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Abstract
Consider deploying a team of robots in order to visit sites in a risky environment (i.e., where a robot might be lost during
a traversal), subject to team-based operational constraints such as limits on team composition, traffic throughputs,
and launch constraints. We formalize this problem using a graph to represent the environment, enforcing probabilistic
survival constraints for each robot, and using a matroid (which generalizes linear independence to sets) to capture
the team-based operational constraints. The resulting “Matroid Team Surviving Orienteers” (MTSO) problem has broad
applications for robotics such as informative path planning, resource delivery, and search and rescue. We demonstrate
that the objective for the MTSO problem has submodular structure, which leads us to develop two polynomial time
algorithms which are guaranteed to find a solution with value within a constant factor of the optimum. The second of
our algorithms is an extension of the accelerated continuous greedy algorithm, and can be applied to much broader
classes of constraints while maintaining bounds on suboptimality. In addition to in-depth analysis, we demonstrate the
efficiency of our approaches by applying them to a scenario where a team of robots must gather information while
avoiding dangers in the Coral Triangle and characterize scaling and parameter selection using a synthetic dataset.

Keywords
Submodular optimization, matroid constraints, path planning, multi-robot control

1 Introduction

Consider a scenario where mobile robotic sensors are used
to monitor a number of regions of the ocean, each of which
may require different sensing capabilities. Due to uncertain
and possibly adversarial events (e.g., bad weather or piracy),
there is a risk that robots may “fail” when traveling from
one region to another. A fleet manager seeks a set of paths
which maximizes the expected number of sites monitored
while satisfying various resource constraints. For example
there may be limits imposed by the number of available
robots of each type, the logistics of deploying the robots,
the probability a given robot reaches its destination, or
the amount of traffic a given region can support. If these
constraints are “downward closed” (meaning any subset of
a feasible set of paths is feasible) and satisfy an exchange
property, then we can represent them using a matroid
Schrijver (2002), which generalizes linear independence to
set systems and has structure amenable to optimization.

We formalize this class of exploration problems as a
generalization of the orienteering problem Golden et al.
(1987), where one seeks a path which visits as many nodes in
a graph as possible given a budget constraint and travel costs.
In our earlier example the travel costs are the probability
that a robot fails while traversing between sites, and we are
looking for a set of such paths which is an independent set of
a matroid, maximizes the expected number of nodes visited
by at least one robot, and ensures that the probabilities each
vehicle reaches its destination is above a specified threshold.

Figure 1. Illustration of an ocean monitoring scenario with
various regions and sites to visit within each region marked by
‘X’, and the heat map indicates the risk of robot failure inferred
from piracy incidents. The objective is to find a set of paths for a
heterogeneous team which maximizes the expected number of
sites visited subject to several constraints. Data is from the
Coral Triangle Atlas Cros et al. (2014) and
International Chamber of Commerce: Commercial Crime Services
(2017).
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We call this problem formulation the “Matroid Team
Surviving Orienteers” (MTSO) problem, illustrated in Figure
1.

The MTSO problem is a significant generalization of
our earlier work on the Team Surviving Orienteers (TSO)
problem Jorgensen et al. (2018), which only imposes a
maximum team size constraint (a very special case of a
matroid constraint). Both the MTSO and TSO are distinct
from previous work because of the notion of risky traversal:
when a robot traverses an edge, there is a probability
that it fails and does not visit any other nodes. This
creates a complex, path-dependent coupling between the
edges chosen and the distribution of nodes visited, which
precludes the application of existing approaches available
for the traditional orienteering problem. The objective
of this paper is to devise constant-factor approximation
algorithms for the MTSO problem. An efficient algorithm
for the TSO was designed by exploiting a diminishing
returns property known as submodularity Jorgensen et al.
(2018), which for set function f and sets A and B
means that f(A ∪B) + f(A ∩B) ≤ f(A) + f(B).
Our key technical insight is that we can further exploit
submodularity of the objective function to design efficient
solution algorithms for the much more general MTSO
problem. We describe numerous applications of matroid
constraints to path planning problems, and describe an
approximate greedy algorithm which enjoys a constant-
factor approximation guarantee. We then develop an
approach based on the accelerated continuous greedy
algorithm Badanidiyuru and Vondrák (2014) which
is the state of the art for matroid optimization and
provides tighter guarantees that are easily extended to
more general settings. Although a number of works
have considered routing problems with submodular
objectives Chekuri and Pál (2005); Campbell et al. (2011);
Zhang and Vorobeychik (2016), chance constraints
Gupta et al. (2012); Varakantham and Kumar (2013),
or downward closed constraints Koç et al. (2016);
Lahyani et al. (2015); Hoff et al. (2010) separately, the
MTSO is novel because it combines all three aspects.

Related work. The orienteering problem (OP) has been
extensively studied Gunawan et al. (2016) and is known to
be NP-hard. Over the past decade a number of constant-
factor approximation algorithms have been developed for
special cases of the problem. The submodular orienteering
problem considers finding a single path which maximizes an
arbitrary submodular reward function of the nodes visited.
The recursive greedy algorithm proposed in Chekuri and Pál
(2005) yields a solution in quasi-polynomial time with
a constant factor guarantee, and the cost-benefit greedy
algorithm proposed in Zhang and Vorobeychik (2016) yields
a solution in polynomial time but only has a constant-factor
guarantee with respect to a relaxed problem. Our work is
distinct from these efforts because we consider a specific
submodular function, but find a set of paths rather than a set
of edges which form a path. The risk-sensitive orienteering
problem Varakantham and Kumar (2013) considers random
edge weights and seeks to maximize the sum of rewards
subject to a constraint on the probability that the path cost is
large. Only a single path is considered, so there is no notion
of independence between paths as in the MTSO.

A second closely-related area of research is the vehicle
routing problem (VRP) Psaraftis et al. (2016), which is a
family of problems focused on finding a set of paths that
maximize quality of service subject to budget or time
constraints.

The rich vehicle routing problem (RVRP) Lahyani et al.
(2015) considers settings such as routing heterogeneous
teams Koç et al. (2016), “fleet dimensioning” (choosing
team composition) Hoff et al. (2010), and incompatabil-
ity constraints Kelareva et al. (2014). The vast major-
ity of solution algorithms for the RVRP are heuristic
Lahyani et al. (2015) and do not consider risky traversal.
A notable exception are linear temporal logical (LTL)
constraints, which have exact integer programming formu-
lations Karaman and Frazzoli (2011) and transition system
formulations Smith et al. (2011); Ulusoy et al. (2014), the
complexity of which grows exponentially in the team size. In
our work, we consider a narrower yet still expressive set of
constraints and derive polynomial time solution algorithms
with constant factor approximation guarantees.

A third related branch of literature is the informative
path planning problem (IPP), which seeks to find a set of
paths for mobile robotic sensors in order to maximize the
information gained about an environment. One of the earliest
IPP approaches Singh et al. (2009) extends the recursive
greedy algorithm of Chekuri and Pál (2005) using a spatial
decomposition to generate paths for multiple robots, and
provides performance guarantees using submodularity of
information gain. While the structure of the IPP has many
similarities to the MTSO problem (it is a multi-robot path
planning problem with a submodular objective function
which is non-linear and history dependent), it captures
neither the constraints nor the notion of risky traversal which
are central to the MTSO problem. Our general approach
is inspired by works such as Atanasov et al. (2015), which
iteratively assigns paths to each robot, but for the MTSO
problem we further exploit the problem structure to derive
constant-factor guarantees.

A handful of papers apply submodular maximization
and matroid constraints directly to robotics applications. In
Jawaid and Smith (2015), path constraints are represented
using a p-system (which generalizes a matroid), and a sub-
modular maximization problem with p-system constraints
is solved to find the approximately most informative path
for a single agent. Multi-robot task allocation problems
are cast as decentralized submodular maximization prob-
lems with matroid constraints by Segui-Gasco et al. (2015)
(who considers private reward functions), and Williams et al.
(2017) (who considers communication constraints). In both
cases the objective is to assign robots to tasks, rather than
to find a high reward set of paths for a team of robots.
Recent work by Corah and Michael (2017) uses distributed
matroid optimization for informative path planning, though
their setting has no notion of risky traversal. In our work
we use an orienteering problem oracle in order to find high
quality paths for each robot while considering risky traversal.
This requires different analysis which utilizes results on
approximate greedy algorithms for submodular maximiza-
tion subject to matroid Fisher et al. (1978) and p-system
Calinescu et al. (2007) independence constraints.
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Statement of Contributions: Matroids have been applied
with great success to many fields of engineering such as
electrical and structural network design Murota (2009), but
they have rarely been used for robotic routing problems. The
contribution of this paper is six-fold. First, we propose a
generalization of the TSO problem, referred to as the Matroid
TSO problem. By considering matroid constraints, we extend
the state of the art for the team orienteering problem, and
by considering the risky traversal model we extend the state
of the art for the rich vehicle routing problem. Second,
we demonstrate how to use matroids to represent a variety
of constraints such as coverage, deployment, team size
limitations, traffic constraints, team-wise risk constraints,
and nested cardinality constraints. Third, we extend the
approximate greedy algorithm from Jorgensen et al. (2018)
to the MTSO setting, and prove that the value of its output
is at least ps

ps+λOPT, where OPT is the optimum value, ps
is the per-robot survival probability threshold, and 1/λ ≤
1 is the approximation factor of an oracle routine for the
solution to the orienteering problem (in practice, ps is close
to unity). Fourth, we extend the accelerated continuous
greedy algorithm Badanidiyuru and Vondrák (2014) to the
MTSO problem, which is its first application to robotics.
We develop a fast implementation specific to the MTSO and
show its output is at least (1− δ)(1− e−ps/(λ+δps)), where
δ ≪ 1 is the discretization step size. Fifth, we demonstrate
the effectiveness of both algorithms for complex problems
by considering an environmental monitoring application
and give an empirical timing characterization for both
algorithms. Finally, we highlight a number of extensions
of this work in detail, such as p-system constraints, linear
packing constraints, and coverage variants.

This paper is a significant expansion of our conference
paper Jorgensen et al. (2017a), which introduced the MTSO
and greedy algorithm. In particular, we present and analyze
the accelerated continuous greedy algorithm which is a new
approach to the problem that provides stronger guarantees
with broader applications. We have also significantly
expanded the numerical experiments and discuss extensions
beyond matroids.

Organization: The rest of this paper is organized as
follows. In Section 2 we review key background information
necessary for our results. In Section 3 we present the
formal problem statement for the MTSO and describe
several applications in Section 4. In Section 5 we outline
the algorithms and give performance guarantees. Section 6
demonstrates the practicality of our algorithm via numerical
experiments. In Section 7 we discuss a number of extensions
of our work which can be solved using the continuous greedy
algorithm. Finally, in Section 8, we draw our conclusions and
discuss directions for future work.

2 Background

2.1 Sets and Submodular Functions
Submodularity is the property of ‘diminishing returns’ for
set functions. The following definitions are summarized
from Krause and Golovin (2014). Given a set X , its possible
subsets are represented by 2X . For two sets X and X ′, the set
X ′ \X contains all elements in X ′ but not X . A collection
of disjoint subsets {Xm}Mm=1 is called a partition of X if

∪Mm=1Xm = X . A set function f : 2X → R is said to be
normalized if f(∅) = 0, and to be monotone if for every
X ⊆ X ′ ⊆ X , f(X) ≤ f(X ′). A set function f : 2X → R
is submodular if for every X ⊆ X ′ ⊂ X , x ∈ X \X ′, we
have

f(X ∪ {x})− f(X) ≥ f(X ′ ∪ {x})− f(X ′).

The quantity on the left hand side is the discrete derivative
of f at X with respect to x, which we write as ∆f(x | X).

The multilinear extension of a submodular function f
at y ∈ [0, 1]|X | can be understood as taking the expected
value of the function with respect to a random set R(y)
which contains each item x ∈ X with probability yx ∈ [0, 1].
Formally, we have for x ∈ X ,

P{x ∈ R(y)} = yx,

and for X ⊆ X ,

P{R(y) = X} =
∏
x∈X

yx
∏

x′∈Xc

(1− yx′).

The multilinear extension of f at y is then defined as the
expected value of f(R(y)):

F (y) := E[f(R(y))] =
∑
X⊆X

f(X)
∏
x∈X

yx
∏

x′∈Xc

(1− yx′).

For optimization problems the multilinear extension is used
in a similar fashion as a linear programming relaxation of a
mixed integer program, where integer variables (i.e., whether
element x is in the solution) are replaced by continuous
relaxations (i.e., yx ∈ [0, 1]), and the resulting solution is
rounded to get a set. We discuss this optimization framework
more in Section 2.3.2.

2.2 Independence Systems and Matroids
The following definitions are summarized from Schrijver
(2002). An independence system is a tuple of a finite ground
set X and a downward closed family of independent sets
I ⊆ 2X , that is if I ′ ⊆ I and I ∈ I, then I ′ ∈ I. A base is
an independent set I ∈ I which is inclusion-wise maximal,
that is for every x ∈ X \ I , we have I ∪ x /∈ I. A matroid
(X , I) is an independence system for which all bases have
the same size (which is called the rank of the matroid), hence
it extends the notion of linear independence to sets. There
are many equivalent characterizations of matroids which are
outside of the scope of this work, we refer the interested
reader to Schrijver (2002) for more detail.

2.3 Approximate Greedy Algorithms
Given a matroid (X , I) and a submodular function f , a
typical submodular maximization problem entails finding a
set X ∈ I that maximizes f . In general finding an optimal
solution, X∗, requires an exponential number of evaluations
of the function, is NP-hard for special cases such as coverage
functions Fisher et al. (1978), and cannot be approximated to
closer than factor (1− e−1) in polynomial time.
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2.3.1 Greedy Algorithm Given a matroid (X , I) with rank
K and an independent set X , the feasible set, XF (X, I), is
the set of all items not in X which can be added to X while
preserving independence:

XF (X, I) := {x ∈ X \X | X ∪ {x} ∈ I}.

The greedy algorithm constructs a set X̄K by iteratively
adding an element x from the feasible set which maximizes
the discrete derivative of f at the partial set already selected.
In other words, the ℓth element satisfies:

x̄ℓ ∈ argmax
x∈XF (X̄ℓ−1,I)

∆f(x | X̄ℓ−1),

and items are chosen until no more can be added, that is
XF (X̄K , I) = ∅. If the function f is monotone and non-
negative, the greedy algorithm will choose K items, where
K is the rank of the matroid (X , I). We refer to the
optimization problem above as ‘the greedy sub-problem’ at
step ℓ. A well-known theorem proven by Fisher et al. (1978)
states that if f is a monotone, normalized, non-negative,
and submodular function, then f(X̄K) ≥ 1

2f(X
∗). This is

a powerful result, but if the set X is large we might only be
able to approximately solve the greedy sub-problem.

An α–approximate greedy algorithm constructs the set
X̂K by iteratively adding elements which approximately
maximize the discrete derivative of f at the partial set already
selected. Formally, for some fixed α ∈ (0, 1], the ℓth element
x̂ℓ satisfies:

∆f(x̂ℓ | X̂ℓ−1) ≥ α∆f(x | X̂ℓ−1), ∀ x ∈ XF (X̂ℓ−1, I).

In this setting, Calinescu et al. (2007) shows in Appendix
B that the value of the approximate greedy set is close to
optimal:

Theorem 1. Approximate greedy guarantee Calinescu et al.
(2007). Let (X , I) be a matroid with rank K and f : 2X →
R+ a non-negative monotone submodular set function. If
X̂K is a set chosen by an α-approximate greedy algorithm,
then

f(X̂K) ≥ α

α+ 1
f(X), for all X ∈ I.

Note that while the approximate greedy algorithm is
simple and relatively fast, in the best case (α = 1) the
guarantee is 1/2, but the state of the art has a 1− e−1 ≃ 0.63
guarantee with matching hardness bounds.

2.3.2 Accelerated Continuous Greedy Algorithm The
accelerated continuous greedy algorithm (ACGA) recently
proposed by Badanidiyuru and Vondrák (2014) optimizes
the multilinear extension using coordinate gradient ascent
(see pseudocode in Algorithm 1) and achieves a 1−
e−1 guarantee. For practical implementations the algorithm
is discretized using steps of size δ ≪ 1. During each
step the algorithm constructs an independent set by
greedily maximizing the multilinear extension (line 6).
After selecting each item, the corresponding component of
the vector y is incremented by δ. After 1/δ independent
sets are selected, the fractional solutions represented by
y are rounded into an integral solution by calling the
SwapRounding procedure from Chekuri et al. (2010). In

Algorithm 1 Pseudocode for the Accelerated Continuous
Greedy Algorithm

1: procedure ACCELCONTINUOUSGREEDY(I, F, δ)
2: y ← 0⃗
3: for i = 1, . . . , 1/δ do
4: Xi ← ∅
5: for ℓ = 1, . . . ,K do
6: xℓ ← argmax

x∈XF (Xi,I)
F (y + δ1x)− F (y)

7: yxℓ
← yxℓ

+ δ, Xi ← Xi ∪ xℓ

8: end for
9: end for

10: X̂ ← SwapRounding(y)
11: end procedure

particular, Theorem 2.1 from Chekuri et al. (2010) states that
if X is the output of SwapRounding given a vector y
in a matroid polytope (which always holds in the context
of this paper), then X is independent, E[f(X)] ≥ F (y),
and the probability f(X) < (1− ϵ)F (y) is bounded above
by exp(−ϵ2F (y)/8). The ACGA enjoys strong theoretical
performance: Badanidiyuru and Vondrák (2014) guarantees
that the expected output (with respect to randomness from
rounding) is at least a fraction (1− e−1 − δ) of the optimum,
which matches the hardness bounds. However the ACGA
selects 1/δ more items than the greedy algorithm and
optimizing the multilinear extension is generally quite
difficult.

2.4 Graphs
Let G(V, E) denote an undirected graph, where V is the node
set and E ⊂ V × V is the edge set. Explicitly, an edge is
a pair of nodes (i, j), and represents the ability to travel
between nodes i and j. If the graph is directed, then the edge
is an ordered pair of nodes, and represents the ability to travel
from the source node i to the sink node j. A graph is called
simple if there is only one edge which connects any given
pair of nodes. A path is an ordered sequence of unique nodes
such that there is an edge between adjacent nodes. For n ≥ 0,
we denote the nth node in path ρ by ρ(n) and the number of
edges in ρ by |ρ|. Note that ρ(|ρ|) is the last node in path ρ.
The graph Gm(Vm, Em) is called a sub-graph of G if Vm ⊆ V
and Em ⊆ E . The sub-graph of G induced by V ′ ⊆ V is the
graph G′(V ′, E ′) where E ′ := {(i, j) ∈ E | i, j ∈ V ′}.

3 Formal Problem Statement

Let G be a simple graph with |V| = V nodes. Edge weights
ω : E → (0, 1] correspond to the probability of survival
for traversing an edge. Time is discretized into iterations
n = 0, 1, . . . , N . At iteration n a robot following path ρ
traverses edge enρ = (ρ(n− 1), ρ(n)). Robots are indexed
by variable k, and for each robot and iteration we define
the independent Bernoulli random variables skn(ρ) which
are 1 with probability ω(enρ ) and 0 with probability 1−
ω(enρ ). If robot k follows path ρ, the random variables
akn(ρ) :=

∏n
i=1 s

k
i (ρ) can be interpreted as being 1 if the

robot ‘survived’ all of the edges taken until iteration n and
0 if the robot ‘fails’ on or before iteration n (see Figure 2).
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Figure 2. Illustration of the notation used. A robot plans to take
path ρ, whose edges are represented by lines. The fill of the
lines represent the value of sn(ρ). In this example s3(ρ) = 0,
which means that a3(ρ) = a4(ρ) = a5(ρ) = 0. The variables
zj(ρ) are zero if either the robot fails before reaching node j or
if node j is not on the planned path.

Given a start node vs, a terminal node vt, and survival
probability ps we must find at most K ≥ 1 paths {ρk}Kk=1

(one for each of K robots) such that, for all k, the probability
that ak|ρk|(ρk) = 1 is at least ps, ρk(0) = vs and ρk(|ρk|) =
vt. The set of paths which satisfy these constraints is written
as X (ps, ω). One can test whether X (ps, ω) is empty with
O(V 2 log(V )) computations using the method described in
Jorgensen et al. (2018), so we assume that it is non-empty.

Define the indicator function I{x}, which is 1 if x is
true (or nonzero) and zero otherwise. Define the Bernoulli
random variables for j = 1, . . . , V , k = 1, . . . ,K:

zkj (ρ) :=

|ρ|∑
n=1

akn(ρ) I{ρ(n) = j},

which are 1 if robot k following path ρ visits node j and
0 otherwise (zkj (ρ) is binary because a path is defined as
a unique set of nodes). Note that zkj (ρ) is independent of
zk

′

j (ρ′) for k ̸= k′. The number of times that node j is
visited by robots following the paths {ρk}Kk=1 is given by∑K

k=1 z
k
j (ρk), and we write the probability that exactly m

robots visit node j as pj(m, {ρk}Kk=1). In this paper we are
primarily interested in the probability that no robots visit
node j, which has the simple expression:

pj

(
0, {ρk}Kk=1

)
=

K∏
k=1

(1− E[zkj (ρk)]).

Let dj > 0 be the reward accumulated for visiting node j
at least once, and define X as the set containing K copies
of each path in X (ps, ω). Given a matroid (X , I) with
rank K, we are interested in finding an independent set
which maximizes the weighted expected number of nodes
visited. Since the objective is non-negative, monotone, and
submodular Jorgensen et al. (2018), we assume without loss
of generality that the size of the optimizing set is K, and state
the Matroid TSO problem formally:

Matroid TSO (MTSO) Problem: Given a
graph G, edge weights ω, survival probability
threshold ps and matroid (X , I), maximize the

weighted expected number of nodes visited by
at least one robot:

maximize
{ρk}K

k=1∈I

V∑
j=1

dj

(
1− pj

(
0, {ρk}Kk=1

))
subject to P

{
ak|ρk|(ρ) = 1

}
≥ ps k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρ|) = vt k = 1, . . . ,K

The optimization is over the independent sets of the matroid,
and the solution is a set of K paths. The objective represents
the cumulative expected reward obtained by the robots
following the selected paths. The first set of constraints
enforces the survival probability, the second and third sets
of constraints enforce the initial and final node constraints.

The MTSO problem can be viewed as a set maximization
problem with a matroid constraint, where the domain of
optimization is the family of independent sets I. Crucially,
since the objective is a submodular function Jorgensen et al.
(2018), Theorem 1 implies that the greedily selected set of
paths will achieve reward close to the optimum.

4 Examples and Applications
In this section we highlight several examples of matroids and
their applications in the context of the MTSO problem.

4.1 Uniform Matroid
Given a positive integer K, the independent sets of a uniform
matroid are all subsets of the ground set X with at most K
elements. Optimization with a uniform matroid constraint is
equivalent to imposing cardinality constraints on the solution
size, which is the standard TSO problem.

4.2 Linear Matroid
Given a function ϕ : X → {0, 1}M , the independent sets of
a linear matroid induced by ϕ are all subsets X ⊆ X such
that the vectors {ϕ(x)}x∈X are linearly independent.

Application to coverage: Consider a setting where we
require each robot to focus on a different region. Define the
regions as M node subsets Sm ⊆ V , and define the ‘focus’
of a path as the index of the region which contains the most
nodes of the path (with ties broken deterministically). Let mρ

be the smallest index corresponding to a subset which path ρ
focuses on, that is |Smρ ∩ ρ| ≥ |Sm ∩ ρ| for m = 1, . . . ,M .
Now define ϕ(ρ) as the mρth canonical basis vector in RM .
Requiring the solution to be an independent set of the binary
matroid induced by ϕ and with ground setX (ps, ω), enforces
the desired diversity of focus.

4.3 Transversal Matroid
Given subsets {Xm}Mm=1 of the ground set, the independent
sets of the transversal matroid are all subsets X which are
partial transversals of {Xm}Mm=1. In other words, if X ∈ I,
we can assign each element xi ∈ X a unique number mi ∈
{1, . . . ,M} such that xi ∈ Xmi .

Application to launch constraints: Consider a scenario
where only one robot can start on each outgoing edge of vs.
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This could arise for example when robots are aerial vehicles
which must launch from runways, and only one can launch
from a runway in each direction. Let N(vs) be the set of
nodes with an edge to vs, and define the subsets Xm = {ρ ∈
X (ps, ω) | ρ(1) = nm} for nm ∈ N(vs). That is, we have
one subset for each starting edge. Requiring that the solution
is an independent set of the transversal matroid induced by
{Xm}Mm=1 enforces the launch constraints.

Application to heterogeneous teams: Suppose we have M
types of robots, a robot of type m has feasible path set
Xm, and that we can deploy at most Km robots of type
m. Requiring the solution to be an independent set of a
transversal matroid induced by Km copies of Xm for m =
1, . . . ,M enforces that no more than Km robots of type m
are selected.

Application to traffic constraints: Suppose we have traffic
constraints which require that no more than Km robots
may visit subgraph Gm = (Vm, Em) for m = 1, . . . ,M with
vs, vt ∈ Vm, Vm ⊆ V , Em ⊆ E . LetXm correspond to the set
of feasible paths in sub-graph Gm. Requiring that the solution
is an independent set of a transversal matroid induced by Km

copies of the sets Xm enforces the traffic constraint.
Application to risk constraints: Suppose we have M

survival probability thresholds p1s ≤ · · · ≤ pMs . This setting
could arise when there is a constraint on the risk of many
robot failures, but requiring uniform survival probability
thresholds would be too conservative to visit all of the
nodes. Then we can choose {pms }Mm=1 in order to provide
the necessary flexibility while still maintaining tight control
on risk. Requiring the solution to be an independent set of the
transversal matroid induced by {X (pms , ω)}Mm=1 enforces the
desired constraints.

4.4 Gammoid
A gammoid is induced by a directed graph D(S,E) with a
subset of nodes corresponding to elements in the ground set,
e.g., X ⊆ S, and a subset U ⊆ S. We say that two sets of
nodes X,Y ⊆ S are linked if |X| = |Y | and there are |X|
node-disjoint paths from X to Y . The independent sets of a
gammoid induced by D, U are all subsets X ⊆ X such that
some subset of U is linked to X .

Application to nested cardinality constraints: Consider a
simple setting where the ground set is partitioned by the
sets {X1, X2} and we may choose up to 2 items from X1,
2 items from X2 and 3 items total. The independent sets
of a gammoid induced by the multi-partite graph in Figure
3 satisfy these constraints. This setting is easily extended
to more complicated scenarios. For the MTSO, we could
first partition based on robot types, then by sub-graphs,
and finally by risk thresholds (or in a different order). An
illustration of the graph for three layers of partitioning (e.g.,
robot types, sub-graphs, and team size) is shown in Figure 3.
It is not necessary for the node groups to form a partition.

Note that this form of a gammoid is also known as a
laminar matroid.

4.5 Truncation
Given K ∈ N and a matroid (X , I), let I ′ := {I ∈ I | |I| ≤
K} which is the set of independent sets with at most K

Figure 3. Illustration of multi-partite graphs which form
gammoids. The nodes in subgraph X are linked to the nodes
U . Left: An illustration of the graph with two layers of cardinality
constraints. Right: An illustration of the graph with three layers.
Boxes represent clusters of nodes, and lines represent edges
which connect each node of the right cluster to each node of the
left cluster.

elements. Then (X , I ′) is a matroid and is called the K-
truncation of (X , I). If the maximum team size is K, we can
represent this constraint in addition to any of the scenarios
above by using the K-truncation of the appropriate matroid.

5 Algorithms
In this section we give greedy and accelerated continuous
greedy approaches to solving the MTSO problem and give
bounds on their suboptimality. Both algorithms solve single-
robot sub-problems where a path from the feasible set is
sought which approximately maximizes a path-dependent
reward function. Accordingly we start by describing this sub-
problem in detail in Section 5.1, which shows how to solve it
as a series of orienteering problems, provides guarantees on
the path quality, and a detailed discussion of implementation
considerations for the examples given in Section 4. We
then describe the greedy and accelerated continuous greedy
approaches in Sections 5.2 and 5.3, respectively. Both of
these sections describe how to form the appropriate sub-
problem, the complete algorithm, performance guarantees,
and computational complexity.

5.1 The Greedy Sub-Problem
In this section we discuss the greedy sub-problem, giving
a description of our solution approach in Section 5.1.1,
discuss performance considerations in Sections 5.1.2, and its
applications in Section 5.1.3.

5.1.1 Objective and Algorithm Given a (possibly empty)
previously selected set of paths, XL−1 = {ρℓ}L−1

ℓ=1 , the
greedy sub-problem involves finding a path from the set
XF (XL−1, I) which maximizes the sum of path-dependent
node rewards ν(ρ, j) ≥ 0 (corresponding to the discrete
derivative of the appropriate objective function). Solving the
greedy sub-problem is a critical step in both of our solution
algorithms for the MTSO, but it is a very difficult task as
it requires maximizing path dependent node rewards subject
to a budget constraint. Specifically, the path dependence is
induced by the risky traversal model, since the reward gained
for visiting node j depends on the probability that the robot
successfully visits node j, which in turn depends on the path
taken to the node. Furthermore, we must ensure that the path
chosen is in XF (XL−1, I).

Prepared using sagej.cls

Page 7 of 16

http://mc.manuscriptcentral.com/ijrr

International Journal of Robotics Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Jorgensen and Pavone 7

We address the path dependence by using a path
independent approximation, ν̂(j), of ν(ρ, j) which satisfies,
for some γ ∈ (0, 1]:

ν(ρ, j) ≤ ν̂(j)Ij(ρ) ≤
1

γ
ν(ρ, j).

We address the matroid constraint by noting that the
feasible set, XF (XL−1, I), can always be partitioned into
sets {Xm}Mm=1, where Xm is the subset of paths in X
which have all nodes and edges in a corresponding sub-
graph Gm. This is apparent from the fact that for each ρ ∈
XF (XL−1, I), we can construct a sub-graph Gρ which has
exactly the nodes and edges in ρ. Since a path is defined as
a unique list of nodes and edges, and since feasible paths
must start at vs and end at vt, the sub-graph Gρ contains
only one feasible path, ρ. In practice, we can often partition
XF (XL−1, I) using a very small number of sub-graphs, as
detailed in Section 5.1.3.

Algorithm 2 Pseudocode for solving the greedy sub-
problem

1: procedure SOLVESUBPROBLEM(XL−1, ν̂)
2: for Gm in Partition(XL−1) do
3: Form Gm,O from Gm
4: ρ̂m ← Orienteering(Gm,O, ν̂)
5: end for
6: return argmax

ρ∈ρ̂1,...,ρ̂M

∑V
j=1 ν̂(j)Ij(ρ)

7: end procedure

Our approach to solving the sub-problem is given as
pseudocode in Algorithm 2. We begin by calling the
Partition routine, which returns a list of sub-graphs
{Gm}Mm=1 which partitions the feasible set XF (XL−1, I).
For each sub-graph, we form a log-transformed graph
Gm,O which has edge weights ωo = − log(ω). This graph
and the approximate node reward ν̂ are passed to an
Orienteering oracle, which finds a path which has at
least fraction 1/λ the optimal reward with edge costs at most
B = − log(ps) (we discuss this oracle in depth in Section
5.1.2). This ensures that the path is of high quality and
satisfies the survival probability threshold constraint. Finally
the routine returns the best of the paths computed (with
respect to either ν̂ or ν, depending how hard ν is to compute).
The following lemma guarantees that the path returned has
similar value as the optimum:

Lemma 1. Sub-problem guarantee. Consider an MTSO
problem with node weights dj , let ρ be a feasible path
in XF (XL−1, I), and ρ̂L be the path output by the
SolveSubproblem routine described in Section 5.1.1.
Then

V∑
j=1

djν(ρ̂L, j) ≥
γ

λ

V∑
j=1

djν(ρ, j).

Proof. By definition of the partition {Xm}Mm=1, for any
ρ ∈ XF (XL−1, I) there is a set indexed by mρ such that
ρ ∈ Xmρ . We have from the definitions of ρ̂L, ν̂(ρ, j), and

the Orienteering routine:

V∑
j=1

djν(ρ, j) ≤
V∑

j=1

djIj(ρ)ν̂(j) ≤ λ

V∑
j=1

djIj(ρ̂L)ν̂(j)

≤ λ

 1

γ

V∑
j=1

djν(ρ̂L, j)

 .

Suppose the computational complexity of the
Orienteering routine given any sub-graph is bounded
by CO, the complexity of the Partition routine is
bounded by CP , and the Partition routine returns
at most M sub-graphs. Then, the complexity of the
SolveSubproblem routine is CP +MCO. Each of the
M orienteering problems can be solved independently, so
by leveraging parallel computation the complexity will scale
as O(CP + CO) (assuming M is reasonably small). We
describe each of these terms in more detail below.

5.1.2 Complexity of the Orienteering Problem Although
the orienteering problem is NP-hard, various communities of
researchers have developed solution approaches focusing on
different properties of the solution - performance guarantees,
on-line bounds, and run time. Depending on the oracle
routine used, the SolveSubproblem routine has different
guarantees and properties, namely:

Complexity theory guarantees – From a theoretical
standpoint, if a polynomial-time approximation scheme
(PTAS) for the orienteering problem is used and the partition
routine is polynmomial time, then our algorithm is a
PTAS for the greedy sub-problem. Since our higher level
routines call SolveSubproblem a polynomial number of
times, this is a meaningful result on the complexity of the
MTSO problem: although the MTSO is NP-hard, it can be
approximated within a constant factor in polynomial time
when there is an efficient partition routine. The complexity of
the best known PTAS routines for the orienteering problem
and its variants are high order polynomials - for example
Chen and Har-Peled (2006) gives a λ = 1 + ϵ PTAS for the
case where points are on a d−dimensional plane that runs
in O(V 16d3/2/ϵ) time. Even for ϵ = 1 and d = 2, this is
O(V 46), which is not a practically useful bound.

Certifiable performance guarantees – Practitioners who
require guarantees on the quality of the solution and
more modeling flexibility can use mixed integer linear
programming (MILP) formulations of the orienteering
problem (e.g., Kara et al. (2016)). Commercial and open
source software for solving MILP problems are readily
available, and return an optimality gap along with the
solution. Such solvers can be configured to terminate after
a set amount of time or when the ratio between the current
solution and upper bound becomes greater than 1/λ.

Real-time properties – Finally, practitioners who require
fast execution but not guarantees can use a heuristic to solve
the orienteering problem. There are a number of fast, high
quality heuristics with open source implementations such
as Wagner and Affenzeller (2005); Vansteenwegen et al.
(2009). While these heuristics do not provide guarantees,
they often produce near-optimal solutions and are capable
of solving large problems in seconds.
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5.1.3 Efficiently Partitioning the Feasible Set For many
examples we can partition the feasible set using a small
number of sub-graphs, as detailed below.

Coverage – We can partition the sets for the coverage
example by adding a constraint to a mixed integer
formulation which requires the solution to have a specific
focus. In this case M would be the number of regions to be
covered.

Launch constraints – Given a set Xk, all paths which
take edges (vs, ρℓ(1)), ℓ = 1, . . . , k are infeasible. Hence
M = 1 and the sub-graph is the graph induced by the edges
E ′ = E \ {(vs, ρℓ(1))}kℓ=1.

Heterogeneous teams – The feasible sets are already
partitioned by graphs Gm corresponding to the graph that a
robot of type m uses. Given a set Xk, the partition routine
returns all sub-graphs Gm for which Xk has fewer than Km

paths.

Traffic constraints – If the feasible path sets Xm

are disjoint, then the routine simply returns any sub-
graph for which Xk has fewer than Km paths in Xm.
If the feasible path sets are not disjoint, then the routine
solves an assignment problem to see whether an additional
robot can be assigned a path in Xm without violating
the constraints. The assignment returns all subgraphs Gm
which had a valid assignment. The complexity of each
assignment is O(K2.5) (using the Hopcraft-Korp algorithm
Hopcroft and Karp (1971)), and there are at most MK
assignments, giving complexity O(MK3.5).

Risk constraints – Given a set of paths Xk, the partition
routine finds the smallest value m̂ such that we can add
a path with survival probability threshold pm̂s (this can be
done naively with complexity O(M2)). Then the routine
returns the sub-graph induced by the node set Vm̂ := {j ∈
{1, . . . , V } | ζj ≥ pm̂s }, which are all nodes reachable within
the desired survival probability threshold. Note that in
this case we also must change the budget used by the
Orienteering routine to − log(pm̂s ).

Nested cardinality constraints – Given a set of paths Xk,
the partition routine tests whether a path can be added to each
of the sets in the deepest layer (which partitions X ). If the
sets are disjoint, this can be done in linear time, otherwise
an assignment routine is run as in the traffic example. Then
a sub-graph corresponding to each of the subsets which we
can still assign a path from is returned. The manner in which
these sub-graphs are computed depends on the application,
as described in each of the sections above.

5.1.4 Lazy implementation Each time a sub-problem is
solved, we can use Theorem 1 to give a bound on the value of
any path in the corresponding sub-graph. Since the value of a
path is a decreasing function as the algorithm progresses (due
to submodularity), these bounds can be used in the following
iterations. The lazy variant of the greedy algorithm solves
the most promising sub-problem to get an initial solution,
and then only solves sub-problems which have bounds that
exceed the value of this initial solution. In our experiments
this allowed us to skip solving approximately 75% of the sub-
problems.

5.2 The Approximate Greedy Algorithm
In this section we describe a greedy algorithm for solving
the MTSO problem. We describe the objective function and
detailed algorithm in Section 5.2.1, then give performance
guarantees in Section 5.2.2, and characterize the complexity
in Section 5.2.3.

5.2.1 Objective and Algorithm The greedy algorithm
operates by iteratively selecting a path which maximizes the
discrete derivative of the objective function for the MTSO
given the set of previously chosen paths XL−1 ⊂ X . A
node-wise decomposition of this objective was given in
Jorgensen et al. (2018) as,

∆J(ρ | XL−1) =
V∑

j=1

djE[zLj (ρ)]pj(0, XL−1),

which can be interpreted as the weighted sum over
the probabilities that robot L is the first to visit node
j. In the context of Lemma 1 we have ν(ρ, j) =
E[zLj (ρ)]pj(0, XL−1), which can be approximated by setting
ν̂(j) = pj(0, XL−1), with γ = ps. Pseudocode for the
approximate greedy algorithm is given in Algorithm 3. The
algorithm alternates between updating the approximate node
rewards, ν̂, and calling the SolveSubproblem routine to
find an approximately optimal solution to the greedy sub-
problem.

Algorithm 3 Approximate greedy algorithm for solving the
MTSO problem.

1: procedure MGREEDYSURVIVORS(G,M)
2: for j = 1, . . . , V do
3: ν̂1(j)← dj
4: end for
5: ρ1 ← SolveSubproblem(∅, ν̂1)
6: for k = 1, . . . ,K − 1 do
7: E[ak0(ρk)]← 1
8: for n = 1, . . . , |ρk| do
9: E[akn(ρk)]← E[akn−1(ρk)]ω(e

n
ρk
)

10: ν̂k+1(ρk(n))← (1− E[akn(ρk)])νk(ρk(n))
11: end for
12: ρk+1 ← SolveSubproblem({ρℓ}kℓ=1, ν̂k+1)
13: end for
14: end procedure

5.2.2 Guarantees We combine the results from Section
2.3 and 5.1.1 to guarantee that the value of the output of the
MGreedySurvivors algorithm is close to the value of the
optimal solution to the MTSO problem.

Theorem 2. Approximate greedy guarantee. Let X∗ be
an optimal solution to the MTSO problem, and X̂K the
set output by the MGreedySurvivors routine. If the
survival probability constraint is ps and each orienteering
sub-problem is solved within constant factor 1/λ, then the
weighted expected number of nodes visited by a team of
robots following the paths X̂K is at least a fraction ps

ps+λ
of the optimum, that is:

V∑
j=1

dj

(
1− pj

(
0, X̂K

))
≥ ps

ps + λ

V∑
j=1

dj (1− pj (0, X
∗)) .
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Proof. Setting ν(ρ, j) = E[zLj (ρ)]pj(0, XL−1) and
ν̂(j) = pj(0, XL−1), we have from Lemma 1 that the
SolveSubproblem routine solves the sub-problems
within factor α = ps/λ. Now, applying Theorem 1 to our
objective function (which by Lemma 2 of Jorgensen et al.
(2018) is normalized, non-negative, monotone and
submodular) we have the desired result.

In many scenarios robots are either valuable or difficult
to replace, and so operators will choose survival probability
thresholds ps which are close to 1. Combined with an
effective oracle routine, Theorem 2 guarantees that the
greedy approach never collects less than approximately half
of the optimal reward. This is a strong statement, since
solving this problem optimally is extraordinarily difficult
(especially as the team size grows).

5.2.3 Complexity The MGreedySurvivors routine has
complexity O(KV 2 +K(MCO + CP )), where the first
term is the complexity of updating the V node weights
K times (each update costs at most V multiplications),
and the second term is the complexity of calling the
SolveSubproblem routine K times. In typical scenarios,
the complexity will be dominated by KMCO, as solving the
orienteering problem is typically several orders of magnitude
more difficult than partitioning the feasible set or updating
the weights.

5.3 The Accelerated Continuous Greedy
Algorithm

In this section we describe an accelerated continuous greedy
algorithm for solving the MTSO problem. We begin by
describing the objective function and detailed algorithm in
Section 5.3.1, then give performance guarantees in Section
5.3.2 and characterize the complexity in Section 5.3.3.

5.3.1 Objective and Algorithm The accelerated contin-
uous greedy algorithm Badanidiyuru and Vondrák (2014)
performs a discretized coordinate gradient ascent which
optimizes the multilinear extension along ‘coordinates’ cor-
responding to independent sets in the matroid. The state of
the algorithm is given by a sparse vector y ∈ [0, 1]|X | which
can be interpreted as a probability distribution over elements
in X . The algorithm runs for 1/δ ∈ Z+ steps (indexed by i),
each consisting of K iterations (indexed by ℓ). During every
iteration a single component of y corresponding to a path
ρ ∈ X is incremented by δ, that is y ← y + δ1ρ where 1ρ

is the indicator vector which has all zero entries except the
component corresponding to ρ, which is 1. The component
ρ is selected to ensure that (1) the paths corresponding to
the set of components updated in a given step are inde-
pendent, and (2) the component approximately maximizes
F (y + δ1ρ)− F (y), which is equivalent to maximizing the
discretized gradient with discretization step δ.

The objective for the ACGA can be written as an
expectation with respect to the random set R(y), which
contains elements in X sampled independently with
probability yρ, that is:

P {R(y) = X} =
∏
x∈X

yx
∏

x′∈Xc

(1− yx′).

The following lemma gives an alternate expression for
the objective in terms of a sum over path dependent node
rewards:

Lemma 2. Objective function for the ACGA. Let f be the
objective of the MTSO and F its multilinear extension. The
objective for the ACGA with state y during the ℓth iteration
of the ith step can be written as

F (y + δ1ρ)− F (y) = δ
V∑

j=1

djE[zℓj(ρ)]
1− yρE[zℓj(ρ)]

E[pj(0, R(y))].

This result is derived directly from the definitions of the
relevant variables (a detailed proof is given in the Appendix).

Pseudocode for our algorithm is given in Algorithm 4,
which consists of three main parts: (1) efficiently computing
E[pj(0, R(y))], (2) removing path dependence for the sub-
problem, and (3) rounding the solution. We discuss each part
in detail below.

1) Efficiently computing E[pj(0, R(y))]: In general,
computing an expectation over functions of the random set
R(y) is difficult because the function must be evaluated
for each of the 2K/δ realizations of R(y). In our case,
we exploit the product form of pj(0, R(y)) to efficiently
compute the expected value for fixed sizes of R(y), that is
E[pj(0, R(y))I{|R(y)| = m}], which are then summed to
compute the desired expectation. The algorithm is given in
pseudocode in Algorithm 5 and details on its correctness are
given in the Appendix. The complexity of this approach is
O(V K2δ−2).

2) Removing path dependence for the sub-problem: The
objective is path dependent because the term E[zj(ρ)]

1−yρE[zj(ρ)]
depends on the probability that node j is visited (which is a
function of the path taken) and the weight assigned to path ρ.
We handle this term in two stages: we start by assuming that
yρ = 0 (which is true for most paths) in which case we have

E[zj(ρ)]
1−yρE[zj(ρ)] = E[zj(ρ)] and use the strategies developed in
Section 5.2.1 to approximately maximize the objective by
solving an orienteering problem. We then compute the value
of the O(K/δ) paths which have yρ > 0 (corresponding to
the solutions to the greedy subproblem in previous iterations)
explicitly and select the better of these paths or the output of
the orienteering routine solved in the first stage. We show in
the Appendix that this two-stage approach produces a path
with value within factor ps/λ of the optimal.

3) Rounding the solution: We use the SwapRounding
procedure to round y in order to get our final solution. In
order to ensure that we achieve a good result we repeat the
rounding procedure until the result is at least (1− δ)F (y).
The expected number of calls to the rounding routine is upper
bounded by 1/(1− e−psδ

2/8), which is O(δ−2) (we defer
details of these calculations to the Appendix).

5.3.2 Guarantees Combining our results from Sections
2.3, 5.1.1, and 5.3.1 we provide the following performance
guarantee for the MCGreedySurvivors routine:

Theorem 3. Suboptimality bound. Let X∗ be an optimal
solution to the MTSO problem and X̂ be the output of the
MCGreedySurvivors routine with parameters δ and λ.
Then the value of the set X̂ is lower bounded by a constant
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Algorithm 4 Approximate continuous greedy algorithm for
solving the MTSO problem.

1: procedure MCGREEDYSURVIVORS (G,M, δ)
2: y ← 0⃗
3: for i = 1, . . . , 1/δ do
4: X(i)← ∅
5: for ℓ = 1, . . . ,K do
6: ν̂ ← UpdateWeights(y)
7: ρ′ ← SolveSubproblem(X(i), ν̂)

8: ρ← argmax
ρ′,{ρ∈XF (X(i),I):yρ>0}

∑V
j=1 djν(ρ, j)

9: yρ ← yρ + δ
10: X(i)← X(i) ∪ ρ
11: end for
12: end for
13: while True do
14: X̂ ← SwapRounding(y)
15: if f(X̂) ≥ (1− δ)F (y) then return X̂
16: end if
17: end while
18: end procedure

Algorithm 5 Efficient weight update routine.
1: procedure UPDATEWEIGHTS(y)
2: for j = 1, . . . , V do
3: w = 0⃗|y|+1

4: w0 ← 1
5: for x : yx > 0 do
6: for m = |y|, . . . , 1 do
7: wm ← wm−1 · yx · (1− E[zj(x)]) +

wm · (1− yx)
8: end for
9: w0 ← w0 · (1− yx)

10: end for
11: ν̂j ←

∑|y|
m=0 wm

12: end for
13: end procedure

factor of the optimum:

f(X̂) ≥ f(X∗)(1− δ)

(
1− exp

(
− ps
λ+ δps

))
.

The detailed proof is given in the Appendix. The basic
idea is to first use the properties of the SolveSubproblem
routine to lower bound the incremental increase in the
multilinear extension between subsequent steps of the
algorithm, then to use a recursive argument to show that
F (y) satisfies the desired inequality, which in turn ensures
that f(X̂) satisfies the guarantee.

Tightness of the guarantee – As the approximation
parameters converge to their ideals (δ → 0, λ→ 1, ps → 1),
the guarantee converges to f(X̂) ≥ f(X∗)(1− e−1), which
matches the hardness bounds for the general problem of
maximizing a submodular function subject to a matroid
constraint. We also note that for δ ≪ λ, the guarantee is
approximately 1− e−ps/λ, which matches the guarantee
given for the TSO problem Jorgensen et al. (2018).

5.3.3 Complexity The MCGreedySurvivors routine
calls the UpdateWeights routine K/δ times, solves K/δ

sub-problems, and calls the SwapRounding routine an
average of O(δ−2) times. Hence the total complexity is

O(δ−1K(MCO + CP ) + δ−3K3V + δ−3K),

and since generally CO ≫ δ−2K2V , this is
O(δ−1KMCO), which is a factor of δ−1 greater than
the approximate greedy routine.

6 Experimental Results
In this section we validate and compare our solution
approaches using simulations. In particular, we demonstrate
the rich sets of constraints a matroid can model in Sec-
tion 6.1, where we consider a challenging environmen-
tal monitoring scenario and compare two choices for the
Orienteering oracle. Section 6.2 quantifies the empir-
ical scaling of our algorithm using synthetic data. In par-
ticular, section 6.2.1 shows that the MGreedySurvivors
algorithm scales as expected as the team size and number
of sub-problems required to partition the feasible set grows,
and Section 6.2.2 shows that the ACGA algorithm scales as
expected as δ shrinks. Finally, in Section 6.3 we compare the
MGreedySurvivors and ACGA approaches for a range
of δ values and discuss the strengths of each approach.

6.1 Environmental Monitoring Application
We consider the application illustrated in Figure 1:
the Coral Triangle has a diverse ecosystem and the
goal is to use a robotic fleet with multiple sensor
configurations to monitor the wildlife populations in
‘Marine Protected Areas.’ We use piracy incident data
International Chamber of Commerce: Commercial Crime Services
(2017) and model attacks as a Poisson random variable in
a manner similar to Vaněk et al. (2013). We selected 106
marine protected areas from Cros et al. (2014) as nodes in a
complete graph and computed the shortest (minimum risk)
paths between each pair of sites to find the edge weights. In
our scenario, we can deploy up to 25 robots of three types
(at most twelve of each type), and each robot type has a
different utility in each region. Each region can support the
traffic of at most three robots of each type.

We require that the expected losses over the worst 5%
of outcomes be no more than five failed robots (this
is called the Conditional Value at Risk, and denoted
CVaR0.05). For the data shown, the most difficult node to
reach requires survival probability 0.64, but if we use a
uniform survival probability threshold ps = 0.64, the risk
is unacceptably high (CVaR0.05 = 16.26). We satisfy the
constraint CVaR0.05 ≤ 5 by setting p1s, . . . , p

5
s = 0.6, and

p6s, . . . , p
25
s = 0.859, that is we allow five robots to take more

risky paths and constrain the rest to more conservative paths.
All of the constraints above can be represented using a single
gammoid, and the feasible set can be partitioned using at
most M = 15 sub-graphs. Note how expressive gammoids
are - this example uses just three levels of ‘nested constraints’
(robot types, traffic limits, and risk constraints) but we could
easily use more.

We consider two choices for the Orienteering rou-
tine: an open-source Variable Neighborhood Search (VNS)
heuristic produced by HeuristicLab Wagner and Affenzeller
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Figure 4. Cumulative reward for paths planned by
MGreedySurvivors using the MIP and VNS
Orienteering routines. Both approaches compute high
quality sets of paths, though VNS is somewhat faster.

(2005) and a mixed-integer linear program (MILP) formula-
tion solved using CPLEX with a 5% tolerance. We observe
that the VNS heuristic gives near-optimal paths, and solves
all of the sub-problems for each of the twenty five robots
in 51 seconds on a quad-core 4GHz processor with 32GB
RAM available. The MIP oracle takes 60 seconds and yields
nearly the same results. While the MIP oracle can find
high quality paths quickly, as the tolerance is decreased the
computation time dramatically increases. Optimally solving
the sub-problems does not necessarily lead to better overall
behavior, as shown in Figure 4. The upper bound shown
is computed as the smaller of 1) the upper bound found
using the greedily selected paths and the approximation
ratio, and 2) the sum of all node rewards

∑V
j=1 dj = 106.

This upper bound is loose because it ignores the constraints
(particularly on the traffic flow through a region) which
becomes apparent as the team size grows larger. Note that
although the theoretical approximation guarantee is 0.36, a
team of 10 robots achieves 0.928 the maximum possible
reward, despite only planning one path at a time.

6.2 Synthetic problem generation
We demonstrate the scaling properties of the
MGreedySurvivors and ACGA algorithms using
synthetic data. Nodes are placed randomly on a 2D plane
and clustered into groups of 15-20 nodes (this ensures the
complexity of solving the orienteering problem, CO, is
constant). We consider a traffic constraint with sub-graphs
induced by the clusters. Edge weights are chosen so that
− log(ω(e)) is proportional to the length of the edge e, the
survival probability threshold is set to 0.7, and we use a
MILP formulation for the planar orienteering problem with
tolerance 5%.

6.2.1 Sub-problem complexity scaling We demonstrate
the complexity of the MGreedySurvivors algorithm
with respect to K and M using the synthetic dataset
described above. We use the lazy variant of the greedy
algorithm Krause and Golovin (2014), which only solves a
sub-problem if it is not dominated by another (this allows
us to skip 76% of the sub-problems in our experiment). The
median computation times are shown in Figure 5. The trends
agree with the O(MKCO) scaling predicted in Section
5.2.3, and our approach solves very large problems with very
large teams in under a minute when sub-graphs are small.

Figure 5. Scaling of MGreedySurvivors as K and V grow.
Data shown is the median of 110 samples, and agrees with an
Θ(MKCO) trend.

Figure 6. Scaling of the run time of the ACGA routine relative
to the MGreedySurvivors routine as the number of
discretization steps increases. Note that run time increases
approximately linearly with δ−1, as predicted in Section 5.3.3.

6.2.2 Discretization complexity scaling As discussed in
Section 5.3.3, we expect the run time of the ACGA to
be roughly δ−1 times that of the MGreedySurvivors
routine (which is ACGA with δ = 1). We demonstrate this
trend empirically by using the synthetic data generated
as described at the beginning of this section (with V =
82 and K = 8). For each problem we compute the
baseline by averaging the run time of 5 calls to the
MGreedySurvivors routine. We then measure the run
times of the ACGA with the desired δ values and use the ratio
of ACGA run times to the baseline run time as our datapoints.
We repeated this for 30 randomly generated problems and
show the results in Figure 6. The randomness in run times
is due to several factors (1) lazy implementation allows for
problems to be skipped when good bounds are available, (2)
MIP solver time can depend significantly on the particular
problem, and (3) MIP solver times are not deterministic.
Note that the average run time (with respect to the random
problem instances) actually grows sub-linearly, likely due to
the lazy implementation of the ACGA.

6.3 Effect of discretization on performance
Using the same data as in Section 6.2.2, we analyze the
influence of the discretization parameter on the performance
of ACGA relative to MGreedySurvivors in terms of the
value of their solutions. As shown in Figure 7, increasing δ−1
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Figure 7. Comparison of objective achieved by the ACGA and
MGreedySurvivors routines with δ−1 ∈ {2, . . . , 60} for 30
random MTSO problems. Note that as δ−1 increases the ACGA
more consistently outperforms the baseline and average
performance increases.

generally improves the performance, and generally increases
the chance that the result produced by ACGA will be better
than the result produced by MGreedySurvivors. Note
that the benefits of smaller discretization sizes drop off
faster than the increase in computation time, so in practice
a relatively small value of δ−1 (e.g., 8 or 16) should be
used. In scenarios where computation time is paramount,
the MGreedySurvivors routine provides a fast way of
achieving high quality solutions.

7 Extensions
In this section we discuss additional extensions and
applications of our work. In Section 7.1, we describe
p-systems and their applications to robotics. Minor
modifications to algorithms presented above have constant
factor guarantees for p-systems. In Section 7.2 we describe
the coverage variant of the MTSO, which is closely related
to our other work in Jorgensen et al. (2017b). Results from
Chekuri et al. (2010) can be applied to provide guarantees
for our ACGA algorithm in this setting.

7.1 p-system constraints
Consider the MTSO where the matroid M is replaced
by a p-system. Recall that a p-system is an independence
system which is downward closed and every base (maximal
independent set) has at most p elements. The crucial
distinction between p-systems and matroids is that the latter
has the exchange property, which implies that every base in a
matroid has the same number of elements (which is the rank
of the matroid).

7.1.1 Applications to robotics Many common constraints
in robotics can be modeled as as p-system:

Collision avoidance – Consider a setting where we do not
allow two robots to simultaneously traverse the same edge in
the graph (this also requires us to introduce a notion of time,
which we discuss more in our work Jorgensen et al. (2018)).
One can easily verify that collision avoidance is downward
closed - any subset of a set of collision free paths will also be
collision free. The value of p is easily bounded by the smaller

of the out-degree of the starting vertex and the number of
robots allowed.

Capacity constraints – Collision avoidance can be
generalized to a capacity constraint, where each edge has
a capacity, and each robot has a demand. We can require
that the sum of demands for robots simultaneously traversing
an edge must be below the capacity of the edge. Note that
collision avoidance is a special case where all demands and
capacities are equal. This scenario can model road networks
as well as communications networks, where a video sensor
may demand much more bandwidth than other types of
sensors.

Matroid intersections – The intersection of p matroids is
also a p-system. This can allow us to simultaneously enforce
risk constraints, sensor availability, and traffic constraints.
Note that this is different from the nested cardinality
constraints used in the experiments. For example, we could
require that at most 5 of the 25 paths planned are risky and
that at most 12 of each robot type can be selected (rather than
the nested case, which would say, e.g., at most 12 of the risky
paths can be of a given type, and at most 12 of the safe paths
can be of a given type).

7.1.2 Algorithms and guarantees We can use a slightly
modified version of our algorithms above to find a set
which is in the independent family of sets for a p-
system and (approximately) maximizes the expected number
of nodes visited. The only difference is that now the
feasible set XF (X, I) is defined with respect to the
independent family of sets for a p-system. A similar
application-specific partitioning technique can be used in the
SolveSubproblem routine.

The guarantee we state in Theorem 1 is a special
case of the more general statement from Appendix B of
Calinescu et al. (2007), which for a p-system gives the
constant factor guarantee α

α+p . For our applications, we will
typically constrain teams to have at most K robots, meaning
that the guarantees become ps

ps+Kλ , which while a constant
factor, quickly becomes loose as the team size grows.

7.2 Multiple objectives and coverage problems
Consider a problem where we are given a set of submodular
functions f1, . . . , fN , corresponding values V1, . . . , VN , and
want to find a set X such that fn(X) ≥ Vn for n = 1, . . . , N .

7.2.1 Applications to robotics This problem could model
a coverage variant of the MTSO, where we are seeking
a set X which satisfies a matroid constraint while also
ensuring that the probability node j is visited satisfies
a given threshold, pv(j). In this setting we define the
functions fj(X) = min{1− pj(0, X), pv(j)} and set Vj =
pv(j). This is similar to the coverage variant of the TSO
given in Jorgensen et al. (2017b), where we seek the smallest
team which satisfies the desired visit probabilities.

7.2.2 Algorithm and guarantees The algorithm for this
case only requires minor modifications to our proposed
algorithms, and would leverage the modifications to the
continuous greedy algorithm outlined in Chekuri et al.
(2010). Theorem 2.5 from Chekuri et al. (2010) guarantees
that the output of the modified algorithm satisfies Fn(y) ≥
(1− e−1)Vn for n = 1, . . . , N , or returns a certificate of
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infeasibility. In our case the ACGA has a weaker 1− e−ps/λ

guarantee, and so the result would be modified accordingly.
If the visit probability thresholds are small enough, we
can guarantee feasibility by dividing Vj by (1− e−ps/λ),
ensuring that the visit probability is greater than pv(j).

8 Conclusions
Summary We formulate the Matroid Team Surviving

Orienteers (MTSO) problem, where we seek a set of paths
which forms an independent set of a matroid, maximizes the
expected number of nodes visited by at least one robot, and
ensures the probabilities each robot reaches its destination
are above a threshold. This problem is a significant
generalization of our earlier work on the Team Surviving
Orienteers problem Jorgensen et al. (2018), and is distinct
from previous work because it combines a submodular
objective, chance constraints, and matroid constraints. We
give numerous applications of matroids to robotic path
planning such as coverage, launch constraints, limits on the
number of available robots of multiple types, restrictions
on the amount of traffic which can flow through a region,
and combinations of the above. The MTSO is particularly
challenging to solve because of the risky traversal model
(where a robot might not complete its planned path) which
creates a complex, history-dependent coupling between the
edges chosen and the distribution of nodes visited. We
present two solution algorithms: an approximate greedy
algorithm for solving the MTSO problem which guarantees
that its output achieves at least ps

ps+λ of the optimal reward,
and a variant of the ACGA which guarantees that its
output achieves at least ≃ 1− e−ps/λ the optimal reward.
The algorithms rely on a partitioning routine to satisfy the
matroid constraints, and we show numerous examples where
our algorithm runs in polynomial time. We demonstrate the
efficiency of our approaches by applying it to a scenario
where a team of robots must gather information while
avoiding pirates in the Coral Triangle, and study how
algorithm parameters influence complexity and performance.

Future work There are many directions for future work
beyond those outlined in Section 7. The most promising
is the extension to linear packing constraints (also called
knapsack constraints). The multiplicative weight update
(MWU) framework was used by Chekuri et al. (2015) to find
a set X which optimizes a submodular function subject to
linear packing constraints, 1XA ≤ 1, where A is an M ×
|X | matrix. These constraints generalize common cases of
matroid constraints, such as the partition, transversal, and
laminar matroids, and can represent more general versions
of the applications from Section 4 such as constraining the
expected number of failures, the total number of types of
sensors available, or limits on traffic through each edge in
the graph.

The MWU framework solves a cost-benefit greedy variant
of the ACGA, where paths are weighted by their cost (i.e.,
how much of the constraint they use). Specifically, the
algorithm increments the coordinate of y which ensures
that the coordinates selected in a particular step satisfy the
packing constraints, and which maximizes

1∑M
m=1 wmAm,ρ

(F (y + δ1ρ)− F (y)),

where wm is a second state vector used for constraint
satisfaction.

In principle this is not much more difficult than the
ACGA presented in this paper, however in practice this
will require clever tailoring of the MILP formulations and
careful selection of the constraint function to ensure that it
can be solved as an orienteering problem (or that a suitable
oracle routine exists). The Partition routine will also
need to be updated to represent the feasible space correctly.
The guarantees for the MWU approach are very similar to
those of the ACGA and borrow the same arguments, so
in principle we should expect similar results as given in
Theorem 3, however appropriately rounding the fractional
solution remains an open problem.

A second direction for future work is to investigate notions
of abstract dependence such as antimatroids, which can
model queueing networks or precedence constraints. There
are few fundamental results on optimizing with such abstract
dependence constraints, but it is an active area of research
and there are some recent results for the special case of
‘bottleneck functions’ which may be useful in robotics.

Acknowledgements

The authors would like to thank Jan Vondrák for helpful discussions
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Appendix

Derivation of the objective function for the
ACGA
In this section we derive the equivalent form of the objective
function for the accelerated continuous greedy algorithm
given in Lemma 2, that is:

F (y + δ1ρ)− F (y) = δ
V∑

j=1

djE[zℓj(ρ)]
1− yρE[zℓj(ρ)]

E[pj(0, R(y))].
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Since the algorithm considers an element at most 1/δ times
and increments a selected element by δ, at any point in the
algorithm yρ < 1 if ρ is a candidate solution to the greedy
sub-problem. We begin by giving three useful identities
about the distribution of R(y), then express the objective
function in terms of E[∆f(ρ | R(y))] (a useful result for
subsequent proofs), and finally derive the statement given in
Lemma 2.

1. Let Py(X) be the probability that R(y) = X . Then

Py+δ1ρ (X) = Py(X)

(
1 + δ

(
I{ρ ∈ X}

yρ
−

I{ρ /∈ X}
1− yρ

))
,

(1)

which follows directly from the definition of R.
2. For any X , ρ,

Py(X ∪ ρ) = Py(X \ ρ)
yρ

1− yρ
. (2)

3. By definition of pj , we have for all X , ρ:

pj(0, X ∪ ρ) = pj(0, X \ ρ)(1− E[zj(ρ)]),

which along with Equation 2 gives

pj(0, X \ ρ)Py(X \ ρ) + pj(0, X ∪ ρ)Py(X ∪ ρ) =

pj(0, X \ ρ)Py(X \ ρ)
(
1 +

yρ(1− E[zj(ρ)])
1− yρ

)
,

which implies the third identity:

E[pj(0, R(y))] =
1− yρE[zj(ρ)]

1− yρ

∑
X⊆X\ρ

pj(0,X)Py(X).

(3)

Now using these identities along with the definition of F ,
one obtains

F (y + δ1ρ)− F (y) =
∑
X⊆X

f(x) (Py+δ(X)− Py(X))

=
∑
X⊆X

δf(X)Py(X)

(
I{ρ ∈ X}

yρ
− I{ρ /∈ X}

1− yρ

)

= δ
∑

X⊆X\ρ

Py(X)

(
f(X ∪ ρ)

yρ

yρ
1− yρ

− f(X)

1− yρ

)

=
δ

1− yρ

∑
X⊆X\ρ

∆f(ρ | X)Py(X).

The first line is by definition of F , the second is obtained
using Equation 1, the third is from Equation 2, and the last is
by definition of ∆f .

This result combined with Equation 3 and the fact that
∆f(ρ | X ∪ ρ) = 0 gives the two desired results:

F (y + δ1ρ)− F (y) =
δ

1− yρ
E[∆f(ρ | R(y))] (4)

=
δ

1− yρ

V∑
j=1

djE[zj(ρ)]
∑

X⊆X\ρ

pj(0, X)Py(X) (5)

= δ

V∑
j=1

dj
E[zj(ρ)]

1− yρE[zj(ρ)]
E[pj(0, R(y))]. (6)

The second equality is by definition of f and the third is from
applying Equation 3.

Performance guarantee for the ACGA
In this section we provide the proof for the statement of
Theorem 3, which we repeat below:

Let X∗ be an optimal solution to the MTSO problem and
X̂ be the output of the MCGreedySurvivors routine with
parameters δ and λ. Then the value of the set X̂ is lower
bounded by a constant factor of the optimum:

f(X̂) ≥ f(X∗)(1− δ)

(
1− exp

(
− ps
λ+ δps

))
.

Outline of the argument – The proof follows the argument
of Badanidiyuru and Vondrák (2014) closely. We begin by
lower bounding the increase in F (y) between subsequent
steps and then use a recursive argument to bound the value of
F (y) after the last iteration. Since this section deals primarily
with the evolution of y, we denote the state of y after the
ℓth iteration of the ith step as y(i, ℓ), and use the shorthand
y(i,K) = y(i) = y(i+ 1, 0). In words, y(i) is shorthand for
the state after all K iterations of the ith step are complete;
and y(i+ 1, 0) is the state during the i+ 1st step before any
iterations are complete (which is the same as y(i,K)). We
also denote the path selected by the algorithm during the ℓth
iteration of the ith step by ρi,ℓ.

Note on feasibility – An important consequence of the
exchange properties of matroids is that during any step
i there is an ordering of the elements in an optimal set
ρ∗1, . . . , ρ

∗
K such that ρ∗ℓ is a candidate solution when solving

the sub-problem during the ℓth iteration. This means we can
combine Lemmas 2 and 1 to bound the increase in F (y)
between steps.

Note on the sub-problem – When solving the sub-
problem, we consider the paths with yρ > 0 explicitly and
solve the greedy sub-problem using the approximation yρ =
0. Since the node reward is an increasing function of yρ, we
still have a λ–approximate guarantee for the sub-problem:

ρ ∈ argmax
ρ∈XF (X(i),I)

V∑
j=1

dj
ν̂(j)

1− yρE[zj(ρ)]
,

which means we can apply Lemmas 1 and 2 to guarantee that
ρi,ℓ is within a multiplicative factor of ps/λ of the optimal.

We are now in a position to bound F (y(i+ 1))− F (y(i))
as follows,

F (y(i+ 1))− F (y(i)) =
K∑
ℓ=1

F (y(i, ℓ))− F (y(i, ℓ− 1))

= δ
K∑
ℓ=1

E[∆f(ρi,ℓ | R(y))]

≥ δ
ps
λ

K∑
ℓ=1

E[∆f(ρ∗ℓ | R(y(i, ℓ− 1)))]

≥ δps
λ

(E[f(X∗ ∪R(y(i)))]− E[f(R(y(i+ 1)))])

≥ f(X∗)
δps
λ
− δps

λ
F (y(i+ 1)).

The second line is a telescoping sum, the third is from
Lemma 1 and the fact that ρ∗ℓ is feasible, the fourth is due
to submodularity and the fifth due to monotonicity.
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Now we can rearrange the inequality above to get

(F (y(i+ 1))− f(X∗))

(
1 +

δps
λ

)
≥ F (y(i))− f(X∗), (7)

which applied recursively gives

F (y(1/δ)) ≥ f(X∗)

(
1−

(
1 +

δps
λ

)−1/δ
)

≥ f(X∗)

(
1− exp

(
− ps
λ+ psδ

))
.

The last inequality is because 1 + x ≤ ex implies (1 +
x)−N ≤ e−Nx/(1+x). The theorem statement follows since
we enforce that the rounded result X̂ satisfies f(X̂) ≥ (1−
δ)F (y(1/δ)).

Correctness for UpdateWeights routine
We introduce some new notation to analyze the
UpdateWeights routine. Given a vector y, let
ρn be the nth non-zero coordinate of y, and define
Rℓ(y) := R(y) ∩ {ρn}ℓn=1 as the random set restricted to
the first ℓ nonzero coordinates. Now define

wℓ
m := E[pj(0, Rℓ(y))I{|Rℓ(y)| = m}],

which is the expected probability that none of the paths in
Rℓ(y) visit node j and there are m paths in Rℓ(y). If M is
the number of non-zero entries of y, then by definition of the
expectation we have,

E[pj(0, R(y))] =

M∑
m=0

wM
m ,

since the number of elements in the set R(y) is between 0
and M .

For ℓ = 0, the weights wℓ
m are zero unless m = 0. For

ℓ > 0 we can use the product form of pj(0, X) to express
wℓ

m in terms of wℓ−1
m−1 and wℓ−1

m :

wℓ
m = wℓ−1

m−1

(
(1− E[zℓj(ρℓ)])yρℓ

)
+ wℓ−1

m (1− yρℓ
) .

This expression has an intuitive meaning, as it captures the
two ways that Rℓ(y) can have m elements: either yℓ ∈ Rℓ(y)
and |Rℓ−1(y)| = m− 1, or yℓ /∈ Rℓ(y) and |Rℓ−1(y)| =
m. In both cases we update the weights and probability
of the event occurring by multiplying by the appropriate
coefficients.

The UpdateWeights routine simply applies this
iterative approach to compute {wM

m }Mm=0 and then sums the
weights to find E[pj(0, R(y))].

Expected complexity of SwapRounding
Let pf be the probability that SwapRounding fails to
return a satisfactory result. Then the expected number of calls
is

∞∑
n=1

npn−1
f (1− pf ) =

1

1− pf
.

Now using the bound from Chekuri et al. (2010), pf ≤
exp(−F (y)δ2/8) ≤ exp(−psδ2/8), and from the inequality

e−x ≤ 1− x+ x2/2 we get 1
1−e−x ≤ 2

2x−x2 . Combining
these inequalities gives the cited result.

Note that we could make the while loop terminate after
δ−2 iterations which would make the statement of Theorem 3
hold with probability at least 1− e−ps/8, and the complexity
O(K2δ−3).
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