
The Team Surviving Orienteers Problem: Routing Robots
in Uncertain Environments with Survival Constraints

Stefan Jorgensen, Robert H. Chen, Mark B. Milam, and Marco Pavone

Abstract—We study the following multi-robot coordination
problem: given a graph, where each edge is weighted by the
probability of surviving while traversing it, find a set of paths
for K robots that maximizes the expected number of nodes
collectively visited, subject to constraints on the probabilities
that each robot survives to its destination. We call this the
Team Surviving Orienteers (TSO) problem, which is motivated
by scenarios where a team of robots must traverse a dangerous
environment, such as aid delivery in disaster or war zones. We
present the TSO problem formally along with several variants,
which represent “survivability-aware” counterparts for a wide
range of multi-robot coordination problems such as vehicle
routing, patrolling, and informative path planning. We propose
an approximate greedy approach for selecting paths, and prove
that the value of its output is within a factor 1− e−ps/λ of the
optimum where ps is the per-robot survival probability threshold,
and 1/λ ≤ 1 is the approximation factor of an oracle routine for
the well-known orienteering problem. Our approach has linear
time complexity in the team size and polynomial complexity in
the graph size. Using numerical simulations, we verify that our
approach works well in practice and that it scales to problems
with hundreds of nodes and tens of robots.

I. INTRODUCTION

Consider the problem of delivering humanitarian aid in a
disaster or war zone with a team of robots. There are a number
of sites which need the resources, but traveling among these
sites is dangerous. While the aid agency wants to deliver aid
to every city, it also seeks to limit the number of assets that
are lost. We formalize this problem as a generalization of the
orienteering problem [1], whereby one seeks to visit as many
nodes in a graph as possible given a budget constraint and
travel costs. In the aid delivery case, the travel costs are the
probability that a robotic aid vehicle is lost while traveling
between sites, and the goal is to maximize the expected
number of sites visited by the vehicles, while keeping the
return probability for each vehicle above a specified survival
threshold (i.e., while fulfilling a chance constraint for the
survival of each vehicle). We call this problem formulation
the “team surviving orienteers” (TSO) problem, illustrated in
Figure 1. The TSO problem is distinct from previous work
because of its notion of risky traversal: when a robot traverses
an edge, there is a probability that it is lost and does not visit
any other nodes. This creates a complex, history-dependent
coupling between the edges chosen and the distribution of
nodes visited, which precludes the application of existing
approaches available for the traditional orienteering problem.

Stefan Jorgensen is with the Department of Electrical Engineering, Stanford
University, Stanford, California 94305. His work is supported by NSF grant
DGE-114747 stefantj@stanford.edu

Robert H. Chen and Mark B. Milam are with NG Next, Northrop
Grumman Aerospace Systems, Redondo Beach, California 90278
{robert.chen,mark.milam}@ngc.com

Marco Pavone is with the Department of Aeronautics & Astronautics,
Stanford University, Stanford, California 94035 pavone@stanford.edu

Fig. 1. Illustration of the TSO problem applied to an aid delivery scenario.
The objective is to maximize the expected number of sites visited by at least
one robotic convoy. Travel between sites is risky (as emphasized by the gray
color scale for each edge), and paths must be planned to ensure that the return
probability for each vehicle is above a survival threshold.

The objective of this paper is to devise a constant-factor ap-
proximation algorithm for the TSO problem. Our key technical
insight is that the expected number of nodes visited satisfies a
diminishing returns property known as submodularity, which
for set functions means that f(A∪B) + f(A∩B) ≤ f(A) +
f(B). We develop a linearization procedure for the problem,
which leads to a greedy algorithm that enjoys a constant-
factor approximation guarantee. We emphasize that while a
number of works have considered orienteering problems with
submodular objectives [2], [3], [4] or chance constraints [5],
[6] separately, the combination of the two makes the TSO
problem novel, as detailed next.

Related work. The orienteering problem (OP) has been
extensively studied [7], [8] and is known to be NP-hard. Over
the past decade a number of constant-factor approximation
algorithms have been developed for special cases of the
problem [9]. Below we highlight several variants which share
either similar objectives or constraints as the TSO problem.

The submodular orienteering problem considers finding a
single path which maximizes a submodular reward function
of the nodes visited. The recursive greedy algorithm proposed
in [2] yields a solution in quasi-polynomial time with re-
ward lower bounded as Ω(OPT/ log(OPT)), where OPT is
the optimum value. More recently, [4] develops a (polyno-
mial time) generalized cost-benefit algorithm, useful when
searching the feasible set is NP-hard (such as longest path
problems). The authors show that the output of their algorithm
is Ω(1

2 (1 − 1/e)OPT∗), where OPT∗ is the optimum for a
relaxed problem. In our context, OPT∗ roughly corresponds
to the maximum expected number of nodes visited with

survival probability threshold
√
ps, which may be significantly

different from the actual optimum. Our work considers a
specific submodular function, however we incorporate risky
traversal, give stronger guarantees, and discuss an extension
to general submodular functions. In the orienteering problem
with stochastic travel times proposed by [3], travel times are
stochastic and reward is accumulated at a node only if it is
visited before a deadline. This setting could be used to solve
the single robot special case of the TSO problem by using
a logarithmic transformation on the survival probabilities, but
[3] does not provide any polynomial time guarantees. In the
risk-sensitive orienteering problem [6], the goal is to maximize
the sum of rewards (which is history-independent) subject to
a constraint on the probability that the path cost is large.
The TSO problem unifies the models of the risk-sensitive and
stochastic travel time variants by considering both a history-
dependent objective (expected number of nodes visited) and a
chance constraint on the total cost. Furthermore, we provide a
constant-factor guarantee for the team version of this problem.

A second closely-related area of research is represented
by the vehicle routing problem (VRP) [10], [11], which is a
family of problems focused on finding a set of paths that max-
imize quality of service subject to budget or time constraints.
The probabilistic VRP (PVRP) considers stochastic edge costs
with chance constraints on the path costs – similar to the
risk-averse orienteering and the TSO problem constraints.
The authors of [12] pose the simultaneous location-routing
problem, where both paths and depot locations are selected
to minimize path costs subject to a probabilistic connectivity
constraint, which specifies the average case risk rather than
individual risks. More general settings were considered in
[13], which considers several distribution families (such as
the exponential and normal distributions), and [14], which
considers non-linear risk constraints. In contrast to the TSO
problem, the PVRP requires every node to be visited and seeks
to minimize the travel cost. In the TSO problem, we require
every path to be safe and maximize the expected number of
nodes visited.

A third related branch of literature is the informative path
planning problem (IPP), which seeks to find a set of K
paths for mobile robotic sensors in order to maximize the
information gained about an environment. One of the earliest
IPP approaches [15] extends the recursive greedy algorithm
of [2] using a spatial decomposition to generate paths for
multiple robots. They use submodularity of information gain to
provide performance guarantees. Sampling-based approaches
to IPP were proposed by [16], which come with asymptotic
guarantees on optimality. The structure of the IPP is very
similar to that of the TSO problem since it is a multi-robot
path planning problem with a submodular objective function
which is non-linear and history dependent. However the IPP
problem does not capture the notion of risky traversal which is
essential to the TSO problem. Our general approach is inspired
by works such as [17], which iteratively assigns paths to each
robot, but for the TSO problem we are able to further exploit
the problem structure to derive constant-factor guarantees for
our polynomial time algorithm.

Statement of Contributions. The contribution of this paper is
fourfold. First, we propose a generalization of the orienteering
problem, referred to as the TSO problem. By considering a
multi-robot (team) setting, we extend the state of the art for
the submodular orienteering problem, and by maximizing the
expected number of nodes visited at least once, we extend the
state of the art in the probabilistic vehicle routing literature.
From a practical standpoint, as discussed in Section III, the
TSO problem represents a “survivability-aware” counterpart
for a wide range of multi-robot coordination problems such
as vehicle routing, patrolling, and informative path planning.
Second, we establish that the objective function of the TSO
problem is submodular, provide a linear relaxation of the
single robot TSO problem (which can be solved as a standard
orienteering problem), and show that the solution to the
relaxed problem provides a close approximation of the optimal
solution of the single robot TSO problem. Third, we pro-
pose an approximate greedy algorithm which has polynomial
complexity in the number of nodes and linear complexity in
the team size, and prove that the value of the output of our
algorithm is Ω((1−e−ps/λ)OPT), where OPT is the optimum
value, ps is the per-robot survival probability threshold, and
1/λ ≤ 1 is the approximation factor of an oracle routine
for the solution to the orienteering problem (we note that, in
practice, ps is usually close to unity). Finally, we demonstrate
the effectiveness of our algorithm for large problems using
simulations by solving a problem with 900 nodes and 25
robots.

Organization. In Section II we review key background infor-
mation. In Section III we state the TSO problem formally, give
an example, and describe several variants and applications. In
Section IV we show that the objective function is submodular
and describe the linear relaxation technique. We then outline a
greedy solution approach for the TSO problem, give approx-
imation guarantees, characterize the algorithm’s complexity,
and give extensions of the algorithm for variants of the TSO
problem. In Section V we verify the performance bounds and
demonstrate the scalability of our approach. Finally, we outline
future work and draw conclusions in Section VI.

II. BACKGROUND

In this section we review key material for our work and ex-
tend a well-known theorem in the combinatorial optimization
literature to our setting.

A. Submodularity
Submodularity is the property of ‘diminishing returns’ for

set functions. The following definitions are summarized from
[18]. Given a set X , its possible subsets are represented by 2X .
For two sets X and X ′, the set X ′ \X contains all elements
in X ′ but not X . A set function f : 2X → R is said to
be normalized if f(∅) = 0 and to be monotone if for every
X ⊆ X ′ ⊆ X , f(X) ≤ f(X ′). A set function f : 2X → R is
submodular if for every X ⊆ X ′ ⊂ X , x ∈ X \X ′, we have

f(X ∪ {x})− f(X) ≥ f(X ′ ∪ {x})− f(X ′).

The quantity on the left hand side is the discrete derivative of
f at X with respect to x, which we write as ∆f(x | X).

B. The Approximate Greedy Algorithm

A typical submodular maximization problem entails finding
a set X ⊆ X with cardinality K that maximizes f . Finding
an optimal solution, X∗, is NP-hard for general submod-
ular functions [18]. The greedy algorithm constructs a set
X̄K = {x1, . . . , xK} by iteratively adding an element x which
maximizes the discrete derivative of f at the partial set already
selected. In other words the `th element satisfies:

x` ∈ argmax
x∈X\X̄`−1

∆f(x | X̄`−1).

We refer to the optimization problem above as ‘the greedy
sub-problem’ at step `. A well-known theorem proven by [19]
states that if f is a monotone, normalized, non-negative, and
submodular function, then f(X̄K) ≥ (1 − 1

e)f(X∗). This is
a powerful result, but if the set X is large we might only
be able to approximately solve the greedy subproblem. An
α–approximate greedy algorithm constructs the set X̂K by
iteratively adding elements which approximately maximize the
discrete derivative of f at the partial set already selected. In
particular for some fixed α ≤ 1, the `th element x̂` satisfies:

∆f(x̂` | X̂`−1) ≥ α∆f(x | X̂`−1) ∀x ∈ X \ X̂`−1.

We provide a guarantee for the α–approximate greedy algo-
rithm analogous to the guarantee for the greedy algorithm,
thereby extending Theorem 4.2 of [19]:

Theorem 1 (α–approximate greedy guarantee): Let f be a
monotone, normalized, non-negative, and submodular function
with discrete derivative ∆f . Then for the output of any α–
approximate greedy algorithm with L elements, X̂L, we have
the following inequality:

f(X̂L) ≥
(

1− e−αL/K
)

max
X⊆X :|X|=K

f(X).

Proof: The case where L = K is a special case of
Theorem 1 from [20]. To generalize to L > K we extend
the proof for the greedy algorithm in [18]. Let X∗ ∈ 2X be a
set which maximizes f(X) subject to the cardinality constraint
|X| = K. For ` < L, we have:

f(X∗) ≤ f(X∗ ∪ X̂`)

= f(X̂`) +

K∑
k=1

∆f(x∗k | X̂` ∪ {x∗1, . . . , x∗k−1})

≤ f(X̂`) +

K∑
k=1

∆f(x∗k | X̂`)

≤ f(X̂`) +
1

α

K∑
k=1

∆f(x̂`+1 | X̂`)

≤ f(X̂`) +
K

α
(f(X̂`+1)− f(X̂`)).

The first line follows from the monotonicity of f , the second
is a telescoping sum, and the third follows from the submodu-
larity of f . The fourth line is due to the α–approximate greedy
construction of X̂L, and the last is because |X∗| = K. Now

define δ` = f(X∗)− f(X̂`). We can re-arrange the inequality
above to yield:

δ`+1 ≤
(

1− α

K

)
δ` ≤

(
1− α

K

)`+1

δ0.

Since f is non-negative, δ0 ≤ f(X∗) and using the inequality
1− x ≤ e−x we get

δL ≤
(

1− α

K

)L
δ0 ≤

(
e−αL/K

)
f(X∗).

Now substituting δL = f(X∗)− f(X̂L) and rearranging:

f(X̂L) ≥
(

1− e−αL/K
)
f(X∗).

C. Graphs

Let G(V, E) denote an undirected graph, where V is the
node set and E ⊂ V × V is the edge set. Explicitly, an edge
is a pair of nodes (i, j), and represents the ability to travel
between nodes i and j. If the graph is directed, then the edge
is an ordered pair of nodes, and represents the ability to travel
from the source node i to the sink node j. A graph is called
simple if there is only one edge which connects any given
pair of nodes. A path is an ordered sequence of unique nodes
such that there is an edge between adjacent nodes. For n ≥ 0,
we denote the nth node in path ρ by ρ(n) and the number of
edges in ρ by |ρ|. Note that ρ(|ρ|) is the last node in path ρ.

III. PROBLEM STATEMENT

In this section we give the formal problem statement for
the TSO problem, work out an example problem, and describe
applications and variants of the problem.

A. Formal Problem Description

Let G be a simple graph with |V| = V nodes. Edge weights
ω : E → (0, 1] correspond to the probability of survival for
traversing an edge. Time is discretized into iterations n =
0, 1, . . . , N . At iteration n a robot following path ρ traverses
edge enρ = (ρ(n − 1), ρ(n)). Robots are indexed by variable
k, and for each we define the independent Bernoulli random
variables skn(ρ) which are 1 with probability ω(enρ) and 0 with
probability 1 − ω(enρ). If robot k follows path ρ, the random
variables akn(ρ) :=

∏n
i=1 s

k
i (ρ) can be interpreted as being 1

if the robot ‘survived’ all of the edges taken until iteration n
and 0 if the robot ‘fails’ on or before iteration n.

Given a start node vs, a terminal node vt, and survival
probability ps we must find K ≥ 1 paths {ρk}Kk=1 (one for
each of K robots) such that, for all k, the probability that
ak|ρk|(ρk) = 1 is at least ps, ρk(0) = vs and ρk(|ρk|) = vt.
The set of paths which satisfy these constraints is written as
X (ps, ω). One can readily test whether X (ps, ω) is empty as
follows: Set edge weights as − log(ω(e)), and for each node
j, compute the shortest path from vs to j, delete the edges and
nodes (except node j) in that path, and compute the shortest
path from j to vt. If the sum of edge weights along both paths
is less than − log(ps) then the node is reachable, otherwise
it is not. Using Dijkstra’s algorithm this approach can prove

Fig. 2. Illustration of the notation used. A robot plans to take path ρ, whose
edges are represented by lines. The fill of the lines represent the value of
sn(ρ). In this example s3(ρ) = 0, which means that a3(ρ) = a4(ρ) =
a5(ρ) = 0. The variables zj(ρ) are zero if either the robot fails before
reaching node j or if node j is not on the planned path.

whether X (ps, ω) is empty after O(V 2 log(V)) computations.
From here on we assume that X (ps, ω) is non-empty.

Define the indicator function I{x}, which is 1 if x is true
(or nonzero) and zero otherwise. Define the Bernoulli random
variables for j = 1, . . . , V :

zkj (ρ) :=

|ρ|∑
n=1

akn(ρ) I{ρ(n) = j},

which are 1 if robot k following path ρ visits node j and
0 otherwise (zkj (ρ) is binary because a path is defined as a
unique set of nodes). Note that zkj (ρ) is independent of zk

′

j (ρ′)
for k 6= k′. The number of times that node j is visited by
robots following the paths {ρk}Kk=1 is given by

∑K
k=1 z

k
j (ρk),

and we write the probability that exactly m robots visit node
j as pj(m, {ρk}Kk=1). In this paper we are primarily interested
in the probability that no robots visit node j, which has the
simple expression:

pj

(
0, {ρk}Kk=1

)
=

K∏
k=1

(1− E[zkj (ρk)]).

Let dj > 0 be the reward accumulated for visiting node j
at least once. Then the TSO problem is formally stated as:

Team Surviving Orienteers (TSO) Problem:
Given a graph G, edge weights ω, survival proba-
bility threshold ps and team size K, maximize the
weighted expected number of nodes visited by at
least one robot:

maximize
ρ1,...,ρK

V∑
j=1

dj

(
1− pj

(
0, {ρk}Kk=1

))
subject to P

{
ak|ρk|(ρk) = 1

}
≥ ps k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρk|) = vt k = 1, . . . ,K

The objective represents the cumulative expected reward
obtained by the K robots. The first set of constraints enforces
the survival probability, the second and third sets of constraints
enforce the initial and final node constraints. In particular, the

(a) Graph G (b) Path for one robot (c) Paths for two robots

Fig. 3. (a) Example of a TSO problem. Robots start at the bottom (node 1)
and darker lines correspond to safer paths. (b) A single robot can only visit
four nodes safely. (c) Two robots can visit all nodes safely. It is easy to see
that adding more robots yields diminishing returns.

survival probability threshold ps serves two purposes: first,
it requires that, on average, psK robots will reach node vt
safely, and second, it enforces that risk is distributed fairly
(e.g., no robot fails with too high a probability).

The TSO problem can be viewed as a set maximization
problem with a cardinality constraint, where the domain of
optimization is the set X containing K copies of each path in
X (ps, ω). Crucially, if the objective function is a submodular
function, then Theorem 1 guarantees that the greedily selected
set of paths will achieve reward close to the optimum –
a central result for this paper. We show that the objective
is indeed submodular in Section IV-A, but first we provide
illustrative examples of the TSO problem.

B. Example

An example of the TSO problem is given in Figure 3(a).
There are five nodes, and edge weights are shown next to their
respective edges. Two robots start at node 1, and must end at
virtual node 1′ (which is a copy of node 1) with probability at
least ps = 0.75. Path ρ1 = {1, 3, 5, 2, 1′} is shown in Figure
3(b), and path ρ2 = {1, 4, 5, 2, 1′} is shown alongside ρ1 in
Figure 3(c). Robot 1 visits node 3 with probability 1.0 and
node 5 with probability 0.96. Robot 2 also visits node 5 with
probability 0.96 and so the probability at least one robot visits
node 5 is 1 − p5(0, {ρ1, ρ2}) = 0.9984. The probability that
robot 1 returns safely is E

[
a1

4(ρ1)
]

= 0.794. The expected
number of nodes visited by the first robot following ρ1 is 3.88,
and for two robots following ρ1 and ρ2 it is 4.905. Since there
are only five nodes, it is clear that adding more robots must
yield diminishing returns.

C. Variants and Applications

Edge rewards and patrolling: Our formulation can easily
be extended to a scenario where the goal is to maximize
the weighted expected number of edges visited by at least
one robot. Define zki,j(ρ) to indicate whether robot k fol-
lowing path ρ takes edge (i, j), and for (i, j) ∈ E define
pi,j(m, {ρk}Kk=1) as before with zkj replaced by zki,j (if
(i, j) /∈ E , then set pi,j(0, ·) = 1). The objective function for
this problem is

∑V
i=1

∑V
j=1 di,j (1 − pi,j(0, {ρk}Kk=1)). This

variant could be used to model a patrolling problem, where
the goal is to inspect the maximum number of roads subject to
the survival probability threshold. Such problems also occur
when planning scientific missions (e.g., on Mars), where the
objective is to execute the most important traversals.

Multiple visits and IPP: We consider rewards for mul-
tiple visits as follows. For m ≤ K, let d

(m)
j be the

marginal benefit of the mth visit. The reward function is now∑K
m=1

∑V
j=1 d

(m)
j pj

(
m, {ρk}Kk=1

)
. In order for our solution

approach and guarantees to apply, we require that d(m)
j be

a non-increasing function of m (this ensures submodularity).
We can build an approximation for any submodular function
of the node visits by assigning d(m)

j to be the incremental gain
for visiting node j the mth time. A concrete example of this
formulation is informative path planning where the goal is to
maximize the reduction in entropy of the posterior distribution
of node variables {Yj}Vj=1, and d(m)

j represents the reduction
in entropy of the posterior distribution of Yj by taking the mth
measurement.

IV. APPROXIMATE SOLUTION APPROACH

Our approach to solving the TSO problem is to exploit sub-
modularity of the objective function using an α–approximate
greedy algorithm (as defined in Section II-B). Accordingly,
in Section IV-A we show that the objective function of
TSO problem is submodular. In Section IV-B we present a
linearization of the greedy sub-problem, which in the context
of the TSO problem entails finding a path which maximizes the
discrete derivative of the expected number of nodes visited, at
the partial set already constructed. We use this linearization to
find a polynomial time (ps/λ)–approximate greedy algorithm.
Leveraging this result, we describe our GreedySurvivors
algorithm for the TSO problem in Section IV-C, discuss its
approximation guarantee in Section IV-D, and characterize its
computational complexity in Section IV-E. Finally, in Section
IV-F we discuss algorithm modifications for variants of the
TSO problem.

A. Submodularity of the Objective Function

For the TSO problem, a straightforward calculation gives
the discrete derivative of the objective function as

∆J(ρ | {ρk}`k=1) =

V∑
j=1

E[z`+1
j (ρ)]djpj(0, {ρk}`k=1).

The value placed on each node is the product of the probability
that the robot visits the node, the importance of the node, and
the probability the node has not been visited by any of the `
robots following paths {ρk}`k=1.

Lemma 1 (Objective is submodular): The objective func-
tion for the TSO problem is normalized, non-negative, mono-
tone and submodular.

Proof: The sum over an empty set is zero which im-
mediately implies that the objective function is normalized.
Because dj > 0 and E[zkj (·)] ∈ [0, 1], the discrete derivative is
everywhere non-negative and so the objective function is both
non-negative and monotone. Now consider X ⊆ X ′ ⊂ X and
ρ ∈ X \ X ′. Since X ⊆ X ′ and E[zkj (·)] ∈ [0, 1], and for

L > |X ′| the index of a robot not assigned a path in X ′,

∆J(ρ | X ′) =

V∑
j=1

E[zLj (ρ)]dj
∏

ρk∈X′
(1− E[zkj (ρk)])

≤
V∑
j=1

E[zLj (ρ)]dj
∏
ρk∈X

(1− E[zkj (ρk)]) = ∆J(ρ | X).

Therefore the objective function is submodular.
Intuitively, this statement follows from the fact that the

marginal gain of adding one more robot is proportional to the
probability that nodes have not yet been visited, which is a
decreasing function of the number of robots already selected.

B. Linear Relaxation for Greedy Sub-problem

Given a previously selected set of paths, XL−1 = {ρ`}L−1
`=1 ,

the greedy sub-problem for the TSO problem at step L requires
us to find a path ρL from the set X \XL−1 which maximizes
the discrete derivative of the objective function at XL−1 with
respect to ρL. Note that because we define X to have as many
copies of each path as the maximum number of robots we plan
for, the set X \ {ρ`}L−1

`=1 always contains at least one copy of
each path in X (ps, ω). Since the discrete derivative of the
objective function at XL−1 with respect to any of the copies
of a path ρ ∈ X (ps, ω) is the same, we can solve the greedy
sub-problem by only considering elements in the set X (ps, ω).

Even with this simplification, the greedy sub-problem is
very difficult for the TSO problem: it requires finding a path
which maximizes submodular node rewards subject to a budget
constraint (this is the submodular orienteering problem). No
polynomial time constant-factor approximation algorithm is
known for general submodular orienteering problems [2], and
so in this section we design one specifically for the greedy
sub-problem of the TSO problem.

We relax the problem of maximizing the discrete derivative
by replacing the probability that robot L traversing path ρ
visits node j, E[zLj (ρ)], with the maximum probability that
any robot following a feasible path can visit node j, ζj :

ζj := max
ρ∈X (ps,ω)

E[zLj (ρ)].

For a given graph this upper bound can be found easily by
using Dijkstra’s algorithm with log transformed edge weights
ωO(e) := − log(ω(e)). Let Ij(ρ) be equal to 1 if node j is in
ρ and 0 otherwise. In the relaxed problem we are looking to
maximize the sum:

∆J̄(ρ | XL−1) :=

V∑
j=1

Ij(ρ)ζjdjpj (0, XL−1) ,

which represents an optimistic estimate of the discrete deriva-
tive of the objective function at XL−1 with respect to ρ.

We can find the (approximately) best path by solving an
orienteering problem on the graph GO, which has the same
edges and nodes as G but has edge weights ωO(e) and node
rewards νL(j) = ζjdjpj(0, XL−1). Solving the orienteering
problem on GO with budget − log(ps) will return a path that
maximizes the sum of node rewards (which is ∆J̄(ρ | XL−1)),

and satisfies
∑
e∈ρ− log(ω(e)) ≤ − log(ps), which is equiv-

alent to P{aL|ρ|(ρ) = 1} ≥ ps.
Although solving the orienteering problem is NP-hard, sev-

eral polynomial-time constant-factor approximation algorithms
exist which guarantee that the returned objective is lower
bounded by a factor of 1/λ ≤ 1 of the optimal objective. For
undirected planar graphs [21] gives a guarantee λ = (1 + ε),
for undirected graphs [9] gives a guarantee λ = (2+ε), and for
directed graphs [2] gives a guarantee in terms of the number of
nodes. Using such an oracle, we have the following guarantee:

Lemma 2 (Single robot constant-factor guarantee): Let
Orienteering be a routine that solves the orienteering
problem within constant-factor 1/λ, that is for cj > 0 and
node weights ν(j) = cjζj , path ρ̂ output by the routine and
any path ρ ∈ X (ps, ω),

V∑
j=1

Ij(ρ̂)ν(j) ≥ 1

λ

V∑
j=1

Ij(ρ)ν(j).

Then for any cj > 0 and any ρ ∈ X (ps, ω), the cumulative
rewards for a robot following path ρ̂ satisfies

V∑
j=1

cjE[zj(ρ̂)] ≥ ps
λ

V∑
j=1

cjE[zj(ρ)].

Proof: By definition of ζj and the Orienteering
routine, we have:

V∑
j=1

cjE[zj(ρ)] ≤
V∑
j=1

Ij(ρ)ζjcj ≤ λ
V∑
j=1

Ij(ρ̂)ζjcj .

Path ρ̂ is feasible, so Ij(ρ̂)psζj ≤ Ij(ρ̂)ps ≤ E[zj(ρ̂)], which
combined with the equation above completes the proof.

This is a remarkable statement because it guarantees that,
if we solve the orienteering problem near-optimally, choose
cj = djpj(0, XL−1) and ps is not too small, the solution to
the linear relaxation will give nearly the same result as the
optimal solution to the greedy sub-problem at step L for the
TSO problem. The intuition is that for ps close to unity no
feasible path can be very risky and so the probability that a
robot actually reaches a node will not be too far from the
maximum probability that it could reach the node.

C. Greedy Approximation for the TSO Problem
Using this relaxation with cj = djpj(0, XL−1) we have

an ps/λ–approximate algorithm for the greedy sub-problem
at step L. This gives us a (1 − e−ps/λ)–approximate greedy
algorithm for the TSO problem, as detailed next.

Define the method Dijkstra(G, i, j), which returns the
length of the shortest path from i to j on the edge weighted
graph G using Dijkstra’s algorithm. Given an edge weighted
graph G and node rewards ν, the Orienteering(G, ν)
routine solves the orienteering problem (assuming vs = 1,
vt = V and budget − log(ps)) within factor 1/λ, and returns
the best path. Pseudocode for our algorithm is given in Figure
4. We begin by forming the graph GO with log-transformed
edge weights ωO(e), and then use Dijkstra’s algorithm to
compute the maximum probability that a node can be reached.
For each robot k = 1, . . . ,K, we solve the orienteering
problem to greedily choose the path that maximizes ∆J̄ .

1: procedure GREEDYSURVIVORS(G,K)
2: Form GO from G, such that vs = 1, vt = V
3: for j = 1, . . . , V do
4: ζj ← exp(−Dijkstra(GO, 1, j))
5: ν1(j)← ζjdj
6: end for
7: ρ1 ← Orienteering(GO, ν1)
8: for k = 1, . . . ,K − 1 do
9: E[ak0(ρk)]← 1

10: for n = 1, . . . , |ρk| do
11: E[akn(ρk)]← E[akn−1(ρk)]ω(enρk)
12: νk+1(ρk(n))← (1− E[akn(ρk)])νk(ρk(n))
13: end for
14: ρk+1 ← Orienteering(GO, νk+1)
15: end for
16: end procedure

Fig. 4. Approximate greedy algorithm for solving the TSO problem.

D. Approximation Guarantees

In this section we combine the results from Section II-B
and IV-B to prove that the output of the GreedySurvivors
algorithm is close to the optimal solution to the TSO problem.
Specifically, we compare a team with L ≥ K robots using
greedily selected paths to a team with K optimally selected
paths, because this gives us a way to compute tighter bounds
on the performance of our algorithm.

Theorem 2 (Multi-robot constant-factor guarantee): Let
1/λ be the constant-factor guarantee for the Orienteering
routine as in Lemma 1, and assign robot ` the path ρ̂` output
by the orienteering routine given graph GO with node weights

ν`(j) = ζjdjpj
(
0, {ρ̂k}`−1

k=1

)
.

Let X∗K = {ρ∗k}Kk=1 be an optimal solution to the TSO with
K robots. Then the weighted expected number of nodes visited
by a team of L ≥ K robots following the paths X̂L = {ρ̂`}L`=1

is at least a fraction γ = 1−exp (−psL/λK) of the optimum:

V∑
j=1

dj

(
1− pj

(
0, X̂L

))
≥ γ

V∑
j=1

dj (1− pj (0, X∗K)) .

Proof: As discussed at the beginning of Section IV-B,
it suffices to solve the greedy sub-problem only consider-
ing elements in X (ps, ω). Using Lemma 2 with cj chosen
appropriately for the objective function, we have a constant-
factor guarantee α = ps/λ for the problem of finding the path
from X (ps, ω) that maximizes the discrete derivative of our
objective function. Now applying Theorem 1 to our objective
function (which by Lemma 1 is normalized, non-negative,
monotone and submodular) we have the desired result.

In many scenarios of interest ps is quite close to 1, since
robots are typically valuable or difficult to replace. For L = K
this theorem gives an 1 − e−ps/λ guarantee for the output
of our algorithm. This bound holds for any team size, and
guarantees that the output of the (polynomial time) linearized

greedy algorithm will have a similar reward to the output of
the (exponential time) optimal algorithm.

Taking L > K gives a practical way of testing how much
more efficient the allocation for K robots could be. For
example, if Lpsλ = 6K we have a (1− 1/e6) ' 0.997 factor
approximation for the optimal value achieved by K robots.
We use this approach to generate tight upper bounds for our
experimental results. Note that as L → ∞, the output of our
algorithm has at least the same value as the optimum, which
emphasizes the importance of guarantees for small teams.

E. Computational Complexity
Suppose that the complexity of the Orienteering

oracle is CO. Then the complexity of our algorithm is
O(V 2 log(V)) + O(KV 2) + O(KCO). The first term is the
complexity of running Dijkstra’s to calculate ζj for all nodes,
the second term is the complexity of updating the V weights
K times (each update costs at most |ρk| ≤ V flops), and
the final term is the complexity of solving the K orienteering
problems. For many approximation algorithms CO = V O(1/ε),
and so the complexity is dominated by KCO. If a suitable
approximation algorithm is used for Orienteering (such
as [2], [9], [21]), the procedure described above will have
reasonable computation time even for large team sizes.

F. Algorithm Variants
We can solve the variants from Section III-C using minor

modifications to the GreedySurvivors routine.
Edge Rewards and Patrolling: Define ζi,j = ζiω(i, j),

which is the largest probability that edge (i, j) is successfully
traversed. The linearized greedy algorithm will still have
constant-factor guarantee α = ps/λ, but now requires solving
an arc orienteering problem. Constant-factor approximations
for the arc orienteering problem can be found using algorithms
for the orienteering problem as demonstrated in [22]: for an
undirected graph λ = 6+ε+o(1) in polynomial time V O(1/ε).

Multiple Visits and IPP: The only modification for the
multiple visits variant is to linearize the greedy sub-problem
by choosing cj =

∑K
m=1 d

(m)
j pj(m − 1, X̂`). It is important

to note that the complexity results change unfavorably in the
multi-visit case. Computing pj(m, X̂K) requires evaluating
the K choose m visit events. If the number of profitable
visits is at most M < K then the number of visit events is a
polynomial function of the team size (bounded by KM/M !),
but if K ≤ M then there are 2K visit events which must be
evaluated.

V. NUMERICAL EXPERIMENTS

A. Verification of Bounds
We consider a TSO problem on the graph shown in Figure

5(a): the central starting node has ‘safe’ transitions to six
nodes, which have ‘unsafe’ transitions to the remaining twelve
nodes. Due to the symmetry of the problem we can quickly
compute an optimal policy for a team of six robots, which
is shown in Figure 5(b). The output of the greedy algorithm
is shown in Figure 5(c). The GreedySurvivors solution
comes close to the optimal, although the initial path planned
(shown by the thick dark blue line) does not anticipate its

(a) Graph G (b) Optimal X∗
6 (c) Greedy X̄6

Fig. 5. (a) Example of a team surviving orienteers problem with depot in the
center. Thick edges correspond to survival probability 0.98, light edges have
survival probability 0.91. (b) Optimal paths for survival threshold ps = 0.70
and K = 6. (c) Greedy paths for the same problem.

impact on later paths. The expected number of nodes visited
by robots following optimal paths, greedy paths, and the upper
bound are shown in Figure 6. Note that the upper bound
is close to the optimal, even for small teams, and that the
GreedySurvivors performance is nearly optimal.

Fig. 6. Performance comparison for the example in Figure 5(a). The optimal
value is shown in green and the GreedySurvivors value is shown in red. The
upper bound on the optimum from Theorem 2 is shown by the dotted line.

B. Empirical Approximation Factor

We compare our algorithm’s performance against an upper
bound on the optimal value. We use an exact solver for the
orienteering problem (using the Gurobi MIP solver), and gen-
erate instances on a graph with V = 65 nodes and uniformly
distributed edge weights in the interval [0.3, 1). The upper
bound used for comparison is the smallest of 1) the number of
nodes which can be reached within the budget, 2) the constant-
factor guarantee times our approximate solution, and 3) the
guarantee from solving the problem with an oversized team
(from Theorem 2). The average performance (relative to the
upper bound) along with the total range of results are shown in
Figure 7, with the function 1−e−ps/λ drawn as a dashed line.
As shown, the approximation factor converges to the optimal
as the team size grows. The dip around ps = 0.85 is due to
looseness in the bound and the fact that the optimum is not
yet reached by the greedy routine.

C. Large Scale Performance

We demonstrate the run-time of GreedySurvivors for
large-scale problems by planning K = 25 paths for complete

Fig. 7. Ratio of actual result to upper bound for a 65 node complete graph.
The team size ranges from 1 (at the bottom) to 5 (at the top), and in all cases
a significant fraction of the possible reward is accumulated even for small ps.

graphs of various sizes. We use two Orienteering rou-
tines: the mixed integer formulation from [23] with Gurobi’s
MIP solver, and an adapted version of the open source heuristic
developed by the authors of [24]. We use a heuristic approach
because in practice it performs better than a polynomial
time approximation algorithm. For the cases where we have
comparison data (up to V = 100 nodes) the heuristic achieves
an average of 0.982 the reward of the MIP algorithm. Even
very large problems, e.g. 25 robots on a 900 node graph, can
be solved in approximately an hour with the heuristic on a
machine that has a 3GHz i7 processor using 8 cores and 64GB
of RAM.

VI. CONCLUSION

In this paper we formulate the Team Surviving Orienteers
problem, where we are asked to plan a set of paths that
maximizes the expected number of nodes visited while guar-
anteeing that each individual robot survives with probability at
least ps. What sets this problem apart from previous work is
the notion of risky traversal, where a robot might not complete
its planned path. This creates a complex, history-dependent
coupling between the edges chosen and the distribution of
nodes visited, which precludes the application of existing
approaches available for the traditional orienteering problem.
We develop the GreedySurvivors algorithm which has
polynomial time complexity and a constant-factor guarantee,
demonstrate the effectiveness of our algorithm in numerical
simulations, and discuss extensions to several variants of the
TSO problem.

There are numerous directions for future work: First, an
on-line version of this algorithm would react to knowledge
of robot failure and re-plan the paths without exposing the
surviving robots to more risk. Second, considering non-
homogeneous teams would expand the many practical appli-
cations of the TSO problem. Third, extending the analysis to
walks on a graph (where a robot can re-visit nodes) would
allow for a broader set of solutions and may yield better
performance. Finally, we are interested in using some of the
concepts from [3] to consider more general probability models
for the TSO.

ACKNOWLEDGEMENTS

The authors would like to thank Federico Rossi and Edward
Schmerling for their insights which led to tighter analysis.

REFERENCES

[1] B. L. Golden, L. Levy, and R. Vohra, “The orienteering problem,” Naval
Research Logistics, vol. 34, no. 3, pp. 307–318, 1987.

[2] C. Chekuri and M. Pál, “A recursive greedy algorithm for walks in
directed graphs,” in IEEE Symp. on Foundations of Computer Science,
2005.

[3] A. M. Campbell, M. Gendreau, and B. W. Thomas, “The orienteering
problem with stochastic travel and service times,” Annals of Operations
Research, vol. 186, no. 1, pp. 61–81, 2011.

[4] H. Zhang and Y. Vorobeychik, “Submodular optimization with routing
constraints,” in Proc. AAAI Conf. on Artificial Intelligence, 2016.

[5] A. Gupta, R. Krishnaswamy, V. Nagarajan, and R. Ravi, “Approximation
algorithms for stochastic orienteering,” in ACM-SIAM Symp. on Discrete
Algorithms, 2012.

[6] P. Varakantham and A. Kumar, “Optimization approaches for solving
chance constrained stochastic orienteering problems,” in International
Conference on Algorithmic Decision Theory. Springer, 2013.

[7] P. Vansteenwegen, W. Souffriau, and D. Van Oudheusden, “The orien-
teering problem: A survey,” European Journal of Operational Research,
vol. 209, no. 1, pp. 1–10, 2011.

[8] A. Gunawan, H. C. Lau, and P. Vansteenwegen, “Orienteering problem:
A survey of recent variants, solution approaches and applications,”
European Journal of Operational Research, vol. 255, no. 2, pp. 315
– 332, 2016.

[9] C. Chekuri, N. Korula, and M. Pál, “Improved algorithms for orien-
teering and related problems,” ACM Transactions on Algorithms, vol. 8,
no. 3, p. 23, 2012.

[10] V. Pillac, M. Gendreau, C. Guéret, and A. L. Medaglia, “A review of
dynamic vehicle routing problems,” European Journal of Operational
Research, vol. 225, no. 1, pp. 1–11, 2013.

[11] H. N. Psaraftis, M. Wen, and C. A. Kontovas, “Dynamic vehicle routing
problems: Three decades and counting,” Networks, vol. 67, no. 1, pp.
3–31, 2016.

[12] G. Laporte, F. Louveaux, and H. Mercure, “Models and exact solutions
for a class of stochastic location-routing problems,” European Journal
of Operational Research, vol. 39, no. 1, pp. 71–78, 1989.

[13] B. L. Golden and J. R. Yee, “A framework for probabilistic vehicle
routing,” AIIE Transactions, vol. 11, no. 2, pp. 109–112, 1979.

[14] W. R. Stewart and B. L. Golden, “Stochastic vehicle routing: A compre-
hensive approach,” European Journal of Operational Research, vol. 14,
no. 4, pp. 371–385, 1983.

[15] A. Singh, A. Krause, C. Guestrin, and W. J. Kaiser, “Efficient infor-
mative sensing using multiple robots,” Journal of Artificial Intelligence
Research, vol. 34, pp. 707–755, 2009.

[16] G. A. Hollinger and G. S. Sukhatme, “Sampling-based motion planning
for robotic information gathering.” in Robotics: Science and Systems,
2013.

[17] N. Atanasov, J. Le Ny, K. Daniilidis, and G. J. Pappas, “Decentralized
active information acquisition: theory and application to multi-robot
slam,” in Proc. IEEE Conf. on Robotics and Automation, 2015.

[18] A. Krause and D. Golovin, “Submodular function maximization,”
Tractability: Practical Approaches to Hard Problems, vol. 3, no. 19,
p. 8, 2012.

[19] G. Nemhauser, L. Wolsey, and M. Fisher, “An analysis of approx-
imations for maximizing submodular set functions–I,” Mathematical
Programming, vol. 14, no. 1, pp. 265–294, 1978.

[20] K. Wei, R. Iyer, and J. Bilmes, “Fast multi-stage submodular maxi-
mization,” in International Conference on Machine Learning, 2014, pp.
1494–1502.

[21] K. Chen and S. Har-Peled, “The orienteering problem in the plane
revisited,” in ACM Symp. on Computational Geometry.

[22] D. Gavalas, C. Konstantopoulos, K. Mastakas, G. Pantziou, and
N. Vathis, “Approximation algorithms for the arc orienteering problem,”
Information Processing Letters, vol. 115, no. 2, pp. 313–315, 2015.

[23] İ. Kara, P. S. Biçakci, and T. Derya, “New formulations for the
orienteering problem,” Procedia Economics and Finance, vol. 39, pp.
849 – 854, 2016.

[24] P. Vansteenwegen, W. Souffriau, G. V. Berghe, and D. Van Oudheusden,
“Iterated local search for the team orienteering problem with time
windows,” Computers & Operations Research, vol. 36, no. 12, pp. 3281–
3290, 2009.

