions of the environment, total risk budgets for the team, or combinations of these limits.

5. The “Risk Sensitive Coverage” problem, which is the dual to the TSO where the team must satisfy a

coverage constraint (e.g., ensure that nodes are visited with specified probabilities) while using mini-

mum resources (e.g., number of robots deployed, distance travelled, or expected number of failures).

Our algorithms are based on the approximate greedy algorithm, where we iteratively select a path which ap-

proximately maximizes the expected incremental rewards subject to some constraints. Due to the submodular

structure of the problems considered in this dissertation, we can prove bounds on the suboptimality of our

algorithms. The approach developed in this dissertation provides a foundational set of tools for routing large

scale teams in dangerous environments while explicitly planning for robot failure.

iv

To Anneliise and Finleif.

v

Acknowledgments

First and foremost, I would like to thank my advisor, Prof. Marco Pavone, who has always challenged me to

push deeper into research. He has set a personal example of excellence in his work that I hope I can someday

emulate. I am grateful for his friendship and encouragement, especially when my research kept falling apart.

I would never have started the Ph.D. without many mentors along the way, noteably Dr. Timothy Chung,

who gave me my first hands-on experiences with robots at the Naval Postgraduate School; Prof. Roger

Howe, who was amoung the first to suggest I get a Ph.D.; and Prof. Andrea Goldsmith, who encouraged me

to submit my first paper. I am also grateful to Prof. Jan Vondrák, who was so kind and willing to meet and

discuss research ideas. Those discussions encouraged me to finish some of the most rewarding results of this

dissertation. In addition I would like to thank Prof. Benjamin Van Roy and Prof. Mac Schwager for sitting

on my committee and reading this dissertation.

I am grateful to my co-authors from Northrop Grumman, Dr. Mark B. Millam and Dr. Robert H. Chen,

who proposed the “risky traversal” model that distinguishes our work and supported the foundations of this

work. I am also grateful to Edward Schmerling, Federico Rossi, and Sumeet Singh for their help in fleshing

out some of the proofs and their encouragment when research results were non-existant.

To my colleagues at ASL, thank you for making the time fly by. I have learned from each of you and wish

you the best in your future endeavors.

At a personal level, I thank God for giving me this opportunity to study what I love. I am grateful to

my wife Anneliise for her willingness to support me through the many ups and downs of research, to my

son Finleif for giving me a very good reason to graduate on time, and to my parents for encouraging me

throughout the Ph.D.

Finally I want to acknowledge the support of the National Science Foundation Graduate Research Fel-

lowship Program (grant number DGE44), which gave me the means and confidence to pursue the Ph.D.

vi

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1
1.1 Maximum Weight Routing . 2

1.2 Contributions of the Thesis . 3

2 Preliminaries 6
2.1 Submodular Optimization . 6

2.1.1 Definitions . 6

2.1.2 Cardinality constrained maximization . 7

2.1.3 Matroid constrained maximization . 9

2.1.4 Submodular set cover . 10

2.2 Routing on Graphs . 11

2.2.1 Definitions . 11

2.2.2 The orienteering problem . 12

2.2.3 Solution approaches . 12

2.3 Risky Traversal Model . 13

2.3.1 Definitions . 13

2.3.2 Poisson binomial distribution . 14

3 The Team Surviving Orienteers Problem 15
3.1 Problem Statement . 18

3.1.1 Static TSO problem . 18

3.1.2 On-line TSO problem . 19

3.1.3 Example . 20

3.1.4 Sufficient conditions for submodular objective . 21

3.2 Applications and Variants . 22

vii

3.2.1 Aid delivery (single-visit rewards) . 22

3.2.2 Property classification (multi-visit rewards) . 23

3.2.3 Informative path planning . 24

3.2.4 Variants . 25

3.3 Approximate Solution Approach to the Static TSO . 26

3.3.1 Linear relaxation for the greedy sub-problem . 26

3.3.2 Greedy approximation for the TSO problem . 28

3.3.3 Approximation guarantees . 29

3.3.4 Computational complexity . 31

3.3.5 Modifications for variants . 32

3.3.6 Two-step Greedy Algorithm . 32

3.4 Approximate Solution Approach to the On-line TSO . 34

3.4.1 On-line algorithm . 34

3.4.2 Decentralized implementations . 36

3.4.3 Performance guarantees . 36

3.4.4 Computational complexity . 37

3.5 Heterogeneous Teams . 37

3.5.1 Static HTSO problem . 38

3.5.2 Submodularity and applications . 39

3.5.3 Algorithm . 42

3.6 Numerical Experiments . 43

3.6.1 Verification of bounds . 44

3.6.2 Empirical approximation factor . 44

3.6.3 Information gathering . 45

3.6.4 Classification during a storm . 47

3.6.5 Large scale performance . 48

3.6.6 Benefits of Re-planning . 49

3.6.7 Heterogeneous team with best-visit rewards . 49

3.7 Conclusion . 50

4 The Matroid Team Surviving Orienteers Problem 51
4.1 The Matroid TSO Problem . 53

4.2 Applications and Variants . 54

4.2.1 Uniform matroid . 54

4.2.2 Linear matroid . 54

4.2.3 Transversal matroid . 55

4.2.4 Gammoid . 55

4.2.5 Truncation . 56

viii

4.3 The Greedy Sub-Problem . 56

4.3.1 Objective and algorithm . 56

4.3.2 Efficiently partitioning the feasible set . 58

4.3.3 Lazy implementation . 59

4.4 The Approximate Greedy Algorithm . 59

4.4.1 Objective and algorithm . 59

4.4.2 Guarantees . 59

4.4.3 Complexity . 60

4.5 The Accelerated Continuous Greedy Algorithm . 61

4.5.1 Objective and algorithm . 61

4.5.2 Guarantees . 62

4.5.3 Complexity . 63

4.6 Experimental Results . 64

4.6.1 Environmental monitoring application . 64

4.6.2 Synthetic problem generation . 65

4.6.3 Sub-problem complexity scaling . 66

4.6.4 Discretization complexity scaling . 66

4.6.5 Effect of discretization on performance . 67

4.7 Extensions . 67

4.7.1 p-system constraints . 67

4.7.2 Multiple objectives and coverage problems . 68

4.8 Conclusions . 69

5 The Risk Sensitive Coverage Problem 70
5.1 Problem Statement . 73

5.1.1 The RSC problem . 74

5.1.2 Equivalence to submodular set cover . 74

5.1.3 Cost-benefit path planning . 75

5.1.4 Example . 76

5.1.5 Applications and variants of the RSC . 76

5.2 Solution Approach . 77

5.2.1 Additive equivalent objective . 77

5.2.2 Cost-benefit sub-problem . 79

5.2.3 Algorithm . 83

5.2.4 Approximation guarantees . 84

5.2.5 Algorithm variants . 86

5.3 Simulations and Discussion . 86

5.3.1 Comparison to optimal policies . 87

ix

5.3.2 Application to search and rescue . 87

5.3.3 Quality of cost-benefit approach . 88

5.3.4 Comparison of uniform and non-uniform costs . 89

5.4 Conclusion . 91

6 Conclusions 92
6.1 Summary . 92

6.2 Future Directions . 93

A Technical Result on Poisson Binomial Distributions 95

B Guarantees for the Accelerated Continuous Greedy Algorithm 99

Bibliography 103

x

List of Tables

3.1 Summary of notation for the TSO problem. 18

3.2 Summary of notation for the HTSO problem. 38

xi

List of Figures

1.1 Illustration of the TSO problem applied to an aid delivery scenario. The objective is to maxi-

mize the expected number of sites visited by at least one robotic convoy. Travel between sites

is risky (as emphasized by the gray color scale for each edge), and paths must be planned to

ensure that the return probability for each vehicle is above a survival threshold. 2

2.1 Illustration of the notation used. Robot k plans to take path ρ , whose edges are represented

by lines. The fill of the lines represent the value of sk
n(ρ). In this example sk

3(ρ) = 0, which

means that ak
3(ρ) = ak

4(ρ) = ak
5(ρ) = 0. The variables zk

j(ρ) are zero if either the robot fails

before reaching node j or if node j is not on the planned path. 13

3.1 Illustration of the TSO problem applied to an aid delivery scenario. The objective is to maxi-

mize the expected number of sites visited by at least one robotic convoy. Travel between sites

is risky (as emphasized by the gray color scale for each edge), and paths must be planned to

ensure that the return probability for each vehicle is above a survival threshold. 16

3.2 (a) Example of a TSO problem. Robots start at the bottom (node 1) and darker lines corre-

spond to safer edges. (b) A single robot can only visit four nodes safely. (c) Two robots can

visit all nodes safely. It is easy to verify that adding more robots yields diminishing returns. . 21

3.3 Illustration of the algorithm for updating the survival probability threshold. The maximum

survival probabilities ψk and intervals are shown on the left. At the first step, we assume the

optimum is in the interval I4 which has the smallest upper bound (ψ2), but this assumption

is false since p4 > ψ2. At the second step we proceed to the interval with the next smallest

upper bound, I3, and find that p3 ∈ I3. Since the assumption is correct, we know p3 is the

optimum. 35

3.4 Illustration of the notation used for the HTSO (note that this is similar to Figure 2.1, except

variables are now indexed by r). Robot k has type r and plans to take path ρ , whose edges

are represented by lines. The fill of the lines represent the value of sk
n(r,ρ). In this example

sk
3(r,ρ) = 0, which means that ak

3(r,ρ) = ak
4(r,ρ) = ak

5(r,ρ) = 0. The variables zk
j(r,ρ) are

zero if either the robot fails before reaching node j or if node j is not on the planned path. . . 38

xii

3.5 (a) Example of a team surviving orienteers problem with depot in the center. Thick edges

correspond to survival probability 0.98, light edges have survival probability 0.91. (b) Opti-

mal paths for survival threshold ps = 0.70 and K = 6. (c) Greedy paths for the same problem.

. 44

3.6 Performance comparison for the example in Figure 3.5(a). The optimal value is shown in

green and the GreedySurvivors value is shown in red. The upper bound on the optimum from

Theorem 4 is shown by the dotted line. 45

3.7 Ratio of actual result to upper bound for a 65 node complete graph. The team size ranges

from 1 (at the bottom) to 5 (at the top), and in all cases a significant fraction of the possible

reward is accumulated even for small ps. 45

3.8 Illustration of an ocean monitoring scenario. Various regions in the Coral Triangle are out-

lined by boxes, sites to visit within each region are marked by ‘X’, and the heatmap indicates

the risk of robot failure inferred from piracy incidents. Data is from the Coral Triangle Atlas

[1] and IMB Piracy Reporting Centre [2]. 46

3.9 Normalized information gained by team of 25 robots when using a VNS heuristic and the

MILP formulation. The mean and range are shown as solid and dotted lines, respectively.

Note that depending on the parameters given, the VNS heuristic quickly produces quality

solutions. 47

3.10 Illustration of the “base reflectivity” of a storm, which can be used to infer the danger to

robots. Data from the NOAA NEXRAD level II dataset, visualization courtesy the Weather

and Climate Toolkit [3]. 47

3.11 Reduction in posterior variance (using the Haldane prior) for the storm classification scenario.

Note that the team of 25 robots achieves 95.8% of the maximum award available, essentially

solving the problem. 48

3.12 Histogram comparing surviving robots with and without re-planning for 20 trials with K = 25

and ps = 0.8. Note that the expected number of surviving robots at the initial iteration is 20. 49

3.13 Cumulative reward of a heterogeneous team versus a homogeneous team for best-visit re-

wards. The graph has V = 35. 50

4.1 Illustration of the MTSO setting for an ocean monitoring scenario. Various regions in the

Coral Triangle are outlined by boxes, sites to visit within each region are marked by ‘X’, and

the heat map indicates the risk of robot failure inferred from piracy incidents. Data is from

the Coral Triangle Atlas [1] and IMB Piracy Reporting Centre [2]. The objective is to find a

set of paths for a heterogeneous team which maximizes the expected number of sites visited

subject to survival probability constraints and independence constraints (e.g. limits on team

size or sensor quantities). 52

xiii

4.2 Illustration of multi-partite graphs which form gammoids. Left: An illustration of the graph

with two layers of cardinality constraints. Right: An illustration of the graph with three

layers. Boxes represent clusters of nodes, and lines represent edges which connect each node

of the right cluster to each node of the left cluster. 56

4.3 Cumulative reward for paths planned by MGreedySurvivors using the MIP and VNS Orienteering

as oracle routines. Both approaches compute high quality sets of paths, though VNS is some-

what faster. 65

4.4 Scaling of MGreedySurvivors as K and V grow. Data shown is the median of 110 samples,

and agrees with an Θ(MKCO) trend. 65

4.5 Scaling of the run time of the ACGA routine relative to the MGreedySurvivors routine

as the number of discretization steps increases. Note that run time increases approximately

linearly with δ−1, as predicted in Section 4.5.3. 66

4.6 Comparison of objective achieved by the ACGA and MGreedySurvivors routines with

δ−1 ∈ {2, . . . ,60} for 30 random MTSO problems. Note that as δ−1 increases the ACGA

more consistently outperforms the baseline and average performance increases. 67

5.1 Illustration of the “base reflectivity” of a storm, which can be used to infer the probability

robots survive traversing between sites. Data from NOAA NEXRAD level II dataset, and

visualization courtesy the Weather and Climate Toolkit [3]. 70

5.2 Example of the Risk-Sensitive Coverage problem. (a) The graph has four nodes and four

edges. The probability of surviving a given edge is 0.9. (b) For survival probability threshold

0.8, there are two feasible paths from node vs to vt : ρ1 = {vs,1,vt} and ρ2 = {1,2,vt}. . . . 76

5.3 Illustration of the feasible space after initialization (left) and after three iterations of the re-

finement phase (right). 80

5.4 Illustration of how a solution to the orienteering problem (SR2) splits a feasible region for

the cases when the solution produces a new lower bound (left) and does not (right). 81

5.5 Performance comparison over different graph sizes for a special case of the RSC. 87

5.6 Bi-criteria performance comparison for the search and rescue scenario with 225 nodes and

pv(j) = 0.95. The top curve (blue) shows the approximation guarantee from Theorem 2. The

lower dashed curve (red) shows the guarantee while enforcing integrality and monotonicity

on the lower bound on the optimal team size from Theorem 2. 88

5.7 Example of a Delaunay graph with 30 nodes. 89

5.8 Runtime characterization of our algorithm (blue) versus an exact solver (red) 89

5.9 Frequency of absolute error values for threshold ε = 0.1 and δ = 0.025. Note that f (X∗)' 2

for these trials. Data is for graphs with up to 24 nodes. 90

5.10 Comparison of performance of the greedy algorithm versus the cost-benefit greedy algorithm

in terms of cost. 90

xiv

Chapter 1

Introduction

This thesis presents a submodular optimization perspective on risk-aware coordination of multi-robot sys-

tems in dangerous environments, which leads to relatively efficient solutions for three challenging classes of

routing problems. This enables large, heterogeneous teams of robots to effectively split their resources while

taking calculated risks in a provably near-optimal manner. Applications include resource delivery, search and

rescue missions, and environmental monitoring.

As a motivating example, consider the problem of delivering humanitarian aid in a disaster or war zone

with a team of robots. There are a number of sites which need the resources, but traveling among these

sites is dangerous. While the aid agency wants to deliver aid to every city, it also seeks to limit the number

of assets that are lost. The goal is to maximize the expected number of sites visited by at least one of the

vehicles, while keeping the return probability for each vehicle above a specified survival threshold (i.e., while

fulfilling a chance constraint for the survival of each vehicle). We call this problem formulation the “Team

Surviving Orienteers” (TSO) problem, illustrated in Figure 1.1. The TSO problem builds on previous work

in robotics, vehicle routing, and orienteering problems by considering risky traversal: when a robot traverses

an edge, there is a probability that it is lost and does not visit any other nodes. This creates a complex,

history-dependent coupling between the edges chosen and the distribution of nodes visited, which precludes

the application of existing approaches available for solving the traditional orienteering problem.

This thesis provides techniques which account for risky traversal while maintaining guarantees on solution

quality and complexity. These techniques are applied to three broad problem classes: The TSO (along with

variants for on-line updates and heterogeneous teams), the Matroid TSO problem (where paths must satisfy

a notion of “independence” found in many applications) and the Risk Sensitive Coverage problem (which is

the dual to the TSO, minimizing expected losses subject to visit probability constraints). For each problem

class we provide algorithms with bounded suboptimality and linear scaling in the team size.

1

CHAPTER 1. INTRODUCTION 2

Figure 1.1: Illustration of the TSO problem applied to an aid delivery scenario. The objective is to maximize
the expected number of sites visited by at least one robotic convoy. Travel between sites is risky (as empha-
sized by the gray color scale for each edge), and paths must be planned to ensure that the return probability
for each vehicle is above a survival threshold.

1.1 Maximum Weight Routing

The problems considered in this thesis are part of a broad class of “maximum weight routing problems” which

have been studied extensively by combinatorial optimization, operations research, and robotics researchers

(to name a few).

In its simplest form, a maximum weight routing problem is defined by a set of nodes and edges (referred

to as a graph), edge costs, a budget, and node rewards. The goal is to maximize the value of nodes visited

while ensuring that the cost of edges selected remains below a budget (this is known as the “orienteering

problem”). The orienteering problem has been extensively studied from the perspective of combinatorial

optimization [4, 5] and is known to be NP-hard. There are many variants of the orienteering problem, such

as diminishing node rewards [6, 7], team orienteering problems where many paths are planned [8], and

stochastic edge costs with deadlines on reward [9].

Many variants for the OP have polynomial time approximation schema (PTAS), which is a class of algo-

rithms that run in polynomial time and are guaranteed to return a result which has value within a constant

factor of the optimum. When applied to the orienteering problem these algorithms are often constructed

by calling PTAS for other sub-problems, such as spanning trees and set covers. This means that though

the algorithms exist, they are often cumbersome to implement. While PTAS are useful when understanding

the difficulty of a problem, the polynomial run times are typically too high order to be practical (a notable

exception is [10]).

Operations research has developed the vehicle routing problem (VRP) [11, 12], which is a family of

problems focused on finding a set of paths which maximize quality of service subject to budget or time

constraints. The VRP also has many variants, mainly focused on realistic models of delivery problems

in urban environments. Vehicle routing problems are often formulated as a mixed integer linear program

(MILP), which is an optimization framework where all objectives and constraints are linear functions of

CHAPTER 1. INTRODUCTION 3

the problem variables, and some variables are constrained to be integral. MILP formulations are attractive

because they are easy to customize and modify, which is evident from the large variety of VRP formulations

in the literature. Though solving MILPs exactly is quite difficult, there are effective solvers (e.g. [13, 14])

which provide a practical solution approach to these problems.

The Informative path planning (IPP) problem seeks a set of paths for mobile robotic sensors in order to

maximize the information gained about an environment. Many variants focus on the single-robot problem and

how to incorporate challenging issues such as correlated observations (which introduces path dependence)

and how to model unknown environments. One of the earliest IPP approaches [15] extends the recursive

greedy algorithm of [6] using a spatial decomposition to generate paths for multiple robots. They use an “it-

erative assignment” technique which computes plans for each path in sequence, conditioning the rewards on

the paths already planned. Since information is submodular, this greedy approach has bounded suboptimality.

The structure of the IPP is most similar to the problems studied in this thesis (since it is a multi-robot path

planning problem with a submodular objective function which is non-linear and history dependent), but the

IPP does not capture the notion of risky traversal. Our general approach is inspired by works such as [16].

1.2 Contributions of the Thesis

The objective of this thesis is to develop approximation algorithms for the TSO, HTSO, MTSO, and RSC

problems, which model fundamental challenges in risk-aware coordination of multi-robot systems. We lever-

age submodular optimization in order to develop our solution algorithms. We demonstrate how to linearize

the risky traversal model in order to approximate the single-robot planning problem as a standard orienteering

problem. The power of this approach is that our algorithms can easily be used as a PTAS, implemented as a

MILP or run quickly via heuristics by using the appropriate solver for the orienteering problem.

The contributions of each chapter are summarized below:

Chapter 2: Preliminaries. In this chapter we introduce some definitions and results in submodular optimization,

graphs, and the orienteering problem. We finally give the formal “risky traversal” model which is used

throughout the rest of the thesis.

Chapter 3: The Team Surviving Orienteers Problem. In this chapter we study the Team Surviving Orienteers

problem, where the objective is to maximize the expected rewards a team of K robots achieves while

satisfying per-robot survival probability thresholds. By considering a multi-robot (team) setting with

submodular node rewards (e.g. expected number of nodes visited or information gained about node

random variables), we extend the state of the art for the submodular orienteering problem, and by

maximizing a submodular quality of service function (with guarantees on solution quality), we extend

the state of the art in the probabilistic vehicle routing literature. From a practical standpoint, the TSO

problem represents a “survivability-aware” counterpart for a wide range of multi-robot coordination

problems such as vehicle routing, patrolling, and informative path planning. We next show that several

CHAPTER 1. INTRODUCTION 4

broad classes of objective functions for the TSO problem are submodular, provide a linear relaxation

of the single robot TSO problem (which can be solved as a standard orienteering problem), and show

that the solution to the relaxed problem provides a close approximation of the optimal solution of the

single robot TSO problem. Third, we propose an approximate greedy algorithm which has polynomial

complexity in the number of nodes and linear complexity in the team size, and prove that the value of

the output of our algorithm is lower bounded by (1− e−ps/λ)OPT, where OPT is the optimum value,

ps is the survival probability threshold, and 1/λ ≤ 1 is the approximation factor of an oracle routine

for the solution to the orienteering problem (we note that, in practice, ps is usually close to unity).

We then consider the on-line TSO problem, where robots update their plans as they traverse the envi-

ronment. All robots report their ‘survival’ status and re-compute their paths to maximize the expected

reward given the survival states. To ensure a notion of consistency the survival probability threshold is

updated in order to keep the expected number of surviving robots (conditioned on the survival states)

close to psK. We give a polynomial time algorithm which approximately solves the on-line TSO prob-

lem, and provide guarantees on the performance of our on-line algorithm in terms of the objective

obtained as well as bounds on the probabilities of worst-case events.

We finally discuss how to modify our algorithms to form heterogeneous teams, with similar perfor-

mance guarantees and application scenarios. Crucially, the complexity increases linearly in the number

of robot types, while preserving very similar guarantees as given for the static TSO problem.

Chapter 4: The Matroid Team Surviving Orienteers Problem. In this chapter we consider the Matroid TSO

problem, which is the same as the TSO problem except instead of limiting the team size, we require

that the set of paths be in the family of independent sets of a matroid. By considering matroid con-

straints, we extend the state of the art for the team orienteering problem, and by considering the risky

traversal model we extend the state of the art for the rich vehicle routing problem. We demonstrate how

to use matroids to represent a variety of constraints such as coverage, deployment, team size limitations,

sub-graph diversity constraints, team-wise risk constraints, and nested cardinality constraints. We ex-

tend the approximate greedy algorithm from Chapter 3 to the MTSO setting, and prove that the value of

its output is at least ps
ps+λ

OPT, where OPT is the optimum value, ps is the per-robot survival probability

threshold and 1/λ ≤ 1 is the approximation factor of an oracle routine for the solution to the orienteer-

ing problem (we note that, in practice ps is close to unity). We then extend the accelerated continuous

greedy algorithm [17] to the MTSO problem, which is its first application to robotics. We develop a

fast implementation specific to the MTSO and show its output is at least (1− δ)(1− e−ps/(λ+δ ps)),

where δ � 1 is the discretization step size. We demonstrate the effectiveness of both algorithms for

complex problems by considering an environmental monitoring application and give empirical perfor-

mance characterizations using a synthetic dataset. We conclude the chapter by highlighting a number of

extensions of this work in detail, such as p-system constraints, linear packing constraints, and coverage

variants.

CHAPTER 1. INTRODUCTION 5

Chapter 5: The Risk-sensitive Coverage Problem. In this chapter we propose the Risk-Sensitive Coverage (RSC)

problem and show that it is an instance of the submodular set cover problem. By considering risky

traversal, we extend the state of the art for robot coverage problems, and by considering an exponen-

tially large ground set we extend the state of the art in the submodular set cover problem. We then

provide a linear relaxation which allows us to implement a cost-benefit greedy algorithm efficiently by

utilizing standard orienteering problem solvers. We provide guarantees on the ratio of the minimum

cost to the cost of the solution our algorithm produces. For the special case where costs are uniform our

algorithm has a ps/λ guarantee, and for the case where it is expected losses we have a e−ε ps/λ guar-

antee, where ps is the per-robot survival probability constraint, 1/λ ≤ 1 is the approximation guarantee

for an oracle routine which solves the orienteering problem and ε > 0 is a tolerance parameter. We note

that our solution to the cost-benefit greedy algorithm has applications far beyond the RSC problem. We

then provide a bi-criteria approximation guarantee for the RSC problem, which ensures that the size of

the set output by our routine is close to the optimum for a problem with similar constraints. Specif-

ically, our result states that the cost of our solution with L robots is no more than 1
α
(1+ log(1

α
∆L))

times the optimum solution cost for a problem satisfying at least L/K fraction of the constraints, where

K is the size of the final output of our algorithm, α is a approximation guarantee for the cost-benefit

sub-problem, and ∆L is the ratio of incremental coverage gain from the first and Lth path planned. We

demonstrate the quality of the paths selected by our routine by comparing them with optimal paths

computed for a special case of the RSC – our solution uses at most 33% more robots than the opti-

mum. When tested on edge-sparse graphs, our cost-benefit planning approach scales empirically with

the square of the number of nodes in the graph and provides near-optimal solutions (exhaustive search

scales exponentially in the number of nodes). We then apply our routine to a search and rescue scenario

with 225 nodes and visit probability thresholds of 0.95. Our routine finds a set of 36 paths which satisfy

the constraints with approximation ratio 9. The first 13 of these paths satisfy 80.7% of the constraints

with approximation ratio 4.33.

Chapter 6: Conclusions. In this chapter we present our conclusions and directions for future research.

Chapter 2

Preliminaries

In this chapter we introduce important definitions and results in submodular optimization, graph theory and

routing problems. We then define our model for “risky traversal” which is used throughout the rest of the

thesis.

2.1 Submodular Optimization

2.1.1 Definitions

Submodularity is the property of ‘diminishing returns’ for set functions. The following definitions are sum-

marized from [18]. Given a set X , its possible subsets are represented by 2X . For two sets X and X ′, the

set X ′ \X contains all elements in X ′ but not X . The complement of a set X contains all elements of X not

in X , and is denoted Xc = X \X . A set function f : 2X → R is said to be normalized if f (/0) = 0 and to be

monotone if for every X ⊆ X ′ ⊆X , f (X) ≤ f (X ′). A set function f : 2X → R is submodular if for every

X ⊆ X ′ ⊂X , x ∈X \X ′, we have

f (X ∪{x})− f (X)≥ f (X ′∪{x})− f (X ′).

The quantity on the left hand side is the discrete derivative of f at X with respect to x, which we write as

∆ f (x | X).

The multilinear extension of a submodular function f can be understood as taking the expected value

of the function with respect to a random set which includes each item x ∈X with probability yx ∈ [0,1].

Formally, let y be a vector with |X | elements, with element yx corresponding to the probability x ∈ R(y).

Then we have for x ∈X ,

P{x ∈ R(y)}= yx,

6

CHAPTER 2. PRELIMINARIES 7

and for X ⊆X ,

P{R(y) = X}= ∏
x∈X

yx ∏
x′∈Xc

(1− yx′).

The multilinear extension of f at y is defined as the expected value of f (R(y)):

F(y) := E[f (R(y))] = ∑
X⊆X

f (X)∏
x∈X

yx ∏
x′∈Xc

(1− yx′).

For optimization problems the multilinear extension can be used in a similar fashion as a linear programming

relaxation, where the integer variables (i.e., whether element x is in the solution) are replaced by continuous

relaxations (which are easier to optimize), and the resulting solution rounded to produce a set.

An independence system is a tuple of a finite ground set X and a downward closed family of independent

sets I ⊆ 2X , that is if I′ ⊆ I and I ∈I , then I′ ∈I . A base is an independent set I ∈I which is inclusion-

wise maximal, that is for every x ∈X \ I, we have I∪x /∈I . A matroid (X ,I) is an independence system

for which all bases have the same size (which is called the rank of the matroid), hence it extends the notion

of linear independence to sets. There are many equivalent characterizations of matroids which are outside of

the scope of this work, we refer the interested reader to [19] for more detail.

2.1.2 Cardinality constrained maximization

A typical submodular optimization problem entails finding a set X ⊆X with cardinality K that maximizes f .

Finding an optimal solution, X∗, is NP-hard for arbitrary submodular functions [18]. The greedy algorithm

constructs a set X̄K = {x1, . . . ,xK} by iteratively adding an element x which maximizes the discrete derivative

of f at the partial set already selected. In other words the `th element satisfies:

x` ∈ argmax
x∈X \X̄`−1

∆ f (x | X̄`−1).

We refer to the optimization problem above as ‘the greedy sub-problem’ at step `. A well-known theo-

rem proven by [20] states that if f is a monotone, normalized, non-negative, and submodular set function,

then f (X̄K) ≥ (1− 1
e) f (X∗). This is a powerful result, but if the set X is large we might only be able to

approximately solve the greedy sub-problem. An α–approximate greedy algorithm constructs the set X̂K

by iteratively adding elements which approximately maximize the discrete derivative of f at the partial set

already selected. In particular, for some fixed α ≤ 1 the `th element x̂` satisfies:

∆ f (x̂` | X̂`−1)≥ α∆ f (x | X̂`−1) ∀x ∈X \ X̂`−1.

We provide a guarantee for the α–approximate greedy algorithm analogous to the guarantee for the greedy

algorithm, thereby extending Theorem 4.2 of [20]:

CHAPTER 2. PRELIMINARIES 8

Theorem 1 (α–approximate greedy guarantee). Let f be a monotone, normalized, non-negative, and sub-

modular function with discrete derivative ∆ f . For α ∈ [0,1] and positive integer K, the output of any α–

approximate greedy algorithm with L≥ K elements, X̂L, satisfies the following inequality:

f (X̂L)≥
(

1− e−αL/K
)

max
X∈2X :|X |=K

f (X).

Proof. The case where L = K is a special case of Theorem 1 from [21]. To generalize to L > K we extend the

proof for the greedy algorithm in [18]. Let X∗ ∈ 2X be a set which maximizes f (X) subject to the cardinality

constraint |X |= K. For ` < L, we have:

f (X∗)≤ f (X∗∪ X̂`)

= f (X̂`)+
K

∑
k=1

∆ f (x∗k | X̂`∪{x∗1, . . . ,x∗k−1})

≤ f (X̂`)+
K

∑
k=1

∆ f (x∗k | X̂`)

≤ f (X̂`)+
1
α

K

∑
k=1

∆ f (x̂`+1 | X̂`)

≤ f (X̂`)+
K
α
(f (X̂`+1)− f (X̂`)).

The first line follows from the monotonicity of f , the second is a telescoping sum, and the third follows from

the submodularity of f . The fourth line is due to the α–approximate greedy construction of X̂L, and the last

is because all terms in the sum are equal. Now define δ` = f (X∗)− f (X̂`). We can re-arrange the inequality

above to yield:

δ`+1 ≤
(

1− α

K

)
δ` ≤

(
1− α

K

)`+1
δ0.

Since f is non-negative, δ0 ≤ f (X∗) and using the inequality 1− x≤ e−x we get

δL ≤
(

1− α

K

)L
δ0 ≤

(
e−αL/K

)
f (X∗).

Now substituting δL = f (X∗)− f (X̂L) and rearranging:

f (X̂L)≥
(

1− e−αL/K
)

f (X∗).

Remark: We can generalize this theorem to the case where each x` has guarantee α`. Using the same line

of reasoning as in the proof for Theorem 1, we have

f (X̂L)≥
(

1− e−∑
L
`=1 α`/K

)
f (X∗).

CHAPTER 2. PRELIMINARIES 9

2.1.3 Matroid constrained maximization

Cardinality constrained maximization is an important special case of the more general matroid constrained

maximization problem. Given a matroid (X ,I) and a submodular function f , this problem entails finding a

set X ∈I that maximizes f . Finding an optimal solution, X∗, is NP-hard for general submodular functions,

and cannot be approximated to closer than factor (1− e−1) in polynomial time [22].

Given a matroid (X ,I) with rank K and an independent set X , the feasible set is the set of all items not

in X which can be added to X while preserving independence:

XF(X ,I) := {x ∈X \X | X ∪{x} ∈I }.

The greedy algorithm is the same as in the cardinality constrained case, except the `th item is selected

from the feasible set XF(X̄`−1,I) rather than X \ X̄`−1, and items are chosen until no more can be added,

that is XF(X̄K ,I) = /0. If the function f is monotone and non-negative, the greedy algorithm will choose

K items, where K is the rank of the matroid (X ,I). A well-known theorem proven by [23] states that if f

is a monotone, normalized, non-negative, and submodular function, then f (X̄K) ≥ 1
2 f (X∗). Note that this is

weaker than the (1− e−1) guarantee for the cardinality constrained case.

The α–approximate greedy algorithm was shown to have a constant factor guarantee for the matroid

constraint case in Appendix B of [24]:

Theorem 2 (Approximate greedy guarantee [24]). Let (X ,I) be a matroid with rank K and f : 2X →R+ a

non-negative monotone submodular set function. If X̂K is a set chosen by an α-approximate greedy algorithm,

then

f (X̂K)≥
α

α +1
f (X) ∀X ∈I .

Note that while the approximate greedy algorithm is simple and relatively fast, in the best case (α = 1)

the guarantee is 1/2 whereas it is possible to achieve 1− e−1 ' 0.63 guarantees.

The accelerated continuous greedy algorithm (ACGA) recently proposed by [17] optimizes the multilin-

ear extension using coordinate gradient ascent (see pseudocode in Figure 1) and achieves a 1−e−1 guarantee

as the step size goes to zero. For practical implementations the algorithm is discretized using steps of size

δ � 1. During each step the algorithm constructs an independent set by greedily maximizing the multilinear

extension (line 6). After selecting each item, the corresponding component of the vector y is incremented

by δ . After 1/δ independent sets are selected, the fractional solutions represented by y are rounded into an

integral solution by calling the SwapRounding procedure from [25]. In particular, Theorem 2.1 from [25]

states that if X is the output of SwapRounding given a vector y in a matroid polytope (which always holds in

the context of this paper), then X is independent, E[f (X)]≥ F(y), and the probability f (X)< (1− ε)F(y) is

bounded above by exp(−ε2F(y)/8).

The ACGA enjoys strong theoretical performance: [17] guarantees that the expected output (with respect

to randomness from rounding) is at least fraction (1− e−1−δ) of the optimum, which matches the hardness

CHAPTER 2. PRELIMINARIES 10

Algorithm 1 Pseudocode for the Accelerated Continuous Greedy Algorithm
1: procedure ACCELCONTINUOUSGREEDY(I ,F,δ)
2: y←~0
3: for i = 1, . . . ,1/δ do
4: Xi← /0
5: for `= 1, . . . ,K do
6: x`← argmax

x∈XF (Xi,I)

F(y+δ1x)−F(y)

7: yx` ← yx` +δ , Xi← Xi∪ x`
8: end for
9: end for

10: X̂ ← SwapRounding(y)
11: end procedure

bounds. However the ACGA selects 1/δ more items than the greedy algorithm and optimizing the multilinear

extension is generally difficult.

2.1.4 Submodular set cover

Given a positive cost function, c : X → R+, the cost of a set X ⊆ X is defined as C(X) := ∑x∈X c(x).

Given a submodular function f , the submodular set cover problem entails finding a set with minimum cost

such that the submodular function is saturated, that is f (X) = f (X). Finding an optimal solution, X∗, to this

problem is NP-hard for general submodular functions [26]. The cost-benefit greedy algorithm constructs a set

X̄K = {x̄1, . . . , x̄K} by iteratively adding an element x which maximizes the ratio of the benefit (the discrete

derivative of f at the partial set already selected), to the cost of the element c(x). In other words the `th

element satisfies:

x̄` ∈ argmax
x∈X \X̄`−1

∆ f (x | X̄`−1)

c(x)
.

We refer to the optimization problem above as ‘the cost-benefit greedy sub-problem’ at step `. Suppose that

after K iterations the coverage constraint is satisfied, i.e. f (X̄K) = f (X). Theorem 1(ii) given by [26] states

that if f is a monotone, normalized, non-negative, and submodular set function, then the cost of X̄K is close

to optimal,

C(X̄K)≤
(

1+ log
(

f (X̄1)c(x̄K)

∆ f (x̄K | X̄K−1)c(x̄1)

))
C(X∗),

and has matching hardness bounds [22, 26]. An α–approximate cost-benefit greedy algorithm constructs a

solution X̂K by iteratively adding elements which approximately maximize the ratio of benefit to cost. In

particular for some fixed α ≤ 1, the `th element x̂` satisfies:

∆ f (x̂` | X̂`−1)

c(x̂`)
≥ α

∆ f (x | X̂`−1)

c(x)
∀x ∈X \ X̂`−1.

We extend Theorem 1(ii) given by [26] to the approximate setting with a minor modification to their

CHAPTER 2. PRELIMINARIES 11

argument (propagating α throughout):

Theorem 3 (α–approximate cost-benefit greedy [26]). Let c : X → R+ be a positive cost function and f

be a monotone, normalized, non-negative, and submodular function with discrete derivative ∆ f . Then for

the output of any α–approximate cost-benefit greedy algorithm with K elements, X̂K , we have the following

inequality:

C(X̂K)≤
1
α

(
1+ log

(
1
α

f (X̂1)c(x̂K)

∆ f (x̂K | X̂K−1)c(x̂1)

))
C(X∗).

Proof. This result follows immediately from the proof given by [26]. When applying proposition 3 (at the top

of page 389 in [26]), one must introduce the α approximation factor. Propagating the factor throughout the

rest of the proof yields the result. We note that Theorem 1(i),(iii) can similarly be extended to the approximate

setting, but as the results are nearly identical for our purposes, we do not state them.

This guarantee is strong if α ' 1 (meaning that the sub-problem is solved near-optimally), and if ∆ f (x̂K |
X̂K−1)� 0 (meaning that the last element has meaningful contribution to satisfying the coverage constraints).

In the special case that the cost is uniform, e.g. c(x) = c then the cost-benefit greedy algorithm is the same as

the greedy algorithm, since we only maximize the benefit.

2.2 Routing on Graphs

2.2.1 Definitions

Let G (V ,E) denote an undirected graph, where V is the node set and E ⊂ V ×V is the edge set. Explicitly,

an edge is a pair of nodes (i, j) and represents the ability to travel between nodes i and j. If the graph is

directed, then the edge is an ordered pair of nodes, and represents the ability to travel from the source node

i to the sink node j. A graph is called simple if there is only one edge which connects any given pair of

nodes, complete if there is an edge between each pair of nodes, and planar if nodes can be embedded in Rd

in such a way that the edge weight is the distance between nodes. A path is an ordered sequence of unique

nodes such that there is an edge between adjacent nodes. For n ≥ 0, we denote the nth node in path ρ by

ρ(n) and denote the number of edges in a path by |ρ|. Under this notation, ρ(|ρ|) is the last node in path ρ .

A path induces a unique set of edges, and so we use the notation {e ∈ ρ} as short-hand for the set of edges

{(ρ(n−1),ρ(n))}|ρ|n=1.

A graph Gm(Vm,Em) is called a sub-graph of G if Vm ⊆ V and Em ⊆ E . The sub-graph of G induced by

V ′ ⊆ V is the graph G ′(V ′,E ′) where E ′ := {(i, j) ∈ E | i, j ∈ V ′}.

CHAPTER 2. PRELIMINARIES 12

2.2.2 The orienteering problem

The orienteering problem [27] is a classic routing problem which asks for a path which maximizes the

weighted number of nodes visited given a distance constraint. Formally, given node weights {ν j} j∈V , edge

weights {ωe}e∈E , and budget constraint C, the orienteering problem is:

maximize
ρ∈X ∑

j∈ρ

ν j

subject to ∑
e∈ρ

ωe ≤C.

It has many variants such as rewarding edges rather than nodes, diminishing returns reward functions,

team variants, and stochastic variants, to name a few [4].

2.2.3 Solution approaches

Although the orienteering problem is NP-hard, various communities of researchers have developed solution

approaches focusing on different properties of the solution - performance guarantees, on-line bounds, and

runtime.

Complexity theory – From a theoretical standpoint, many variants of the orienteering problem have a

polynomial-time approximation scheme (PTAS), which ensures that a solution is found in polynomial time

(with respect to graph size) with reward at least 1/λ times the optimal. For undirected planar graphs, [28]

gives a routine with λ = 1+ ε , for undirected graphs [29] gives a routine with λ = (2+ ε), and for directed

graphs [6] gives a guarantee in terms of the number of nodes. The complexity of these routines are high order

polynomials - for example [28] gives a λ = 1+ ε PTAS for the planar case which runs in O(V 16d3/2/ε) time,

where d in this context is the dimension of the plane that nodes are embedded in. Even for ε = 1 and d = 2,

this is O(V 46), which is not suitable for real-world applications.

Certifiable performance applications – Practitioners who require guarantees on the quality of the solution

and more modeling flexibility can use mixed integer linear programming (MILP) formulations of the orien-

teering problem (e.g., [30]). Commercial and open source software packages for solving MILP problems are

readily available, and return an optimality gap along with the solution. Such solvers can be configured to

terminate after a set amount of time or when the ratio between the current solution and upper bound becomes

greater than 1/λ . Note that such a solver does not provide a priori guarantees on both quality of solution and

termination time, in contrast to the PTAS mentioned above.

Time-critical applications – Finally, practitioners who require fast execution but not guarantees can use

a heuristic to solve the orienteering problem. There are a number of fast, high quality heuristics with open

CHAPTER 2. PRELIMINARIES 13

Figure 2.1: Illustration of the notation used. Robot k plans to take path ρ , whose edges are represented
by lines. The fill of the lines represent the value of sk

n(ρ). In this example sk
3(ρ) = 0, which means that

ak
3(ρ) = ak

4(ρ) = ak
5(ρ) = 0. The variables zk

j(ρ) are zero if either the robot fails before reaching node j or if
node j is not on the planned path.

source implementations such as [31, 32]. While these heuristics do not provide guarantees, they often produce

near-optimal solutions and are capable of solving large problems in seconds.

2.3 Risky Traversal Model

In this section we define the notation and setting of “Risky traversal” which we use throughout the rest of this

work.

2.3.1 Definitions

Let G be a simple graph with |V | = V nodes. Edge weights ω : E → (0,1] correspond to the probability

of survival for traversing an edge. Time is discretized into iterations n = 0,1, . . . ,N. At iteration n ≥ 1 a

robot following path ρ traverses edge en
ρ = (ρ(n−1), ρ(n)). Robots are indexed by variable k, and for each

robot and iteration we define the independent Bernoulli random variables sk
n(ρ) which are 1 with probability

ω(en
ρ) and 0 with probability 1−ω(en

ρ). If robot k follows path ρ , the random variables ak
n(ρ) := ∏

n
i=1 sk

i (ρ)

can be interpreted as being 1 if the robot ‘survived’ all of the edges taken until iteration n and 0 if the robot

‘fails’ on or before iteration n (see Figure 2.1 and Table 3.1). Given a start node vs, a terminal node vt , and

survival probability ps, we must find K ≥ 1 paths {ρk}K
k=1 (one for each of K robots) such that, for all k, the

probability that ak
|ρk|

(ρk) = 1 is at least ps, ρk(0) = vs, and ρk(|ρk|) = vt . The set of paths which satisfy these

constraints is written as X (ps,ω). One can readily test whether X (ps,ω) is empty as follows: Set edge

weights as − log(ω(e)), and for each node j, compute the shortest path from vs to j, delete the edges in that

path, then compute the shortest path from j to vt . If the sum of edge weights along both paths is less than

− log(ps) then the node is reachable, otherwise it is not. Using Dijkstra’s algorithm this approach can prove

whether X (ps,ω) is empty after O(V 2 log(V)) computations. From here on we assume that X (ps,ω) is

non-empty. Define the indicator function I{x}, which is 1 if x is true (or nonzero) and zero otherwise. Define

CHAPTER 2. PRELIMINARIES 14

the Bernoulli random variables for j = 1, . . . ,V , k = 1, . . . ,K:

zk
j(ρ) :=

|ρ|

∑
n=1

ak
n(ρ)I{ρ(n) = j},

which are 1 if robot k following path ρ visits node j and 0 otherwise (zk
j(ρ) is binary because a path is defined

as a unique set of nodes). Note that zk
j(ρ) is independent of zk′

j (ρ
′) for k 6= k′, and the number of times that

node j is visited by robots following the paths {ρk}K
k=1 is given by ∑

K
k=1 zk

j(ρk).

2.3.2 Poisson binomial distribution

The number of robots which visit a given node is a sum of Bernoulli random variables. The sum of K

Bernoulli random variables with success probabilities {pk}K
k=1 follows the Poisson binomial distribution.

Let Fm be the
(K

m

)
sets with m unique elements from {k}K

k=1. For any A ∈Fm, its complement is denoted

Ac = {k}K
k=1 \A. The probability mass function for the Poisson binomial distribution is

fPB
(
m;{pk}K

k=1
)
= ∑

A∈Fm

∏
i∈A

pi ∏
j∈Ac

(1− p j),

which is the sum of the probabilities of each of the
(K

m

)
ways that exactly m variables are one and K−m are

zero. The special case where pk = p for all k, is referred to as the binomial distribution with parameters K

and p. The binomial distribution has received much study because of its relatively simple form and extensive

applications, but the Poisson binomial distribution is more difficult to analyze because each event has different

probability. In the following lemma, we give a new result which gives sufficient conditions for the cumulative

distribution function of a Poisson binomial random variable to be smaller than that of a specially crafted

binomial random variable.

Lemma 1 (Bound for the Poisson Binomial Distribution). For K > 2, let fPB be a Poisson binomial prob-

ability mass function with parameters {pk}K
k=1, where pk ≤ pK , and let fB be a binomial probability mass

function with parameters K and p = 1
K ∑

K
k=1 pk. Then for M ≤ (1− pK)

(
(K−2) p

1−p

)
+ pK ,

M

∑
m=0

fPB(m)≤
M

∑
m=0

fB(m).

Proof. See the Appendix.

Although one could come up with a similar bound using a binomial distribution with parameters K and

pK , it would become quite loose if K becomes large or if pK is very close to one but p is not. Lemma 1 is less

susceptible to these effects since it uses the mean of {pk}K
k=1. We use this result later to derive performance

bounds for our algorithms (by setting m as the number of robots which survive to the destination), but it has

much broader uses outside the context of the TSO problem.

Chapter 3

The Team Surviving Orienteers Problem

Consider the problem of delivering humanitarian aid in a disaster or war zone with a team of robots. There

are a number of sites which need the resources, but traveling among these sites is dangerous. While the aid

agency wants to deliver aid to every city, it also seeks to limit the number of assets that are lost. We formalize

this problem as an extension of the team orienteering problem [27, 8], whereby one seeks to find a collection

of paths in a doubly weighted graph which maximizes the sum of weights along all of the unique nodes in

the paths while ensuring that the sum of edge weights in each path is less than a given budget. In the aid

delivery case, the goal is to maximize the expected number of sites visited by at least one of the vehicles,

while keeping the return probability for each vehicle above a specified survival threshold (i.e., while fulfilling

a chance constraint for the survival of each vehicle). This can be seen as an extension of the team orienteering

problem where edge weights are the negative log of the probability of surviving an edge, the budget is the

negative log of the survival probability threshold, and node weights are the probability that the node is visited

by at least one robot in the team. We call this problem formulation the “Team Surviving Orienteers” (TSO)

problem, illustrated in Figure 3.1. The TSO problem builds on previous work in robotics, vehicle routing, and

orienteering problems by considering risky traversal: when a robot traverses an edge, there is a probability

that it is lost and does not visit any other nodes. This creates a complex, history-dependent coupling between

the edges chosen and the distribution of nodes visited, which precludes the application of existing approaches

available for solving the traditional orienteering problem.

The main goal of this chapter is to devise constant-factor approximation algorithms for the TSO problem,

its extension to an on-line setting, and its extension to heterogeneous teams. Our key technical insight is that,

under mild conditions, the expected number of nodes visited (or functions thereof) satisfies a diminishing

returns property known as submodularity, which for set functions means that f (A∪B)+ f (A∩B)≤ f (A)+

f (B). Building upon this insight, we develop a linearization procedure for the problem, which leads to a

greedy algorithm that enjoys a constant-factor approximation guarantee. We emphasize that while a number

of works have considered orienteering problems with submodular objectives [9, 6, 7] or chance constraints

[33, 34] separately, the combination of the two makes the TSO problem novel, as detailed next.

15

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 16

Figure 3.1: Illustration of the TSO problem applied to an aid delivery scenario. The objective is to maximize
the expected number of sites visited by at least one robotic convoy. Travel between sites is risky (as empha-
sized by the gray color scale for each edge), and paths must be planned to ensure that the return probability
for each vehicle is above a survival threshold.

The orienteering problem (OP) has been extensively studied from the perspective of combinatorial opti-

mization [4, 5] and is known to be NP-hard. Over the past decade a number of constant-factor approximation

algorithms have been developed for special cases of the problem [29]. Below we highlight several variants

which share either similar objectives or constraints as the TSO problem.

The submodular orienteering problem is a generalization of the orienteering problem which considers

finding a single path which maximizes a submodular reward function of the nodes visited. The recursive

greedy algorithm proposed in [6] yields a solution in quasi-polynomial-time with reward lower bounded by
OPT

log(OPT) , where OPT is the optimum value. More recently, [7] developed a (polynomial-time) generalized

cost-benefit algorithm and applied it to the submodular orienteering problem. The authors show that the

output of their algorithm is lower bounded by 1
2 (1−1/e)OPT∗, where OPT∗ is the optimum given a tighter

budget (i.e., OPT∗ ≤ OPT). In our context, OPT∗ roughly corresponds to the maximum expected number of

nodes which can be visited when the survival probability threshold is increased to
√

ps. For example, if the

original problem has ps = 0.8, then the guarantees provided by [7] would be with respect to the maximum

expected number of nodes visited when the survival probability threshold is 0.894. Depending on the node

and edge weights, this may be significantly different than the optimum for the original problem, making the

bound loose. Our work extends the submodular orienteering problem to the team setting for a specific class

of submodular functions (i.e., the coupled node rewards and edge weights which come from risky traversal)

and we provide guarantees with respect to the optimum of the original problem.

In the orienteering problem with stochastic travel times proposed in [9], travel times are stochastic and

reward is accumulated at a node only if it is visited before a deadline. This setting could be used to solve

the single robot special case of the TSO problem by using a logarithmic transformation on the survival

probabilities, but [9] does not provide any polynomial-time guarantees. In the risk-sensitive orienteering

problem [34], the goal is to maximize the sum of rewards (which is history independent) subject to a constraint

on the probability that the path cost is large. The TSO problem unifies the models of the risk-sensitive and

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 17

stochastic travel time variants of the orienteering problem by considering both a submodular objective and a

chance constraint on the total cost. In the TSO, we seek a set of paths for a team of robots which maximizes

a history dependent objective function, specifically functions of the expected number of nodes visited by the

team of robots. We also provide extensions for functions of multiple visits to a node, which allows broad

applications such as informative path planning and property classification. Furthermore, we give an on-line

version of the algorithm and provide a constant-factor guarantee for the heterogeneous team version of this

problem (referred to as heterogeneous TSO –HTSO–), where robots may have different capabilities.

A second closely-related area of research is represented by the vehicle routing problem (VRP) [11, 12],

which is a family of problems focused on finding a set of paths that maximize quality of service subject

to budget or time constraints. The probabilistic VRP (PVRP) considers stochastic edge costs with chance

constraints on the path costs – similar to the risk-sensitive orienteering and the TSO problem constraints. The

authors of [35] pose the simultaneous location-routing problem, where both paths and depot locations are

selected to minimize path costs subject to a probabilistic connectivity constraint, which specifies the average

case risk rather than individual risks. More general settings were considered in [36], which considers several

distribution families (such as the exponential and normal distributions), and [37], which considers non-linear

risk constraints. In contrast to the TSO problem, the PVRP requires every node to be visited and seeks to

minimize the travel cost. In the TSO problem, we require every path to be safe and maximize a function of

the number of visits to each node.

A third related branch of literature is the informative path planning problem (IPP), which seeks to find a

set of paths for mobile robotic sensors in order to maximize the information gained about an environment.

One of the earliest IPP approaches [15] extends the recursive greedy algorithm of [6] using a spatial de-

composition to generate paths for multiple robots. They use submodularity of information gain to provide

performance guarantees. Sampling-based approaches to IPP were proposed by [38], which come with asymp-

totic guarantees on optimality. The structure of the IPP is most similar to that of the TSO problem (since it

is a multi-robot path planning problem with a submodular objective function which is non-linear and history

dependent), but it does not capture the notion of risky traversal which is essential to the TSO problem. Our

general approach is inspired by works such as [16], but for the TSO problem we are able to further exploit

the problem structure to derive constant-factor guarantees for our polynomial-time algorithm.

The contribution of this chapter is sevenfold. First, we propose the Team Surviving Orienteers (TSO)

problem. By considering a multi-robot (team) setting with submodular node rewards (e.g. expected number

of nodes visited or information gained about node random variables), we extend the state of the art for

the submodular orienteering problem, and by maximizing a submodular quality of service function (with

guarantees on solution quality), we extend the state of the art in the probabilistic vehicle routing literature.

From a practical standpoint, as discussed in Section 3.1.1, the TSO problem represents a “survivability-

aware” counterpart for a wide range of multi-robot coordination problems such as vehicle routing, patrolling,

and informative path planning. Second, we show that several broad classes of objective functions for the TSO

problem are submodular, provide a linear relaxation of the single robot TSO problem (which can be solved

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 18

Variable Description
en

ρ The nth edge in path ρ , from node ρ(n−1) to ρ(n)
ω(e) Probability robot survives edge e
ps Survival threshold for each robot
sk

n(ρ) One if robot k following path ρ survives edge en
ρ

ak
n(ρ) One if robot k following path ρ survives to iteration n

zk
j(ρ) One if robot k following path ρ visits node j

p j(m,XK) Probability that m of the K robots following paths in
set XK visit node j

Table 3.1: Summary of notation for the TSO problem.

as a standard orienteering problem), and show that the solution to the relaxed problem provides a close

approximation of the optimal solution of the single robot TSO problem. Third, we propose an approximate

greedy algorithm which has polynomial complexity in the number of nodes and linear complexity in the team

size, and prove that the value of the output of our algorithm is lower bounded by (1− e−ps/λ)OPT, where

OPT is the optimum value, ps is the survival probability threshold, and 1/λ ≤ 1 is the approximation factor

of an oracle routine for the solution to the orienteering problem (we note that, in practice, ps is usually close

to unity). Fourth, we give a two-step greedy algorithm which selects two paths simultaneously and has a

stronger 1− exp(− 2
2−ps

ps
λ
) guarantee. Fifth, we formalize an on-line version of the TSO problem which

enforces the survival constraint while taking into account the survival/failure events as they happen. Sixth,

we discuss how to modify our algorithm to form heterogeneous teams, with similar performance guarantees

and application scenarios. Finally, we demonstrate the effectiveness of our algorithm for large problems using

simulations by solving a problem with 900 nodes and 25 robots. The work in this chapter is based on the

conference paper [39] and the journal paper [40].

3.1 Problem Statement

In this section we give the formal problem statement for the static TSO problem and on-line TSO problem,

provide an example, and give sufficient conditions for the objective function to be submodular.

3.1.1 Static TSO problem

We use the notation and risky traversal model outlined in Section 2.3. A summary of the notation is given in

Table 3.1. The number of robots which visit node j is distributed according to a Poisson binomial distribution.

Given that K robots follow the paths {ρk}K
k=1, we write the probability that exactly m robots visit node j as

p j

(
m, {ρk}K

k=1

)
:= fPB

(
m;
{
E[zk

j(ρk)]
}K

k=1

)
.

Finally, let h j :Z+→R+ be a function that maps the number of visits to node j to the reward accumulated

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 19

at that node. Then the TSO problem is formally stated as:

Team Surviving Orienteers (TSO) Problem: Given a graph G , edge weights ω , survival prob-

ability threshold ps and team size K, maximize the expected reward of the node visits:

maximize
ρ1,...,ρK

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
subject to P

{
ak
|ρk|(ρk) = 1

}
≥ ps k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρk|) = vt k = 1, . . . ,K

Remarks – The objective represents the expected reward obtained by the K robots by visiting the nodes of

the graph. The first set of constraints enforces the survival probability, the second and third sets of constraints

enforce the initial and final node constraints. In particular, the survival probability threshold ps serves two

purposes: first, it requires that, on average, ps K robots will reach node vt safely, and second, it enforces that

risk is distributed fairly (i.e., no robot fails with too high a probability).

The model we use for risky traversal assumes that the survival random variables sk
n(ρ) are independent

for all n and k. This is consistent with assumptions typical of navigation in unknown environments (e.g.,

SLAM applications where the environment is represented by occupancy grids), and navigation in adverse

environments (e.g., due to piracy [41] or storms [42]).

The TSO problem can be viewed as a set maximization problem with a cardinality constraint, where

the domain of optimization is the set X containing K copies of each path in X (ps,ω). Crucially, if the

objective function is a submodular function, then Theorem 1 guarantees that the greedily selected set of

paths will achieve reward close to the optimum – a central result for this chapter. Sufficient conditions for

submodularity will be presented in Section 3.1.4. First, we state an online version of the TSO problem and

provide an illustrative example.

3.1.2 On-line TSO problem

In the static TSO problem, the paths {ρk}K
k=1 are computed at the beginning and then followed by the

robots until the last iteration, with no path updates during execution. However at iteration n the variables

{ak
n(ρk)}K

k=1 are observed, and this knowledge could be used to update the paths in order to account for the

realized robot failures. Specifically, we seek to re-plan the paths surviving robots take such that the expected

number of robots which reach node vt safely is still psK (consistent with the initial safety threshold), and that

the risk is still distributed fairly. This can be accomplished by choosing a new survival probability threshold

as follows.

Define the list of surviving robots at iteration n as Un := {k ∈ {1, . . . ,K} : ak
n(ρk) = 1}. Also, for robots

k ∈Un, let the maximum probability that robot k can reach node vt be denoted by ψk. The survival probability

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 20

threshold at iteration n, denoted as pn
s , is computed as the solution to the optimization problem:

minimize
p∈(0,1)

p

subject to psK ≤ ∑
k∈Un

min{p,ψk}.

Intuitively, pn
s represent the smallest probability threshold p such that the average number of robots which

reach vt safely will be no smaller then psK, while accounting for the fact that the maximum probability with

which robot k can reach node vt is ψk. If the minimization problem is infeasible, this means that for any set

of paths, the expected number of robots that will reach node vt safely is smaller than psK, and so pn
s is simply

set to one. We then define the on-line TSO problem as:

On-line Team Surviving Orienteers Problem: At iteration n, given a graph G , edge weights

ω , survival probability threshold pn
s , paths {ρn−1

k }K
k=1, and the list of surviving robots Un, select

new paths {ρn
k }K

k=1 in order to maximize the cumulative rewards:

maximize
ρn

1 ,...,ρ
n
K

V

∑
j=1

E

[
h j

(
∑

k∈Un

zk
j(ρ

n
k)

)
| ak

n(ρ
n
k) = 1, k ∈Un

]
subject to ρ

n
k (n
′) = ρ

n−1
k (n′) n′ = 1, . . . ,n, k ∈Un

ρ
n
k (|ρn

k |) = vt k ∈Un

P
{

ak
|ρn

k |
(ρn

k) = 1
}
≥min{pn

s ,ψk} k ∈Un

The objective is to maximize the expected cumulative reward conditioned on the set of surviving robots. The

first constraint enforces continuity with actions taken up to iteration n, the second constraint enforces that

each path ends at vt , and the third constraint enforces the survival probability constraint. Note that if pn
s = 1,

this means that the number of robots which reach node vt is expected to be less than psK regardless of the

paths chosen. If for any robot k, pn
s > ψk, then this robot will take the one of the safest paths to vt , and will

reach vt with probability ψk.

3.1.3 Example

An example of the TSO problem with a reward function that is one if the node is visited at least once and

zero otherwise, is given in Figure 3.2(a). There are five nodes, and edge weights are shown next to their

respective edges. Two robots start at node 1, and must end at virtual node 1′ (which is a copy of node 1) with

probability at least ps = 0.75. Path ρ1 = {1,3,5,2,1′} is shown in Figure 3.2(b), and path ρ2 = {1,4,5,2,1′}
is shown alongside ρ1 in Figure 3.2(c). Robot 1 visits node 3 with probability 1.0 and node 5 with probability

0.96. Robot 2 also visits node 5 with probability 0.96 and so the probability at least one robot visits node 5 is

E [1− p5(0,{ρ1,ρ2})] = 0.9984. The probability that robot 1 returns safely is E
[
a1

4(ρ1)
]
= 0.794. For this

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 21

simple problem, ρ1 and ρ2 are two of three possible paths (the third is {1,3,5,4,1′}). The expected number

of nodes visited by the first robot following ρ1 is 3.88, and for two robots following ρ1 and ρ2 it is 4.905.

Since there are only five nodes, it is clear that adding more robots must yield diminishing returns.

(a) Graph G (b) Path for one robot (c) Path for two robots

Figure 3.2: (a) Example of a TSO problem. Robots start at the bottom (node 1) and darker lines correspond
to safer edges. (b) A single robot can only visit four nodes safely. (c) Two robots can visit all nodes safely. It
is easy to verify that adding more robots yields diminishing returns.

3.1.4 Sufficient conditions for submodular objective

The domain of optimization for the TSO problem with K robots is the set X that contains K copies of each

element in X (ps,ω). With mild conditions on the functions {h j}Vj=1, the objective function for the TSO

problem (and also for the on-line TSO problem) is submodular, as stated below.

Lemma 2 (Submodularity of the TSO problem objective). Consider a set of paths XK := {ρk}K
k=1 and the

objective function

J(XK) =
V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
.

For L ≥ 1, the objective function has discrete derivative with respect to path ρL at partial solution XL−1 =

{ρ`}L−1
`=1 ,

∆J(ρL | XL−1) =
V

∑
j=1

E
[
zL

j (ρL)
]

δ j(XL−1),

where we define the set function,

δ j(XK) := E

[
h j

(
1+

K

∑
k=1

zk
j(ρk)

)]
−E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
.

Furthermore, the objective function is submodular if for all j, −δ j(X) is a monotone function of X.

Proof. Let L ≥ 1. The random variable zL
j (ρL) is independent of the random variables {z`j(ρ`)}L−1

`=1 . Hence

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 22

from the definition of the discrete derivative and the tower property one has:

∆J(ρL | XL−1) =
V

∑
j=1

E[zL
j (ρL)]E

[
h j

(
1+

L−1

∑
`=1

z`j(ρ`)

)]

+
(
1−E

[
zL

j (ρL)
]
−1
)
E

[
h j

(
L−1

∑
`=1

z`j(ρ`)

)]
,

which upon simplification yields the first statement of the lemma.

We now consider the second statement of the lemma. By definition, a set function is submodular if the

negative of its discrete derivative is a monotone function. If −δ (j) is monotone, then the negative of the

discrete derivative is also monotone (since E[zL
j (·)] ≥ 0 and the sum of monotone functions is monotone).

Hence the objective function is submodular.

Note that we can easily extend this result to the on-line case by conditioning on {ak
n(ρk)}K

k=1. For the

remainder of this chapter we will restrict our attention to TSO problems that fulfill the assumptions of Lemma

2. This class of problems is indeed large; we show several examples in the next section.

3.2 Applications and Variants

The TSO problem has many applications which have submodular reward functions, which means that a

greedily selected set of paths will give near-optimal rewards (as discussed in Section 2.1.2). We provide

some specific examples of such applications below.

3.2.1 Aid delivery (single-visit rewards)

Consider an aid delivery problem where robots deliver a resource to sites with different demands. The reward

accumulated for delivering resources to node j is the demand d j ≥ 0, and reward is only accumulated for the

first visit. Formally, for XK = {ρk}K
k=1, the objective function is

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
=

V

∑
j=1

E

[
d j I

{
K

∑
k=1

zk
j(ρk)> 0

}]

=
V

∑
j=1

d j (1− p j(0,XK)).

We refer to this form of objective function as an single-visit reward function, because reward is only accumu-

lated for the first visit to a node. The following lemma shows that such reward functions are submodular:

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 23

Lemma 3 (Submodularity of single-visit rewards). For d j ≥ 0, the single-visit reward function,

V

∑
j=1

d j(1− p j(0,XK)),

is a normalized, non-negative, monotone, and submodular function with discrete derivative with respect to

ρL at partial solution XL−1 = {ρ`}L−1
`=1

V

∑
j=1

E[zL
j (ρL)]d j p j(0,XL−1).

Proof. Non-negativity follows from the fact that d j ≥ 0 and p j(·)≥ 0. The normalized property follows since

p j(0, /0) = 1, and since p j(0,X) is a decreasing function of X , the objective function is monotone. For the

single-visit reward function the quantity,

−δ j(X) =−d j p j(0,X),

is monotone, so using Lemma 2 we conclude that the objective function is submodular.

3.2.2 Property classification (multi-visit rewards)

Now consider a multiple visit reward function where reward h j(m) ≥ 0 is accumulated after m visits to

node j. A concrete example is a classification scenario, where each robot measures a binary property of

a node imperfectly, and the objective is to minimize the posterior variance of the property distribution. If

one uses a Haldane prior, which is the β (0,0) function [43], the posterior variance after m measurements is
1

4(m+1) . Setting the node priorities to h j(m) =
(

1
4 −

1
4(m+1)

)
gives a multi-visit reward function. Maximizing

the expected cumulative rewards h j(m) is equivalent to minimizing the expected posterior variance of the

distribution of the feature probabilities.

With fairly mild conditions on the rewards h j, the multi-visit reward function is submodular, as stated in

the following lemma:

Lemma 4 (Submodularity of multi-visit rewards). Let h j : Z+ → R+ be an increasing function with finite

difference ∆h j(m) = h j(m)−h j(m−1) which satisfies the diminishing returns property

∆h j(m+1)≤ ∆h j(m), m≥ 1

and h j(0) = 0. Then the reward function at the solution set XK = {ρk}K
k=1,

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
,

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 24

is a normalized, non-negative, monotone, and submodular function with discrete derivative with respect to

ρL at partial solution XL−1 = {ρ`}L−1
`=1 :

V

∑
j=1

E[zL
j (ρL)]

L−1

∑
m=0

∆h j(m+1)p j(m,XL−1).

Proof. The reward function is non-negative because h j(·)≥ 0 and normalized because h j(0)= 0. The number

of visits to a node, ∑
K
k=1 zk

j(ρk), is a monotone function. Since h j is an increasing function of the number of

visits to a node, this implies that the objective function is monotone. From the definition of the multi-visit

reward function we have

δ j(X) =
|X |

∑
m=0

∆h j(m+1)p j(m,X).

Consider Y = X ∪ x and define γ ∈ [0,1] such that p j(m,Y) = (1− γ)p j(m,X)+ γ p j(m− 1,X). From the

definition of δ j(X) and using the properties of h j, we have

δ j(X)−δ j(Y) =
|X |

∑
m=0

∆h j(m+1)p j(m,X)

−
|X |+1

∑
m=0

∆h j(m+1)(γ p j(m−1,X)+(1− γ)p j(m,X))

= γ

|X |

∑
m=1

(∆h j(m+1)−∆h j(m+2))p j(m,X)

≥ 0.

The first equality is derived by expressing p j(m,Y) in terms of p j(m,X), the second from simplification and

the fact that p j(|X |+1,X) = 0, and the inequality is due to the diminishing returns property of h j.

This implies that −δ j(X) is monotone and so from Lemma 2 we have that the multi-visit objective func-

tion is submodular with the stated discrete derivative.

Note that the objective function of the feature classification example at the beginning of this subsection

satisfies the conditions of Lemma 4, and hence it is a normalized, non-negative, monotone and submodular

function.

3.2.3 Informative path planning

The multi-visit reward function can also model an informative path planning problem, where each node

has a random variable Yj, and the objective is to select measurements in order to minimize the entropy of the

posterior distribution of {Yj}Vj=1 given the measurements. Setting h j(m) to be the information gained about Yj

after taking m measurements, the TSO problem becomes an informative path planning problem. It is easy to

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 25

verify that information functions satisfy the conditions of Lemma 4: the information gained from taking zero

measurements is zero, information is an increasing function, and it satisfies the diminishing returns property.

Hence we have that the informative path planning application of the TSO problem has a submodular objective

function.

3.2.4 Variants

Edge rewards Each of the formulations above can easily be extended to a scenario where the goal is to

maximize a function of the edges traversed. Here we describe how to extend the single-visit case, but a

similar approach can be used for any of the other reward functions described above. Define zk
i, j(ρ) to indicate

whether robot k following path ρ takes edge (i, j), and for (i, j) ∈ E define pi, j(m,{ρk}K
k=1) as in the single

visit case with zk
j(·) replaced by zk

i, j(·) (if (i, j) /∈ E , then set pi, j(0, ·) = 1). Instead of node rewards d j, we

now have edge rewards di, j (with di, j = 0 if (i, j) /∈ E), and the objective function is

V

∑
i=1

V

∑
j=1

di, j (1− pi, j(0,{ρk}K
k=1)).

This variant could be used to model a patrolling problem, where the goal is to inspect the maximum number

of roads subject to the survival probability threshold. Such problems also occur when planning scientific

missions (e.g., on Mars), where the objective is to execute the most important traversals.

Visit risks Consider a scenario where the action of visiting a node is risky: a robot visiting node j survives

with probability υ(j) and fails with probability 1−υ(j). We can easily incorporate this additional random-

ness into the TSO problem by using a directed graph to represent the traversals and directed edge weights,

ωd(i, j) = ω(i, j)υ(j), which incorporate the visit risk.

Multiple budgets We can also consider variants where there are multiple budgets, such as survival prob-

ability, distance, and time. Provided the objective is not a function of these additional budgets, our analysis

extends easily.

Non-homogeneous Traversal Time The formal definitions of the static and on-line TSO problem above

assume that exactly one edge is traversed per iteration by each robot. This greatly simplifies notation by

allowing us to index paths with the time variable n, but is not a necessary assumption for our results.

For the static variant, homogeneous traversal time is purely a notational convenience and arbitrary times

can be handled without modifying the problem statement. This is because the variables ak
N are evaluated from

the perspective of time zero and do not depend on the number of events between time zero and time N (and

hence are independent of how ‘time’ is split).

The on-line variant is slightly more involved. At any given time t (now not necessarily the same as the

index n for each path), each robot will either be at the terminal node, or be travelling to node ρ t ′
k (n(ρ

t ′
k , t)),

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 26

where t ′ is the last time that robot k’s path was updated, and n(ρ t ′
k , t) is defined as the index of the first node

visited after time t in path ρ t ′
k . If we allow mid-course corrections (for example, with aerial vehicles), then

the continuity constraints become

ρ
t
k(n
′) = ρ

t ′
k (n
′) n′ = 1, . . . ,n(ρ t ′

k , t)−1, k ∈Ut ,

and if we do not allow mid-course corrections (for example, on road networks), then the continuity constraints

become

ρ
t
k(n
′) = ρ

t ′
k (n
′) n′ = 1, . . . ,n(ρ t ′

k , t), k ∈Ut .

In either case the fundamental structure of the problem remains the same as when traversal times are

homogeneous.

3.3 Approximate Solution Approach to the Static TSO

As discussed in Section 3.1.4, we restrict our attention to TSO problems with objective functions that fulfill

the assumptions of Lemma 2. Our approach to solving the TSO problem is then to exploit submodularity

of the objective function using an α–approximate greedy algorithm (as defined in Section 2.1.2). In Section

3.3.1 we present a linearization of the greedy sub-problem, which in the context of the TSO problem entails

finding a path which maximizes the discrete derivative of the objective function, at the partial set already

constructed. We use this linearization to find a polynomial-time (ps/λ)–approximate greedy algorithm for

finding the best path given a partial solution. Leveraging this result, we describe our GreedySurvivors

algorithm for the TSO problem in Section 3.3.2, discuss its approximation guarantee in Section 3.3.3, and

characterize its computational complexity in Section 3.3.4.

3.3.1 Linear relaxation for the greedy sub-problem

Given a previously selected set of paths, XL−1 = {ρ`}L−1
`=1 , the greedy sub-problem for the TSO problem at

step L requires us to find a path ρL from the set X \XL−1 which maximizes the discrete derivative of the

objective function at XL−1 with respect to ρL. Note that because we define X to have as many copies of each

path as the maximum number of robots we plan for, the set X \ {ρ`}L−1
`=1 always contains at least one copy

of each path in X (ps,ω). Since the discrete derivative of the objective function at XL−1 with respect to any

of the copies of a path ρ ∈X (ps,ω) is the same, we can solve the greedy sub-problem by only considering

elements in the set X (ps,ω). Even with this simplification, the greedy sub-problem is very difficult for

the TSO problem: it requires finding a path which maximizes submodular node rewards subject to a budget

constraint (this is the submodular orienteering problem). No polynomial-time constant-factor approximation

algorithm is known for general submodular orienteering problems [6], and so in this section we design one

specifically for the greedy sub-problem for the TSO problem.

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 27

Under the assumptions of Lemma 2, the discrete derivative is of the form ∑
V
j=1E[zL

j (ρL)]δ j(XL−1), for

δ j(XL−1) ≥ 0. We relax the problem of maximizing the discrete derivative by replacing the probability that

robot L traversing path ρ visits node j, E[zL
j (ρ)], with the maximum probability that any robot following a

feasible path can visit node j, ζ j:

ζ j := max
ρ∈X (ps,ω)

E[zL
j (ρ)].

For a given graph this upper bound can be found easily by using Dijkstra’s algorithm with log transformed

edge weights ωO(e) :=− log(ω(e)). Let I j(ρ) be equal to 1 if node j is in ρ and 0 otherwise. In the relaxed

problem we are looking to maximize the sum:

∆J̄(ρ | XL−1) :=
V

∑
j=1

I j(ρ)ζ jδ j(XL−1),

which represents an optimistic estimate of the actual discrete derivative of our objective function at XL−1 with

respect to ρ . We can find the (approximately) best path by solving an orienteering problem as follows. Recall

that for the orienteering problem we provide node weights and a constraint on the sum of edge weights (re-

ferred to as a budget), and find the path which maximizes the node rewards along the path while guaranteeing

that the sum of edge weights along the path is below the budget.

We use the graph GO, which has the same edges and nodes as G but has edge weights ωO(e) and node

rewards νL(j) = ζ jδ j(XL−1). Solving the orienteering problem on GO with budget− log(ps) will return a path

that maximizes the sum of node rewards (which is ∆J̄(ρ | XL−1)), and satisfies ∑e∈ρ− log(ω(e))≤− log(ps),

which is equivalent to P{aL
|ρ|(ρ) = 1} ≥ ps.

Although solving the orienteering problem is NP-hard, there are many ways to approximate it within a

constant factor 1/λ (as discussed in Section 2.2.2). Using such an oracle, we have the following guarantee:

Lemma 5 (Single robot constant-factor guarantee). Let Orienteering be a routine that solves the orien-

teering problem within constant-factor 1/λ , that is for node weights ν(j) = ζ jc j, path ρ̂ output by the routine

and any path ρ ∈X (ps,ω),
V

∑
j=1

I j(ρ̂)ν(j)≥ 1
λ

V

∑
j=1

I j(ρ)ν(j).

Then for any c j > 0 and any ρ ∈X (ps,ω), the cumulative rewards for a robot following path ρ̂ satisfies

V

∑
j=1

c jE[z j(ρ̂)]≥
ps

λ

V

∑
j=1

c jE[z j(ρ)].

Proof. By definition of ζ j and the Orienteering routine, we have:

V

∑
j=1

c jE[z j(ρ)]≤
V

∑
j=1

I j(ρ)ζ jc j ≤ λ

V

∑
j=1

I j(ρ̂)ζ jc j.

Path ρ̂ is feasible, so I j(ρ̂)psζ j ≤ I j(ρ̂)ps ≤ E[z j(ρ̂)], which combined with the equation above completes

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 28

the proof.

This is a remarkable statement because it guarantees that, if we solve the orienteering problem near-

optimally, choose c j = δ j(XL−1) and ps is not too small, the solution to the linear relaxation will give nearly

the same result as the optimal solution to the greedy sub-problem at step L for the TSO problem. The

intuition is that for ps close to unity no feasible path can be very risky and so the probability that a robot

actually reaches a node will not be too far from the maximum probability that it could reach the node.

3.3.2 Greedy approximation for the TSO problem

Using this relaxation with c j = δ j(XL−1) we have an ps/λ–approximate algorithm for the greedy sub-problem

at step L. This gives us a (1− e−ps/λ)–approximate greedy algorithm for maximizing the discrete derivative

of the objective function for the variants discussed in Section 3.2, as detailed next.

Define the method Dijkstra(G , i, j), which returns the length of the shortest path from i to j on the

edge weighted graph G using Dijkstra’s algorithm. Given an edge weighted graph G and node rewards

ν , the Orienteering(G ,ν) routine solves the orienteering problem (assuming vs = 1, vt = V and budget

− log(ps)) within factor 1/λ , and returns the best path. Pseudocode for our algorithm is given in Algorithm

2. We begin by forming the graph GO with log-transformed edge weights ωO(e), and then use Dijkstra’s

algorithm to compute the maximum probability that a node can be reached. For each robot k = 1, . . . ,K, we

solve an orienteering problem to greedily choose the path that maximizes the discrete derivative of J̄.

Given a node index j and set of paths X , the update(j,X) routine returns the value of δ j(X) as detailed

below.

Algorithm 2 Pseudocode for the approximate greedy algorithm applied to the TSO problem.
1: procedure GREEDYSURVIVORS(G ,K)
2: Form GO from G , such that vs = 1, vt =V
3: for j = 1, . . . ,V do
4: ζ j← exp(−Dijkstra(GO,1, j))
5: end for
6: for k = 1, . . . ,K do
7: for j = 1, . . . ,V do
8: c j← Update(j,{ρ`}k−1

`=1)
9: νk(j)← ζ jc j

10: end for
11: ρk← Orienteering(GO,νk)
12: end for
13: end procedure

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 29

Updates for single-visit reward functions– Recall from Lemma 3 that for the single-visit reward function

δ j(XL) = d j p j(0,XL),

which can be computed efficiently. Initially, δ j(/0) = d j. When adding ρL, δ j(XL) updates to

δ j(XL)←
(
1−E[zL

j (ρL)]
)

δ j(XL−1),

which can be interpreted as the value of the node times the probability that none of the first L robots visit

node j. The complexity of updating the node weights is O(V).

Updates for multi-visit reward functions– Recall from Lemma 4 that for the multi-visit reward function

δ j(XL) =
|XL|

∑
m=0

∆h j(m+1)p j(m,XL),

which can be updated by tracking the probability distribution of the number of visits to each node. The

probability p j(m,XL) can be computed recursively, since we have

p j(m,XL) = E[zL
j (ρL)]p j(m−1,XL−1)

+(1−E[zL
j (ρL)])p j(m,XL−1).

Updating the node weights requires O(L+1)≤ O(K) computations.

3.3.3 Approximation guarantees

In this section we combine the results from Section 2.1.2 and 3.3.1 to prove that the output of the GreedySurvivors

algorithm is close to the optimal solution to the TSO problem. Specifically, we compare a team with L ≥ K

robots using greedily selected paths to a team with K optimally selected paths, because this gives us a way to

compute tighter bounds on the performance of our algorithm.

Theorem 4 (Multi-robot constant-factor guarantee). Given an Orienteering routine with constant-factor

guarantee 1/λ as in Lemma 5, assign robot ` path ρ̂` corresponding to the path returned by the Orienteering

routine on graph GO with node weights ν j = ζ jδ j({ρ̂k}`−1
k=1).

Let X∗K = {ρ∗k }K
k=1 be an optimal solution to the TSO problem with K robots. For some L ≥ K and

1 ≤ ` ≤ L, suppose the objective is a normalized, non-negative, monotone, and submodular function with

discrete derivative of the form

∆J(ρ` | X`−1) =
V

∑
j=1

E[z`j(ρ`)]δ j(X`−1).

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 30

Then the expected cumulative reward gathered by a team of L robots with types and paths X̂L = {ρ̂`}L
`=1 is at

least a fraction γ =
(

1− e−
psL
λK

)
of the optimal:

V

∑
j=1

E

[
h j

(
L

∑
`=1

z`j(ρ̂`)

)]
≥ γ

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρ
∗
k)

)]
.

Proof. The objective is a set function with domain X , which has L copies of each feasible path. Hence for

1 ≤ ` < L, the set X \ {ρ̂k}`−1
k=1 will always contain at least one copy of each path in X (ps,ω), and since

the discrete derivative evaluated at any of the copies of the same path is the same, we can solve the greedy

sub-problem by only considering elements in X (ps,ω). Using Lemma 5 with c j chosen appropriately for

the objective function, we have a constant-factor guarantee α = ps/λ for the problem of finding the path

from X (ps,ω) that maximizes the discrete derivative of our objective function. Now applying Theorem 1

to our objective function (which by assumption is normalized, non-negative, monotone, and submodular) we

have the desired result.

In many scenarios of interest ps is quite close to 1, since robots are typically valuable or difficult to

replace. For L = K this theorem gives an 1− e−ps/λ guarantee for the output of our algorithm. This bound

holds for any team size, and guarantees that the output of the (polynomial-time) linearized greedy algorithm

will have a similar reward to the output of the (exponential time) optimal algorithm.

Taking L > K gives a practical way of testing how much more efficient the allocation for K robots could

be. For example, if L ps
λ

= 6K we have a (1− 1/e6) ' 0.997 factor approximation for the optimal value

achieved by K robots. We use this approach to generate tight upper bounds for our experimental results. Note

that this theorem also guarantees that as L→∞, the output of our algorithm has at least the same value as the

optimum, which emphasizes the importance of guarantees for small teams.

Next we use the Poisson binomial bound from Section 2.3.2 to bound the probability of worst-case events,

namely that a small number of robots reach node vt safely.

Lemma 6 (Worst-case Probability Bounds). For K > 2, let XK = {ρk}K
k=1 be a set of paths which is a

feasible solution to the TSO problem. Denote pK := maxk E[zk
vt (ρk)] and let µ := 1

K ∑
K
k=1E[zk

vt (ρk)] ≥ ps be

the expected fraction of robots which will reach node vt . Then for M ≤ b(1− pK)(K− 2) µ

1−µ
+ pKc, the

probability that M or fewer robots reach node vt decreases exponentially as M decreases:

M

∑
m=0

pvt (m,XK)≤ exp
(
−2K(µ−M/K)2) .

Proof. Recall that if robots follow paths XK , the probability that m robots reach node vt is pvt (m,XK), which

is the Poisson binomial probability mass function evaluated at m with parameters
{
E[zk

vt (ρk)]
}K

k=1. Using

Lemma 1, we have that the Poisson binomial cumulative distribution function is bounded by the binomial

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 31

cumulative distribution function with parameters K and µ . Applying Hoeffding’s inequality,

M

∑
m=0

pvt (m,XK)≤
M

∑
m=0

(
K
m

)
µ

m(1−µ)K−m

≤ exp
(
−2

(Kµ−M)2

K

)
which after simplification is the stated result.

This statement gives a very strong guarantee that the number of surviving robots will not be significantly

below psK. For example, if K = 25, µ = 0.85 and pK ≤ 0.89, then the probability that 15 or fewer robots

reach vt is less than 0.044, but the probability that 13 or fewer robots reach vt is less than 0.0043.

3.3.4 Computational complexity

Suppose that the complexity of the Orienteering oracle is CO, and the complexity of the update step is CU .

Then the complexity of our algorithm is:

O(V 2 log(V))+O(KCU)+O(KCO).

The first term is the complexity of running Dijkstra’s to calculate ζ j for all nodes, the second term is the

complexity of updating the weights K times, and the final term is the complexity of solving the K orienteering

problems. Generally CU = O(V) and is dominated by CO so the asymptotic complexity of our algorithm is

KCO. Relying on an oracle routine makes the GreedySurvivors routine applicable for several diverse

communities of researchers.

Complexity theory – From a theoretical standpoint, if a polynomial-time approximation scheme (PTAS)

for the orienteering problem is used, then our algorithm is a PTAS for the TSO problem. This is a meaningful

result on the complexity of the TSO problem: although the TSO is NP-hard, it can be approximated within

a constant factor in polynomial time. The complexity of the best known PTAS routines for the orienteering

problem and its variants are high order polynomials - for example [28] gives a λ = 1+ε PTAS for the planar

case which runs in O(V 16d3/2/ε) time, where d in this context is the dimension of the plane that nodes are

embedded in. Even for ε = 1 and d = 2, this is O(V 46), which is not suitable for real-world applications.

Certifiable performance applications – Practitioners who require guarantees on the quality of the solution

can use mixed integer linear programming (MILP) formulations of the orienteering problem [30]. Commer-

cial and open source software for solving MILP problems are readily available, and return an optimality gap

along with the solution. Such solvers can be configured to terminate after a set amount of time or when the

ratio between the current solution and upper bound becomes greater than 1/λ .

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 32

Time-critical applications – Finally, practitioners who require fast execution but not guarantees can use

a heuristic to solve the orienteering problem. There are a number of fast, high quality heuristics with open

source implementations such as [31, 32]. While these heuristics do not provide guarantees, they often produce

near-optimal solutions and are capable of solving large problems in seconds.

3.3.5 Modifications for variants

Edge rewards – The GreedySurvivors routine is easily modified for the edge rewards variant. After re-

defining the variables as described in Section 3.2.4, define ζi, j = ζiω(i, j), which is the largest probability that

edge (i, j) is successfully taken. The linearized greedy algorithm will still have a constant-factor guarantee,

but now requires solving an arc orienteering problem. Constant-factor approximations for the arc orienteering

problem can be found using algorithms for the OP as demonstrated in [44]: for an undirected graph λ =

6+ ε + o(1) in polynomial-time V O(1/ε). The arguments for Theorem 4 are the same as in the node reward

case.

Walks – We can also consider walks, which are like a path but allow nodes and edges to be visited more

than once. In this setting, zk
j(ρ) is no longer binary, and so the proofs for submodularity of the various reward

functions must be updated. The argument used for Lemma 5 can be extended to walks by using an oracle

which maximizes ∑
V
j=1 z j(ρ)c j. If m̄ is the maximum number of visits to a node, then this approach would

give the constant factor guarantee for the greedy sub-problem as α = ps
λ m̄ . While this model does not have

orienteering PTAS, it is straightforward to modify the MILP and heuristic formulations to allow for walks in

in this way.

On the other hand, if we define I j(ρ,m) := I{z j(ρ) = m}, and the oracle maximizes ∑
V
j=1 I j(ρ,m)c j(m),

then we recover the ps
λ

guarantee from Lemma 5. It is unclear whether there is an efficient MILP formulation

which can act as such an oracle, though it can be posed as a Mixed Integer Program (which is generally much

more difficult to solve than a MILP).

Multiple budgets – If there are multiple budgets, we can easily incorporate this into a MILP formulation

by adding the appropriate path constraints. A λ = (3+ε) PTAS for the capacitated orienteering problem was

given by [45].

3.3.6 Two-step Greedy Algorithm

The GreedySurvivors routine above selects paths one at a time, which we call a ‘1-step’ greedy algorithm.

In this section we use a two-step oracle routine which selects a pair of paths, ρ1 and ρ2, such that for any

ρ , ρ ′ ∈X ,

∑
j∈ρ1∪ρ2

ζ jc j ≥
1
λ

∑
j∈ρ∪ρ ′

ζ jc j,

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 33

that is, the value of the nodes visited by either ρ1 or ρ2 is nearly as large as possible. Note that

∑
j∈ρ1∪ρ2

ζ jc j = ∑
j∈ρ1

ζ jc j + ∑
j∈ρ2

ζ jc j− ∑
j∈ρ1∩ρ2

ζ jc j,

which can be formulated as a mixed integer quadratic objective (due to the intersection), and so we can solve

the ‘two-step’ problem using a MIQP solver. Many of the same software packages which solve MILPs can

also solve MIQPs.

For single-visit reward functions, this two-step linearization closely approximates the value of the discrete

derivative ∆J(ρ1,ρ2 | X), as stated in the following lemma:

Lemma 7 (Two-step linearization). Let J(X) be a single-visit reward function (as in Lemma 3) and let ρ1, ρ2

be the output of the two-step oracle with c j = d j p j(0,X). Then for any ρ , ρ ′ ∈X , we have

∆J({ρ1,ρ2} | X)≥ ps

(2− ps)λ
∆J({ρ,ρ ′} | X)

Proof. From the definition of the single-visit reward function, we have

∆J({ρ,ρ ′} | X) = ∑
j∈ρ

E[z j(ρ1)]c j + ∑
j∈ρ2

E[z j(ρ2)](1−E[z j(ρ1)])c j

and so applying the definitions of ζ j, ρ1 and ρ2, we get

∆J({ρ,ρ ′} | X)≤ ∑
j∈ρ∪ρ ′

ζ jc j + ∑
j∈ρ∩ρ ′

ζ j(1− ps)c j ≤ ∑
j∈ρ∪ρ ′

ζ j(2− ps)c j ≤ λ ∑
j∈ρ1∪ρ2

ζ j(2− ps)c j

≤ (2− ps)λ

ps

(
∑
j∈ρ1

E[z j(ρ1)]c j + ∑
j∈ρ2\ρ1

E[z j(ρ2)]c j

)

≤ (2− ps)λ

ps

(
∑
j∈ρ1

E[z j(ρ1)]c j + ∑
j∈ρ2\ρ1

E[z j(ρ2)]c j + ∑
j∈ρ1∩ρ2

E[z j(ρ2)](1−E[z j(ρ1)])c j

)

≤ (2− ps)λ

ps
∆J({ρ1,ρ2} | X)

The guarantee is weaker than in the 1-step greedy sub-problem, where the approximation factor is ps/λ ,

however selecting pairs of paths has a tighter overall guarantee, as we show next:

Theorem 5 (Two-step greedy guarantee). Given a two-step routine with constant-factor guarantee 1/λ ,

assign robots ` and `+ 1 the paths ρ̂` and ρ̂`+1 returned by the two-step routine on graph GO with node

weights c j = d j p j(0, X̂`−1). If `= K, then use the Orienteering routine instead of the two-step oracle.

Let X∗K = {ρ∗k }K
k=1 be an optimal solution to the TSO problem with K robots and let L ≥ K be an integer

divisible by 2. For 1≤ `≤ L, suppose the objective is a normalized, non-negative, monotone, and submodular

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 34

function with discrete derivative of the form

∆J(ρ` | X`−1) =
V

∑
j=1

E[z`j(ρ`)]d j p j(0,X`−1).

Then the expected cumulative reward gathered by a team of L robots with types and paths X̂L = {ρ̂`}L
`=1 is at

least a fraction γ =
(

1− exp
(
− 2psL

(2−ps)λK

))
of the optimal.

Proof. Following the same approach as the proof to Theorem 1, we have

δ`+2 ≤
(

1− 2α

K

)
δ`,

which for α = ps
(2−ps)λ

gives

f (X̂L)≥
(

1− e−
2ps

(2−ps)λ
L
K

)
f (X∗).

Remark – Note that in the ideal setting (ps = λ = 1), this guarantees that the reward collected is at least

86% of the optimal (versus the 63% guarantee for the 1-step greedy algorithm). We can easily drop the re-

quirement that L be divisible by two, using a similar analysis we get a guarantee of γ = 1−exp
(
− 2L−ps

2−ps

ps
Kλ

)
.

Extending to multi-visit rewards is a bit more involved but should yield similar results.

3.4 Approximate Solution Approach to the On-line TSO

Information gathered on-line can be incorporated to solve the on-line TSO problem in a manner similar

to the static case. There are two main structural differences between the static and the on-line planning

problems: the space of feasible paths for each robot might be different (since nodes cannot be re-visited, due

to the definition of paths in Section 2.2.1), and the survival constraint must be updated appropriately. These

changes are handled by modifying the pre-processing step and solving a minimization problem to find pn
s .

3.4.1 On-line algorithm

At iteration n, the on-line algorithm re-plans paths given a list of surviving robots Un and the planned paths

at the previous iteration, Xn−1
K = {ρn−1

k }K
k=1. The first constraint of the on-line TSO problem requires that

the first n−1 steps of a new plan be consistent with the past, that is ρn
k (n
′) = ρ

n−1
k (n′) for n′ ≤ n−1, which

implies that the rest of the path cannot contain these nodes. We focus on finding sub-paths which do not

contain any nodes already visited, start at ρ
n−1
k (n), and end at vt . Our algorithm consists of three stages: the

first is a pre-processing stage which identifies the safest paths for every robot to reach the remaining nodes,

the second stage computes the updated survival probability threshold, pn
s , and the third stage runs the greedy

algorithm to select new sub-paths.

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 35

Figure 3.3: Illustration of the algorithm for updating the survival probability threshold. The maximum sur-
vival probabilities ψk and intervals are shown on the left. At the first step, we assume the optimum is in
the interval I4 which has the smallest upper bound (ψ2), but this assumption is false since p4 > ψ2. At the
second step we proceed to the interval with the next smallest upper bound, I3, and find that p3 ∈ I3. Since the
assumption is correct, we know p3 is the optimum.

Pre-processing Due to the strict definition of paths in Section 2.2.1, robots are not permitted to re-visit

nodes. Hence for each robot k ∈Un, we must update the maximum probability that robot k can visit each

node j in V n
k := V \ {ρn−1

k (n′)}n−1
n′=1 given that it starts from node ρ

n−1
k (n) and cannot travel through nodes

in {ρn−1
k (n′)}n−1

n′=1. We denote this probability as ζ
k,n
j , and compute it using Dijkstra’s algorithm on the graph

G n
k which has node set V n

k , edges in E with both the source and sink nodes in V n
k , and each edge given weight

− log(ω(e)). The maximum probability that robot k can reach node vt is given by ψk := ζ
k,n
vt .

Survival threshold update The on-line version of the TSO problem requires updating the survival proba-

bility threshold pn
s in order to guarantee that, if possible, the risk is distributed fairly and the expected number

of robots which reach node vt safely is psK. Recall from Section 3.1.2 that pn
s is defined as the solution to a

minimization problem, and set to one if the problem is infeasible.

If ψk ≤ pn
s for any k, this means that there is no path which satisfies the desired survival probability

threshold for robot k. In this case, {k} is removed from Un, and ρn
k is set to the safest path for robot k to reach

node vt .

Solving for pn
s is straightforward, as illustrated in Figure 3.3. The survival probability threshold pn

s lies in

one of at most |Un|+1 intervals between the maximum survival probabilities {ψk}k∈Un . We begin by sorting

the survival probabilities and guessing that the solution is in the interval with the smallest upper bound,

evaluating the ‘min’ operator in the constraint, and then finding the value of p which makes the constraint

active. If the result is in the interval we guessed, then we are done and return the result. Otherwise we move to

the interval with the next smallest upper bound and repeat. If p is in none of these intervals then the problem

is infeasible and we return 1. The complexity of this algorithm is O(|Un|(1+ log(|Un|)))≤ O(K log(K)).

Greedy selection The greedy selection step is quite similar to the static TSO problem, except the survival

probability threshold is now pn
s when solving for the best path for robot k to take (the case ψk ≤ pn

s is handled

in the previous step). Because each robot has a different graph, we must solve O(K) orienteering problems

when selecting each path (one for each robot in Un), which means the oracle routine is called O(K2) times

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 36

during the greedy selection step. While Un is not empty, we set the node weights appropriately (by choosing

the appropriate value for δ j(X`) conditioned on Un and accounting for already selected paths) and find the

maximum weight path with survival probability at least pn
s for each k∈Un. The most valuable path is assigned

to its respective robot, that robot is removed from Un and the loop continues.

3.4.2 Decentralized implementations

The presentation above is from a centralized perspective, where a single processing node runs all computa-

tions and sends the paths to each robot. In practice, especially for the on-line version of this problem, the

robots may not be able to communicate with every other member of the team and may have noisy commu-

nications. Greedy algorithms can be decentralized by using ‘iterative assignment’ (e.g., as used by [16]). In

this approach, each robot solves a single-robot sub-problem over its own sub-graph. A leader election is then

held to determine which path has the highest discrete derivative. The winner of the election updates its plan

and is removed from the pool. Remaining robots repeat the process of planning and determining a leader

until every robot has a plan. If the communications graph is connected (meaning there is a way for every

robot to communicate with any other robot), then this routine will yield the same result as the centralized

counterpart. The communications complexity is (loosely) bounded by K3 messages containing a path and the

value of the path [46]. Finally, since each message is small (a path can be represented by V log2(V) bits),

noisy communications can be mitigated by adding strong error correction and repeated transmission.

In the case where Kd robots cannot communicate with the rest of the team, submodularity implies that

the performance degrades by a factor of at most (K−Kd)/K. If robots not heard from are presumed ‘failed’,

then our algorithm will make conservative choices, causing the robots to return to the terminal node sooner

than if the communications were perfect. This has the added benefit that, for disk connected communications

graphs, the communications network will get stronger as robots converge to vt . This enables the list of

surviving robots to be updated and the correct survival probability thresholds computed, so in a sense the

communications network will be self-healing.

3.4.3 Performance guarantees

Both of the guarantees from the static TSO problem can be extended to the on-line case. The approximation

guarantee can be applied because the objective function of the on-line problem inherits submodularity from

the objective function of the static problem. Conditioning on Un will change the value of the constants

δk(XL−1), but not the basic form of the discrete derivative (in the sense of Lemma 2). The proofs for Lemma

5 and Theorem 4 depend only on the form of the discrete derivative, which means that we can immediately

apply them by exchanging ps with pn
s . This means that robots following the paths output by the on-line

algorithm will accumulate at least a constant factor 1−exp(−pn
s/λ) of the reward accumulated by the optimal

solution to the on-line TSO problem.

The on-line algorithm adapts the survival probability threshold in order to keep the expected number of

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 37

robots that actually reach node vt as close to psK as possible. When it increases pn
s in response to robot fail-

ures, the guarantees that few robots fail become much stronger. As discussed after Lemma 6, the probability

that m or fewer robots reach node vt decreases exponentially as m decreases. So by adapting pn
s , the on-line

algorithm ensures that it is very unlikely for |UN | to be much smaller than psK.

3.4.4 Computational complexity

The computational complexity consists of four factors: pre-processing, updating the survival constraints,

running the oracle, and updating the node weights. Preprocessing requires running Dijkstra’s algorithm for

each node and robot which has complexity O(KV 2 log(V)). Updating the survival constraints requires sorting

at most K elements and running at most K multiplications for the optimization routine, hence has complexity

O(K log(K)+K). The oracle routine is called at most O(K2) times, since each remaining robot re-plans at

every planning step. Finally, the update routine is called after each robot is selected with complexity described

in Section 3.3. The total complexity is then

O(KV 2 log(V))+O(K(log(K)+1))+O(K2CO)+O(KCU).

For most applications, the complexity of the oracle will dominate, and so the asymptotic complexity will

typically be O(K2CO).

Some computation can be avoided by using the accelerated greedy algorithm, as discussed in [18]. The

basic idea is to use the non-increasing property of the discrete derivative to quickly determine whether a given

orienteering problem is worth solving. If the marginal benefit of best path for robot k at iteration n is less than

the marginal benefit of some robot k′ already calculated for iteration n+ 1, then we can skip re-calculating

the path for robot k at iteration n+ 1. In the worst-case, this acceleration will not improve the run-time

complexity, but in practice it can yield a significant improvements – in the best case, the complexity becomes

O(KCO). Note that this accelerated greedy algorithm only helps when because each robot has a different

feasible set, hence we cannot use it for the static algorithm.

3.5 Heterogeneous Teams

The TSO problem and our algorithm can be readily extended to a heterogeneous setting, where there are

R types of robots, and we are given the co-design problem of optimizing over both paths and robot types.

In Section 3.5.1 we outline the problem statement and necessary modifications to notation, in Section 3.5.2

we give sufficient conditions for the objective function to be submodular and provide an application, and in

Section 3.5.3 we outline the static algorithm and guarantees for the heterogeneous case.

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 38

Variable Description
ωr(e) Probability robot of type r survives edge e
ps(r) Survival threshold for each type of robot
sk

n(r,ρ) One if robot k of type r following path ρ survives
edge (ρ(n−1),ρ(n)).

ak
n(r,ρ) One if robot k of type r following path ρ survives

to iteration n
zk

j(r,ρ) One if robot k of type r following path ρ visits
node j

pr
j(m,XK) Probability of m robots of type r following paths

in set XK visiting node j

Table 3.2: Summary of notation for the HTSO problem.

3.5.1 Static HTSO problem

The problem statement for the heterogeneous case is quite similar to the TSO problem, except that there

are R edge weight functions and survival constraints, and any variables which previously were a function of

path (e.g. sk
n, zk

j, and ak
n) are now a function of path and robot type. The notation for the HTSO problem is

summarized in Table 3.2 and Figure 3.4.

Figure 3.4: Illustration of the notation used for the HTSO (note that this is similar to Figure 2.1, except
variables are now indexed by r). Robot k has type r and plans to take path ρ , whose edges are represented
by lines. The fill of the lines represent the value of sk

n(r,ρ). In this example sk
3(r,ρ) = 0, which means that

ak
3(r,ρ) = ak

4(r,ρ) = ak
5(r,ρ) = 0. The variables zk

j(r,ρ) are zero if either the robot fails before reaching node
j or if node j is not on the planned path.

Given a set XK = {rk,ρk}K
k=1, define the R element vector Vj(XK) element-wise as the number of robots

of type r which visit node j by iteration N:

[Vj (XK)]r :=
K

∑
k=1

zk
j(r,ρk).

Let the value of visiting node j with Vj visits be given by the function H j : ZR
+→R+. The HTSO problem is

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 39

defined formally as:

Heterogeneous Team Surviving Orienteers Problem: Given a graph G , edge weights ωr,

survival probability thresholds {ps(r)}R
r=1 and team size K, choose robot types and paths in

order to maximize the expected reward accumulated by the team:

maximize
r1,ρ1,...,rK ,ρK

V

∑
j=1

E
[
H j
(
Vj
(
{rk,ρk}K

k=1
))]

subject to P{ak
|ρk|(rk,ρk) = 1} ≥ ps(rk) k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρk|) = vt k = 1, . . . ,K

The objective is to choose a team of K feasible type/path pairs which maximize the expected cumulative

rewards. The first constraint enforces the survival probability constraint for each path, the second and third

constraints enforce that each path starts at vs and end at vt . Note that the reward function H j maps a vector

number of visits to a reward, rather than in the TSO problem, where the reward function h j maps a scalar

number of visits to a reward.

3.5.2 Submodularity and applications

We begin by characterizing when the objective function is submodular:

Lemma 8 (Submodularity of the HTSO problem objective). Let er be rth canonical basis vector of RR. Given

an objective function

J(XK) =
V

∑
j=1

E [H j (Vj(XK))] ,

define the set function

δ
r
j (X) = E [H j (Vj(X)+ er)−H j (Vj(X))] .

The objective function has discrete derivative with respect to (rL,ρL) at partial solution XL−1 = {r`,ρ`}L−1
`=1

∆J((rL,ρL) | XL−1)
V

∑
j=1

E
[
zL

j (rL,ρL)
]

δ
rL
j (XL−1),

and is submodular −δ r
j (X) is a monotone function of X for all j, r.

Proof. The random variable zL
j (rL,ρL) is independent of each element of the random vector Vj(XL−1). Hence

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 40

from the definition of the discrete derivative and the tower property we have for xL = (rL,ρL)

∆J(xL | XL−1) =
V

∑
j=1

E [H j (Vj(XL−1∪ (rL,ρL)))]

−E [H j (Vj(XL−1))]

=
V

∑
j=1

E[zL
j (rL,ρL)]E [H j (Vj(XL−1)+ erL)]

−
(
E[zL

j (rL,ρL)]
)
E [H j (Vj(XL−1))] ,

which upon simplification yields the first statement of the lemma. By definition, a set function is submodular

if the negative of its discrete derivative is a monotone function. Since E[zL
j (·)]≥ 0 and the sum of monotone

functions is monotone, we have that the negative of the discrete derivative is monotone (hence the objective

function is submodular).

We can use Lemma 8 to immediately extend the settings described in Section 3.2 to their uncoupled

analogues, where each robot type has its own single or multi-visit reward function, and the total reward is the

sum of the rewards accumulated by each type. We can also consider coupled reward functions, as described

next.

Consider a scenario where robot types correspond to sensor resolutions, and the information gained about

a node is determined by only the highest resolution data recorded about the node. Let dr
j the information

gained about node variable j by a sensor of type r. The best-visit reward function is:

V

∑
j=1

E [H j(Vj(XK))] =
V

∑
j=1

E
[

max
k

drk
j zk

j(rk,ρk)

]

Given a partial solution XL−1 = {r`,ρ`}L−1
`=1 , we write the probability that at least one robot of type r will visit

node j as

p j,r(XL−1) = 1− pr
j(0,XL−1),

and write the probability no robot of type r or less visits node j as

p̄+j,r(XL−1) =
r

∏
r′=1

(
1− p j,r′(XL−1)

)
.

Without loss of generality, we assume that sensors with smaller type have superior resolution. The reward

function depends only on the first visit for robots of a given type:

V

∑
j=1

E [H j (Vj(XK))] =
V

∑
j=1

R

∑
r=1

dr
j p j,r(XK)p̄+j,r−1(XK).

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 41

Lemma 9 (Submodularity of best-visit rewards). Let dr
j ≥ ∑

R
r̂=r+1 d r̂

j ≥ 0. Then the reward function at the

solution set XK = {rk,ρk}K
k=1,

V

∑
j=1

E [H j(Vj(XK))] =
V

∑
j=1

E
[

max
k

drk
j zk

j(rk,ρk)

]
,

is a normalized, non-negative, monotone, and submodular function with discrete derivative with respect to

(rL,ρL) at partial solution XL−1 = {r`,ρ`}L−1
`=1 :

V

∑
j=1

E[zL
j (rL,ρL)]

(
drL

j p̄+j,rL
(XL−1)

−
R

∑
r=rL+1

dr
j p j,r(XL−1)p̄+j,r−1(XL−1)

)
.

Proof. The normalized, non-negative and monotone properties follow immediately from the positivity of dr
j ,

zr
j and the fact that the maximum function is monotone. From the definition of the best-visit reward function

we have

δ
rL
j (X) = drL

j p̄+j,rL
(X)−

R

∑
r=rL+1

dr
j p j,r(X)p̄+j,r−1(X).

The first term can be interpreted as the negative probability that a robot of type rL following path ρL is the

best robot to visit the nodes in path ρL, and the second term is the reduction in the probability that robots in

X with type r > rL will be the best type to visit nodes in path ρL. Consider two sets X and Y = X ∪ (r̃, ρ̃). If

p j,r̃(X) = 1, then trivially δ
rL
j (X) = δ

rL
j (Y). Otherwise, p j,r(Y) ≥ p j,r(X) with equality if r 6= r̃. For r ≥ r̃,

we have p̄+j,r(X)(1− p j,r̃(Y))/(1− p j,r̃(X)) = p̄+j,r(Y), and otherwise p̄+j,r(X) = p̄+j,r(Y). Now we show that

δ
rL
j (X)≥ δ

rL
j (Y) by considering three cases:

1. (r̃ ≤ rL): From the definition of δ
rL
j (X) we have

δ
rL
j (X)≥

1− p j,r̃(Y)
1− p j,r̃(X)

δ
rL
j (X) = δ

rL
j (Y)

The inequality is due to the fact that 1−p j,r̃(Y)
1−p j,r̃(X) ≤ 1, and the equality because rL ≥ r̃.

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 42

2. (r̃ > rL, p j,r̃(X) = 0): We have from the definition of δ
rL
j (X):

δ
rL
j (X) = drL

j p̄+j,rL
(X)−

r̃−1

∑
r=rL+1

dr
j p j,r(X)p̄+j,r−1(X)−0

= drL
j p̄+j,rL

(Y)−
r̃−1

∑
r=rL+1

dr
j p j,r(Y)p̄+j,r−1(Y)−0

≥ drL
j p̄+j,rL

(Y)−
R

∑
r=rL+1

dr
j p j,r(Y)p̄+j,r−1(Y)

= δ
rL
j (Y)

where we use the properties introduced above for each line.

3. (r̃ > rL, p j,r̃(X)> 0): Define γ ≥ 0 such that p j,r̃(X)(1+ γ) = p j,r̃(Y). Then we have

δ
rL
j (X)−δ

rL
j (Y) = γd r̃

j p j,r̃(X)p j,r̃−1(X)

−
R

∑
r=r̃+1

dr
j p j,r(X)p̄+j,r−1(X)

(
γ p j,r̃(X)

1− p j,r̃(X)

)

≥ γ p j,r̃(X)p̄+j,r̃(X)

(
d r̃

j−
R

∑
r=r̃+1

dr
j p j,r(X)

)
≥ 0

The first and second statements are due to the definition of γ and the given identities, and the final

inequality follows from the definition of d r̃
j .

This implies that−δ
rL
j (X) is a monotone function of X , which implies that the best-reward objective function

is submodular.

An example which satisfies the requirement that dr
j ≥ ∑

R
r̂=r+1 d r̂

j is an imaging scenario, where r corre-

sponds to observation distance. The area covered by a picture is proportional to the square of distance, and

so a small distance implies a high density of pixels (i.e. high resolution). Another example of a coupled

reward function is informative path planning where each robot has a different sensor quality, and the goal is

to minimize the entropy of the posterior distribution of node variables Yj, similar to the multi-visit example

from Section 3.2.

3.5.3 Algorithm

The algorithm for the static HTSO problem proceeds in an identical manner as for the TSO problem, except

that at each step we must consider each of the R types of robots. We begin by computing the maximum

probability that a node can be visited by a robot of type r, which we denote ζ r
j . Then we solve R orienteering

problems to find the (approximate) best type/path pair to add. Using Lemma 5 we can guarantee that each path

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 43

is within constant factor ps(r)/λ of the optimal path (for a fixed robot of type r), and hence the best path/pair

is within constant factor minr ps(r)/λ of the optimal path/type pair for the greedy step. After choosing the

path/type pair to add, we update the reward function appropriately and continue on to the next iteration.

Updates for best-visit reward functions – Recall from Lemma 9 that for the best-visit reward function

δ
rL
j (XL−1) = drL

j p̄+j,rL
(XL−1)

−
R

∑
r=rL+1

dr
j p j,r(XL−1)p̄+j,r−1(XL−1),

which can be computed recursively by updating the visit and non-visit probabilities p j,r and p̄+j,r. When

(rL,ρL) is added to XL−1, we update the visit probabilities for j ∈ ρL as

p j,rL(XL) = 1− (1− p j,rL(XL−1))(1−E[zL
j (rL,ρL)]),

and the non-visit probabilities for j ∈ ρL, r ≥ rL as

p̄+j,r(XL) = p̄+j,r(XL−1)(1−E[zL
j (rL,ρL)]).

The complexity of updating the probabilities is O(V R), and updating the node weights is O(V R2).

Guarantees We can easily get a 1− e−minr ps(r)/λ constant factor guarantee by using the same approach

as was used for Theorem 4. Using the remark following Theorem 1, we can provide a tighter guarantee at

run-time by computing the approximation factors α` for each step of the greedy algorithm as follows. If ρ̂r
`

is the best path found for type r at step `, the optimum is bounded by

JUB
` = max

r

(
1− e−ps(r)/λ

)−1 V

∑
j=1

E
[
H j(Vj(X̂`−1∪ ρ̂

r
`))
]
,

and so the approximation factor for step ` is bounded by the ratio of the upper bound on the optimum to the

value of the approximate greedy set X̂`.

α` ≥
V

∑
j=1

E
[
H j(Vj(X̂`−1∪ρ

r`
`))
]
/JUB

` ,

which in practice will be tighter than the 1− e−minr ps(r)/λ guarantee.

3.6 Numerical Experiments

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 44

In this section we provide numerous numerical experiments over a variety of synthetic and real-world graphs

to characterize the performance of our algorithm in the settings described above. In Section 3.6.1 we verify

that the theoretical bounds hold for a highly structured problem (where we have access to the optimal so-

lution). In Section 3.6.2 we characterize the empirical approximation factor over a wide range of survival

probability thresholds. In Sections 3.6.3 and 3.6.4 we consider real-world scenarios involving classification

during a storm and information gathering in hostile environments. We demonstrate the effectiveness of sim-

ple heuristics for the orienteering problem for very large problems in Section 3.6.5. Finally we consider the

on-line and heterogeneous variants in Sections 3.6.6 and 3.6.7, respectively. Unless otherwise stated, we pose

the orienteering problem as a MILP and use the Gurobi solver with tolerance 10−4 as the oracle routine.

3.6.1 Verification of bounds

We consider a TSO problem (where we seek to maximize the expected number of nodes visited by a ho-

mogeneous team) on the graph shown in Figure 3.5(a): the central starting node has ‘safe’ transitions to six

nodes, which have ‘unsafe’ transitions to the remaining twelve nodes. Due to the symmetry of the problem

we can compute an optimal policy for a team of six robots, which is shown in Figure 3.5(b). The output of

the greedy algorithm is shown in Figure 3.5(c). The GreedySurvivors solution comes close to the optimal,

although the initial path planned (shown by the thick dark blue line) does not anticipate its impact on later

paths. The expected number of nodes visited by robots following optimal paths, greedy paths, and the upper

bound are shown in Figure 3.6. Note that the upper bound is close to the optimal, even for small teams, and

that the GreedySurvivors performance is nearly optimal.

(a) Graph G (b) Optimal X∗6 (c) Greedy X̄6

Figure 3.5: (a) Example of a team surviving orienteers problem with depot in the center. Thick edges corre-
spond to survival probability 0.98, light edges have survival probability 0.91. (b) Optimal paths for survival
threshold ps = 0.70 and K = 6. (c) Greedy paths for the same problem.

3.6.2 Empirical approximation factor

We compare our algorithm’s performance against an upper bound on the optimal value to get a sense of the

empirical versus theoretical approximation ratios. We use an exact solver for the orienteering problem, and

generate instances on a complete undirected graph (meaning there is an edge between every pair of nodes)

with V = 65 nodes and uniformly distributed edge weights in the interval [0.3,1). The upper bound used

for comparison is the smallest of 1) the number of nodes which can be reached within the budget, 2) the

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 45

Figure 3.6: Performance comparison for the example in Figure 3.5(a). The optimal value is shown in green
and the GreedySurvivors value is shown in red. The upper bound on the optimum from Theorem 4 is shown
by the dotted line.

Figure 3.7: Ratio of actual result to upper bound for a 65 node complete graph. The team size ranges from 1
(at the bottom) to 5 (at the top), and in all cases a significant fraction of the possible reward is accumulated
even for small ps.

constant-factor guarantee times our approximate solution, and 3) the guarantee from solving the problem

with an oversized team (from Theorem 4). The average performance (relative to the upper bound) along with

the total range of results are shown in Figure 3.7, with the function 1− e−ps/λ drawn as a dashed line. As

shown, the approximation factor converges to the optimal as the team size grows. The dip around ps = 0.85

is due to looseness in the bound and the fact that the optimum is not yet reached by the greedy routine.

3.6.3 Information gathering

Consider a setting where robotic sensors are used to gather information about a physical phenomena (e.g.,

health of coral reefs, algae blooms) in the Coral Triangle, an ecologically significant region surrounding

Indonesia. Figure 3.8 shows 108 marine protected areas listed by [1]. Each area is marked by an ‘X’, and areas

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 46

are contained in larger regions highlighted by boxes (corresponding to relatively similar environments). One

commonly proposed platform for long-duration environmental monitoring are underwater gliders [47], which

have limited communication. Hence we consider the off-line TSO problem, as uncertain communications

would otherwise lead to overly conservative actions (as discussed in Section 6.2).

Figure 3.8: Illustration of an ocean monitoring scenario. Various regions in the Coral Triangle are outlined by
boxes, sites to visit within each region are marked by ‘X’, and the heatmap indicates the risk of robot failure
inferred from piracy incidents. Data is from the Coral Triangle Atlas [1] and IMB Piracy Reporting Centre
[2].

We represent this environment using a graph with nodes corresponding to a fine uniform grid (with respect

to distance). Neighboring nodes are connected (including diagonals) with edges, and we use piracy incident

data [2] and a Poisson model similar to [41] to calculate the risk of traversing along the edge. Since we are

not running the on-line algorithm we can simplify the problem by only considering the graph induced by the

nodes corresponding to marine protected regions and edges corresponding to the shortest (maximum survival

probability) path between these nodes. We assume a Gaussian measurement model, where the marginal

information gain of the mth visit to node j is 1
2 log(1+σ

−2
j (1+m)−1), where σ2

j is the noise variance for

measurements at node j.

Figure 3.9 compares the performance of a team of 25 robots with survival probability threshold 0.64

when using paths computed by a MILP formulation (with λ = 1.5) and using the Variable Neighborhood

Search (VNS) heuristic with depth 10 (implemented as part of HeuristicLab [31]). The two approaches are

compared over 30 scenarios with σ2
j drawn from the uniform distribution over [0.1,1.0], and objective is

plotted relative to the information gained if every robot visited every node. The mean is shown as a solid line,

and total range is shown using the dotted lines. The two approaches provide similar quality answers, though

for these problems the VNS approach performs 8% better on average. The MILP formulation takes between

2.59 seconds and 71.01 seconds to find a path, with an average of 14.9 seconds and standard deviation of

13.6 seconds. The VNS approach takes between 17.7 and 26.8 seconds to find a path, with an average of

21.0 seconds and standard deviation of 1.52 seconds. Hence the VNS heuristic (with the given parameters)

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 47

provides a higher quality solution in a more consistent, though longer amount of time compared to the MILP

approach.

Figure 3.9: Normalized information gained by team of 25 robots when using a VNS heuristic and the MILP
formulation. The mean and range are shown as solid and dotted lines, respectively. Note that depending on
the parameters given, the VNS heuristic quickly produces quality solutions.

3.6.4 Classification during a storm

As the problems become large, solving MILP using personal computers becomes impractical. However

cloud computing offers a low-cost way of solving even moderately large MILP problems. In this section we

demonstrate the effectiveness of a 64-core cluster with 200GB of RAM in solving a problem with 225 nodes

and 25 robots.

Figure 3.10: Illustration of the “base reflectivity” of a storm, which can be used to infer the danger to robots.
Data from the NOAA NEXRAD level II dataset, visualization courtesy the Weather and Climate Toolkit [3].

Consider a setting where robots travel through a storm and must classify some property of each node

(e.g., whether a piece of infrastructure is operational or if there are people present). We use data from

the NOAA NEXRAD system [3], shown in Figure 3.10. We assume a team of relatively simple robots is

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 48

used, which in turn limits the communications available. This is because (1) wireless quality degrades with

precipitation, and (2) turbulence limits the ability to steer directional antenna. Accordingly, we consider

the off-line TSO problem in this setting. Robots seek to classify a single property for each node using a

Haldane prior (as discussed in Section 3.2.2). Recall that this means the value for the mth visit to node j is

h j(m) =
(

1
4 −

1
4(m+1)

)
.

The risk a storm poses to robots was analyzed by [42] with a survival model very similar to ours (i.e.

the product of Bernoulli random variables over each edge in a graph). For simplicity we assume that sur-

vival probability is inversely proportional to “base reflectivity” (the proportion of radar energy reflected by

the weather system), though in practice one would want to use a more sophisticated approach such as the

ensemble models used in [42]. We place 225 sites in a grid and compute edge weights across the straight-line

Figure 3.11: Reduction in posterior variance (using the Haldane prior) for the storm classification scenario.
Note that the team of 25 robots achieves 95.8% of the maximum award available, essentially solving the
problem.

connection between sites. We use a team of 25 robots with ps = 0.8. Paths are found using the Gurobi solver

with tolerance λ = 1.5, and each path takes an average of 55.4 seconds to find. Figure 3.11 shows the objec-

tive achieved by our team along with an upper bound (which is the smaller of the constant factor guarantee

and the upper bound computed using ζ j and k only). The team of 25 robots achieves 95.8% of the maximum

reduction in posterior variance possible.

3.6.5 Large scale performance

As the problems become very large, it becomes impractical to solve them using a MILP approach. We

demonstrate the usefulness of simple heuristics in solving such large problems by planning K = 25 paths

for synthetic complete undirected graphs of various sizes. We use two Orienteering routines: the mixed

integer formulation from [30] with Gurobi’s MILP solver, and an adapted version of the open source heuristic

developed by the authors of [32]. For the cases where we have comparison data (up to V = 100 nodes)

the team using paths computed using the heuristic achieves an average of 98.2% the reward of the MILP

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 49

Figure 3.12: Histogram comparing surviving robots with and without re-planning for 20 trials with K = 25
and ps = 0.8. Note that the expected number of surviving robots at the initial iteration is 20.

algorithm. Even very large problems, e.g. 25 robots on a 900 node graph, can be solved in approximately an

hour with the heuristic on a machine that has a 3GHz i7 processor using 8 cores and 64GB of RAM.

3.6.6 Benefits of Re-planning

We demonstrate the benefits of an on-line approach using a synthetic complete undirected planar graph with

50 nodes and 25 homogeneous robots that have survival probability threshold ps = 0.8. Figure 3.12 shows

the histogram of the number of surviving robots at iteration N for 20 trials. Without re-planning, 45% of trials

finished with fewer than 20 survivors, versus 15% when paths were re-planned. Conditioned on the event

that the final budget is negative, the expected value of the overrun is reduced by 25% from −1.78 (without

re-planning) to −1.33. A side effect of re-planning in the worst-case regime is that the average reward is

reduced, but the effect is not significant. For the same set of trials discussed above, the average reward with

re-planning was 93% of the reward gained without re-planning.

3.6.7 Heterogeneous team with best-visit rewards

Using heterogeneous teams can give substantial advantages over homogeneous teams of the same size. We

demonstrate this by comparing teams of 20 robots on a complete undirected graph with 35 nodes in a setting

where robots with higher sensor qualities have more stringent survival probability thresholds. Namely, the

sensing qualities are (1, 2, 4, 8, 16), and the survival constraints are respectively (0.30, 0.45, 0.6, 0.75, 0.90).

Figure 3.13 shows the expected cumulative reward as a function of the team size for the heterogeneous team

(solid line) and best homogeneous teams among the five robot types (dashed line). For teams of 20 robots,

the heterogeneous team vastly outperforms the homogeneous teams, in this example it is expected to achieve

186% the reward of the best homogeneous team (and 851% of the worst). We note that this is for the static

HTSO problem, meaning that the paths are not re-planned based on survival events.

CHAPTER 3. THE TEAM SURVIVING ORIENTEERS PROBLEM 50

Figure 3.13: Cumulative reward of a heterogeneous team versus a homogeneous team for best-visit rewards.
The graph has V = 35.

3.7 Conclusion

In this chapter we formulate the Team Surviving Orienteers problem, where we are asked to plan a set of paths

that maximizes the expected cumulative reward at nodes visited while guaranteeing that every robot survives

with probability at least ps. The risky traversal model precludes the application of existing approaches avail-

able for the traditional orienteering problem. We give numerous applications where the objective function

is submodular in the paths chosen, present a linearization for a class of submodular functions, and use it

to develop the GreedySurvivors algorithm which has polynomial-time complexity with a constant-factor

guarantee that the returned objective is lower bounded by (1− e−ps/λ)OPT, where OPT is the optimum.

This chapter also provides an algorithm for the on-line TSO problem, where at iteration n the list of

surviving robots and edges traversed is given and we are asked to re-plan the paths in order to maximize

the expected cumulative rewards, while observing an updated survival probability thresholds. We give an

algorithm which finds a near-optimal set of paths which satisfy the constraints in polynomial-time.

Next we extend the TSO to the co-design problem where we are asked to assemble a heterogeneous team

of robots. We give an algorithm for the HTSO with complexity that grows only linearly in the number of

robots types relative to the complexity of the TSO.

Finally we demonstrate the effectiveness of our approach using numerical experiments for a variety of

settings. Our experiments support the theoretical performance guarantees, and we demonstrate the efficiency

of our algorithm for large graphs by solving a TSO with 25 robots and 900 nodes. We also provide scenarios

which illustrate the performance gains of running the on-line version of the TSO and of using heterogeneous

teams.

Chapter 4

The Matroid Team Surviving Orienteers
Problem

This chapter considers the Matroid Team Surviving Orienteers (MTSO) problem, which extends the TSO

problem by considering independence constraints which the set of routes must satisfy. For example, consider

a scenario where mobile robotic sensors are used to monitor a number regions of the ocean, each of which

may require different types of sensors. Due to weather and piracy, there is a risk that robots may “fail” when

traveling from one region to another. A fleet manager seeks a set of paths which maximizes the expected

number of sites monitored while satisfying various resource constraints. For example there may be limits

imposed by the number of available robots of each type, the logistics of deploying the robots, the probability

a given robot reaches its destination, or the amount of traffic a given region can support. If these constraints

are downward closed (meaning any subset of a feasible set of paths is feasible) and satisfy an exchange

property, then we can represent them using a matroid [19], which generalizes linear independence to set

systems and has structure amenable to optimization.

We formalize this exploration problem as a generalization of the orienteering problem [27], where one

seeks a path which visits as many nodes in a graph as possible given a budget constraint and travel costs. In

the aforementioned example the travel costs are the probability that a robot fails while traversing between

sites, and we are looking for a set of such paths which is an independent set of a matroid, maximizes the

expected number of nodes visited by at least one robot and ensures that the probabilities each vehicle reaches

its destination is above a specified threshold. We call this problem formulation the “Matroid Team Surviving

Orienteers” (MTSO) problem, illustrated in Figure 4.1. The MTSO problem is a significant generalization of

the Team Surviving Orienteers (TSO) problem presented in Chapter 3, which only imposes a maximum team

size constraint (a very special case of a matroid constraint). Both the MTSO and TSO are distinct from other

work because of the notion of risky traversal: when a robot traverses an edge, there is a probability that it

fails and does not visit any other nodes. This creates a complex, path-dependent coupling between the edges

51

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 52

Figure 4.1: Illustration of the MTSO setting for an ocean monitoring scenario. Various regions in the Coral
Triangle are outlined by boxes, sites to visit within each region are marked by ‘X’, and the heat map indicates
the risk of robot failure inferred from piracy incidents. Data is from the Coral Triangle Atlas [1] and IMB
Piracy Reporting Centre [2]. The objective is to find a set of paths for a heterogeneous team which maximizes
the expected number of sites visited subject to survival probability constraints and independence constraints
(e.g. limits on team size or sensor quantities).

chosen and the distribution of nodes visited, which precludes the application of existing approaches available

for the traditional orienteering problem.

The objective of this chapter is to devise constant-factor approximation algorithms for the MTSO prob-

lem. Our key technical insight is that we can exploit submodularity of the objective function to design efficient

solution algorithms for the much more general MTSO problem. We describe numerous applications of ma-

troid constraints to path planning problems, and describe an approximate greedy algorithm which enjoys a

constant-factor approximation guarantee. We also extend the accelerated continuous greedy algorithm [17]

which has stronger guarantees and can be applied to even more general settings than the MTSO problem.

Although a number of works have considered routing problems with submodular objectives [6, 9, 7], chance

constraints [33, 34], or downward closed constraints [48, 49, 50] separately, the MTSO is novel because it

combines all three aspects.

A closely related area of research is the rich vehicle routing problem (RVRP) [49], which considers

settings such as routing heterogeneous teams [48], “fleet dimensioning” (choosing team composition) [50],

and incompatability constraints [51]. The vast majority of solution algorithms for the RVRP are heuristic

[49] and do not consider risky traversal. A notable exception are linear temporal logical (LTL) constraints,

which have exact integer programming formulations [52] and transition system formulations [53, 54], the

complexity of which grows exponentially in the team size. We consider a narrower yet still expressive set of

constraints and derive polynomial time solution algorithms with constant factor approximation guarantees.

Matroids have been applied with great success to many fields of engineering such as electrical and struc-

tural network design [55], but they have rarely been used for robotic routing problems. In [56], path con-

straints are represented using a p-system (which generalizes a matroid), and a submodular maximization

problem with p-system constraints is solved to find the approximately most informative path for a single

agent. Multi-robot task allocation problems are cast as decentralized submodular maximization problems

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 53

with matroid constraints by [57] (who considers private reward functions), and [58] (who considers commu-

nication constraints). In both cases the objective is to assign robots to tasks, rather than to find a high reward

set of paths for a team of robots. A partition matroid is used by [59] to model an informative path planning

problem. They focus on a distributed variant of the greedy algorithm and do not consider risky traversal.

We apply submodular maximization at a higher level of abstraction and use an orienteering problem ora-

cle in order to find high quality paths for each robot. This requires different analysis which utilizes results

on approximate greedy algorithms for submodular maximization subject to matroid [23] and p-system [24]

independence constraints.

The contribution of this chapter is six-fold. First, we propose a generalization of the TSO problem, re-

ferred to as the Matroid TSO problem. By considering matroid constraints, we extend the state of the art for

the team orienteering problem, and by considering the risky traversal model we extend the state of the art for

the rich vehicle routing problem. Second, we demonstrate how to use matroids to represent a variety of con-

straints such as coverage, deployment, team size limitations, sub-graph diversity constraints, team-wise risk

constraints, and nested cardinality constraints. Third, we extend the approximate greedy algorithm (presented

in Chapter 3) to the MTSO setting, and prove that the value of its output is at least ps
ps+λ

OPT, where OPT is

the optimum value, ps is the per-robot survival probability threshold and 1/λ ≤ 1 is the approximation factor

of an oracle routine for the solution to the orienteering problem (we note that, in practice ps is close to unity).

Fourth, we extend the accelerated continuous greedy algorithm [17] to the MTSO problem, which is its first

application to robotics. We develop a fast implementation specific to the MTSO and show its output is at least

(1−δ)(1−e−ps/(λ+δ ps)), where δ � 1 is the discretization step size. Fifth, we demonstrate the effectiveness

of both algorithms for complex problems by considering an environmental monitoring application and give

an empirical timing characterization for both algorithms. Finally, we highlight a number of extensions of this

work in detail, such as p-system constraints, linear packing constraints, and coverage variants. The MTSO

and greedy algorithm were published in our conference chapter [60].

4.1 The Matroid TSO Problem

Given a start node vs, a terminal node vt , and survival probability ps we must find at most K ≥ 1 paths {ρk}K
k=1

(one for each of K robots) such that, for all k, the probability that ak
|ρk|

(ρk) = 1 is at least ps, ρk(0) = vs and

ρk(|ρk|) = vt . The set of paths which satisfy these constraints is written as X (ps,ω). In this chapter we are

primarily interested in the probability that no robots visit node j, which has the simple expression:

Let d j > 0 be the reward accumulated for visiting node j at least once, and define X as the set containing

K copies of each path in X (ps,ω). Given a matroid (X ,I) with rank K, we are interested in finding an

independent set which maximizes the weighted expected number of nodes visited. Since the objective is

non-negative and submodular (as discussed in Chapter 3), we assume without loss of generality that the size

of the optimizing set is K, and state the Matroid TSO problem formally:

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 54

Matroid TSO (MTSO) Problem: Given a graph G , edge weights ω , survival probability thresh-

old ps and matroid (X ,I), maximize the weighted expected number of nodes visited by at least

one robot:

maximize
{ρk}Kk=1∈I

V

∑
j=1

d j

(
1− p j

(
0,{ρk}K

k=1

))
subject to P

{
ak
|ρk|(ρ) = 1

}
≥ ps k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρ|) = vt k = 1, . . . ,K

The optimization is over the independent sets of the matroid, and the solution is a set of K paths. The objective

represents the cumulative expected reward obtained by the robots following the selected paths. The first set

of constraints enforces the survival probability, the second and third sets of constraints enforce the initial and

final node constraints. Note that a single visit reward function is used here for the sake of simplicity, our

approach and formulation extend easily to the multi-visit reward functions discussed in Chapter 3.

The MTSO problem can be viewed as a set maximization problem with a matroid constraint, where the

domain of optimization is the family of independent sets I . Crucially, since the objective is a submodular

function, Theorem 2 (proved by [24]) implies that the greedily selected set of paths will achieve reward close

to the optimum.

4.2 Applications and Variants

In this section we highlight several examples of matroids and their applications in the context of the MTSO

problem.

4.2.1 Uniform matroid

Given a positive integer K, the independent sets of a uniform matroid are all subsets of the ground set with

at most K elements. Optimization with a uniform matroid constraint is equivalent to imposing cardinality

constraints on the solution size, which is the standard TSO problem.

4.2.2 Linear matroid

Given a function φ : X → {0,1}M , the independent sets of a linear matroid induced by φ are all subsets

X ⊆X such that the vectors {φ(x)}x∈X are linearly independent.

Application to coverage: Consider a setting where we require each robot to focus on a different region.

Define the regions as M node subsets Sm ⊆ V , and define the ‘focus’ of a path as the index of the region

which contains the most nodes of the path (with ties broken deterministically). Let mρ be the smallest index

corresponding to a subset which path ρ focuses on, that is |Smρ
∩ρ| ≥ |Sm∩ρ| for m = 1, . . . ,M. Now define

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 55

φ(ρ) as the mρ th canonical basis vector in RM . Requiring the solution to be an independent set of the binary

matroid induced by φ and with ground set X (ps,ω), enforces the desired diversity of focus.

4.2.3 Transversal matroid

Given subsets {Xm}M
m=1 of the ground set, the independent sets of the transversal matroid are all subsets X

which are partial transversals of {Xm}M
m=1. In other words, if X ∈I , we can assign each element xi ∈ X a

unique number mi ∈ {1, . . . ,M} such that xi ∈Xmi .

Application to launch constraints: Consider a scenario where only one robot can start on each outgoing

edge of vs. This could arise for example when robots are aerial vehicles which must launch from runways,

and only one can launch from a runway in each direction. Let N(vs) be the set of nodes with an edge to vs,

and define the subsets Xm = {ρ ∈X (ps,ω) | ρ(1) = nm} for nm ∈ N(vs). That is, we have one subset for

each starting edge. Requiring that the solution is an independent set of the transversal matroid induced by

{Xm}M
m=1 enforces the launch constraints.

Application to heterogeneous teams: Suppose we have M types of robots, a robot of type m has feasible

path set Xm, and that we can deploy at most Km robots of type m. Requiring the solution to be an independent

set of a transversal matroid induced by Km copies of Xm for m = 1, . . . ,M enforces that no more than Km

robots of type m are selected.

Application to sub-graph diversity: Suppose we are given sub-graphs Gm = (Vm,Em) for m = 1, . . . ,M

with vs,vt ∈ Vm, Vm ⊆ V , Em ⊆ E , and we require that no more than Km robots take paths in sub-graph Gm

(we call this a ‘sub-graph diversity’ constraint). Let Xm correspond to the set of feasible paths in sub-graph

Gm. Requiring that the solution is an independent set of a transversal matroid induced by Km copies of the

sets Xm enforces the sub-graph diversity constraint.

Application to risk constraints: Suppose we have M survival probability thresholds p1
s ≤ ·· · ≤ pM

s . This

setting could arise when there is a constraint on the risk of many robot failures, but requiring uniform survival

probability thresholds would be too conservative to visit all of the nodes. Then we can choose {pm
s }M

m=1 in

order to provide the necessary flexibility while still maintaining tight control on risk. Requiring the solution to

be an independent set of the transversal matroid induced by {X (pm
s ,ω)}M

m=1 enforces the desired constraints.

4.2.4 Gammoid

A gammoid is induced by a directed graph D(S,E) with a subset of nodes corresponding to elements in the

ground set, e.g., X ⊆ S, and a subset U ⊆ S. We say that two sets of nodes X ,Y ⊆ S are linked if |X | = |Y |
and there are |X | node-disjoint paths from X to Y . The independent sets of a gammoid induced by D, U are

all subsets X ⊆X such that some subset of U is linked to X .

Application to nested cardinality constraints: Consider a simple setting where the ground set is parti-

tioned by the sets {X1, X2} and we may choose up to 2 items from X1, 2 items from X2 and 3 items total.

The independent sets of a gammoid induced by the multi-partite graph in Figure 4.2 satisfy these constraints.

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 56

Figure 4.2: Illustration of multi-partite graphs which form gammoids. Left: An illustration of the graph with
two layers of cardinality constraints. Right: An illustration of the graph with three layers. Boxes represent
clusters of nodes, and lines represent edges which connect each node of the right cluster to each node of the
left cluster.

This setting is easily extended to more complicated scenarios. For the MTSO, we could first partition

based on robot types, then by sub-graphs, and finally by risk thresholds (or in a different order). An illustration

of the graph for three layers of partitioning (e.g., robot types, sub-graphs, and team size) is shown in Figure

4.2. It is not necessary for the node groups to form a partition.

Note that this form of a gammoid is also known as a laminar matroid.

4.2.5 Truncation

Given K ∈N and a matroid (X ,I), let I ′ := {I ∈I | |I| ≤ K} which is the set of independent sets with at

most K elements. Then (X ,I ′) is a matroid and is called the K-truncation of (X ,I). If the maximum team

size is K, we can represent this constraint in addition to any of the scenarios above by using the K-truncation

of the appropriate matroid.

4.3 The Greedy Sub-Problem

In this section we discuss the greedy sub-problem which is a building block for our solution algorithms.

We give a description of our solution approach in Section 4.3.1, discuss performance considerations for its

applications in Section 4.3.2.

4.3.1 Objective and algorithm

Given a (possibly empty) previously selected set of paths, XL−1 = {ρ`}L−1
`=1 , the greedy sub-problem requires

us to find a path from the set XF(XL−1,I) which maximizes the sum of path-dependent node rewards

ν(ρ, j)≥ 0 (corresponding to the discrete derivative of the appropriate objective function). Solving the greedy

sub-problem is a critical step in both of our solution algorithms for the MTSO, but it is a very difficult task

as it requires maximizing path dependent node rewards subject to a budget constraint.Specifically the path

dependence is introduced by the risky traversal model, since the reward gained for visiting node j depends on

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 57

the probability that the robot successfully visits node j, which in turn depends on the path taken to the node.

Furthermore, we must ensure that the path chosen is in XF(XL−1,I).

We address the path dependence by using a path independent approximation, ν̂(j), of ν(ρ, j) which

satisfies, for some γ ∈ (0,1]:

ν(ρ, j)≤ ν̂(j)I j(ρ)≤
1
γ

ν(ρ, j).

We address the matroid constraint by noting that the feasible set, XF(XL−1,I), can always be partitioned

into sets {Xm}M
m=1, where Xm is the subset of paths in X which have all nodes and edges in a corresponding

sub-graph Gm. This is apparent from the fact that for each ρ ∈XF(XL−1,I), we can construct a sub-graph

Gρ which has exactly the nodes and edges in ρ . Since a path is defined as a unique list of nodes and edges,

and since feasible paths must start at vs and end at vt , the sub-graph Gρ contains only one feasible path, ρ . In

practice we can often partition XF(XL−1,I) using a very small number of sub-graphs, as detailed in Section

4.3.2.

Algorithm 3 Pseudocode for solving the sub-problem
1: procedure SolveSubproblem(XL−1,ν̂)
2: for Gm in Partition(XL−1) do
3: Form Gm,O from Gm
4: ρ̂m← Orienteering(Gm,O, ν̂)
5: end for
6: return argmax

ρ∈ρ̂1,...,ρ̂M

∑
V
j=1 ν̂(j)I j(ρ)

7: end procedure

Our approach to solving the sub-problem is given as pseudocode in Algorithm 3. We begin by call-

ing the Partition routine, which returns a list of sub-graphs {Gm}M
m=1 which partitions the feasible set

XF(XL−1,I). For each sub-graph, we form a log-transformed graph Gm,O which has edge weights ωo =

− log(ω). This graph and the approximate node reward ν̂ are passed to an Orienteering oracle, which

finds a path which has at least fraction 1/λ the optimal reward with edge costs at most B = − log(ps) (we

discuss this oracle in depth in Section 2.2.2). This ensures that the path is of high quality and satisfies the

survival probability threshold constraint. Finally the routine returns the best of the paths computed (with

respect to either ν̂ or ν , depending how hard ν is to compute). The following lemma guarantees that the path

returned has similar value as the optimum:

Lemma 10 (Sub-problem guarantee). Consider an MTSO problem with node weights d j, let ρ be a feasible

path in XF(XL−1,I), and ρ̂L be the path output by the SolveSubproblem routine described in Section

4.3.1. Then
V

∑
j=1

d jν(ρ̂L, j)≥ γ

λ

V

∑
j=1

d jν(ρ, j).

Proof. By definition of the partition {Xm}M
m=1, for any ρ ∈XF(XL−1,I) there is a set indexed by mρ such

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 58

that ρ ∈Xmρ
. We have from the definitions of ρ̂L, ν̂(ρ, j), and the Orienteering routine:

V

∑
j=1

d jν(ρ, j)≤
V

∑
j=1

d jI j(ρ)ν̂(j)≤ λ

V

∑
j=1

d jI j(ρ̂L)ν̂(j)

≤ λ

(
1
γ

V

∑
j=1

d jν(ρ̂L, j)

)
.

Suppose the complexity of the Orienteering routine given any sub-graph is bounded by CO, the com-

plexity of the Partition routine is bounded by CP, and there are at most M sub-graphs. Then the complexity

of the SolveSubproblem routine is CP +MCO. Note that, as discussed in Section 2.2.3, the orienteering

problem has many viable solution approaches despite being NP-hard. We describe the complexity of the

partition routines below.

4.3.2 Efficiently partitioning the feasible set

For many examples we can partition the feasible set using a small number of sub-graphs, as detailed below.

Coverage – We can partition the sets for the coverage example by adding a constraint to a mixed integer

formulation which requires the solution to have a specific focus. In this case M would be the number of

regions to be covered.

Launch constraints – Given a set Xk, all paths which take edges (vs,ρ`(1)), ` = 1, . . . ,k are infeasible.

Hence M = 1 and the sub-graph is the graph induced by the edges E ′ = E \{(vs,ρ`(1))}k
`=1 and takes at most

O(|E |) operations to form.

Heterogeneous teams – The feasible sets are already partitioned by graphs Gm corresponding to the graph

that a robot of type m uses. Given a set Xk, the partition routine returns all sub-graphs Gm for which Xk has

fewer than Km paths.

Sub-graph diversity – If the feasible path sets Xm are disjoint, then the routine simply returns any sub-

graph for which Xk has fewer than Km paths in Xm. If the feasible path sets are not disjoint, then the routine

solves an assignment problem to see whether an additional robot can be assigned a path in Xm without

violating the constraints. The routine then returns any of the corresponding sub-graphs Gm which robots

can still be assigned a path from. The complexity of each assignment is O(K2.5) (using the Hopcraft-Korp

algorithm), and there are at most MK assignments, giving complexity O(MK3.5).

Risk constraints – Given a set of paths Xk, the partition routine finds the smallest value m̂ such that we can

add a path with survival probability threshold pm̂
s (this can be done naively with complexity O(M2)). Then

the routine returns the sub-graph induced by the node set Vm̂ := { j ∈ {1, . . . ,V} | ζ j ≥ pm̂
s }, which are all

nodes reachable within the desired survival probability threshold. Note that in this case we also must change

the budget used by the Orienteering routine to − log(pm̂
s).

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 59

Nested cardinality constraints – Given a set of paths Xk, the partition routine tests whether a path can be

added to each of the sets in the deepest layer (which partitions X). If the sets are disjoint, this can be done in

linear time, otherwise an assignment routine is run as in the sub-graph diversity example. Then a sub-graph

corresponding to each of the subsets which we can still assign a path from is returned. The manner in which

these sub-graphs are computed depends on the application, as described in each of the sections above.

4.3.3 Lazy implementation

Each time a sub-problem is solved, we can use Theorem 2 to give a bound on the value of any path in the

corresponding sub-graph. Since the value of a path is a decreasing function as the algorithm progresses

(due to submodularity), these bounds can be used in the following iterations. The lazy variant of the greedy

algorithm solves the most promising sub-problem to get an initial solution, and then only solves sub-problems

which have bounds that exceed the value of this initial solution. In our experiments this allowed us to skip

solving 75% of the sub-problems.

4.4 The Approximate Greedy Algorithm

In this section we describe a greedy algorithm for solving the MTSO problem. We describe the objective

function and detailed algorithm in Section 4.4.1, then give performance guarantees in Section 4.4.2, and

characterize the complexity in Section 4.4.3.

4.4.1 Objective and algorithm

The greedy algorithm operates by iteratively selecting a path which maximizes the discrete derivative of

the objective function for the MTSO given the set of previously chosen paths XL−1 ⊂ X . A node-wise

decomposition of this objective was given in Chapter 3 as,

∆J(ρ | XL−1) =
V

∑
j=1

d jE[zL
j (ρ)]p j(0,XL−1),

which can be interpreted as the weighted sum over the probabilities that robot L is the first to visit node

j. In the context of Lemma 10 we have ν(ρ, j) = E[zL
j (ρ)]p j(0,XL−1), which can be approximated by

setting ν̂(j) = p j(0,XL−1), with γ = ps. Pseudocode for the approximate greedy algorithm is given in Al-

gorithm 4. The algorithm alternates between updating the approximate node rewards, ν̂ , and calling the

SolveSubproblem routine to find an approximately optimal solution to the greedy sub-problem.

4.4.2 Guarantees

In this section we combine the results from Section 2.1.3 and 4.3.1 to prove that the value of the output of the

MGreedySurvivors algorithm is close to the value of the optimal solution to the MTSO problem.

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 60

Algorithm 4 Approximate greedy algorithm for solving the MTSO problem.
1: procedure MGreedySurvivors(G ,M)
2: for j = 1, . . . ,V do
3: ν̂1(j)← d j
4: end for
5: ρ1← SolveSubproblem(/0, ν̂1)
6: for k = 1, . . . ,K−1 do
7: E[ak

0(ρk)]← 1
8: for n = 1, . . . , |ρk| do
9: E[ak

n(ρk)]← E[ak
n−1(ρk)]ω(en

ρk
)

10: ν̂k+1(ρk(n))← (1−E[ak
n(ρk)])νk(ρk(n))

11: end for
12: ρk+1← SolveSubproblem({ρ`}k

`=1, ν̂k+1)
13: end for
14: end procedure

Theorem 6 (Approximate greedy guarantee). Let X∗ be an optimal solution to the MTSO problem, and

X̂K the set output by the MGreedySurvivors routine. If the survival probability constraint is ps and each

orienteering sub-problem is solved within constant factor 1/λ , then the weighted expected number of nodes

visited by a team of robots following the paths X̂K is at least a fraction ps
ps+λ

of the optimum, that is:

V

∑
j=1

E
[
H j(Vj(X̂K))

]
≥ ps

ps +λ

V

∑
j=1

E [H j(Vj(X∗))] .

Proof. Setting ν(ρ, j) = E[zL
j (ρ)]p j(0,XL−1) and ν̂(j) = p j(0,XL−1), we have from Lemma 10 that the

SolveSubproblem routine solves the sub-problems within factor α = ps/λ . Now applying Lemma 4 and

Theorem 2 we have the desired result.

In many scenarios robots are either valuable or difficult to replace, and so operators will choose survival

probability thresholds ps which are close to 1. Combined with an effective oracle routine, Theorem 6 guar-

antees that the greedy approach never collects less than approximately half of the optimal reward. This is a

strong statement, since solving this problem optimally is extraordinarily difficult (especially as the team size

grows).

4.4.3 Complexity

The MGreedySurvivors routine has complexity O(KV 2 +K(MCO +CP)), where the first term is the com-

plexity of updating the V weights K times (each update costs as most V flops), and the second term is the

complexity of calling the SolveSubproblem routine K times. In typical scenarios, the complexity will be

dominated by KMCO, as solving the orienteering problem is typically several orders of magnitude more dif-

ficult than partitioning the feasible set or updating the weights. Each of the M orienteering problems can be

solved independently, so by leveraging parallel computation the complexity will scale as O(KCO).

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 61

4.5 The Accelerated Continuous Greedy Algorithm

In this section we describe an accelerated continuous greedy algorithm for solving the MTSO problem. We

begin by describing the objective function and detailed algorithm in Section 4.5.1, then give performance

guarantees in Section 4.5.2 and characterize the complexity in Section 4.5.3.

4.5.1 Objective and algorithm

The accelerated continuous greedy algorithm [17] performs a discretized coordinate gradient ascent which

optimizes the multilinear extension along ‘coordinates’ corresponding to independent sets in the matroid.

The state of the algorithm is given by a sparse vector y ∈ [0,1]|X | which can be interpreted as a probability

distribution over elements in X . The algorithm runs for 1/δ ∈ Z+ steps (indexed by i), each consisting of

K iterations (indexed by `). During every iteration a single component of y corresponding to a path ρ ∈X

is incremented by δ , that is y← y+ δ1ρ where 1ρ is the indicator vector which has all zero entries except

the component corresponding to ρ , which is 1. The component ρ is selected to ensure that (1) the paths

corresponding to the set of components updated in a given step are independent, and (2) the component

approximately maximizes F(y+ δ1ρ)−F(y), which is equivalent to maximizing the discretized gradient

with discretization step δ .

The objective for the ACGA can be written as an expectation with respect to the random set R(y), which

contains elements in X sampled independently with probability yρ , that is:

P{R(y) = X}= ∏
x∈X

yx ∏
x′∈Xc

(1− yx′).

The following lemma gives an alternate expression for the objective in terms of a sum over path dependent

node rewards:

Lemma 11 (Objective function for the ACGA). Let f be the objective of the MTSO and F its multilinear

extension. The objective for the ACGA with state y during the `th iteration of the ith step can be written as

F(y+δ1ρ)−F(y) = δ

V

∑
j=1

d jE[z`j(ρ)]
1− yρE[z`j(ρ)]

E[p j(0,R(y))].

This result is derived directly from the definitions of the relevant variables (a detailed proof is given in

the appendix).

Pseudocode for our algorithm is given in Algorithm 5, which consists of three main parts: (1) efficiently

computing E[p j(0,R(y))], (2) removing path dependence for the sub-problem, and (3) rounding the solution.

We discuss each part in detail below.

1) Efficiently computing E[p j(0,R(y))]: In general, computing an expectation over functions of the ran-

dom set R(y) is difficult because the function must be evaluated for every realization of R(y), and for our set-

ting there are 2K/δ possible realizations of R(y). In our case, we can exploit the product form of p j(0,R(y))

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 62

to iteratively compute the expected value for fixed sizes of R(y), that is E[p j(0,R(y))I{|R(y)| = m}], which

are then summed to compute the desired expectation. The algorithm is given in pseudocode in Algorithm 6

and details on its correctness are given in the appendix. The complexity of this approach is O(V K2δ−2).

2) Removing path dependence for the sub-problem: The objective is path dependent because the term
E[z j(ρ)]

1−yρE[z j(ρ)]
depends on the probability that node j is visited (which is a function of the path taken) and the

weight assigned to path ρ . We handle this term in two stages: we start by assuming that yρ = 0 (which is

true for most paths) in which case we have E[z j(ρ)]

1−yρE[z j(ρ)]
=E[z j(ρ)] and use the strategies developed in Section

4.4.1 to approximately maximize the objective by solving an orienteering problem. We then compute the

value of the O(K/δ) paths which have yρ > 0 explicitly and select the better of these paths or the output

of the orienteering routine solved in the first stage. We show in the Appendix that this two-stage approach

produces a path with value within factor ps/λ of the optimal.

3) Rounding the solution: We use the SwapRounding procedure to round y in order to get our final

solution. In order to ensure that we achieve a good result with probability 1, we repeat the rounding procedure

until the result is at least (1−δ)F(y). The expected number of calls to the rounding routine is upper bounded

by 1/(1− e−psδ 2/8), which is O(δ−2) (we defer details of these calculations to the appendix).

Algorithm 5 Approximate continuous greedy algorithm for solving the MTSO problem.
1: procedure ACGA(G ,M ,δ)
2: y←~0
3: for i = 1, . . . ,1/δ do
4: X(i)← /0
5: for `= 1, . . . ,K do
6: ν̂ ← UpdateWeights(y)
7: ρ ′← SolveSubproblem(X(i), ν̂)
8: ρ ← argmax

ρ ′,{ρ∈XF (X(i),I):yρ>0}
∑

V
j=1 d jν(ρ, j)

9: yρ ← yρ +δ

10: X(i)← X(i)∪ρ

11: end for
12: end for
13: while True do
14: X̂ ← SwapRounding(y)
15: if f (X̂)≥ (1−δ)F(y) then return X̂
16: end if
17: end while
18: end procedure

4.5.2 Guarantees

We give a guarantee for the algorithm described in Section 4.5.1 by using a similar approach as [17]:

Theorem 7. Let X∗ be an optimal solution to the MTSO problem and X̂ be the output of the ACGA routine

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 63

Algorithm 6 Efficient weight update routine.
1: procedure UpdateWeights(y)
2: for j = 1, . . . ,V do
3: w =~0|y|+1
4: w0← 1
5: for x : yx > 0 do
6: for m = |y|, . . . ,1 do
7: wm← wm−1 · yx · (1−E[z j(x)])+wm · (1− yx)
8: end for
9: w0← w0 · (1− yx)

10: end for
11: ν̂ j← ∑

|y|
m=0 wm

12: end for
13: end procedure

with parameters δ and λ . Then the value of the set X̂ is lower bounded by a constant factor of the optimum:

f (X̂)≥ f (X∗)(1−δ)

(
1− exp

(
− ps

λ +δ ps

))
.

The detailed proof is given in the appendix. The basic idea is to first use the properties of the SolveSubproblem

routine to lower bound the incremental increase in the multilinear extension between subsequent steps of the

algorithm, then to use a recursive argument to show that F(y) satisfies the desired inequality, which in turn

ensures that f (X̂) satisfies the guarantee.

Tightness of the guarantee – As the approximation parameters converge to their ideals (δ → 0,λ →
1, ps → 1), the guarantee converges to f (X̂) ≥ f (X∗)(1− e−1), which matches the hardness bounds for the

general problem of maximizing a submodular function subject to a matroid constraint. We also note that for

δ � λ the guarantee is approximately 1− e−ps/λ , which matches the guarantee given for the TSO problem.

4.5.3 Complexity

The ACGA routine calls the UpdateWeights routine K/δ times, solves K/δ sub-problems, and calls the

SwapRounding routine an average of O(δ−2) times. Hence the total complexity is

O(δ−1K(MCO +CP)+δ
−3K3V +δ

−3K),

and since generally CO� δ−2K2V , this is O(δ−1V MCO), which is a factor of δ−1 greater than the approxi-

mate greedy routine.

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 64

4.6 Experimental Results

In this section we validate and compare our solution approaches using simulations. In particular, we demon-

strate the rich sets of constraints a matroid can model in Section 4.6.1, where we consider a challenging

environmental monitoring scenario and compare two choices for the Orienteering oracle. Section 4.6.2

quantifies the empirical scaling of our algorithm using synthetic data. In particular, section 4.6.3 shows that

the MGreedySurvivors algorithm scales as expected as the team size and number of sub-problems required

to partition the feasible set grows; and Section 4.6.4 shows that the ACGA algorithm scales as expected as δ

shrinks. Finally in Section 4.6.5 we compare the MGreedySurvivors and ACGA approaches for a range of

δ values and discuss the strengths of each approach.

4.6.1 Environmental monitoring application

We consider the application illustrated in Figure 4.1: the Coral Triangle has a diverse ecosystem and the goal

is to use a robotic fleet with multiple sensor configurations to monitor the wildlife populations in ‘Marine

Protected Areas’. We use piracy incident data [2] and model attacks as a Poisson random variable in a

manner similar to [41]. We selected 106 marine protected areas from [1] as nodes in a complete graph and

computed the shortest (minimum risk) paths between each pair of sites to find the edge weights. In our

scenario, we can deploy up to 25 robots of three types (at most twelve of each type), and each robot type has

a different utility in each region. Each region can support the traffic of at most three robots of each type.

We require that the expected losses over the worst 5% of outcomes be no more than five failed robots

(this is called the Conditional Value at Risk, and denoted CVaR0.05). For the data shown, the most difficult

node to reach requires survival probability 0.64, but if we use a uniform survival probability threshold ps =

0.64, the risk is unacceptably high (CVaR0.05 = 16.26). We satisfy the constraint CVaR0.05 ≤ 5 by setting

p1
s , . . . , p5

s = 0.6, and p6
s , . . . , p25

s = 0.859, that is we allow five robots to take more risky paths and constrain

the rest to more conservative paths. All of the constraints above can be represented using a single gammoid,

and the feasible set can be partitioned using at most M = 15 sub-graphs. Note how expressive gammoids are

- this example uses just three levels of ‘nested constraints’ (robot types, traffic limits, and risk constraints)

but we could easily use more.

We consider two choices for the Orienteering routine: an open-source Variable Neighborhood Search

(VNS) heuristic produced by HeuristicLab [31] and a mixed-integer program (MIP) formulation solved using

CPLEX with a 5% tolerance. We observe that the VNS heuristic gives near-optimal paths, and solves all of

the sub-problems for each of the twenty five robots in 51 seconds on a quad-core 4GHz processor with 32GB

RAM available. The MIP oracle takes 60 seconds and yields nearly the same results. While the MIP oracle

can find high quality paths quickly, as the tolerance is decreased the computation time dramatically increases.

Optimally solving the sub-problems does not necessarily lead to better overall behavior, as shown in Figure

4.3. The upper bound shown is computed as the smaller of 1) the upper bound found using the greedily

selected paths and the approximation ratio, and 2) the sum of all node rewards ∑
V
j=1 d j = 106. This upper

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 65

Figure 4.3: Cumulative reward for paths planned by MGreedySurvivors using the MIP and VNS
Orienteering as oracle routines. Both approaches compute high quality sets of paths, though VNS is
somewhat faster.

Figure 4.4: Scaling of MGreedySurvivors as K and V grow. Data shown is the median of 110 samples, and
agrees with an Θ(MKCO) trend.

bound is loose because it ignores the constraints (particularly on the traffic flow through a region) which

becomes apparent as the team size grows larger. Note that although the theoretical approximation guarantee

is 0.36, a team of 10 robots achieves 0.928 the maximum possible reward, despite only planning one path at

a time.

4.6.2 Synthetic problem generation

We demonstrate the scaling properties of the MGreedySurvivors and ACGA algorithms using synthetic

data. Nodes are placed randomly on a 2D plane and clustered into groups of 15-20 nodes (this ensures the

complexity of solving the orienteering problem, CO, is constant). We consider a sub-graph diversity constraint

with sub-graphs induced by the clusters. Edge weights are chosen so that − log(ω(e)) is proportional to the

length of the edge e, the survival probability threshold is set to 0.7, and we use a MILP formulation for the

planar orienteering problem with tolerance 5%.

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 66

Figure 4.5: Scaling of the run time of the ACGA routine relative to the MGreedySurvivors routine as the
number of discretization steps increases. Note that run time increases approximately linearly with δ−1, as
predicted in Section 4.5.3.

4.6.3 Sub-problem complexity scaling

We demonstrate the complexity of the MGreedySurvivors algorithm with respect to K and M using the

synthetic dataset described above. We use the lazy variant of the greedy algorithm [18], which only solves

a sub-problem if it is not dominated by another (this allows us to skip 76% of the sub-problems in our

experiment). The median computation times are shown in Figure 4.4. The trends agree with the O(MKCO)

scaling predicted in Section 4.4.3, and our approach solves very large problems with very large teams in

under a minute.

4.6.4 Discretization complexity scaling

As discussed in Section 4.5.3, we expect the run time of the ACGA to be roughly δ−1 times that of the

MGreedySurvivors routine (which is ACGA with δ = 1). We demonstrate this trend empirically by using

the synthetic data generated as described at the beginning of this section (with V = 82 and K = 8). For each

problem we compute the baseline by averaging the run time of 5 calls to the MGreedySurvivors routine. We

then measure the run times of the ACGA with the desired δ values and use the ratio of ACGA run times to

the baseline run time as our data points. We repeated this for 30 randomly generated problems and show the

results in Figure 4.5. The randomness in run times is due to several factors (1) lazy implementation allows

for problems to be skipped when good bounds are available, (2) MIP solver time can depend significantly on

the particular problem, and (3) MIP solver times are not deterministic. Note that the average run time (with

respect to the random problem instances) actually grows sub-linearly, likely due to the lazy implementation

of the ACGA.

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 67

Figure 4.6: Comparison of objective achieved by the ACGA and MGreedySurvivors routines with δ−1 ∈
{2, . . . ,60} for 30 random MTSO problems. Note that as δ−1 increases the ACGA more consistently outper-
forms the baseline and average performance increases.

4.6.5 Effect of discretization on performance

Using the same data as in Section 4.6.4, we analyze the influence of the discretization parameter on the

performance of ACGA relative to MGreedySurvivors in terms of the value of their solutions. As shown

in Figure 4.6, increasing δ−1 generally improves the performance, and generally increases the chance that

the result produced by ACGA will be better than the result produced by MGreedySurvivors. Note that the

benefits of smaller discretization sizes drop off faster than the increase in computation time, so in practice

a relatively small value of δ−1 (e.g., 8 or 16) should be used. In scenarios where computation time is

paramount, the MGreedySurvivors routine provides a fast way of achieving high quality solutions.

4.7 Extensions

In this section we discuss additional extensions and applications of our work, presented in order of the ma-

turity of available results. In Section 4.7.1, we describe p-systems and their applications to robotics. Minor

modifications to algorithms presented above have constant factor guarantees for p-systems. In Section 4.7.2

we describe the coverage variant of the MTSO, which is closely related to the results given in Chapter 6.

Results from [25] can be applied to provide guarantees for our ACGA algorithm in this setting.

4.7.1 p-system constraints

Consider the MTSO where the matroid M is replaced by a p-system. Recall that a p-system is an indepen-

dence system which is downward closed and every base (maximal independent set) has at most p elements.

The crucial distinction between p-systems and matroids is that the latter has the exchange property, which

implies that every base in a matroid has the same number of elements (which we called the rank of the

matroid).

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 68

Applications to robotics

The notion of p-systems allows us to model many common constraints in robotics.

Collision avoidance – Consider a setting where we do not allow two robots to simultaneously traverse the

same edge in the graph (this also requires us to introduce a notion of time, which we discuss in Chapter 3).

One can easily verify that collision avoidance is downward closed - any subset of a set of collision free paths

will also be collision free. The value of p will be the smaller of the out-degree of the starting vertex and the

number of robots allowed.

Capacity constraints – Collision avoidance can be generalized to a capacity constraint, where each edge

has a capacity, and each robot has a demand. We can require that the sum of demands for robots simultane-

ously traversing an edge must be below the capacity of the edge. Note that collision avoidance is a special case

where all demands and capacities are unit. This scenario can model road networks as well as communications

networks, where a video sensor may demand many more resources than other types of sensors.

Matroid intersections – The intersection of p matroids can also be represented as a p-system. This can

allow us to simultaneously enforce risk constraints, sensor availability, and sub-graph diversity constraints.

Note that this is different from the nested cardinality constraints used in the experiments. For example, we

could require that at most 5 of the 25 paths planned are risky and that at most 12 of each robot type can be

selected (rather than the nested case, which would say, e.g., at most 12 of the risky paths can be of a given

type, and at most 12 of the safe paths can be of a given type).

Algorithms and guarantees

We can use a slightly modified version of our algorithms above to find a set which is in the independent

family of sets for a p-system and (approximately) maximizes the expected number of nodes visited. The only

difference is that now the feasible set XF(X ,I) is defined with respect to the independent family of sets

for a p-system. A similar application-specific partitioning technique can be used in the SolveSubproblem

routine.

The guarantee we state in Theorem 1 is a special case of the more general statement from Appendix B of

[24], which for a p-system gives the constant factor guarantee α

α+p . For our applications, we will typically

constrain teams to have at most K robots, meaning that the guarantees become ps
ps+Kλ

, which while a constant

factor, quickly becomes loose as the team size grows.

4.7.2 Multiple objectives and coverage problems

Consider the problem where we are given a set of submodular functions f1, . . . , fN , corresponding values

V1, . . . ,VN , and want to find a set X such that fn(X)≥Vn for n = 1, . . . ,N.

CHAPTER 4. THE MATROID TEAM SURVIVING ORIENTEERS PROBLEM 69

Applications to robotics

This problem could model a coverage variant of the MTSO, where we are seeking a set X which satisfies a

matroid constraint while also ensuring that the probability node j is visited satisfies a given threshold, pv(j).

In this setting we define the functions f j(X) = min{1− p j(0,X), pv(j)} and set Vj = pv(j). This is similar

to the coverage variant of the TSO given in [61], where we seek the smallest team which satisfies the desired

visit probabilities.

Algorithm and guarantees

The solution algorithm is a modified version of the continuous greedy algorithm and is outlined in [25].

Theorem 2.5 from [25] guarantees that the output of the modified algorithm satisfies Fn(y)≥ (1− e−1)Vn for

n = 1, . . . ,N, or returns a certificate of infeasibility. In our case the ACGA has a weaker 1−e−ps/λ guarantee,

and so the result would be modified accordingly. If the visit probability thresholds are small enough, we can

guarantee feasibility by dividing Vj by (1− e−ps/λ), ensuring that the visit probability is greater than pv(j).

4.8 Conclusions

We formulate the Matroid Team Surviving Orienteers (MTSO) problem, where we seek a set of paths which

forms an independent set of a matroid, maximizes the expected number of nodes visited by at least one robot,

and ensures the probabilities each robot reaches its destination are above a threshold. This problem is a

significant generalization of the Team Surviving Orienteers problem discussed in Chapter 3, and is distinct

from previous work because it combines a submodular objective, chance constraints, and matroid constraints.

We give numerous applications of matroids to robotic path planning such as coverage, launch constraints,

limits on the number of available robots of multiple types, restrictions on the amount of traffic which can

flow through a region, and combinations of the above. The MTSO is particularly challenging to solve because

of the risky traversal model (where a robot might not complete its planned path) which creates a complex,

history-dependent coupling between the edges chosen and the distribution of nodes visited. We present two

solution algorithms: an approximate greedy algorithm for solving the MTSO problem which guarantees that

its output achieves at least 1− e−ps/λ of the optimal reward, and a variant of the ACGA which guarantees

that its output achieves at least' 1−e−ps/λ the optimal reward. The algorithms rely on a partitioning routine

to satisfy the matroid constraints, and we show numerous examples where our algorithm runs in polynomial

time. We demonstrate the efficiency of our approaches by applying it to a scenario where a team of robots

must gather information while avoiding pirates in the Coral Triangle.

Chapter 5

The Risk Sensitive Coverage Problem

In this chapter we consider the dual to the TSO problem, where instead of maximizing the number of nodes

visited by a given team, we seek the smallest set of routes (or set with fewest expected failures) which satisfies

a set of visit probability constraints. For example, consider a search and rescue mission where a team of robots

searches for victims trapped in a storm, and the probability that a robot survives while traversing between two

sites (corresponding to likely locations of victims) depends on the weather. The team operator seeks to find a

set of paths for the smallest team which guarantees that sites are searched with given probability thresholds,

and that the probabilities each robot returns safely satisfy a survival threshold.

Figure 5.1: Illustration of the “base reflectivity” of a storm, which can be used to infer the probability robots
survive traversing between sites. Data from NOAA NEXRAD level II dataset, and visualization courtesy the
Weather and Climate Toolkit [3].

The challenge facing the operator can be posed as a set cover problem, where it must choose the smallest

set of paths which satisfy a coverage constraint (e.g. the search/visit probability thresholds). We call our

formulation the Risk-Sensitive Coverage (RSC) problem, and while the set cover problem is well understood

[26, 22, 62], the RSC problem is more challenging because 1) the ground set of paths is exponentially large in

70

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 71

the number of nodes and edges, and 2) the notion of risky traversal (where a robot may fail while traversing an

edge) precludes many existing approaches used for path planning because it introduces a complex interaction

between the edges chosen and the probability a node is visited.

The key insight in this chapter is that the visit probability constraints can be represented using a submod-

ular function which allows us to precisely state the problem as a submodular set cover problem, and justifies

using a cost-benefit greedy algorithm to find a solution. We develop an algorithm for the special case of unit

costs and a more general cost-benefit path planning algorithm with applications beyond the RSC. We provide

approximation guarantees and complexity bounds for both algorithms. Although existing work considers the

set cover problem with exponentially large ground sets [63] or submodular routing problems [39, 7] sepa-

rately, our work is novel because we combine the two and give a computationally efficient algorithm with

approximation guarantees.

A handful of variants of the vehicle routing problem consider stochastic coverage constraints similar to

the RSC. A setting where travel time between nodes is stochastic and nodes must be visited within certain

time windows is considered by [64]. Their approach seeks to ensure that the probability that each node is

visited within its time window is above a given threshold, but their algorithm does not explicitly enforce

this constraint and in practice many of their simulations do not achieve the desired guarantees. While this

setting could be used to model the RSC by setting the deadlines to be the negative logarithm of the survival

probability threshold and treating the negative logarithm of the survival probabilities as “time”, our approach

explicitly enforces the coverage constraint and provides approximation guarantees. Another vehicle routing

problem with deadlines and travel time uncertainty is considered by [65], where the objective is to minimize

the sum of the constraint violations. While this is nominally related, our problem is quite different because

we enforce the visit probability constraints for each node and minimize the team size, rather than fixing the

team size and minimizing total visit probability constraint violation.

Coverage problems in robotics [66] seek a set of routes which guarantee some notion of coverage. Cov-

erage problems are in general NP-hard, since they generalize the orienteering problem [4], which seeks a

maximum weight path in a graph that satisfies a budget constraint. The persistent monitoring problem [67]

seeks a set of cyclic routes which minimize the time between visits to a node. The authors provide a lin-

ear program which can be solved efficiently and give theoretical guarantees concerning the robustness of

their solution. Another broad category of coverage problems is the informative path planning problem (IPP),

where the goal is to plan paths which gather as much information as possible about an environmental random

variable. The IPP is related to our setting because information is also a submodular function, but typically

IPP problems are stated as maximization problems rather than coverage problems. The literature on coverage

problems is vast, however to our knowledge the risky traversal model, which is integral to this work, is not

used by existing work. We note that although [68] proposes a similarly named problem, the notion of “risk”

in their work is probability of detection, which does not interact with the coverage constraints in the same

manner as in our setting.

Given a ground set of items, a cost function, and a submodular coverage function, the submodular set

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 72

cover problem seeks a minimum cost subset which saturates the coverage function. The problem was posed

and solved using a cost-benefit greedy algorithm by [26] which iteratively builds a solution by adding the item

with the best ratio of benefit to cost. Several 1+ log(∆) approximation guarantees (where ∆ is a problem-

dependent parameter) were given, which guarantee that the cost of the optimum and approximate solutions

are nearly the same. Matching hardness bounds were given by [22] and [26]. A more in-depth treatment

of the submodular set cover and submodular knapsack problem is given by [62], which considers enhanced

algorithms which exploit the curvature of the submodular coverage function in order to provide refined anal-

ysis. The approaches taken by [26, 62] assume that the ground set can be efficiently searched, but for our

setting this is not the case. Exponentially large ground sets were considered by [63], who provide strong

guarantees for the special case when the submodular function is integral and the ground set is the family of

independent sets of a matroid (which extends linear independence to set functions). Their work does not

generalize, because it relies on specific results for optimizing over independent sets of matroids and integral

submodular set functions. Large ground sets were also considered by [7] from a submodular function maxi-

mization perspective, where the goal is to select edges which form a path (rather than to select paths which

saturate a submodular function).

Our approach to solving the RSC relies on solving a cost-benefit path planning problem, where we (ap-

proximately) maximize the ratio of benefits (new coverage) to costs (e.g. failure probability). A closely

related multi-objective problem is the Travelling salesman problem with profits (TSPP) which asks for a

route which maximizes the rewards of nodes visited while simultaneously minimizing the distance travelled.

Since it is a bi-objective problem, its solution is the Pareto optimal set (i.e., solutions which are not ‘dom-

inated’ by another). There are two prevailing methods to construct the Pareto optimal set for bi-objective

routing problems. The ε-constraint method repeatedly optimizes one objective while constraining the value

of the second objective. This approach was applied to the TSPP by [69, 70].

The two-phase approach constructs the Pareto set by first finding all ‘efficient solutions’ (lying on the

convex hull of the Pareto optimal set) and then finding the non-efficient solutions. The second phase is

typically much harder, but uses the “efficient solutions” to reduce the search space. Of particular note are

the BE algorithm [71] and the ABE algorithm [70], both of which solve sub-problems in order to partition

the ‘objective space’ (space of possible objective values) into smaller subregions which are easier to search.

Algorithmically this is very similar to our approach, although the TSPP assumes integral profits and a solution

is the entire (possibly exponentially large) Pareto optimal set. In contrast, we allow for scalar profits and are

interested in a particular (non-linear) combination of ‘profit’ (benefit) and ‘distance’ (cost).

Statement of Contributions. The contribution of this chapter is sixfold. First, we propose the Risk-

Sensitive Coverage (RSC) problem and show that it is an instance of the submodular set cover problem. By

considering risky traversal, we extend the state of the art for robot coverage problems, and by considering an

exponentially large ground set we extend the state of the art in the submodular set cover problem. Second, we

provide a linear relaxation which allows us to implement a cost-benefit greedy algorithm efficiently by uti-

lizing standard orienteering problem solvers. Third, we provide a bi-criteria approximation guarantee, which

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 73

ensures that the cost of the set output by our routine is close to the optimum for a closely related problem.

Specifically, our result states that the solution with L robots is no more than λ

ps
(1+ log(λ∆L/ps)) times the

optimum solution cost for a problem satisfying at least L/K fraction of the constraints, where K is the size of

the final output of our algorithm, ps is the per-robot survival probability threshold, 1/λ ≤ 1 is the approxima-

tion guarantee for an oracle routine which solves the orienteering problem, and ∆L is the ratio of incremental

coverage gain from the first and Lth path planned. Fourth, we provide an optimization routine for solving a

broad class of cost-benefit path planning problems. Specifically, we consider the problem max fB(ρ)− fC(ρ),

where fB(ρ) typically represents the benefit and fC(ρ) typically represents the cost of path ρ . Our approach

requires that optimizing fB(ρ) and fC(ρ) separately is equivalent to optimizing the sum of carefully selected

edge or node weights. This assumption is fairly mild, and allows us to consider challenging non-linear com-

binations of cost and benefit such as (∑b j)/(1−∏ci), (∏b j)+C ∏ci, and (∑b j)+
√

∑c2
i , where ci are

cost coefficients and b j are reward coefficients, with i and j indexing edges or nodes in the path (depend-

ing on the application). Fifth, we bound the number of calls to an orienteering problem oracle required to

reach a desired error. Specifically, after O(1/ε) calls to the oracle (with oracle tolerance δ), the absolute

error is at most ε + δ and the relative error (assuming the value of the initial solution, F̂0, is positive) is at

most 1+ ε + δ/F̂0. If the cost and benefits are known to reside in a finite interval, then these results imply

that the corresponding cost-benefit path planning problem is of similar complexity as solving an orienteering

problem. Finally, we demonstrate the quality of the paths selected by our routine. For a special case of the

RSC (for which we could compute optimal solutions) our solution uses at most 33% more robots than the

optimum. When tested on edge-sparse graphs, our cost-benefit planning approach scales empirically with

the square of the number of nodes in the graph and provides near-optimal solutions (exhaustive search scales

exponentially in the number of nodes). We then apply our routine to a search and rescue scenario with 225

nodes and visit probability thresholds of 0.95. Our routine finds a set of 36 paths which satisfy the constraints

with approximation ratio 9. The first 13 of these paths satisfy 80.7% of the constraints with approximation

ratio 4.33. This chapter is an extension of the conference paper [61].

5.1 Problem Statement

We present the formal statement of the RSC problem in Section 5.1.1, its equivalence to submodular set cover

in Section 5.1.2, and the cost-benefit path planning problem in 5.1.3. We then discuss an example of the RSC

in Section 5.1.4 and its applications in Section 5.1.5.

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 74

5.1.1 The RSC problem

We use the same notation and setting as set out in Chapter 2. Let c : X →R+ be a cost function, h j :Z+→R+

a reward function (as defined in Section 3.1.1). We define the expected reward accumulated at node j as

H̄ j(X) :=
|X |

∑
m=0

h j(m)p j(m,X).

We assume that h j satisfies the properties of Lemma 3.1.4, which implies H̄ j(X) is a submodular function.

Let H j, j = 1, . . . ,V be the minimum reward to be collected at node j. The Risk-Sensitive Coverage

problem is formally stated as:

Risk-Sensitive Coverage problem: Given a graph G , edge weights ω , survival probability

threshold ps, cost function c, reward functions {h j}Vj=1, and reward thresholds {H j}Vj=1, mini-

mize the team cost while satisfying all constraints:

minimize
K,ρ1,...,ρK

K

∑
k=1

c(ρk)

subject to P
{

ak
|ρk|(ρk) = 1

}
≥ ps k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρk|) = vt k = 1, . . . ,K

H̄ j({ρk}K
k=1)≥ H j j = 1, . . . ,V

The objective is to minimize the cost of the routes chosen. The first set of constraints enforces the survival

probability, the second and third sets of constraints enforce the initial and final node constraints. The last

constraint is the coverage constraint and requires that the reward collected at node j is at least H j. The

RSC should be considered as a higher level model for routing a team of robots subject to visit constraints.

In practice lower level routines will be necessary to handle issues such as collision avoidance and robot

dynamics.

We are primarily interested in two classes of cost functions. When costs are uniform (i.e. c(·) = 1) then

the optimal solutions will use as few robots as possible. When costs are the failure probability (i.e. c(ρ) =

1−E[zvt (ρ)]) then an optimal solution will minimize the expected number of failed robots. In principle our

approach can be applied to many other settings.

5.1.2 Equivalence to submodular set cover

In this section we show that the RSC is equivalent to the submodular set cover problem with ground set

X , which contains finitely many copies of each path in X (ps,ω). A subset X ⊂X automatically satisfies

the first three sets of constraints for the RSC (survival probability, start and end nodes). Next we give a

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 75

submodular function g : 2X → R+ such that g(X) = g(X) if and only if the reward thresholds are satisfied.

Define the functions f j for j = 1, . . . ,V to be the minimum of the expected reward collected at node j by

robots following the paths in X and the reward threshold:

f j(X) := min
{

H̄ j(X),H j
}
.

We assume that h j satisfies the conditions of Lemma 3.1.4 hence H̄ j is a submodular function, and by com-

position rules f j is also submodular. Now we define the coverage function,

g(X) =
V

∑
j=1

f j(X),

which is also a submodular function of the set of paths. If the constraints are satisfied by X ⊂ X , then

f j(X) = H j = f j(X) which implies g(X) = g(X). If g(X) = g(X) and there is some subset Y ⊆X which

satisfies the constraints, then g(X) = ∑
V
j=1 H j, which implies that the set X satisfies the coverage constraints.

Hence g(X) = g(X) is equivalent to saying that the set X satisfies the coverage constraints, so the RSC

problem is equivalent to
minimize

X⊆X
∑

ρ∈X
c(ρ)

subject to g(X) = g(X)

which is a submodular set cover problem with domain X , cost function c, and coverage function g. Motivated

by the strong performance of the cost-benefit greedy algorithm for the submodular set cover problem [26],

we proceed to study the cost-benefit path planning problem in detail.

5.1.3 Cost-benefit path planning

Let ce ∈ R be the cost of taking edge e ∈ E , and b j ∈ R be the benefit of visiting node j ∈ V . Define

fC : X → R≥0 as the path cost function, and fB : X → R as the path benefit function. We are interested in

cost and benefit functions which satisfy,

Maximize
ρ∈X

fB(ρ) ⇐⇒ Maximize
ρ∈X ∑

j∈ρ

b j.

Minimize
ρ∈X

fC(ρ) ⇐⇒ Minimize
ρ∈X ∑

e∈ρ

ce,

Namely, maximizing fB(ρ) is equivalent to maximizing the sum of the benefits for nodes in ρ and minimizing

fC(ρ) is equivalent to minimizing the sum of edge costs in ρ . We refer to this as ‘additive equivalence’. The

cost-benefit path planning problem is then:

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 76

Cost-benefit Path Planning Problem: Given a set of paths X , functions fB, fC with corre-

sponding coefficients {b j} j∈V , {ce}e∈E , and an error bound ε , solve

Maximize
ρ∈X

f (ρ) := fB(ρ)− fC(ρ)

within error bound ε .

The error bound constraint can be either absolute, meaning f (ρ)≥ f (ρ∗)− ε , or relative, meaning f (ρ∗)≤
(1+ ε) f (ρ). By imposing the additive equivalence, we retain enough structure to meaningfully solve the

problem, and by allowing the cost and benefit functions to have different forms we can handle a broad class

of challenging routing problems.

Remark: Our approach and formulation of the cost-benefit path planning problem can be generalized to

handle node costs, edge rewards, negative rewards (i.e. bi-cost problems) or negative costs (i.e. bi-objective

problems). To keep the presentation simple we mainly focus on the cost-benefit trade-off which has positive

edge costs and positive node rewards, as this is the case that is useful for the RSC.

5.1.4 Example

An example of the RSC problem with single visit reward functions and uniform costs is given in Figure

5.2(a). There are four nodes and four edges. The survival threshold is ps = 0.8 and the edge weights are all

0.9. There are two feasible paths, ρ1 = {vs,1,vt}, ρ2 = {vs,2,vt}, and the probability a robot reaches node

vt is 0.81 for either path. For visit probability thresholds pv(1) = pv(2) = 0.9, it is easy to verify that the

optimal solution is {ρ1,ρ2}. For visit probability thresholds pv(1) = pv(2) = 0.99 the optimal solution is

{ρ1,ρ1,ρ2,ρ2}.

5.1.5 Applications and variants of the RSC

Heterogeneous teams The RSC is easily extended to a scenario where there are M different types of robots

available, each with different cost functions c(m,ρ) and capabilities represented by feasible sets Xm. The

(a) Graph G (b) Feasible Paths

Figure 5.2: Example of the Risk-Sensitive Coverage problem. (a) The graph has four nodes and four edges.
The probability of surviving a given edge is 0.9. (b) For survival probability threshold 0.8, there are two
feasible paths from node vs to vt : ρ1 = {vs,1,vt} and ρ2 = {1,2,vt}.

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 77

objective function is now the sum of the costs of the types of robots selected, and the constraints are now that

each path be in the respective feasible set of the robot type. This can model a wide variety of scenarios, for

example when some lower cost robots can be exposed to more risk than more expensive variants; or when

each robot type can only visit a subset of the nodes in the graph, e.g. in underwater scenarios where nodes

may correspond to different depths.

Edge variants We can extend to an edge coverage scenario by re-defining all node variables as edge

variables as described in Section 3.2.4. This is useful for applications such as scientific missions where edges

correspond to routes which the robots gather information along, and the objective is to find the smallest team

which can complete the mission with the desired coverage.

Arbitrary terminal nodes We can consider the problem where the robots can end at any subset of nodes

by placing an edge with weight 1 between these nodes and node vt , and removing all other edges which end

at vt . This would model a scenario where there are multiple depots where the robots may end at which are

equally desirable.

Fuel limits We can finally consider a variant where we have a second edge weight ω2 which represents

fuel consumption, and paths must not exceed a fuel budget BF . This introduces a new constraint that the sum

of edge weights along a path is less that BF .

5.2 Solution Approach

In this section we study how to solve the RSC problem. In Section 5.2.1 we derive a node additive decom-

position of the constraint function and show that we can approximately maximize the coverage of a path by

solving an orienteering problem. We then discuss the cost-benefit sub-problem in detail in Section 5.2.2, with

an analysis of its convergence and complexity. We give the top-level algorithm in Section 5.2.3, and provide

an analysis of its complexity. We give a bi-criteria guarantee on the quality of our solution in Section 5.2.4

and discuss modifications for the extensions in 5.2.5.

5.2.1 Additive equivalent objective

Given a previously selected set of paths X̂L−1, the cost-benefit greedy sub-problem for the RSC problem

requires us to find a path ρ̂L which maximizes the ratio of discrete derivative of the coverage function at X̂L−1

with respect to ρ̂L to cost. This section lays the groundwork for how to optimize the cost-benefit ratio (which

we discuss more in Section 5.2.2). We show that the coverage function can be written as a sum of (path

dependent) node rewards, and can be effectively approximated with path independent weights.

By construction, the set X has (finitely) many copies of each path in X (ps,ω), so X \ X̂L−1 always

contains at least one copy of each feasible path. Since the discrete derivative of g is identical for each copy

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 78

we can reduce the search domain to paths in X (ps,ω). We use a similar approach as in Chapter 3 to linearize

the constraint function so it can be represented as a sum of path independent node weights.

The discrete derivative of g is the sum of the discrete derivatives of f j. If the reward threshold has been

satisfied, then ∆ f j(ρ | X̂L−1) = 0, otherwise it is the smaller of H j− H̄ j(X) and ∆H̄ j(ρ | X). For φ ∈ [0,1],

define

δ j(φ ,X) =

0, if H̄ j(X)≥ H j

min

{
H j− H̄ j(X),φ

|X |
∑

m=1
∆h j(m)p j(m−1,X)

}
, else .

It is easy to verify that ∆ f j(ρ | X) = δ j(E[z j(ρ)],X), and if p < p′ then δ (p,X) ≤ δ (p′,X). Let I j(ρ)

be equal to 1 if node j is in ρ and 0 otherwise. From the definition of δ j and feasibility of ρ , we have the

following inequalities:

psI j(ρ)δ j(ζ j,X)≤ ∆ f j(ρ | X)≤ I j(ρ)δ j(ζ j,X).

This means that the path independent quantity δ j(ζ j,X) is a good characterization of the path dependent

quantity ∆ f j(ρ | X), especially when ps is close to unity. We form our approximate greedy algorithm by

using this path independent approximation, where we are looking to maximize the sum:

∆ḡ(ρ | X̂L−1) :=
V

∑
j=1

I j(ρ)δ j
(
ζ j, X̂L−1

)
,

which represents an optimistic estimate of the discrete derivative of the coverage function at X̂L−1 with respect

to ρ .

We can find the path which (approximately) maximizes reward (but not the ratio) by solving an orien-

teering problem on the graph GO, which has the same edges and nodes as G but has edge weights ωO(e) and

node rewards νL(j) = δ j(ζ j, X̂L−1). Solving the orienteering problem on GO with budget− log(ps) will return

a path that maximizes the sum of node rewards (which is ∆ḡ(ρ | XL−1)), and satisfies ∑e∈ρ− log(ω(e)) ≤
− log(ps), which is equivalent to P{aL

|ρ|(ρ) = 1} ≥ ps. The following lemma characterizes the value of such

a path:

Lemma 12 (Single robot constant-factor guarantee). Suppose we are given a set of paths X ⊂ X . Let

Orienteering be a routine that solves the orienteering problem within constant-factor 1/λ , that is for node

weights ν(j) = δ j(ζ j,X), path ρ̂ output by the routine, and any path ρ ∈X (ps(r),ωr),

V

∑
j=1

I j(ρ̂)ν(j)≥ 1
λ

V

∑
j=1

I j(ρ)ν(j).

Then for any ρ ∈X (ps(r),ωr) we have

∆g(ρ̂ | X)≥ ps

λ
∆g(ρ | X)

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 79

Proof. We have by the properties of δ j and the Orienteering routine,

∆g(ρ | X)≤
V

∑
j=1

I j(ρ)δ j(ζ j,X)≤ λ

V

∑
j=1

I j(ρ̂)δ j(ζ j,X)

≤ λ

ps

V

∑
j=1

∆ f j(ρ̂ | X)≤ λ

ps
∆g(ρ̂ | X)

Intuitively, this lemma follows because if ps is close to unity, the probability that a robot could visit a

node is not too far from the probability that a robot actually visits the node. Note that this is very similar to

the guarantee in Lemma 5, however the new proof is necessary because the latter does not consider truncated

rewards (i.e. the min{·} operator).

5.2.2 Cost-benefit sub-problem

When costs are uniform, the cost-benefit greedy sub-problem reduces to maximizing ∆g(ρ | X̂L). Hence using

Lemma 12 we have that solving an orienteering problem with node weights δ j(ζ j, X̂L) is a ps
λ

approximate

algorithm for the cost-benefit greedy sub-problem.

When costs are not uniform, we solve the cost-benefit path planning problem by searching over the

two-dimensional objective space. Level curves in this space are lines with unit slope, since they imply

fB(ρ) = fC(ρ)+ d for some constant d. Structurally our search is very similar to the ε-constraint and two

phase approaches commonly used to construct the Pareto optimal set. Our algorithm can be interpreted as

an implicit search over the Pareto set of cost-benefit optimal paths, where it focuses on solutions which may

optimize the specific scalarization fB(ρ)− fC(ρ). Our algorithm relies on two sub-routines:

SR1: Minimize
ρ∈X

fC(ρ),

SR2: Find
ρ∈X

ρ

Such that fC(ρ)≤C,

fB(ρ)≥ max
ρ∗: fC(ρ∗)≤C

fB(ρ
∗)−δ .

SR1 is used to bound the cost of any optimal solution to the cost-benefit path planning problem and SR2

is used to bound the benefit of any optimal solution (by setting C = ∞) and to improve the bound on benefit

for paths with cost less than C. Because the functions fC and fB have additive equivalents, these subroutines

are equivalent to well-known graph optimization problems. In the case with positive edge costs and positive

node benefits, SR1 is equivalent to a standard shortest path problem and SR2 is equivalent to the orienteering

problem. Pseudocode for the algorithm is given in Algorithm 7, with an illustration of the search procedure

in Figure 5.3.

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 80

Algorithm 7 Algorithm for solving the general cost-benefit path planning problem.
1: procedure CBPP(G , fB, fC,{b j},{ce}, ε)
2: Compute additive equivalents {b j}, {ce}
3: Compute ρ∗C, ρ∗B
4: ρ̂ ← argmax

ρ∈{ρ∗C ,ρ
∗
B}

f (ρ), F̂ ← f (ρ̂)

5: F̄ ← fB(ρ
∗
B)+δ − fC(ρ∗C)

6: R0← Region(fC(ρ∗B), fC(ρ∗B), F̄)
7: Q.enqueue(R0, F̄R0)
8: while !Q.empty do
9: R← Q.pop

10: if F̄R− f (ρ̂)< ε then return ρ̂

11: end if
12: ρR← Solve OP(G ,R)
13: ρ̂ ← argmax

ρ∈{ρR,ρ̂}
f (ρ), F̂ ← f (ρ̂)

14: RL,RU ← Split(R, fB(ρR))
15: Q.enqueue(RL, F̄RL)
16: Q.enqueue(RU , F̄RU)
17: end while
18: return Fail
19: end procedure

Figure 5.3: Illustration of the feasible space after initialization (left) and after three iterations of the refinement
phase (right).

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 81

Initialization The algorithm begins by solving subroutines 1 and 2 to bound the feasible space (line 3).

We denote a solution to subroutine 1 by ρ∗C, and a solution to subroutine 2 (with C = ∞) by ρ∗B. The current

best solution ρ̂ is set to the better of the two initial solutions (line 4) and the upper bound is then set to

F̄ = fB(ρ
∗
B)+δ − fC(ρ∗C) (line 5).

From these initial solutions we have three inequalities which define a triangular region of feasible space,

as illustrated in Figure 5.3. Namely, we have that any optimal solution ρ∗ must satisfy

fC(ρ∗)≥ fC(ρ∗C)

fB(ρ
∗)≤ fB(ρ

∗
B)+δ

f (ρ∗)≥ f (ρ̂)

Structure of the feasible space As the algorithm progresses, the feasible space is fragmented into regions

defined by disjoint intervals of cost values, a regional upper bound on the objective, and the global lower

bound f (ρ̂) (an example after three iterations is given in Figure 5.3). Note that each region is a right trapezoid

with unit slope.

The additive error within region R is the difference between the regional upper bound and the global lower

bound and denoted by ER := F̄R− F̂ . Note that ER is the length of the “tall” vertical side of the region (see

Figure 5.4).

The tolerance of region R is the height of the “short” vertical side of a region, and denoted by δR. The

tolerance is introduced by allowing additive error δ in solutions to SR2. We store the regions that compose

the feasible space using a priority queue with the priority of R set to F̄R (lines 7, 15, 16).

Figure 5.4: Illustration of how a solution to the orienteering problem (SR2) splits a feasible region for the
cases when the solution produces a new lower bound (left) and does not (right).

Solution refinement The algorithm then iterates by selecting region R off the top of the queue (i.e., the

region with the largest upper bound). If the error within this region is less than ε , then the routine returns

ρ̂ (line 10). Otherwise, it solves an orienteering problem with the cost bound set to the mid-point of the

region’s extent in cost-space (line 12). The resulting path splits R into two smaller regions, the lower half RL

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 82

and the upper half RU (illustrated in Figure 5.4). The Split routine takes in a region R and the solution to an

orienteering problem ρR and returns RL and RU (line 14) with bounds set as shown in Figure 5.4.

Note that by construction the widths of RL and RU are half of the width of the parent region R, and the so-

lution ρR either produces a new upper bound for region RL or improves the global lower bound. Furthermore

the tolerances δRL and δRU are bounded by max{δ ,δR}, and since the initial tolerance is δ , we have δR ≤ δ

for any region.

Branch and bound algorithm analysis We begin by formalizing the relationship between ERL , ERU and

ER in terms of δ and the difference ∆ := | f (ρ̂)− f (ρR)| (evaluated before updating ρ̂ on line 13).

Invariant 1: At any point in the algorithm, ER = ERL +ERU +∆−δ . Furthermore,

max{ERL ,ERU } ≤
1
2
(ER +δ).

The proof follows from geometry of triangles and is illustrated graphically in Figure 5.4. Note that this

invariant implies that ERL +ERU is largest (i.e. convergence is slowest) when ∆ = 0. Using this invariant we

can provide a bound on the absolute error:

Lemma 13. (Bound on absolute error) Let En denote the absolute error after solving 2n− 1 orienteering

problems, with E0 as the error after the initialization step. Then

En ≤ 2−nE0 +(1−2−n)δ .

Proof. The slowest convergence is when ∆ = 0 for every sub-problem solved. In this case, the algorithm

proceeds uniformly through the feasible regions and so the errors take one of two values at a given time.

When 2n−1 sub-problems have been solved, all regions have the same error. Our proof is by induction over

n.

The base case follows immediately from invariant 1 since there is a single region E0 = ER and so E1 =

max{ERL ,ERU } ≤ 1
2 (E0 +δ).

Step n : Since we are considering the worst case with ∆ = 0, En−1 is the largest error after 2n−1−1 calls

to SR2. For each of the problems evaluated during step n we have ER ≤ En−1, and so applying Invariant 1

again we have

En ≤
1
2
(En−1 +δ)≤ 2−nE0 +(1−2−n)δ .

An alternate way of characterizing this convergence is that it takes O(1/ε) calls to the orienteering oracle

to get absolute error bounded by ε +δ .

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 83

We can use a similar approach to bound the relative error, which is the ratio of upper and lower bounds.

We begin by characterizing how the relative error changes over a single iteration of the algorithm:

Invariant 2: If the initial lower bound F̂0 is positive, then

max
{

F̄RL

F̂RL

,
F̄RU

F̂RU

}
≤ 1

2

(
F̄R +δ

F̂R
+1
)
.

Proof. From Figure 5.4 and Invariant 1 we have

F̄RL = F̄R−
(

ER−δ

2

)
F̄RU = F̄R−ER +ERL ≤ F̄R−

(
ER−δR

2

)
both of which are bounded by 1

2 (F̄R + F̂R + δ). Since F̂RL = F̂RU ≥ F̂R, taking the ratio of the bounds gives

the desired result.

Now we can provide a bound on the convergence rate of the relative error for the case when F̂0 > 0:

Lemma 14. (Bound on relative error) Let F̄n/F̂n be the relative error after solving 2n−1 orienteering prob-

lems, and assume that the initial solution has positive value (F̂0 > 0). Then

F̄n

F̂n
≤ 2−n F̄0

F̂0
+(1−2−n)

(
1+

δ

F̂0

)
.

The proof is identical to the bound on the absolute error, except we use Invariant 2 in place of Invariant 1.

An alternate way of characterizing this convergence is that it takes O(1/ε) calls to the orienteering solver

to get a relative error bounded by 1+ ε + δ

F̂0
. If F̂0� δ , this guarantee is quite strong.

5.2.3 Algorithm

We can now describe the complete routine for solving the RSC problem. Pseudocode for our algorithm is

given in Algorithm 9. Our algorithm relies on two sub-routines. Define the method Dijkstra(G , i, j), which

returns the length of the shortest path from i to j on the edge weighted graph G using Dijkstra’s algorithm.

Given an edge weighted graph G , node rewards ν , and cost function c, the costbenefit(G ,ν ,c) routine

solves the appropriate cost-benefit path planning problem within factor α . Pseudocode for the costbenefit

routine is given in Algorithm 8. If costs are uniform, it solves a single orienteering problem, otherwise it

solves an appropriate version of the cost-benefit path planning problem as described in Section 5.2.2. We

begin by forming the graph GO with log-transformed edge weights ωO(e), and then use Dijkstra’s algorithm

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 84

to compute the maximum probability that a node can be reached. The algorithm then proceeds to plan paths

until the constraints are satisfied. During each iteration, we solve the cost-benefit path planning problem

to greedily choose the path that maximizes ∆ḡ. This path is added to the solution set, and the algorithm

terminates if all constraints are satisfied.

Algorithm 8 Algorithm for solving the cost-benefit greedy sub-problem. If costs are uniform it solves a
single orienteering problem, otherwise it performs an implicit search over the Pareto optimal set of paths
(described in detail in Section 5.2.2).

1: procedure costbenefit(G , ν , c)
2: if Uniform costs then
3: return Orienteering(G , ν , − log(ps))
4: else
5: return CBPP(G , log(·), log(·), ν , ω , ε)
6: end if
7: end procedure

Algorithm 9 Approximate greedy algorithm for solving the RSC problem.
1: procedure CGreedySurvivors (G ,{H j},c)
2: Form GO from G , such that vs = 1, vt =V
3: X̂ ← /0
4: for j = 1, . . . ,V do
5: ζ j← exp(−Dijkstra(GO,1, j))
6: end for
7: while max j δ j(ζ j, X̂)> 0 do
8: X̂ ← X̂ ∪costbenefit(GO,{δ j(ζ j,X)}Vj=1,c)
9: end while

10: return X̂
11: end procedure

Let K̄ be an upper bound on the number of robots selected. This can be computed by using a naive policy

which sends robots along the safest route to a node until the constraint is met, then repeats for all nodes.

Suppose that the complexity of the Orienteering oracle is CO. Then the complexity of our algorithm for

uniform costs is O(V 2 log(V))+O(V K̄)+O(K̄CO). The first term is the complexity of calculating ζ j for

all nodes, the second term is the complexity of updating each weight K ≤ K̄ times, and the final term is

the complexity of solving the K ≤ K̄ orienteering problems. For general costs with solver tolerance ε , the

complexity is O(K̄CO/ε).

5.2.4 Approximation guarantees

In this section we combine the results from Chapter 3, this chapter, and [26] to give approximation guarantees

for the CGreedySurvivors algorithm. The set cover problem is not approximable within a constant factor

[22] and our guarantees are solution dependent, meaning that the approximation ratio depends on the specific

problem posed and solution found by our algorithm. We give a bi-criteria guarantee, which ensures that the

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 85

cost of our solution is no more than a factor γ ≥ 1 greater than the minimum cost solution which satisfies

fraction β ≤ 1 of the constraints.

Theorem 8 (Bi-criteria approximation for the RSC). Given a RSC problem with coverage function g and

costs c, let X̂K be a solution found using an α–approximate cost-benefit greedy algorithm. For L ≤ K, let

X̂L be the first L paths selected by the algorithm, and let X∗L be a set with minimum cost which satisfies

g(X∗L)≥ g(X̂L). Then the cost of the set X̂L is bounded above by

∑
ρ̂∈X̂L

c(ρ̂)≤ 1
α

(
1+ log

(
1
α

g(X̂1)

g(X̂L)−g(X̂L−1)

))
∑

ρ∗∈X∗L

c(ρ∗),

and the set X̂L satisfies

g(X̂L)≥
L
K

g(X).

Proof. For a given solution X̂L, define the functions

f̂ j(X) = min{ f j(X̂L), f j(X)}, j = 1, . . . ,V.

Note that f̂ j(X)≤ f j(X), and f̂ j(X̂`) = f j(X̂`) for `≤ L. By definition of X̂L, we have for `≤ L

V

∑
j=1

∆ f̂ j(x̂` | X̂`−1) =
V

∑
j=1

∆ f j(x̂` | X̂`−1)

≥ α

V

∑
j=1

∆ f j(x | X̂`−1)≥ α

V

∑
j=1

∆ f̂ j(x | X̂`−1),

which implies that the set X̂L is an α–approximate cost-benefit greedy solution to the RSC with normalized,

monotone, submodular coverage function ĝ(X) := ∑
V
j=1 f̂ j(X). Hence we can apply Theorem 3 to get the

first result. The second result follows since g(X̂K) = g(X) and g is submodular.

Using the results from Section 5.2.2 we can specify α for the two cases of cost-function we are primarily

interested in:

Uniform cost case Applying the CBPP routine to the RSC problem with uniform costs we have from

Lemma 12 that α = ps
λ

.

Failure probability costs For the case where c(ρ) = 1−E[zvt (ρ)], we have

fC(ρ) = log

(
1−∏

e∈ρ

ωe

)
,

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 86

which has additive equivalent weights ce = − log(ωe). Combining Lemma 12 with Lemma 13 we have that

after O(1/ε) solutions to the orienteering problem,

log
(

∆g(ρ̂)
c(ρ̂)

)
≥ log

(
∆g(ρ∗)
c(ρ∗)

)
− ε− log(λ/ps),

which implies that α = e−ε ps
λ

.

Tightness of Guarantees The tightness of Theorem 8 for the case L = K depends significantly on the

given problem. Consider the example from Section 5.1.4, with visit probability pv(1) = pv(2) = 0.9. Then

the greedy algorithm will choose X̂1 = {ρ1}, X̂2 = {ρ1,ρ2}. For this simple graph α = 1 (since we can try

all feasible paths), and so the guarantee states that |X̂2| ≤ (1+ log(0.9/0.9))|X∗2 | = |X∗2 |, that is the upper

bound implies optimality. However if we change the visit probability threshold for node 1 to pv(1) = 0.9+ε

for some small ε > 0, then the greedy algorithm terminates after choosing X̂3 = {ρ1,ρ2,ρ1}. The guarantee

at L = K becomes |X̂3| ≤ (1+ log(1+0.9/ε))|X∗3 |, which can be arbitrarily loose as ε → 0. However using

the bi-criteria guarantee for L = 2, we have |X̂2| ≤ (1+ log(0.9/0.9))|X∗2 | = |X∗|, and furthermore g(X∗2) ≥
g(X)−ε , meaning that the set X̂2 is an optimal solution to a problem which has nearly the same constraints.

5.2.5 Algorithm variants

Heterogeneous teams For the heterogeneous team setting, we solve one cost-benefit greedy sub-problem

per robot type at each step of the greedy routine, and select the path/type which has the best value to cost

ratio. The complexity increases linearly in the number of robot types.

Edge variants For the edge variant, we solve an arc orienteering problem [44] in place of the standard

orienteering problem at each step of the cost-benefit greedy routine. The complexity remains the same,

though the guarantees available for the arc orienteering problem are somewhat weaker than for the standard

orienteering problem.

Arbitrary terminal nodes Arbitrary terminal nodes are represented using the graph, and so the underlying

algorithm remains the same. Appropriate modifications for the graph were discussed in Section 5.1.5.

Fuel limits We can consider fuel costs by solving a capacitated orienteering problem as the greedy sub-

problem (which have constant factor approximations, [45]), where capacities correspond to the fuel budget.

5.3 Simulations and Discussion

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 87

Figure 5.5: Performance comparison over different graph sizes for a special case of the RSC.

In this section we characterize the performance and efficiency of our approach. We consider complete graphs

(with an edge between every pair of nodes) and visit probabilities 0.95, which represent challenging scenarios

due to the number of edges in the graph and visits required.

5.3.1 Comparison to optimal policies

The RSC problem is a mixed integer nonlinear programming (MINLP) problem because of the nonlinear

coverage constraint. However, we can formulate a special case of the RSC problem as an integer linear pro-

gramming (ILP) problem. The key simplifying assumption (which may not be practical, but is instrumental

for computing optimal solutions) is that the edge weights ω are in the form of P,P2, · · · where 0 ≤ P ≤ 1

and the exponents are arbitrary positive integers. We further simplify the ILP problem by assuming that the

weights of all edges entering a node are the same.

We used CPLEX and Gurobi to solve the ILP problem and the exact solutions served as the baseline for

comparing with the output of the CGreedySurvivors routine. As shown in Figure 5.5, for all of the cases

tried (from 6 to 62 nodes) the output of our algorithm uses no more than 33% more robots than the optimal,

and typically closer to 25%. This gives empirical justification for using the CGreedySurvivors routine as a

fast, high quality approximate algorithm.

5.3.2 Application to search and rescue

We consider the search and rescue scenario from the introduction, using a subset of the storm data shown

in Figure 5.1. The risk posed by storms to robots was analyzed by [42] using a model very similar to ours,

where the probability of survival is the product of the probability of surviving each edge in a path. We refer

interested readers to their paper, which includes a detailed weather and risk model.

We place sites in a uniform 15×15 grid and compute the edge weights by integrating the “base reflectiv-

ity” (the amount of radar energy reflected by the weather system) across the straight-line connection between

sites. We set ps = 0.8 and H j = 0.95 for all nodes. Our routine takes an average of 20.3 seconds per path

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 88

Figure 5.6: Bi-criteria performance comparison for the search and rescue scenario with 225 nodes and pv(j)=
0.95. The top curve (blue) shows the approximation guarantee from Theorem 2. The lower dashed curve (red)
shows the guarantee while enforcing integrality and monotonicity on the lower bound on the optimal team
size from Theorem 2.

and finds a set of 36 paths which satisfy the coverage constraints exactly, but the guarantee from Theorem 2

gives an approximation ratio of 19.03. Using the bi-criteria guarantee and monotonicity of the lower bound

we know that |X∗K | ≥ 4, which means the approximation ratio is at most 9. We can find tighter guarantees

by relaxing the constraints: the first 27 robots visit 99.7% of the required expected number of nodes with

approximation ratio 6.75, and the first 13 robots satisfy 80.7% of the constraints with approximation ratio

4.33. Figure 5.6 shows the fraction of constraints satisfied versus the approximation guarantee from Theorem

2 and a refined analysis which accounts for the integrality and monotonicity of the optimal solution. Hence,

by slightly relaxing the constraint satisfaction one obtains reasonably tight approximation ratios.

5.3.3 Quality of cost-benefit approach

We implemented our algorithm using the Gurobi MILP solver. Orienteering problems are solved using the

formulation from [30], using the built-in solver tolerance to set δ appropriately. We further improve run

time by (1) using the cutoff parameter to terminate the search immediately if the solver determines there

are no solutions in the region with better objective than F̂ and (2) re-using the same solver model for each

sub-problem which reduces overhead and allows the solver to re-use computation.

We compare our approach (with ε = 0.1,δ = 0.025) against an exhaustive search on a cost-benefit path

planning problem with objective f (ρ) = log(∑ j∈ρ b j)− log(1−∏e∈ρ ωe), with b j uniformly distributed over

[0,1] and ωe uniformly distributed over [0.75,0.95]. We use random Delaunay graphs with 5 to 130 nodes,

since Delaunay graphs (and the closely related Voronoi graph) have been applied to path planning and space

discretizations, are easy to generate, and have O(V) edges (which significantly reduces the run time of the

exhaustive search).

We ran the exhaustive search for graphs up to 24 nodes (after which each solution took more than 100

seconds). A comparison of the run times averaged over 30 trials for each graph size is shown in Figure 5.8.

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 89

Note that the exact solver follows an O(2V) trend (as expected), while our approach appears to follow a O(V 2)

trend. This verifies our earlier claims that MILP solvers can often solve orienteering problems efficiently.

Furthermore our solutions are very high quality, as shown in Figure 5.9. In 78% of the trials where we

have comparison data, our approach found the optimal solution, and in the remaining 22% the additive error

was 0.014 on average and the relative error was 0.6% on average.

Figure 5.7: Example of a Delaunay graph with 30 nodes.

Figure 5.8: Runtime characterization of our algorithm (blue) versus an exact solver (red)

5.3.4 Comparison of uniform and non-uniform costs

We next compare the uniform and non-uniform cost variants for the search and rescue setting. Figure 5.10

shows a comparison of the cost/benefit ratio as a function of the fraction of constraints satisfied. The cost-

benefit greedy approach performs significantly better than the greedy approach from [61], which highlights

the importance of an algorithm which specifically optimizes the cost-benefit ration. The greedy algorithm

solves the problem using 44 robots with expected cost of 8.94 robots, whereas the cost-benefit greedy ap-

proach uses a team of 15 robots with expected losses of 6.82 robots.

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 90

Figure 5.9: Frequency of absolute error values for threshold ε = 0.1 and δ = 0.025. Note that f (X∗)' 2 for
these trials. Data is for graphs with up to 24 nodes.

Figure 5.10: Comparison of performance of the greedy algorithm versus the cost-benefit greedy algorithm in
terms of cost.

CHAPTER 5. THE RISK SENSITIVE COVERAGE PROBLEM 91

5.4 Conclusion

We consider the Risk-Sensitive Coverage problem, where we seek the smallest set of routes which satisfy

visit probability thresholds and survival probability thresholds. We demonstrate that the RSC is an instance

of the submodular set cover problem with a very large ground set. We give an approximate cost-benefit

greedy routine for constructing a feasible solution to the RSC, and then provide a bi-criteria approximation

guarantee which ensures that the solution returned is close to an optimal solution of a similar problem. We

then compare the solutions returned by our routine to an exact solution for a special case of the RSC, and

demonstrate the applicability of the approach on simulated data which represents a search and rescue setting

during a severe storm.

Our algorithm for the cost-benefit path planning problem implicitly searches the Pareto optimal set by

solving a sequence of orienteering problems. We derive convergence bounds on the absolute and relative

error, and give empirical evidence of the empirical quality and efficiency of our approach. We stress that,

although we use a scalarization approach to the multi-objective cost-benefit planning problem, our approach

can handle very non-linear combinations of edge and node weights such as the cost benefit ratio from the

RIPP, ∑ j∈ρ b j/1−∏e∈ρ ce, the cost benefit ratio from the path exploration problem, ∏ j∈ρ b j/∑e∈ρ ce, and

the upper confidence bounds from reinforcement learning, ∑ j∈ρ µ j +
√

∑ j∈ρ σ2
j .

Chapter 6

Conclusions

Coordinating teams of robots to complete sophisticated missions in risky environments is an important and

challenging problem which has few existing solutions. This thesis considers a ‘risky traversal’ model where

each time a robot travels between a pair of destinations, it may fail catastrophically and not complete its

mission. This model is not compatible with existing approaches, and this thesis provides a set of tools based

on submodular optimization for solving the problems of (1) maximizing expected rewards collected by a

team, (2) updating the paths in response to information gathered on-line, (3) ensuring that the set of paths

satisfies complex independence constraints represented using a matroid, and (4) guaranteeing coverage in

dangerous environments while minimizing the resources required.

Our tools are based on variations of the greedy algorithm, which means our approaches scale linearly

as the team size grows, and linearly as the number of robot types available grows. To solve the greedy

sub-problem we rely on an oracle routine for the well known orienteering problem, which has a variety

of practical solution approaches despite being NP-hard. Using the submodular structure of risky traversal

objectives, our approaches have bounded suboptimality, often guaranteeing our solution achieves at least

' 60% of the optimal solution. This work provides a foundation for further studies on the structure of risky

traversal problems and design of efficient solution algorithms.

6.1 Summary

In Chapter 3, we study the Team Surviving Orienteers problem, where the goal is to maximize the expected

rewards that a team of fixed size collects. We provide a linearization approach which approximates the non-

linear and history dependent greedy sub-problem using a standard orienteering problem. Our algorithm has

a 1− e−ps/λ guarantee, and complexity grows at worst linearly in the number of robots and types of robots

available. We also study an on-line variant of the TSO problem, where paths are adapted in response to

survival/failure events, and the heterogeneous TSO problem, where we optimize simultaneously over the

team composition and paths taken.

92

CHAPTER 6. CONCLUSIONS 93

In Chapter 4, we consider independence constraints represented using a matroid, which generalizes linear

independence for set functions. We demonstrate how to represent such constraints efficiently using sub-graph

decompositions and give a greedy algorithm with a ps/(ps + λ) suboptimality bound. We then describe a

continuous greedy algorithm, which performs gradient ascent over the multilinear extension of the objective

function. We show that the continuous greedy algorithm with discretization step size δ � 1 has a (1−δ)(1−
e−ps/(λ+δ)) guarantee, which matches the results from Chapter 3 as δ becomes small.

In Chapter 5, we formalize the Risk Sensitive Coverage problem, which is the dual to the TSO prob-

lem. We show that the RSC problem is an instance of the submodular set cover, and can be approximated

efficiently with a cost-benefit greedy algorithm. We give a general algorithm for solving cost-benefit greedy

path planning problems and provide convergence rate bounds for both relative and absolute error. We then

provide an algorithm with a bi-criteria guarantee on its suboptimality relative to the optimal solution to a

closely related problem. Specifically, if the cost-benefit sub-problem is solved within factor α ≤ 1, then the

cost of the first L paths our algorithm selects is at most 1
α
(1+ log(∆L/α)) and satisfies at least fraction L/K

of the constraints, where ∆L is the ratio of benefit for the first and Lth path selected.

6.2 Future Directions

The models used in this thesis have a number of limitations which future work should address. We primarily

focus on environments with well understood reward structure, constraints, and survival probability distri-

butions. Using the foundations developed in this thesis we hope future research develops in the following

areas:

Alternate approaches to the greedy sub-problem In this work we approach the challenge of planning with

risky traversal by noting that ps is close to 1, and so by linearizing the problem using the fact that survival

probabilities are in [ps,1] we get a fairly tight guarantee. However in some scenarios (such as the monitoring

problem presented in Section 4.6.1) some regions are very difficult to reach but yield significant benefits.

In this work we handle this case using a matroid constraint to relax ps, but this loosens the guarantees we

can provide a-priori. Future work should consider alternate approaches to solving the greedy sub-problem.

One option is to solve a submodular orienteering problem directly, however this ignores the specific structure

of our problem and is computationally intensive. One could also consider solving multiple orienteering

problems with different thresholds, choosing the best result (along the lines of the cost-benefit path planning

problem). This would preserve the same order of complexity and may give more flexibility on the guarantees

available.

More sophisticated models The results in this work rely on an independence assumption for node rewards

(i.e., reward gathered at node j does not change reward available at node j′), on survival probability events

for a single robot (i.e., surviving edge e is independent of surviving edge e′), and survival events for different

CHAPTER 6. CONCLUSIONS 94

robots (i.e. robot k surviving edge e is independent of robot k′ surviving edge e). While this leads to simplified

analysis and is supported by other work in the field [42], these assumptions limit the usefulness of this

model in real-world scenarios. Some work on ‘correlated orienteering problems’ [72], Monte Carlo planning

methods [73], or Markov decision processes [74] may help lift these assumptions. Provided that the greedy

sub-problems remain approximable under these models, the main results of this thesis should still hold.

Planning with uncertain survival probabilities While our work can handle uncertain node values or node

presence, planning with unknown survival probabilities poses a challenge because measurements can change

which paths are deemed ‘feasible’. While one could impose unnatural constraints on learning such as a neg-

ative monotone constraint on the estimated survival probability of an edge (meaning information can only

make one more pessimistic about survival probabilities), this is difficult to justify in practice. Future research

should consider alternate ways of formulating risky traversal problems which can naturally incorporate un-

certain edge probabilities into the optimization process.

Extensions to policies One way to handle uncertain edge probabilities is by planning over policies, which

are much richer actions than the paths which are used in this work. A policy encodes the response to new

information learned on-line, and so the set of feasible policies does not grow by learning that an edge is safer

than originally expected. Reasoning over policies is also interesting because it is a very natural way to plan in

uncertain environments, could allow for parallel exploration in unknown graphs, and can be extended to game

theoretic formulations with non-cooperative agents. The principle challenge with a policy based approach is

that the cardinality of the ground set is much, much larger than the ground set of feasible paths. While there

are some approaches for finding policies to, e.g. partially observable Markov decision processes, they do

not scale well as the complexity of the problem grows. As policy optimization becomes better understood,

a submodular optimization perspective is likely to help by reducing the optimization space to a policy for a

single robot rather than for the entire team.

Cooperation with human operators The big-picture goal of this work is to understand coordination in

risky environments thoroughly in order to facilitate missions with human operators, a crucial step in order

for robots to live up to their promise to do “dull, dirty, and dangerous” work. In particular missions such

as search and rescue in buildings (e.g. during a fire) or damage assessment during a natural disaster require

planning approaches which can simultaneously handle danger to the robot, coordination with other robots,

coordination with human operators, and exploring unknown environments. While many of these topics are

covered in this dissertation, there is a significant amount of work yet to do before these approaches can

be deployed. Namely, incorporating human robot interaction with more sophisticated robot models while

retaining efficient solutions will require significant effort.

Appendix A

Technical Result on Poisson Binomial
Distributions

In the following we prove the technical lemma stated in the background section. We start the proof by

considering a sequence of Poisson binomial distributions f0, f1, The parameters of the nth distribution

are denoted as {pn,k}K
k=1, with pn,1 ≤ pn,2 ≤ ·· · ≤ pn,K . The parameters of the n+1st distribution are

{pn+1,k}K
k=1 =

{
pn,1 + pn,K

2
,{pn,k}K−1

k=2 ,
pn,1 + pn,K

2

}
,

that is, the largest and smallest event probabilities of the nth distribution are averaged to form the n+ 1st

distribution. Note that we re-sort the parameters after constructing them from the nth distribution, so it is still

true that pn+1, j ≤ pn+1,k for j ≤ k.

It is easy to verify that this sequence converges to the binomial distribution with parameters K and p =
1
K ∑

K
k=1 pk. We are interested in showing that the tails of the sequence become heavier as n increases. We

begin by making some basic observations:

Lemma 15. Define

εn :=
1
2
(pn,K− pn,1)

and

p̄n :=
1
2
(pn,K + pn,1) .

Then

pn,1 pn,K = p̄2
n− ε

2
n ,

(1− pn,1)(1− pn,K) = (1− p̄n)
2− ε

2
n ,

95

APPENDIX A. TECHNICAL RESULT ON POISSON BINOMIAL DISTRIBUTIONS 96

and

pn,1(1− pn,K)+ pn,K(1− pn,1) = 2p̄n(1− p̄n)+2ε
2
n .

Proof. Each of these statements follows from straightforward algebra:

p̄2
n− ε

2
n =

1
4
(

p2
n,1 +2pn,1 pn,K + p2

n,K
)

− 1
4
(
(p2

n,K−2pn,1 pn,K + p2
n,1)
)

=
1
4
(4pn,1 pn,K) = pn,1 pn,K

(1− p̄n)
2− ε

2
n = 1−2 p̄n + p̄2

n− ε
2
n

= 1− (pn,1 + pn,K)+ pn,1 pn,K

= (1− pn,1)(1− pn,K)

2 p̄n(1− p̄n)+2ε
2
n =−2(p̄2

n− ε
2
n)+2 p̄n

=−2(pn,1 pn,K)+(pn,1 + pn,K)

= pn,1(1− pn,K)+ pn,K(1− pn,1)

It is useful to define an auxiliary sequence of Poisson binomial probability mass functions

gn(m) = f (m;{pn,k}K−1
k=2),

which correspond to the probabilities of m successes excluding the most and least likely “events” of the nth

distribution. Note that by definition gn(m) = 0 if m < 0 or m > K− 2. We also define notation for the first

and second-order finite difference of gn(m), which are crucial quantities in our inequalities below.

∆1,n(m) := gn(m)−gn(m−1),

and

∆2,n(m) := ∆1,n(m)−∆1,n(m−1)

= gn(m)−2gn(m−1)+gn(m−2).

Using these relationships, we can form a succinct recursive description of fn(m):

Lemma 16. For the sequence of probability mass functions above, we have

fn(m) = fn+1(m)− ε
2
n ∆2,n(m),

APPENDIX A. TECHNICAL RESULT ON POISSON BINOMIAL DISTRIBUTIONS 97

and for Fn(m′) := ∑
m′
m=0 fn(m),

Fn(m′) = Fn+1(m′)− ε
2
n ∆1,n(m′).

Proof. By definition of the probability mass function and gn(m),

fn(m) = pn,1 pn,Kgn(m)

+(pn,1(1− pn,K)+ pn,K(1− pn,1))gn(m−1)

+(1− pn,1)(1− pn,K)gn(m−2)

= p̄2
ngn(m)+ p̄n(1− p̄n)gn(m−1)+(1− p̄n)

2gn(m−2)

− ε
2
n (gn(m)−2gn(m−1)+gn(m−2))

= fn+1(m)− ε
2
n ∆2,n(m).

The second equality follows from the identities in Lemma 15, and the second equality follows by definition

of fn+1(m) and ∆2,n.

Now taking the summation gives us the second statement:

Fn(m′) =
m′

∑
m=0

fn+1(m)− ε
2
n (gn(m)−2gn(m−1)+gn(m−2))

= Fn+1(m′)− ε
2
n

(
m′

∑
m=0

gn(m)−2
m′−1

∑
m=0

gn(m)+
m′−2

∑
m=0

gn(m)

)
= Fn+1(m′)− ε

2
n (gn(m′)−gn(m′−1))

= Fn+1(m′)− ε
2
n ∆1,n(m′).

This lemma gives us an exact characterization of the difference between successive distributions in our

sequence. Specifically, fn(m) ≤ fn+1(m) if and only if the second order finite difference, ∆2,n(m), is non-

negative, and Fn(m′) ≤ Fn+1(m′) if and only if the first order finite difference, ∆1,n(m′) is non-negative. In

the following lemma, we give a sufficient condition on m to ensure that ∆1,n(m)≥ 0.

Lemma 17. Let {pn,k}K
k=1 and µ be defined as in Lemma 1, and ∆1,n(m) defined as the first order finite dif-

ference of gn(m), the Poisson binomial distribution with parameters {pn,k}K−1
k=2 . Then for m≤ (1− p1,K)(K−

2) µ

1−µ
+ p1,K , ∆1,n(m)≥ 0.

Proof. We start by expressing gn(m) using the recursive characterization of the Poisson binomial probability

mass function given by [75]:

gn(m) =
1
m

m

∑
i=1

(−1)i−1gn(m− i)Tn(i),

where Tn(i) = ∑
K−1
k=2

(
pn,k

1−pn,k

)i
. Note that for i≥ 2, we have Tn(i)≤ Tn(i−1) p1,K

1−p1,K
. The case ∆1,n(m+1)≥ 0

APPENDIX A. TECHNICAL RESULT ON POISSON BINOMIAL DISTRIBUTIONS 98

is equivalent to saying that gn(m+1)
gn(m) ≥ 1. Using the recursive expression above,

gn(m+1)
gn(m)

=
Tn(1)
m+1

− ∑
m
i=1(−1)i−1gn(m− i)Tn(i+1)

(m+1)gn(m)

≥ Tn(1)
m+1

−
∑

m
i=1(−1)i−1gn(m− i)Tn(i)

(
p1,K

1−p1,K

)
(m+1)gn(m)

≥ Tn(1)
m+1

− m
m+1

(
p1,K

1− p1,K

)
≥ K−2

m+1
µ

1−µ
− m

m+1
p1,K

1− p1,K
.

Solving for m+1 we have that ∆1,n(m+1)≥ 0 if

m+1≤ (1− p1,K)

(
(K−2)

µ

1−µ

)
+ p1,K

Combining Lemmas 16 and 17 completes the proof for Lemma 1.

Appendix B

Guarantees for the AGCA

Derivation of the objective function for the ACGA

In this section we derive the equivalent form of the objective function for the continuous greedy algorithm

given in Lemma 11:

F(y+δ1ρ)−F(y) = δ

V

∑
j=1

d j
E[z`j(ρ)]

1− yρE[z`j(ρ)]
E[p j(0,R(y))].

At any point in the algorithm yρ < 1 if ρ is a candidate solution to the greedy sub-problem. We begin

by giving three useful identities about the distribution of R(y), then express the objective function in terms of

E[∆ f (ρ | R(y))] (a useful result for subsequent proofs), and finally derive the statement given in Lemma 11.

1. Let Py(X) be the probability that R(y) = X . Then

Py+δ1ρ
(X) = Py(X)

(
1+δ

(
I{ρ ∈ X}

yρ

− I{ρ /∈ X}
1− yρ

))
(B.1)

which follows directly from the definition of R.

2. For any X , ρ ,

Py(X ∪ρ) = Py(X \ρ)
yρ

1− yρ

. (B.2)

3. By definition of p j, we have for all X , ρ:

p j(0,X ∪ρ) = p j(0,X \ρ)(1−E[z j(ρ)]),

99

APPENDIX B. GUARANTEES FOR THE AGCA 100

which along with Equation B.2 gives

p j(0,X \ρ)Py(X \ρ)+ p j(0,X ∪ρ)Py(X ∪ρ) = p j(0,X \ρ)Py(X \ρ)

(
1+

yρ(1−E[z j(ρ)])

1− yρ

)
,

which implies the third identity:

E[p j(0,R(y))] =
1− yρE[z j(ρ)]

1− yρ
∑

X⊆X \ρ
p j(0,X)Py(X) (B.3)

Now using these identities with the definition of F , we have

F(y+δ1ρ)−F(y) = ∑
X⊆X

f (x)
(
Py+δ (X)−Py(X)

)
By definition of F

= ∑
X⊆X

δ f (X)Py(X)

(
I{ρ ∈ X}

yρ

− I{ρ /∈ X}
1− yρ

)
Using eq. B.1

= δ ∑
X⊆X \ρ

Py(X)

(
f (X ∪ρ)

yρ

yρ

1− yρ

− f (X)

1− yρ

)
Using eq. B.2

=
δ

1− yρ
∑

X⊆X \ρ
∆ f (ρ | X)Py(X) By definition of ∆ f

This result combined with Equation B.3 and the fact that ∆ f (ρ | X ∪ρ) = 0 gives the two desired results:

F(y+δ1ρ)−F(y) =
δ

1− yρ

E[∆ f (ρ | R(y))] (B.4)

=
δ

1− yρ

V

∑
j=1

d jE[z j(ρ)] ∑
X⊆X \ρ

p j(0,X)Py(X) By definition of f (B.5)

= δ

V

∑
j=1

d j
E[z j(ρ)]

1− yρE[z j(ρ)]
E[p j(0,R(y))] Applying eq. B.3 (B.6)

Performance guarantee for the ACGA

In this section we provide the proof for the statement of Theorem 7, which we repeat below:

Let X∗ be an optimal solution to the MTSO problem and X̂ be the output of the MCGreedySurvivors

routine with parameters δ and λ . Then the value of the set X̂ is lower bounded by a constant factor of the

optimum:

f (X̂)≥ f (X∗)(1−δ)

(
1− exp

(
− ps

λ +δ ps

))
.

Outline of argument – The proof follows the argument of [17] closely. We begin by lower bounding the

increase in F(y) between subsequent steps and then use a recursive argument to bound the value of F(y) after

APPENDIX B. GUARANTEES FOR THE AGCA 101

the last iteration. Since this section deals primarily with the evolution of y, we denote the state of y after the

`th iteration of the ith step as y(i, `), and use the shorthand y(i,K) = y(i) = y(i+ 1,0). We also denote the

path selected by the algorithm during the `th iteration of the ith step by ρi,`.

Note on feasibility – An important consequence of the exchange properties of matroids is that during any

step i there is an ordering of the elements in an optimal set ρ∗1 , . . . ,ρ
∗
K such that ρ∗` is a candidate solution

when solving the sub-problem during the `th iteration. This means we can combine Lemmas 11 and 10 to

bound the increase in F(y) between steps.

Note on the sub-problem – When solving the sub-problem, we consider the paths with yρ > 0 explicitly

and solve the greedy sub-problem using the approximation yρ = 0. Since the node reward is an increasing

function of yρ , we still have a λ–approximate guarantee for the sub-problem:

ρ ∈ argmax
ρ∈XF (X(i),I)

V

∑
j=1

d j
ν̂(j)

1− yρE[z j(ρ)]
,

which means we can apply Lemmas 10 and 11 to guarantee that ρi,` is within a multiplicative factor of ps/λ

of the optimal.

Now we can bound F(y(i+1))−F(y(i)) below.

F(y(i+1))−F(y(i)) =
K

∑
`=1

F(y(i, `))−F(y(i, `−1)) = δ

K

∑
`=1

E[∆ f (ρi,` | R(y))] Telescoping sum

≥ δ
ps

λ

K

∑
`=1

E[∆ f (ρ∗` | R(y(i, `−1)))] Lemma 10, ρ
∗
` feasible

≥ δ ps

λ
(E[f (X∗∪R(y(i)))]−E[f (R(y(i+1)))]) Submodularity

≥ f (X∗)
δ ps

λ
− δ ps

λ
F(y(i+1)) Monotonicity

Now we can rearrange the inequality above to get

(F(y(i+1))− f (X∗))
(

1+
δ ps

λ

)
≥ (F(y(i))− f (X∗)), (B.7)

which applied recursively gives

F(y(1/δ))≥ f (X∗)

(
1−
(

1+
δ ps

λ

)−1/δ
)

≥ f (X∗)
(

1− exp
(
− ps

λ + psδ

))
.

The last inequality is because 1+ x ≤ ex implies (1+ x)−N ≤ e−Nx/(1+x). The theorem statement follows

since we enforce that the rounded result X̂ satisfies f (X̂)≥ (1−δ)F(y(1/δ)).

APPENDIX B. GUARANTEES FOR THE AGCA 102

Correctness for UpdateWeights routine

We introduce some new notation to analyze the UpdateWeights routine. Given a vector y, let ρn be the nth

non-zero coordinate of y, and define R`(y) := R(y)∩{ρn}`n=1 as the random set restricted to the first ` nonzero

coordinates. Now define

w`
m := E[p j(0,R`(y))I{|R`(y)|= m}],

which is the expected probability that zero of the paths in R`(y) visit node j and there are m paths in R`(y). If

M is the number of non-zero entries of y, then by the definition of the expectation we have,

E[p j(0,R(y))] = sumM
m=0wM

m ,

since R(y) must have between 0 and M elements.

For ` = 0, the weights w`
m are zero unless m = 0. For ` > 0 we can use the product form of p j(0,X) to

express w`
m in terms of w`−1

m−1 and w`−1
m :

w`
m = w`−1

m−1

(
(1−E[z`j(ρ`)])yρ`

)
+w`−1

m
(
1− yρ`

)
.

This expression has an intuitive meaning, as it is the two ways that R`(y) can have m elements: either y` ∈
R`(y) and |R`−1(y)| = m− 1, or y` /∈ R`(y) and |R`−1(y)| = m. In both cases we update the weights and

probability of the event occurring by multiplying by the appropriate coefficients.

The UpdateWeights routine simply applies this iterative approach to compute {wM
m }M

m=0 and then sums

the weights to find E[p j(0,R(y))].

Expected complexity of SwapRounding

Let p f be the probability that SwapRounding fails to return a satisfactory result. Then the expected number

of calls is
∞

∑
n=1

npn−1
f (1− p f) =

1
1− p f

.

Now using the bound from [25], p f ≤ exp(−F(y)δ 2/8)≤ exp(−psδ
2/8), and from the inequality e−x ≤

1− x+ x2/2 we get 1
1−e−x ≤ 2

2x−x2 . Combining these inequalities gives the cited result.

Note that we could make the while loop terminate after δ−2 iterations which would make the statement

of Theorem 7 hold with probability at least 1− e−ps/8, and the complexity be deterministic and O(K2δ−3).

Bibliography

[1] A. Cros, N. Ahamad Fatan, A. White, S. Teoh, S. Tan, C. Handayani, C. Huang, N. Peterson, R. Vene-

gas Li, H. Y. Siry, R. Fitriana, J. Gove, T. Acoba, M. Knight, R. Acosta, N. Andrew, and D. Beare, “The

Coral Triangle Atlas: An integrated online spatial database system for improving coral reef manage-

ment,” PLoS ONE, vol. 9, no. 6, pp. 1–7, 2014.

[2] International Chamber of Commerce: Commercial Crime Services. (2017) IMB piracy reporting centre.

Available at https://www.icc-ccs.org/piracy-reporting-centre.

[3] NOAA National Weather Service Radar Operations Center, “NOAA next generation radar (NEXRAD)

level II base data,” NOAA National Centers for Environmental Information, 1991.

[4] A. Gunawan, H. Lau, and P. Vansteenwegen, “Orienteering problem: A survey of recent variants, so-

lution approaches and applications,” European Journal of Operational Research, vol. 255, no. 2, pp.

315–332, 2016.

[5] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The orienteering problem: A survey,” Eu-

ropean Journal of Operational Research, vol. 209, no. 1, pp. 1–10, 2011.

[6] C. Chekuri and M. Pál, “A recursive greedy algorithm for walks in directed graphs,” in IEEE Symp. on

Foundations of Computer Science, 2005.

[7] H. Zhang and Y. Vorobeychik, “Submodular optimization with routing constraints,” in Proc. AAAI Conf.

on Artificial Intelligence, 2016.

[8] I.-M. Chao, B. Golden, and E. Wasil, “The team orienteering problem,” European Journal of Opera-

tional Research, vol. 88, no. 3, pp. 464–474, 1996.

[9] A. M. Campbell, M. Gendreau, and B. W. Thomas, “The orienteering problem with stochastic travel

and service times,” Annals of Operations Research, vol. 186, no. 1, pp. 61–81, 2011.

[10] A. Paul, D. Freund, A. Ferber, D. B. Shmoys, and D. Williams, “Prize-collecting TSP with a budget

constraint,” in LIPIcs-Leibniz Int. Proc. in Informatics, 2017.

103

https://www.icc-ccs.org/piracy-reporting-centre

BIBLIOGRAPHY 104

[11] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of dynamic vehicle routing problems,”

European Journal of Operational Research, vol. 225, no. 1, pp. 1–11, 2013.

[12] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle routing problems: Three decades and

counting,” Networks, vol. 67, no. 1, pp. 3–31, 2016.

[13] Gurobi Optimizer reference manual, Gurobi Optimization, Inc., 2016.

[14] ILOG CPLEX User’s guide, IBM ILOG, 1987.

[15] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informative sensing using multiple

robots,” Journal of Artificial Intelligence Research, vol. 34, pp. 707–755, 2009.

[16] N. Atanasov, J. Le Ny, K. Daniilidis, and G. Pappas, “Decentralized active information aquisition:

Theory and application to multi-robot SLAM,” in Proc. IEEE Conf. on Robotics and Automation, 2015.

[17] A. Badanidiyuru and J. Vondrák, “Fast algorithms for maximizing submodular functions,” in ACM-

SIAM Symp. on Discrete Algorithms, 2014.

[18] A. Krause and D. Golovin, “Submodular function maximization,” in Tractability: Practical approaches

to hard problems. Cambridge Univ. Press, 2014.

[19] A. Schrijver, Combinatorial optimization: polyhedra and efficiency, 1st ed., R. Graham, B. Korte,

L. Lov‘asz, A. Wigderson, and G. Ziegler, Eds. Springer Science & Business Media, 2002.

[20] G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher, “An analysis of approximations for maximizing

submodular set functions–I,” Mathematical Programming, vol. 14, no. 1, pp. 265–294, 1978.

[21] K. Wei, R. Iyer, and J. Bilmes, “Fast multi-stage submodular maximization,” in Int. Conf. on Machine

Learning, 2014.

[22] U. Feige, “A threshold of ln n for approximating set cover,” Journal of the Association for Computing

Machinery, vol. 45, no. 4, pp. 634–652, 1998.

[23] M. Fisher, G. Nemhauser, and L. Wolsey, “An analysis of approximations for maximizing submodular

set functions –II,” in Polyhedral Combinatorics. Springer, 1978.

[24] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a submodular set function subject to a

matroid constraint,” in Int. Conf. on Integer Programming and Combinatorial Optimization, 2007.

[25] C. Chekuri, J. Vondrák, and R. Zenklusen, “Dependent randomized rounding via exchange properties

of combinatorial structures,” in IEEE Symp. on Foundations of Computer Science, 2010.

[26] L. Wolsey, “An analysis of the greedy algorithm for the submodular set covering problem,” Combina-

torica, vol. 2, no. 4, pp. 385–393, 1982.

BIBLIOGRAPHY 105

[27] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval Research Logistics, vol. 34,

no. 3, pp. 307–318, 1987.

[28] K. Chen and S. Har-Peled, “The orienteering problem in the plane revisited,” in ACM Symp. on Com-

putational Geometry, 2006.

[29] C. Chekuri, N. Korula, and M. Pál, “Improved algorithms for orienteering and related problems,” ACM

Transactions on Algorithms, vol. 8, no. 3, pp. 23:1–23:27, 2012.

[30] I. Kara, P. Biçakci, and T. Derya, “New formulations for the orienteering problem,” Procedia Economics

and Finance, vol. 39, pp. 849–854, 2016.

[31] S. Wagner and M. Affenzeller, “HeuristicLab: A generic and extensible optimization environment,” in

Adaptive and Natural Computing Algorithms. Springer, 2005.

[32] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden, “Iterated local search for the

team orienteering problem with time windows,” Computers & Operations Research, vol. 36, no. 12, pp.

3281–3290, 2009.

[33] A. Gupta, R. Krishnaswamy, V. Nagarajan, and R. Ravi, “Approximation algorithms for stochastic

orienteering,” in ACM-SIAM Symp. on Discrete Algorithms, 2012.

[34] P. Varakantham and A. Kumar, “Optimization approaches for solving chance constrained stocahstic

orienteering problems,” in Proc. Int. Conf. on Algorithmic Decision Theory, 2013.

[35] G. Laporte, F. Louveaux, and H. Mercure, “Models and exact solutions for a class of stochastic location-

routing problems,” European Journal of Operational Research, vol. 39, no. 1, pp. 71–78, 1989.

[36] B. Golden and J. Yee, “A framework for probabilistic vehicle routing,” AIIE Transactions, vol. 11, no. 2,

pp. 109–112, 1979.

[37] W. Stewart and B. Golden, “Stochastic vehicle routing: A comprehensive approach,” European Journal

of Operational Research, vol. 14, no. 4, pp. 371–385, 1983.

[38] G. A. Hollinger and G. S. Sukhatme, “Sampling-based robotic information gathering algorithms,” Int.

Journal of Robotics Research, vol. 33, no. 9, pp. 1271–1287, 2014.

[39] S. Jorgensen, R. Chen, M. Milam, and M. Pavone, “The team surviving orienteers problem: Routing

robots in uncertain environments with survival constraints,” in IEEE Int. Conf. on Robotic Computing,

2017.

[40] ——, “The team surviving orienteers problem: Routing teams of robots in uncertain environments with

survival constraints,” Autonomous Robots, vol. 42, no. 4, pp. 927–952, 2018.

BIBLIOGRAPHY 106

[41] O. Vaněk, M. Jakob, O. Hrstka, and M. Pěchouček, “Agent-based model of maritime traffic in piracy

affected waters,” Transportation Research Part C: Emerging Technologies, vol. 36, pp. 157–176, 2013.

[42] B. Zhang, L. Tang, and M. Roemer, “Probabilistic planning and risk evaluation based on ensemble

weather forecasting,” IEEE Transactions on Automation Sciences and Engineering, vol. PP, no. 99, pp.

1–11, 2017.

[43] J. Haldane, “A note on inverse probability,” Mathematical Proc. of the Cambridge Philosophical Society,

vol. 28, no. 1, pp. 55–61, 1932.

[44] D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, and N. Vathis, “Approximation algorithms

for the arc orienteering problem,” Information Processing Letters, vol. 115, no. 2, pp. 313–315, 2015.

[45] A. Bock and L. Sanità, “The capacitated orienteering problem,” Discrete Applied Mathematics, vol.

195, no. C, pp. 31–42, 2015.

[46] N. A. Lynch, Distributed Algorithms. Morgan Kaufmann, 1996.

[47] R. Smith, M. Schwager, S. Smith, B. Jones, D. Rus, and G. Sukhatme, “Persistent ocean monitoring

with underwater gliders: Adapting sampling resolution,” Journal of Field Robotics, vol. 28, no. 5, pp.

714–741, 2011.

[48] Ç. Koç, T. Bektaş, O. Jabali, and G. Laporte, “Thirty years of heterogeneous vehicle routing,” European

Journal of Operational Research, vol. 249, no. 1, pp. 1–21, 2016.

[49] R. Lahyani, M. Khemakhem, and F. Semet, “Rich vehicle routing problems: From a taxonomy to a

definition,” European Journal of Operational Research, vol. 241, no. 1, pp. 1–14, 2015.

[50] A. Hoff, H. Andersson, M. Christiansen, G. Hasle, and A. Løkketangen, “Industrial aspects and liter-

ature survey: Fleet composition and routing,” Computers & Operations Research, vol. 37, no. 12, pp.

2041–2061, 2010.

[51] E. Kelareva, K. Tierney, and P. Kilby, “CP methods for scheduling and routing with time-dependent task

costs,” EURO Journal on Computational Optimization, vol. 2, no. 3, pp. 147–194, 2014.

[52] S. Karaman and E. Frazzoli, “Sampling-based algorithms for optimal motion planning,” Int. Journal of

Robotics Research, vol. 30, no. 7, pp. 846–894, 2011.

[53] S. Smith, J. Tůmová, C. Belta, and D. Rus, “Optimal path planning for surveillance with temporal-logic

constraints,” Int. Journal of Robotics Research, vol. 30, no. 14, pp. 1695–1708, 2011.

[54] A. Ulusoy, S. Smith, and C. Belta, “Optimal multi-robot path planning with ltl constraints: Guaranteeing

correctness through synchronization,” in Int. Symp. on Distributed Autonomous Robotic Systems, 2014.

BIBLIOGRAPHY 107

[55] K. Murota, Matrices and Matroids for Systems Analysis, 1st ed. Springer Science & Business Media,

2009.

[56] S. Jawaid and S. Smith, “Informative path planning as a maximum travelling salesman problem with

submodular rewards,” Discrete Applied Mathematics, vol. 186, pp. 112–127, 2015.

[57] P. Segui-Gasco, H. Shin, A. Tsourdos, and V. Seguı́, “Decentralized submodular multi-robot task allo-

cation,” in IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2015.

[58] R. Williams, A. Gasparri, and G. Ulivi, “Decentralized matroid optimization for topology constraints in

multi-robot allocation problems,” in Proc. IEEE Conf. on Robotics and Automation, 2017.

[59] M. Corah and N. Michael, “Efficient online multi-robot exploration via distributed sequential greedy

assignment,” in Robotics: Science and Systems, 2017.

[60] S. Jorgensen, R. Chen, M. Milam, and M. Pavone, “The matroid team surviving orienteers problem:

Constrained routing of heterogeneous teams with risky traversal,” in IEEE/RSJ Int. Conf. on Intelligent

Robots & Systems, 2017.

[61] ——, “The risk-sensitive coverage problem: Multi-robot routing under uncertainty with service level

and survival constraints,” in Proc. IEEE Conf. on Decision and Control, 2017.

[62] R. Iyer and J. Bilmes, “Submodular optimization with submodular cover and submodular knapsack

constraints,” in Advances in Neural Information f Systems, 2013.

[63] L. Gargano and M. Hammar, “A note on submodular set cover on matroids,” Discrete Mathematics, vol.

309, no. 18, pp. 5739–5744, 2009.

[64] J. Ehmke, A. Campbell, and T. Urban, “Ensuring service levels in routing problems with time windows

and stochastic travel times,” European Journal of Operational Research, vol. 240, no. 2, pp. 539–550,

2015.

[65] Y. Adulyasak and P. Jaillet, “Models and algorithms for stochastic and robust vehicle routing with

deadlines,” Transportation Science, vol. 50, no. 2, pp. 608–626, 2015.

[66] E. Galceran and M. Carreras, “A survey on coverage and path planning for robotics,” Robotics and

Autonomous Systems, vol. 61, no. 12, pp. 1258–1276, 2013.

[67] S. Smith, M. Schwager, and D. Rus, “Persistent robotic tasks: Monitoring and sweeping in changing

environments,” IEEE Transactions on Robotics, vol. 28, no. 2, pp. 410–426, 2012.

[68] A. Wallar, E. Plaku, and D. Sofge, “Reactive motion planning for unmanned aerial surveillance of

risk-sensitive areas,” IEEE Transactions on Automation Sciences and Engineering, vol. 12, no. 3, pp.

969–980, 2015.

BIBLIOGRAPHY 108

[69] J.-F. Bérubé, M. Gendreau, and J.-Y. Potvin, “An exact ε-constraint method for bi-objective combina-

torial optimization problems: Application to the Travelling Salesman Problem with Profits,” European

Journal of Operational Research, vol. 194, no. 1, pp. 39–50, 2009.

[70] C. Filippi and E. Stevanato, “Approximation schemes for bi-objective combinatorial optimization and

their application to the TSP with profits,” Computers & Operations Research, vol. 40, no. 10, pp. 2418–

2428, 2013.

[71] ——, “A two-phase method for bi-objective combinatorial optimization and its application to the TSP

with profits,” Algorithmic Operations Research, vol. 7, no. 2, 2013.

[72] J. Yu, M. Schwager, and D. Rus, “Correlated orienteering problem and its application to persistent

monitoring tasks,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1106–1118, 2016.

[73] G. Best, O. Cliff, T. Patten, R. Mettu, and R. Fitch, “Decentralised Monte Carlo tree search for active

perception,” in Workshop on Algorithmic Foundations of Robotics, 2016.

[74] A. Singh, A. Krause, and W. Kaiser, “Nonmyopic adaptive informative path planning for multiple

robots,” in Int. Joint Conf. on Artificial Intelligence, 2009.

[75] X.-H. Chen, A. Dempster, and J. Liu, “Weighted finite population sampling to maximize entropy,”

Biometrika, vol. 81, no. 3, pp. 457–469, 1994.

