
The Matroid Team Surviving Orienteers Problem:
Constrained Routing of Heterogeneous Teams with Risky Traversal

Stefan Jorgensen, Robert H. Chen, Mark B. Milam, and Marco Pavone

Abstract— Consider a setting where robots must visit nodes
in a graph, but each robot may fail when traversing an edge.
The goal is to find a set of paths for a team of robots
which maximizes the expected number of nodes collectively
visited, while guaranteeing that the paths satisfy a notion of
“independence” formalized by a matroid (e.g. limits on team
size, number of visits to regions), and that the probabilities
that each robot survives to its destination are above a given
threshold. We call this problem the Matroid Team Surviving
Orienteers (MTSO) problem, which has broad applications such
as environmental monitoring in risky regions and search and
rescue in dangerous conditions. We present the MTSO formally
and detail numerous examples of matroids in a path planning
context. We then propose an approximate greedy algorithm for
selecting a feasible set of paths and prove that the value of
the output is within a factor ps

ps+λ
of the optimum, where ps

is the per-robot survival probability threshold and 1/λ ≤ 1
is the approximation factor of an oracle routine for the well
known orienteering problem. We demonstrate the efficiency of
our approach by applying it to a scenario where a team of
robots must gather information while avoiding pirates in the
Coral Triangle.

I. INTRODUCTION

Consider a scenario where mobile robotic sensors are used
to monitor a number regions of the ocean, each of which
may require different types of sensors. Due to weather and
piracy, there is a risk that robots may “fail” when traveling
from one region to another. A fleet manager seeks a set
of paths which maximizes the expected number of sites
monitored while satisfying various resource constraints. For
example there may be limits imposed by the number of
available robots of each type, the logistics of deploying the
robots, the probability a given robot reaches its destination,
or the amount of traffic a given region can support. If these
constraints are downward closed (meaning any subset of a
feasible set of paths is feasible) and satisfy an exchange
property, then we can represent them using a matroid [1],
which generalizes linear independence to set systems.

We formalize this exploration problem as a generalization
of the orienteering problem [2], where one seeks a path
which visits as many nodes in a graph as possible given
a budget constraint and travel costs. In the aforementioned
example the travel costs are the probability that a robot
fails while traversing between sites, and we are looking

Stefan Jorgensen is with the Department of Electrical Engineering,
Stanford University, Stanford, California 94305. His work is supported by
NSF grant DGE-114747 stefantj@stanford.edu

Robert H. Chen and Mark B. Milam are with NG
Next, Northrop Grumman, Redondo Beach, California 90278
{robert.chen,mark.milam}@ngc.com

Marco Pavone is with the Department of Aeronautics & Astronautics,
Stanford University, Stanford, California 94035 pavone@stanford.edu

Fig. 1. Illustration of the MTSO setting for an ocean monitoring scenario.
Various regions in the Coral Triangle are outlined by boxes, sites to visit
within each region are marked by ‘X’, and the heatmap indicates the risk of
robot failure inferred from piracy incidents. Data is from the Coral Triangle
Atlas [4] and IMB Piracy Reporting Centre [5]. The objective is to find a set
of paths for a heterogeneous team which maximizes the expected number
of sites visited subject to survival probability constraints and independence
constraints (e.g. limits on team size or sensor quantities).

for an independent set of a matroid which maximizes the
expected number of nodes visited by at least one robot
and ensures that the probabilities each vehicle reaches its
destination is above a specified threshold. We call this
problem formulation the “Matroid Team Surviving Orien-
teers” (MTSO) problem, illustrated in Figure 1. The MTSO
problem is a significant generalization of our earlier work
on the Team Surviving Orienteers (TSO) problem [3] which
only imposes a maximum team size constraint (a very special
case of a matroid constraint). Both the MTSO and TSO
are distinct from previous work because of the notion of
risky traversal: when a robot traverses an edge, there is a
probability that it fails and does not visit any other nodes.
This creates a complex, history-dependent coupling between
the edges chosen and the distribution of nodes visited, which
precludes the application of existing approaches available for
the traditional orienteering problem.

The objective of this paper is to devise a constant-factor
approximation algorithm for the MTSO problem. An effi-
cient algorithm for the TSO was designed by exploiting a
diminishing returns property known as submodularity [3],
which for set functions means that f(A∪B) + f(A∩B) ≤
f(A)+f(B). Our key technical insight is that we can further
exploit submodularity of the objective function to design
an efficient solution algorithm for the much more general
MTSO problem. We describe numerous applications of ma-
troid constraints to path planning problems, and describe an

approximate greedy algorithm which enjoys a constant-factor
approximation guarantee. Although a number of works have
considered routing problems with submodular objectives [6],
[7], [8], chance constraints [9], [10], or downward closed
constraints [11], [12], [13] separately, the MTSO is novel
because it combines all three aspects.

Related work. The orienteering problem (OP) has been
extensively studied [14] and is known to be NP-hard. Over
the past decade a number of constant-factor approximation
algorithms have been developed for special cases of the
problem. The submodular orienteering problem considers
finding a single path which maximizes an arbitrary reward
function of the nodes visited. The recursive greedy algorithm
proposed in [6] yields a solution in quasi-polynomial time
with a constant factor guarantee, and the cost-benefit greedy
algorithm proposed in [8] yields a solution in polynomial
time but only has a constant-factor guarantee with respect to
a relaxed problem. Our work is distinct from these efforts
because we consider a specific submodular function, but find
a set of paths rather than a set of edges which form a
path. The risk-sensitive orienteering problem [10] considers
random edge weights and seeks to maximize the sum of
rewards subject to a constraint on the probability that the
path cost is large. Only a single path is considered, so there
is no notion of independence between paths as in the MTSO.

A second closely-related area of research is represented by
the vehicle routing problem (VRP) [15], which is a family
of problems focused on finding a set of paths that maximize
quality of service subject to budget or time constraints. The
rich vehicle routing problem (RVRP) [12] considers much
more general settings such as routing heterogeneous teams
[11], “fleet dimensioning” (choosing team composition) [13],
and incompatability constraints [16]. The vast majority of
solution algorithms for the RVRP are heuristic [12] and do
not consider risky traversal. We consider a narrower yet
still expressive set of constraints and derive a polynomial
time solution algorithm with a constant factor approximation
guarantee.

A third related branch of literature is the informative
path planning problem (IPP), which seeks to find a set of
paths for mobile robotic sensors in order to maximize the
information gained about an environment. One of the earliest
IPP approaches [17] extends the recursive greedy algorithm
of [6] using a spatial decomposition to generate paths for
multiple robots, and provides performance guarantees using
submodularity of information gain. While the structure of
the IPP has many similarities to the MTSO problem (it
is a multi-robot path planning problem with a submodular
objective function which is non-linear and history depen-
dent), it captures neither the constraints nor the notion of
risky traversal which are central to the MTSO problem. Our
general approach is inspired by works such as [18], which
iteratively assigns paths to each robot, but for the MTSO
problem we further exploit the problem structure to derive
constant-factor guarantees.

A handful of papers apply submodular maximization and
matroid constraints directly to robotics path planning ap-
plications. In [19], path constraints are represented using a

p-system (which generalizes a matroid), and a submodular
maximization problem with p-system constraints is solved
to find the approximately most informative path. On the
other end of the spectrum, [20] considers a decentralized
submodular multi-robot task allocation problem, where the
goal is to assign robots disjoint task sets which maximize
private submodular functions. As with the submodular ori-
enteering problem, the items in the ground set are edges in
the graph, rather than paths in the graph as in the MTSO,
and hence only a single path is planned, rather than a
collection of paths. We apply submodular maximization at a
higher level of abstraction and use an orienteering problem
oracle in order to find high quality paths for each robot.
This requires different analysis which utilizes results on
approximate greedy algorithms for submodular maximization
subject to matroid [21] and p-system [22] independence
constraints.

Statement of Contributions. Matroids have been applied
with great success to many fields of engineering such as
electrical and structural network design [23], but they have
only sparingly been used for vehicle routing problems. The
contribution of this paper four-fold. First, we propose a
generalization of the TSO problem (which itself is a gen-
eralization of the orienteering problem), referred to as the
Matroid TSO problem. By considering matroid constraints,
we extend the state of the art for the team orienteering prob-
lem, and by considering the risky traversal model we extend
the state of the art for the rich vehicle routing problem.
Second, we demonstrate how to use matroids to represent
a variety of constraints such as coverage, deployment, team
size limitations, sub-graph diversity constraints, team-wise
risk constraints and nested cardinality constraints. Third, we
extend the approximate greedy algorithm from [3] to the
MTSO setting, and prove that the value of its output is
Ω(ps

ps+λ
OPT), where OPT is the optimum value, ps is the

per-robot survival probability threshold and 1/λ ≤ 1 is the
approximation factor of an oracle routine for the solution
to the orienteering problem (we note that, in practice ps
is close to unity). Finally, we demonstrate the effectiveness
of our algorithm for complex problems by considering an
environmental monitoring application.

II. BACKGROUND

A. Sets and Submodular Functions

Submodularity is the property of ‘diminishing returns’ for
set functions. The following definitions are summarized from
[24]. Given a set X , its possible subsets are represented by
2X . For two sets X and X ′, the set X ′ \ X contains all
elements in X ′ but not X . A collection of disjoint subsets
{Xm}Mm=1 is called a partition of X if ∪Mm=1Xm = X .
A set function f : 2X → R is said to be normalized if
f(∅) = 0 and to be monotone if for every X ⊆ X ′ ⊆ X ,
f(X) ≤ f(X ′). A set function f : 2X → R is submodular
if for every X ⊆ X ′ ⊂ X , x ∈ X \X ′, we have

f(X ∪ {x})− f(X) ≥ f(X ′ ∪ {x})− f(X ′).

The quantity on the left hand side is the discrete derivative
of f at X with respect to x, which we write as ∆f(x | X).

B. Independence Systems and Matroids

The following definitions are summarized from [1]. An
independence system is a tuple of a finite ground set X
and a downward closed family of independent sets I ⊆ 2X ,
that is if I ′ ⊆ I and I ∈ I, then I ′ ∈ I. A base is an
independent set I ∈ I which is inclusion-wise maximal,
that is for every x ∈ X \ I , I ∪ x /∈ I. A matroid is an
independence system for which all bases have the same size
(which is called the rank of the matroid), hence it extends
the notion of linear independence to sets. There are many
equivalent characterizations of matroids which are outside
of the scope of this work, we refer the interested reader to
[1] for more detail.

C. The Approximate Greedy Algorithm

Given a matroid (X , I) and a submodular function f , a
typical submodular maximization problem entails finding a
set X ∈ I that maximizes f . Finding an optimal solution,
X∗, is NP-hard for general submodular functions [21]. The
greedy algorithm constructs a set X̄K by iteratively adding
an element x from the feasible set,

XF (X̄`, I) := {x ∈ X \ X̄` | X̄` ∪ {x} ∈ I},

which maximizes the discrete derivative of f at the partial
set already selected. In other words the `th element satisfies:

x̄` ∈ argmax
x∈XF (X̄`−1,I)

∆f(x | X̄`−1),

and items are chosen until no more can be added, that
is XF (X̄K , I) = ∅. If the function f is monotone and
non-negative, the greedy algorithm will choose K items,
where K is the rank of the matroid (X , I). We refer to
the optimization problem above as ‘the greedy sub-problem’
at step `. A well-known theorem proven by [21] states
that if f is a monotone, normalized, non-negative, and
submodular function, then f(X̄K) ≥ 1

2f(X∗). This is a
powerful result, but if the set X is large we might only
be able to approximately solve the greedy sub-problem. An
α–approximate greedy algorithm constructs the set X̂K by
iteratively adding elements which approximately maximize
the discrete derivative of f at the partial set already selected.
Formally, for some fixed α ≤ 1, the `th element x̂` satisfies:

∆f(x̂` | X̂`−1) ≥ α∆f(x | X̂`−1) ∀ x ∈ XF (X̂`−1, I).

In this setting, [22] shows in Appendix B that the value of
the approximate greedy set is close to optimal:

Theorem 1 (Approximate greedy guarantee [22]): Let
(X , I) be a matroid with rank K and f : 2X → R+ a
non-negative monotone submodular set function. If X̂K is a
set chosen by an α-approximate greedy algorithm, then for
any X ∈ I,

f(X̂K) ≥ α

α+ 1
f(X).

D. Graphs

Let G(V, E) denote an undirected graph, where V is the
node set and E ⊂ V × V is the edge set. Explicitly, an edge
is a pair of nodes (i, j), and represents the ability to travel
between nodes i and j. If the graph is directed, then the edge

is an ordered pair of nodes, and represents the ability to travel
from the source node i to the sink node j. A graph is called
simple if there is only one edge which connects any given
pair of nodes. A path is an ordered sequence of unique nodes
such that there is an edge between adjacent nodes. For n ≥ 0,
we denote the nth node in path ρ by ρ(n) and the number of
edges in ρ by |ρ|. Note that ρ(|ρ|) is the last node in path ρ.
The graph Gm(Vm, Em) is called a sub-graph of G if Vm ⊆ V
and Em ⊆ E . The sub-graph of G induced by V ′ ⊆ V is the
graph G′(V ′, E ′) where E ′ := {(i, j) ∈ E | i, j ∈ V ′}.

III. PROBLEM STATEMENT

We use a similar setting and notation as the TSO problem
presented in [3] which we repeat below to keep this paper
self-contained. We then generalize the problem statement for
the matroid constraint case.

A. Formal Problem Description

Let G be a simple graph with |V| = V nodes. Edge weights
ω : E → (0, 1] correspond to the probability of survival for
traversing an edge. Time is discretized into iterations n =
0, 1, . . . , N . At iteration n a robot following path ρ traverses
edge enρ = (ρ(n− 1), ρ(n)). Robots are indexed by variable
k, and for each we define the independent Bernoulli random
variables skn(ρ) which are 1 with probability ω(enρ) and 0
with probability 1 − ω(enρ). If robot k follows path ρ, the
random variables akn(ρ) :=

∏n
i=1 s

k
i (ρ) can be interpreted as

being 1 if the robot ‘survived’ all of the edges taken until
iteration n and 0 if the robot ‘fails’ on or before iteration n.

Given a start node vs, a terminal node vt, and survival
probability ps we must find at most K ≥ 1 paths {ρk}Kk=1

(one for each of K robots) such that, for all k, the probability
that ak|ρk|(ρk) = 1 is at least ps, ρk(0) = vs and ρk(|ρk|) =
vt. The set of paths which satisfy these constraints is written
as X (ps, ω). One can readily test whether X (ps, ω) is empty
as follows: Set edge weights as − log(ω(e)), and for each
node j, compute the shortest path from vs to j, delete the
edges and nodes in that path, and compute the shortest
path from j to vt. If the sum of edge weights along both
paths is less than − log(ps) then the node is reachable,
otherwise it is not. Using Dijkstra’s algorithm this approach
can prove whether X (ps, ω) is empty after O(V 2 log(V))
computations, so we assume that X (ps, ω) is non-empty.

Define the indicator function I{x}, which is 1 if x is
true (or nonzero) and zero otherwise. Define the Bernoulli
random variables for j = 1, . . . , V :

zkj (ρ) :=

|ρ|∑
n=1

akn(ρ) I{ρ(n) = j},

which are 1 if robot k following path ρ visits node j and
0 otherwise (zkj (ρ) is binary because a path is defined as
a unique set of nodes). Note that zkj (ρ) is independent of
zk
′

j (ρ′) for k 6= k′. The number of times that node j is
visited by robots following the paths {ρk}Kk=1 is given by∑K
k=1 z

k
j (ρk), and we write the probability that exactly m

robots visit node j as pj(m, {ρk}Kk=1). In this paper we are

Fig. 2. Illustration of the notation used (. A robot plans to take path ρ,
whose edges are represented by lines. The fill of the lines represent the
value of sn(ρ). In this example s3(ρ) = 0, which means that a3(ρ) =
a4(ρ) = a5(ρ) = 0. The variables zj(ρ) are zero if either the robot fails
before reaching node j or if node j is not on the planned path.

primarily interested in the probability that no robots visit
node j, which has the simple expression:

pj

(
0, {ρk}Kk=1

)
=

K∏
k=1

(1− E[zkj (ρk)]).

Let dj > 0 be the reward accumulated for visiting node j
at least once, and define X as the set containing K copies
of each path in X (ps, ω). Given a matroid (X , I) with
rank K, we are interested in finding an independent set
which maximizes the weighted expected number of nodes
visited. Since the objective is non-negative and submodular
[3], we assume without loss of generality that the size of
the optimizing set is K, and state the Matroid TSO problem
formally:

Matroid TSO (MTSO) Problem: Given a graph
G, edge weights ω, survival probability threshold
ps and matroid (X , I), maximize the weighted
expected number of nodes visited by at least one
robot:

maximize
{ρk}Kk=1∈I

V∑
j=1

dj

(
1− pj

(
0, {ρk}Kk=1

))
subject to P

{
ak|ρk|(ρ) = 1

}
≥ ps k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρ|) = vt k = 1, . . . ,K

The optimization is over the feasible sets of the matroid, and
the solution is a set of K paths. The objective represents the
cumulative expected reward obtained by the robots following
the selected paths. The first set of constraints enforces the
survival probability, the second and third sets of constraints
enforce the initial and final node constraints.

The MTSO problem can be viewed as a set maximization
problem with a matroid constraint, where the domain of opti-
mization is the family of independent sets I. Crucially, since
the objective is a submodular function [3], the guarantee
from [22] implies that the greedily selected set of paths will
achieve reward close to the optimum.

IV. EXAMPLES AND APPLICATIONS

In this section we highlight several examples of matroids
and their applications in the context of the MTSO problem.

A. Uniform Matroid

Given a positive integer K, the independent sets of a
uniform matroid are all subsets of the ground set with at
most K elements. Optimization with a uniform matroid
constraint is equivalent to imposing cardinality constraints
on the solution size, which is the standard TSO problem.

B. Binary Matroid

Given a function φ : X → {0, 1}M , the independent sets
of a binary matroid induced by φ are all subsets X ⊆ X
such that the vectors {φ(x)}x∈X are linearly independent.

Application to coverage: Consider a setting where we
require each robot to focus on a different region. Define the
regions as M node subsets Sm ⊆ V , and define the ‘focus’
of a path as the index of the region which contains the most
nodes of the path (with ties broken deterministically). Let mρ

be the smallest index corresponding to a subset which path ρ
focuses on, that is |Smρ ∩ ρ| ≥ |Sm ∩ ρ| for m = 1, . . . ,M .
Now define φ(ρ) as the mρth canonical basis vector in RM .
Requiring the solution to be an independent set of the binary
matroid induced by φ and with ground set X (ps, ω), enforces
the desired diversity of focus.

C. Transversal Matroid

Given subsets {Xm}Mm=1 of the ground set, the inde-
pendent sets of the transversal matroid are all subsets X
which are partial transversals of {Xm}Mm=1. In other words,
if X ∈ I, we can assign each element xi ∈ X a unique
number mi ∈ {1, . . . ,M} such that xi ∈ Xmi .

Application to launch constraints: Consider a scenario
where only one robot can start on each outgoing edge of
vs. This could arise for example when robots are aerial
vehicles which must launch from runways, and only one
can launch from a runway in each direction. Let N(vs) be
the set of nodes with an edge to vs, and define the subsets
Xm = {ρ ∈ X (ps, ω) | ρ(1) = nm} for nm ∈ N(vs). That
is, we have one subset for each starting edge. Requiring that
the solution is an independent set of the transversal matroid
induced by {Xm}Mm=1 enforces the launch constraints.

Application to heterogeneous teams: Suppose we have
M types of robots, a robot of type m has feasible path
set Xm, and that we can deploy at most Km robots of
type m. Requiring the solution to be an independent set
of a transversal matroid induced by Km copies of Xm for
m = 1, . . . ,M enforces that no more than Km robots of
type m are selected.

Application to sub-graph diversity: Suppose we are given
sub-graphs Gm = (Vm, Em) for m = 1, . . . ,M with vs, vt ∈
Vm, Vm ⊆ V , Em ⊆ E , and we require that no more than
Km robots take paths in sub-graph Gm. Let Xm correspond
to the set of feasible paths in sub-graph Gm. Requiting that
the solution is an independent set of a transversal matroid
induced by Km copies of the sets Xm enforces the sub-graph
diversity constraint.

Fig. 3. Illustration of multi-partite graphs which form gammoids. Left: An
illustration of the graph with two layers of cardinality constraints. Right: An
illustration of the graph with three layers. Boxes represent clusters of nodes,
and lines represent edges which connect each node of the right cluster to
each node of the left cluster.

Application to risk constraints: Suppose we have M risk
thresholds p1

s ≤ · · · ≤ pMs . This setting could arise when
there is a constraint on the risk of many robot failures,
but requiring uniform survival thresholds would be too
conservative to visit all of the nodes. Then we can choose
{pms }Mm=1 in order to provide the necessary flexibility while
still maintaining tight control on risk. Requiring the solution
to be an independent set of the transversal matroid induced
by {X (pms , ω)}Mm=1 enforces the desired constraints.

D. Gammoid

A gammoid is induced by a directed graph D(S,E) with
a subset of nodes corresponding to elements in the ground
set, e.g. X ⊆ S, and a subset U ⊆ S. We say that two sets
of nodes X,Y ⊆ S are linked if |X| = |Y | and there are
|X| node-disjoint paths from X to Y . The independent sets
of a gammoid induced by D, U are all subsets X ⊆ X such
that some subset of U is linked to X .

Application to nested cardinality constraints: Consider a
simple setting where the ground set is partitioned by the sets
{X1, X2} and we may choose up to 2 items from X1, 2
items from X2 and 3 items total. The independent sets of
a gammoid induced by the multi-partite graph in Figure 3
satisfy these constraints. This setting is easily extended to
more complicated scenarios. For the MTSO, we could first
partition based on robot types, then by sub-graphs, and finally
by risk thresholds (or in a different order). An illustration of
the graph for three layers of partitioning (e.g. robot types,
sub-graphs, and team size) is shown in Figure 3. It is not
necessary for the node groups to form a partition.

E. Truncation

Given K ∈ N and a matroid (X , I), let I ′ := {I ∈ I |
|I| ≤ K} which is the set of independent sets with at most
K elements. Then (X , I ′) is a matroid and is called the K-
truncation of (X , I). If the maximum team size is K, we can
represent this constraint in addition to any of the scenarios
above by using the K-truncation of the appropriate matroid.

V. ALGORITHM

At a high level our approach to solving the MTSO problem
is the same as for the TSO problem, where we exploit
submodularity of the objective function using an approximate
greedy algorithm. The crucial difference is that now we must

restrict the domain of the greedy sub-problem to independent
sets of the matroid constraint. We show how to do this in
Section V-A and get a ps/λ–approximate greedy algorithm.
We describe the rest of our algorithm for the MTSO problem
in Section V-B, and combine results derived in this paper
with results from [3] and [22] to prove an approximation
guarantee in Section V-C. In Section V-D we characterize the
complexity of our approach, which depends on the ability to
efficiently partition the independent sets of a matroid, so in
Section V-E we give efficient partition routines for several
matroids.

A. Linear Relaxation for Greedy Sub-problem

Given a previously selected set of paths, XL−1 =
{ρ`}L−1

`=1 , the greedy sub-problem for the MTSO problem
at step L requires us to find a path ρL from the set
XF (XL−1, I) which maximizes the discrete derivative of
the objective function at XL−1 with respect to ρL. We
denote this discrete derivative by ∆J(ρL | XL−1). The
greedy sub-problem is very difficult for the MTSO problem:
it requires finding a path which maximizes submodular node
rewards subject to a budget constraint (this is the submodular
orienteering problem). Although there are negative results
about the efficiency of constant-factor approximation algo-
rithms for general submodular orienteering problems [6], a
polynomial time algorithm was devised specifically for the
objective of the TSO problem (where XF (XL−1, I) = X)
in [3] by using a linearization procedure. The problem is
relaxed by replacing the probability that robot L traversing
path ρ visits node j, E[zLj (ρ)], with ζj , the maximum
probability that any robot following a feasible path can visit
node j:

ζj := max
ρ∈X (ps,ω)

E[zLj (ρ)].

For a given graph this upper bound can be found easily by
using Dijkstra’s algorithm with log-transformed edge weights
ωO(e) := − log(ω(e)). Let Ij(ρ) be equal to 1 if node j is
in ρ and 0 otherwise. In the relaxed problem we are looking
to maximize the sum:

∆J̄(ρ | XL−1) :=

V∑
j=1

Ij(ρ)ζjdjpj (0, XL−1) ,

which represents an optimistic estimate of ∆J(ρ | XL−1).
The feasible set, XF (XL−1, I), can always be partitioned

into sets {Xm}Mm=1, where Xm is the subset of paths in
X which have all nodes and edges in a corresponding sub-
graph Gm. This is apparent from the fact that for each
ρ ∈ XF (XL−1, I), we can construct a sub-graph Gm which
has exactly the nodes and edges in ρ. Since a path is
defined as a unique list of nodes and edges, and since
feasible paths must start at vs and end at vt, the sub-graph
contains only one feasible path, ρ. In practice we can often
partition XF (XL−1, I) using a small number of sub-graphs,
as detailed in Section V-E.

We can find the (approximately) best path by solving an
orienteering problem with budget − log(ps) on each of the
sub-graphs Gm,O, which have the same edges and nodes as
Gm but have log-transformed edge weights ωO(e) and node

rewards νL(j) = ζjdjpj(0, XL−1). The best of the solutions
to the orienteering problems is a path in the feasible set
that maximizes the sum of node rewards (which is ∆J̄(ρ |
XL−1)), and satisfies

∑
e∈ρ− log(ω(e)) ≤ − log(ps), which

is equivalent to P{aL|ρ|(ρ) = 1} ≥ ps.
Although solving the orienteering problem is NP-hard,

several polynomial-time approximation algorithms exist
which guarantee that the returned objective is lower bounded
by a factor of 1/λ ≤ 1 of the optimal objective. For
undirected planar graphs λ = (1 + ε) [25], for undirected
graphs λ = (2 + ε) [26], and for directed graphs [6] gives a
guarantee in terms of the number of nodes. Using such an
oracle, we extend Lemma 2 from [3] to the matroid setting:

Lemma 1 (Single robot constant-factor guarantee): Let
Orienteering be a routine that solves the orienteering
problem within constant-factor 1/λ, that is for cj > 0 and
node weights ν(j) = cjζj , path ρ̂m output by the routine
when given graph Gm and any feasible path ρm in Gm,

V∑
j=1

Ij(ρ̂m)ν(j) ≥ 1

λ

V∑
j=1

Ij(ρm)ν(j).

Let XF (XL, I) be partitioned by {Xm}Mm=1, where Xm is
the set of feasible paths in sub-graph Gm, and define ρ̂ as the
best path returned by the Orienteering routine among
the m sub-graphs. Then for any XL ∈ I, cj > 0 and any
ρ ∈ XF (XL, I), we have:

V∑
j=1

cjE[zj(ρ̂)] ≥ ps
λ

V∑
j=1

cjE[zj(ρ)].

Proof: By definiton of {Xm}Mm=1, for any ρ ∈
XF (XL, I) there is an mρ such that ρ ∈ Xmρ . We have from
the definitions of ρ̂, ζj and the Orienteering routine:

V∑
j=1

cjE[zj(ρ)] ≤
V∑
j=1

Ij(ρ)ζjcj ≤ λ
V∑
j=1

Ij(ρ̂mρ)ζjcj

≤ λ
V∑
j=1

Ij(ρ̂)ζjcj .

Since ρ̂ is feasible, Ij(ρ̂)psζj ≤ Ij(ρ̂)ps ≤ E[zj(ρ̂)], which
combined with the equation above completes the proof.

The intuition behind this result is that for ps close to unity
no feasible path can be very risky and so the probability that
a robot actually reaches a node will not be too far from the
maximum probability that it could reach the node.

B. Greedy Approximation for the MTSO Problem
Using this relaxation with cj = djpj(0, XL−1) we have

an ps/λ–approximate algorithm for the greedy sub-problem
at step L. This gives us a (ps

ps+λ
)–approximate greedy

algorithm for the MTSO problem, as detailed next.
Define the method Dijkstra(G, i, j), which returns

the length of the shortest path from node i to j on
the edge weighted graph G using Dijkstra’s algorithm.
Given an edge weighted graph G, node rewards ν, the
Orienteering(G, ν) routine solves the orienteering prob-
lem (assuming vs = 1, vt = V and budget − log(ps)) within
factor 1/λ, and returns the best path. Given an independent

set X ∈ I, the Partition(X) routine returns a set of sub-
graphs {Gm}Mm=1 such that {Xm}Mm=1 partitions XF (X, I).
Pseudocode for our algorithm is given in Figure 4. We begin
by forming the graph GO with log-transformed edge weights
ωO(e), and then use Dijkstra’s algorithm to compute the
maximum probability that a node can be reached. For each
robot k = 1, . . . ,K, we partition the feasible set and solve
the orienteering problem for each sub-graph {Gm}Mm=1 to
greedily choose the path that maximizes ∆J̄(ρ | X̂k−1).

1: procedure MGREEDYSURVIVORS(G,K)
2: Form GO from G, such that vs = 1, vt = V
3: for j = 1, . . . , V do
4: ζj ← exp(−Dijkstra(GO, 1, j))
5: ν1(j)← ζjdj
6: end for
7: ρ1 ← Orienteering(GO, ν1)
8: for k = 1, . . . ,K − 1 do
9: E[ak0(ρk)]← 1

10: for n = 1, . . . , |ρk| do
11: E[akn(ρk)]← E[akn−1(ρk)]ω(enρk)
12: νk+1(ρk(n))← (1− E[akn(ρk)])νk(ρk(n))
13: end for
14: for Gm in Partition({ρ`}k`=1) do
15: Form Gm,O from Gm
16: ρ̂m ← Orienteering(Gm,O, νk+1)
17: end for
18: ρk+1 ← arg max

ρ∈ρ̂1,...,ρ̂M
∆J

(
ρ | {ρ`}k`=1

)
19: end for
20: end procedure

Fig. 4. Approximate greedy algorithm for solving the MTSO problem.

C. Approximation Guarantees
In this section we combine the results from Sec-

tion II-C and V-A to prove that the output of the
MGreedySurvivors algorithm is close to the optimal
solution to the MTSO problem.

Theorem 2 (Multi-robot constant-factor guarantee):
Let 1/λ be the constant-factor guarantee for the
Orienteering routine as in Lemma 1, and assign
robot ` the path ρ̂`, which is the best of the outputs from the
orienteering routine given graphs Gm,O with node weights

ν`(j) = ζjdjpj
(
0, {ρ̂k}`−1

k=1

)
.

Let X∗ = {ρ∗k}Kk=1 be an optimal solution to the MTSO.
Then the weighted expected number of nodes visited by a
team of robots following the paths X̂K = {ρ̂`}K`=1 is at least
a fraction γ = ps

ps+λ
of the optimum:

V∑
j=1

dj

(
1− pj

(
0, X̂K

))
≥ γ

V∑
j=1

dj (1− pj (0, X∗)) .

Proof: Using Lemma 1 with cj chosen appropriately
for the objective function, we have a constant-factor guar-
antee α = ps/λ for the problem of finding the path from
XF (X`, I) that maximizes the discrete derivative of the

objective function at step ` + 1. Now applying Theorem
1 to our objective function (which by Lemma 2 of [3] is
normalized, non-negative, monotone and submodular) we
have the desired result.
In many scenarios of interest ps is quite close to 1, since
robots are typically valuable or difficult to replace.

D. Computational Complexity
Suppose that the complexity of the Orienteering

oracle on the graph G is CO, the complexity of the partition
routine at each iteration is at most CP , and the largest num-
ber of sets in the partition of the feasible set is M . Then the
complexity of our algorithm is O(V 2 log(V)) +O(KV 2) +
O(KMCO) +O(KCP). The first term is the complexity of
running Dijkstra’s algorithm to calculate ζj for all nodes, the
second term is the complexity of updating the V weights K
times (each update costs at most |ρk| ≤ V flops), the third
term is the complexity of solving the orienteering problems,
and the final term is the cost of partitioning the feasible
sets. For λ = 1 + ε or λ = 2 + ε, the oracle complexity
is CO = V O(1/ε), and so the complexity is dominated
by KMCO. Each of the M orienteering problems can be
solved independently, so on a highly parallel system the
complexity will scale as KCO. If M is small and a suitable
approximation algorithm is used for Orienteering (such
as [6], [26], [25]), the procedure described above will have
reasonable computation time even for large team sizes.

E. Efficiently Partitioning the Feasible Set
In this section we demonstrate how to partition the feasible

set using a small number of sub-graphs for several examples.
1) Launch constraints (Transversal matroid): Given a set

Xk, all paths which take edges (vs, ρ`(1)), ` = 1, . . . , k are
infeasible. Hence M = 1 and the sub-graph is the graph
induced by the edges E ′ = E \ {(vs, ρ`(1)}k`=1.

2) Heterogeneous teams (Transversal matroid): The fea-
sible sets are already partitioned by graphs Gm corresponding
to the graph that a robot of type m uses. Given a set Xk,
the partition routine returns all sub-graphs Gm for which Xk

has fewer than Km paths.
3) Sub-graph diversity: If the feasible path sets Xm are

disjoint, then the routine simply returns any sub-graph for
which Xk has fewer than Km paths in Xm.

If the feasible path sets are not disjoint, then the routine
solves an assignment problem to see whether an additional
robot can be assigned a path in Xm without violating the
constraints. The routine then returns any of the corresponding
sub-graphs Gm which robots can still be assigned a path
from. The worst-case complexity of each assignment is
O(K2.5) (using the Hopcraft-Korp algorithm), and there
are at most MK assignments, giving worst-case complexity
O(MK3.5).

4) Risk constraints: Given a set of paths Xk, the partition
routine finds the smallest value m̂ such that we can add
a path with survival probability threshold pm̂s (this can be
done naively with complexity O(M2)). Then the routine
returns the sub-graph induced by the vertex set Vm̂ :=
{j = 1, . . . , V | ζj ≥ pm̂s }, which are all vertices reachable
within the desired survival probability threshold. Note that

in this case we also must change the budget used by the
Orienteering routine to − log(pm̂s).

5) Nested Cardinality constraints: Given a set of paths
Xk, the partition routine tests whether a path can be added to
each of the sets in the deepest layer (which partitions X). If
the sets are disjoint, this can be done in linear time, otherwise
an assignment routine is run as in the Section V-E.3. Then
a sub-graph corresponding to each of the subsets which we
can still assign a path from is returned. The manner in which
these sub-graphs are computed depends on the application,
as described in each of the sections above.

VI. EMPIRICAL RESULTS

We consider the application illustrated in Figure 1: the
Coral Triangle has a diverse ecosystem and the goal is to use
a robotic fleet with multiple sensor configurations to monitor
the wildlife populations in ‘Marine Protected Areas’. We
use piracy incident data [5] and model attacks as a Poisson
random variable in a manner similar to [27]. We selected 106
marine protected areas from [4] as nodes in a complete graph
and computed the shortest (minimum risk) paths between
each pair of sites to find the edge weights. In our scenario,
we can deploy up to 25 robots of three types (at most twelve
of each type), and each robot type has a different utility in
each region. Each region can support the traffic of at most
three robots of each type.

We require that the expected losses over the worst 5% of
outcomes be no more than five failed robots (this is called the
Conditional Value at Risk, and denoted CVaR0.05). For the
data shown, the most difficult node to reach requires survival
probability 0.64, but if we use a uniform ps = 0.64, the risk
is unacceptably high (CVaR0.05 = 16.26). We satisfy the
constraint CVaR0.05 ≤ 5 by setting p1

s, . . . , p
5
s = 0.6, and

p6
s, . . . , p

25
s = 0.859.

All of the constraints above can be represented using
a gammoid, and the feasible set can be partitioned using
at most M = 15 sub-graphs. For the Orienteering
routine we use both an open-source Variable Neighborhood
Search (VNS) heuristic produced by HeuristicLab [28] and
a mixed-integer linear program (MIP) formulation solved
using CPLEX with a 5% tolerance. We observe that the
VNS heuristic gives near-optimal paths, and solves all of the
subproblems for each of the twenty five robots in 51 seconds
on a quad-core 4GHz processor with 32GB RAM available.
The MIP oracle takes 60 seconds and yields nearly the same
results. While the MIP oracle can find high quality paths
quickly, as the tolerance is decreased the computation time
dramatically increases. The value of optimally solving the
sub-problems is small and does not necessarily lead to better
overall behavior, as shown in Figure 5. The upper bound
is computed as the smaller of 1) the upper bound found
using the greedily selected paths and the approximation ratio,
2) the sum of all node rewards. Note that although the
theoretical approximation guarantee is 0.36, a team of 10
robots achieves 0.928 the maximum possible reward.

VII. CONCLUSION

We formulate the Matroid Team Surviving Orienteers
(MTSO) problem, where we seek a set of paths which form

Fig. 5. Cumulative reward for paths planned by MGreedySurvivors
using the MIP and VNS Orienteering routines. Both approaches
compute near-optimal sets of paths, though VNS is somewhat faster.

an independent set of a matroid and maximizes the expected
number of nodes visited by at least one robot and ensures
the probabilities each robot reaches its destination are above
a threshold. This problem is a significant generalization of
our earlier work on the Team Surviving Orienteers problem
[3], and is distinct from previous work because it combines
a submodular objective, chance constraints, and matroid
constraints. We give numerous applications of matroids to
robotic path planning such as coverage, launch constraints,
limits on the number of available robots of multiple types,
restrictions on the amount of traffic which can flow through
a region, and combinations of the above. The MTSO is par-
ticularly challenging to solve because of the risky traversal
model, where a robot might not complete its planned path.
This creates a complex, history-dependent coupling between
the edges chosen and the distribution of nodes visited. We
present an approximate greedy algorithm for solving the
MTSO problem which guarantees that its output achieves
at least ps

ps+λ
of the optimal reward. The algorithm relies on

a partitioning routine to satisfy the matroid constraints, and
we show numerous examples where our algorithm runs in
polynomial time. Finally, we demonstrate the efficiency of
our approach by applying it to a scenario where a team of
robots must gather information while avoiding pirates in the
Coral Triangle.

There are numerous directions for future work: First,
extending our results to more general set systems such as
antimatroids or greedoids would enable significantly more
expressive constraints such as precedence constraints. Sec-
ond, extending the continuous greedy algorithm [22] to our
setting could lead to tighter bounds, though the extension is
non-trivial. Finally, we are interested in the dual problem,
where the objective is to find the smallest team which
satisfies a coverage constraint.

REFERENCES

[1] A. Schrijver, Combinatorial optimization: polyhedra and efficiency.
Springer Science & Business Media, 2002, vol. 24.

[2] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,”
Naval Research Logistics, vol. 34, no. 3, pp. 307–318, 1987.

[3] S. Jorgensen, R. H. Chen, M. B. Milam, and M. Pavone, “The
team surviving orienteers problem: Routing robots in uncertain en-
vironments with survival constraints,” in IEEE Int. Conf. on Robotic
Computing, 2017, to appear.

[4] A. Cros, N. Ahamad Fatan, A. White, S. J. Teoh, S. Tan, C. Handayani,
C. Huang, N. Peterson, R. Venegas Li, H. Y. Siry, R. Fitriana, J. Gove,
T. Acoba, M. Knight, R. Acosta, N. Andrew, and D. Beare, “The
coral triangle atlas: An integrated online spatial database system for
improving coral reef management,” PLOS ONE, vol. 9, no. 6, pp. 1–7,
06 2014.

[5] Imb piracy reporting centre. Available at https://www.icc-ccs.org/
piracy-reporting-centre.

[6] C. Chekuri and M. Pál, “A recursive greedy algorithm for walks in
directed graphs,” in IEEE Symp. on Foundations of Computer Science,
2005.

[7] A. M. Campbell, M. Gendreau, and B. W. Thomas, “The orienteering
problem with stochastic travel and service times,” Annals of Opera-
tions Research, vol. 186, no. 1, pp. 61–81, 2011.

[8] H. Zhang and Y. Vorobeychik, “Submodular optimization with routing
constraints,” in Proc. AAAI Conf. on Artificial Intelligence, 2016.

[9] A. Gupta, R. Krishnaswamy, V. Nagarajan, and R. Ravi, “Approxima-
tion algorithms for stochastic orienteering,” in ACM-SIAM Symp. on
Discrete Algorithms, 2012.

[10] P. Varakantham and A. Kumar, “Optimization approaches for solving
chance constrained stochastic orienteering problems,” in International
Conference on Algorithmic Decision Theory. Springer, 2013.

[11] Ç. Koç, T. Bektaş, O. Jabali, and G. Laporte, “Thirty years of
heterogeneous vehicle routing,” European Journal of Operational
Research, vol. 249, no. 1, pp. 1–21, 2016.

[12] R. Lahyani, M. Khemakhem, and F. Semet, “Rich vehicle routing
problems: From a taxonomy to a definition,” European Journal of
Operational Research, vol. 241, no. 1, pp. 1 – 14, 2015.

[13] A. Hoff, H. Andersson, M. Christiansen, G. Hasle, and
A. Løkketangen, “Industrial aspects and literature survey: Fleet
composition and routing,” Computers & Operations Research,
vol. 37, no. 12, pp. 2041–2061, 2010.

[14] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering prob-
lem: A survey of recent variants, solution approaches and applica-
tions,” European Journal of Operational Research, vol. 255, no. 2,
pp. 315 – 332, 2016.

[15] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle
routing problems: Three decades and counting,” Networks, vol. 67,
no. 1, pp. 3–31, 2016.

[16] P. Kilby and A. Verden, “Flexible routing combing constraint pro-
gramming, large neighbourhood search, and feature-based insertion,”
in Proc. Workshop on Artificial Intelligence and Logistics, 2011.

[17] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient informa-
tive sensing using multiple robots,” Journal of Artificial Intelligence
Research, vol. 34, pp. 707–755, 2009.

[18] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: theory and application to multi-robot
slam,” in Proc. IEEE Conf. on Robotics and Automation, 2015.

[19] S. T. Jawaid and S. L. Smith, “Informative path planning as a
maximum traveling salesman problem with submodular rewards,”
Discrete Applied Mathematics, vol. 186, pp. 112–127, 2015.

[20] P. Segui-Gasco, H.-S. Shin, A. Tsourdos, and V. Seguı́, “Decentralised
submodular multi-robot task allocation,” in IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems. IEEE, 2015, pp. 2829–2834.

[21] M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey, “An analysis
of approximations for maximizing submodular set functions–II,” in
Polyhedral combinatorics. Springer, 1978, pp. 73–87.

[22] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Maximizing a
submodular set function subject to a matroid constraint,” in Proc. Int.
Conf. on Integer Programming and Combinatorial Optimization, 2007.

[23] K. Murota, Matrices and Matroids for Systems Analysis, ser. Algo-
rithms and Combinatorics. Springer Science & Business Media, 2009,
vol. 20.

[24] A. Krause and D. Golovin, “Submodular function maximization,”
Tractability: Practical Approaches to Hard Problems, vol. 3, no. 19,
p. 8, 2012.

[25] K. Chen and S. Har-Peled, “The orienteering problem in the plane
revisited,” in ACM Symp. on Computational Geometry, 2006.

[26] C. Chekuri, N. Korula, and M. Pál, “Improved algorithms for ori-
enteering and related problems,” ACM Transactions on Algorithms,
vol. 8, no. 3, p. 23, 2012.

[27] O. Vaněk, M. Jakob, O. Hrstka, and M. Pěchouček, “Agent-based
model of maritime traffic in piracy-affected waters,” Transportation
Research Part C: Emerging Technologies, vol. 36, pp. 157–176, 2013.

[28] S. Wagner and M. Affenzeller, “Heuristiclab: A generic and exten-
sible optimization environment,” in Adaptive and Natural Computing
Algorithms. Springer, 2005.

