
Autonomous Robots manuscript No.
(will be inserted by the editor)

The Team Surviving Orienteers Problem
Routing teams of robots in uncertain environments with survival constraints

Stefan Jorgensen · Robert H. Chen · Mark B. Milam · Marco Pavone

Received: date / Accepted: date

Abstract We study the following multi-robot coordination
problem: given a graph, where each edge is weighted by
the probability of surviving while traversing it, find a set
of paths for K robots that maximizes the expected num-
ber of nodes collectively visited, subject to constraints on
the probabilities that each robot survives to its destination.
We call this the Team Surviving Orienteers (TSO) problem,
which is motivated by scenarios where a team of robots must
traverse a dangerous environment, such as aid delivery af-
ter disasters. We present the TSO problem formally along
with several variants, which represent “survivability-aware”
counterparts for a wide range of multi-robot coordination
problems such as vehicle routing, patrolling, and informa-
tive path planning. We propose an approximate greedy ap-
proach for selecting paths, and prove that the value of its
output is within a factor 1−e−ps/λ of the optimum where ps
is the per-robot survival probability threshold, and 1/λ ≤ 1
is the approximation factor of an oracle routine for the well-
known orienteering problem. We also formalize an on-line
update version of the TSO problem, and a generalization

Partially supported by National Science Foundation grant DGE-
114747, the Office of Naval Research: Science of Autonomy program,
and Northrop Grumman Aerospace Systems. This article solely reflects
the opinions and conclusions of the authors.

S. Jorgensen
Department of Electrical Engineering, Stanford University, Stanford,
California 94305.
Tel.: +1-650-723-3212
E-mail: stefantj@stanford.edu

R. H. Chen ·M. B. Milam
NG Next, Northrop Grumman Aerospace Systems, Redondo Beach,
California 90278
E-mail: {robert.chen,mark.milam}@ngc.com

M. Pavone
Department of Aeronautics & Astronautics, Stanford University, Stan-
ford, California 94035
E-mail: pavone@stanford.edu

to heterogeneous teams where both robot types and paths
are selected. We provide numerical simulations which ver-
ify our theoretical findings, apply our approach to real-world
scenarios, and demonstrate its effectiveness in large-scale
problems with the aid of a heuristic for the orienteering prob-
lem.

Keywords Multi-robot planning · Risk-averse plan-
ning · Vehicle routing problems · Orienteering problem ·
Submodular optimization

1 Introduction

Consider the problem of delivering humanitarian aid in a
disaster or war zone with a team of robots. There are a num-
ber of sites which need the resources, but traveling among
these sites is dangerous. While the aid agency wants to de-

Fig. 1 Illustration of the TSO problem applied to an aid delivery sce-
nario. The objective is to maximize the expected number of sites visited
by at least one robotic convoy. Travel between sites is risky (as empha-
sized by the gray color scale for each edge), and paths must be planned
to ensure that the return probability for each vehicle is above a survival
threshold.



2 Stefan Jorgensen et al.

liver aid to every city, it also seeks to limit the number of
assets that are lost. We formalize this problem as an exten-
sion of the team orienteering problem (Golden et al 1987;
Chao et al 1996), whereby one seeks to find a collection
of paths in a doubly weighted graph which maximizes the
sum of weights along all of the unique nodes in the paths
while ensuring that the sum of edge weights in each path is
less than a given budget. In the aid delivery case, the goal
is to maximize the expected number of sites visited by at
least one of the vehicles, while keeping the return proba-
bility for each vehicle above a specified survival threshold
(i.e., while fulfilling a chance constraint for the survival of
each vehicle). This can be seen as an extension of the team
orienteering problem where edge weights are the negative
log of the probability of surviving an edge, the budget is
the negative log of the survival probability threshold, and
node weights are the probability that the node is visited by
at least one robot in the team. We call this problem for-
mulation the “Team Surviving Orienteers” (TSO) problem,
illustrated in Figure 1. The TSO problem builds on previous
work in robotics, vehicle routing, and orienteering problems
by considering risky traversal: when a robot traverses an
edge, there is a probability that it is lost and does not visit
any other nodes. This creates a complex, history-dependent
coupling between the edges chosen and the distribution of
nodes visited, which precludes the application of existing
approaches available for solving the traditional orienteering
problem.

The objective of this paper is to devise constant-factor
approximation algorithms for the TSO problem, its exten-
sion to an on-line setting, and to heterogeneous teams. Our
key technical insight is that, under mild conditions, the ex-
pected number of nodes visited (or functions thereof) satis-
fies a diminishing returns property known as submodular-
ity, which for set functions means that f (A∪ B) + f (A∩
B) ≤ f (A)+ f (B). Building upon this insight, we develop
a linearization procedure for the problem, which leads to a
greedy algorithm that enjoys a constant-factor approxima-
tion guarantee. We emphasize that while a number of works
have considered orienteering problems with submodular ob-
jectives (Campbell et al 2011; Chekuri and Pál 2005; Zhang
and Vorobeychik 2016) or chance constraints (Gupta et al
2012; Varakantham and Kumar 2013) separately, the combi-
nation of the two makes the TSO problem novel, as detailed
next.

Related Work. The orienteering problem (OP) has been ex-
tensively studied (Gunawan et al 2016; Vansteenwegen et al
2011) and is known to be NP-hard. Over the past decade
a number of constant-factor approximation algorithms have
been developed for special cases of the problem (Chekuri
et al 2012). Below we highlight several variants which share
either similar objectives or constraints as the TSO problem.

The submodular orienteering problem is a generaliza-
tion of the orienteering problem which considers finding a
single path which maximizes a submodular reward function
of the nodes visited. The recursive greedy algorithm pro-
posed in (Chekuri and Pál 2005) yields a solution in quasi-
polynomial-time with reward lower bounded by OPT

log(OPT) ,
where OPT is the optimum value. More recently, (Zhang and
Vorobeychik 2016) developed a (polynomial-time) general-
ized cost-benefit algorithm and applied it to the submodular
orienteering problem. The authors show that the output of
their algorithm is lower bounded by 1

2 (1−1/e)OPT∗, where
OPT∗ is the optimum given a tighter budget (i.e., OPT∗ ≤
OPT). In our context, OPT∗ roughly corresponds to the max-
imum expected number of nodes which can be visited when
the survival probability threshold is increased to

√
ps. For

example, if the original problem has ps = 0.8, then the guar-
antees provided by (Zhang and Vorobeychik 2016) would
be with respect to the maximum expected number of nodes
visited when the survival probability threshold is 0.894. De-
pending on the node and edge weights, this may be signifi-
cantly different than the optimum for the original problem,
making the bound loose. Our work extends the submodular
orienteering problem to the team setting for a specific class
of submodular functions (i.e., the coupled node rewards and
edge weights which come from risky traversal) and we pro-
vide guarantees with respect to the optimum of the original
problem.

In the orienteering problem with stochastic travel times
proposed in (Campbell et al 2011), travel times are stochas-
tic and reward is accumulated at a node only if it is vis-
ited before a deadline. This setting could be used to solve
the single robot special case of the TSO problem by using
a logarithmic transformation on the survival probabilities,
but (Campbell et al 2011) does not provide any polynomial-
time guarantees. In the risk-sensitive orienteering problem
(Varakantham and Kumar 2013), the goal is to maximize the
sum of rewards (which is history independent) subject to a
constraint on the probability that the path cost is large. The
TSO problem unifies the models of the risk-sensitive and
stochastic travel time variants of the orienteering problem by
considering both a submodular objective and a chance con-
straint on the total cost. In the TSO, we seek a set of paths for
a team of robots which maximizes a history dependent ob-
jective function, specifically functions of the expected num-
ber of nodes visited by the team of robots. We also provide
extensions for functions of multiple visits to a node, which
allows broad applications such as informative path planning
and property classification. Furthermore, we give an on-line
version of the algorithm and provide a constant-factor guar-
antee for the heterogeneous team version of this problem
(referred to as heterogeneous TSO –HTSO–), where robots
may have different capabilities.



The Team Surviving Orienteers Problem 3

A second closely-related area of research is represented
by the vehicle routing problem (VRP) (Pillac et al 2013;
Psaraftis et al 2016), which is a family of problems focused
on finding a set of paths that maximize quality of service
subject to budget or time constraints. The probabilistic VRP
(PVRP) considers stochastic edge costs with chance con-
straints on the path costs – similar to the risk-sensitive ori-
enteering and the TSO problem constraints. The authors of
(Laporte et al 1989) pose the simultaneous location-routing
problem, where both paths and depot locations are selected
to minimize path costs subject to a probabilistic connectivity
constraint, which specifies the average case risk rather than
individual risks. More general settings were considered in
(Golden and Yee 1979), which considers several distribution
families (such as the exponential and normal distributions),
and (Stewart and Golden 1983), which considers non-linear
risk constraints. In contrast to the TSO problem, the PVRP
requires every node to be visited and seeks to minimize the
travel cost. In the TSO problem, we require every path to be
safe and maximize a function of the number of visits to each
node.

A third related branch of literature is the informative
path planning problem (IPP), which seeks to find a set of
paths for mobile robotic sensors in order to maximize the
information gained about an environment. One of the earli-
est IPP approaches (Singh et al 2009) extends the recursive
greedy algorithm of (Chekuri and Pál 2005) using a spatial
decomposition to generate paths for multiple robots. They
use submodularity of information gain to provide perfor-
mance guarantees. Sampling-based approaches to IPP were
proposed by (Hollinger and Sukhatme 2014), which come
with asymptotic guarantees on optimality. The structure of
the IPP is most similar to that of the TSO problem (since
it is a multi-robot path planning problem with a submod-
ular objective function which is non-linear and history de-
pendent), but it does not capture the notion of risky traver-
sal which is essential to the TSO problem. Our general ap-
proach is inspired by works such as (Atanasov et al 2015),
but for the TSO problem we are able to further exploit the
problem structure to derive constant-factor guarantees for
our polynomial-time algorithm.

Statement of Contributions. The contribution of this paper
is sixfold. First, we propose the Team Surviving Orienteers
(TSO) problem. By considering a multi-robot (team) set-
ting with submodular node rewards (e.g. expected number
of nodes visited or information gained about node random
variables), we extend the state of the art for the submod-
ular orienteering problem, and by maximizing a submod-
ular quality of service function (with guarantees on solu-
tion quality), we extend the state of the art in the prob-
abilistic vehicle routing literature. From a practical stand-
point, as discussed in Section 3, the TSO problem repre-

sents a “survivability-aware” counterpart for a wide range of
multi-robot coordination problems such as vehicle routing,
patrolling, and informative path planning. Second, we show
that several broad classes of objective functions for the TSO
problem are submodular, provide a linear relaxation of the
single robot TSO problem (which can be solved as a stan-
dard orienteering problem), and show that the solution to the
relaxed problem provides a close approximation of the op-
timal solution of the single robot TSO problem. Third, we
propose an approximate greedy algorithm which has poly-
nomial complexity in the number of nodes and linear com-
plexity in the team size, and prove that the value of the out-
put of our algorithm is lower bounded by (1− e−ps/λ )OPT,
where OPT is the optimum value, ps is the survival proba-
bility threshold, and 1/λ ≤ 1 is the approximation factor of
an oracle routine for the solution to the orienteering prob-
lem (we note that, in practice, ps is usually close to unity).
Fourth, we formalize an on-line version of the TSO prob-
lem which enforces the survival constraint while taking into
account the survival/failure events as they happen. We give
a polynomial-time algorithm to approximately solve the on-
line TSO problem, and provide guarantees on the perfor-
mance of our on-line algorithm in terms of the objective ob-
tained as well as bounds on the probabilities of worst-case
events. Fifth, we discuss how to modify our algorithm to
form heterogeneous teams, with similar performance guar-
antees and application scenarios. Finally, we demonstrate
the effectiveness of our algorithm for large problems using
simulations by solving a problem with 900 nodes and 25
robots. This paper significantly extends our prior work (Jor-
gensen et al 2017) by considering a wider class of objective
functions, on-line updates, and heterogeneous teams.

Organization. In Section 2 we review key background in-
formation. In Section 3 we state the static and on-line TSO
problems formally. In Section 4 we describe several applica-
tions of the TSO problem and show that their objective func-
tions are submodular. In Section 5 we describe the linear re-
laxation technique and demonstrate how to solve the relaxed
problem as an orienteering problem, outline a greedy solu-
tion approach for the static TSO problem, give approxima-
tion guarantees, and characterize the algorithm’s complex-
ity. In Section 6 we describe how to incorporate information
gathered on-line to solve the on-line TSO problem, and give
guarantees on the cumulative reward and number of surviv-
ing robots. In Section 7 we describe how to extend our ap-
proach and analysis for the HTSO problem. In Section 8 we
verify the performance bounds, apply our approach to real-
world scenarios, and demonstrate its scalability. Finally, we
outline future work and draw conclusions in Section 9.



4 Stefan Jorgensen et al.

2 Background

In this section we review key material for our work and ex-
tend a well-known theorem in the combinatorial optimiza-
tion literature to our setting.

2.1 Submodularity

Submodularity is the property of ‘diminishing returns’ for
set functions. The following definitions are summarized from
(Krause and Golovin 2014). Given a set X , its possible sub-
sets are represented by 2X . For two sets X and X ′, the set
X ′ \X contains all elements in X ′ but not X . The comple-
ment of a set X contains all elements of X not in X , and is
denoted Xc = X \X . A set function f : 2X → R is said to
be normalized if f ( /0) = 0 and to be monotone if for every
X ⊆ X ′ ⊆X , f (X) ≤ f (X ′). A set function f : 2X → R is
submodular if for every X ⊆ X ′ ⊂X , x ∈X \X ′, we have

f (X ∪{x})− f (X)≥ f (X ′∪{x})− f (X ′).

The quantity on the left hand side is the discrete derivative
of f at X with respect to x, which we write as ∆ f (x | X).

2.2 The Approximate Greedy Algorithm

A typical submodular maximization problem entails finding
a set X ⊆X with cardinality K that maximizes f . Finding
an optimal solution, X∗, is NP-hard for arbitrary submodular
functions (Krause and Golovin 2014). The greedy algorithm
constructs a set X̄K = {x1, . . . ,xK} by iteratively adding an
element x which maximizes the discrete derivative of f at the
partial set already selected. In other words the `th element
satisfies:

x` ∈ argmax
x∈X \X̄`−1

∆ f (x | X̄`−1).

We refer to the optimization problem above as ‘the greedy
sub-problem’ at step `. A well-known theorem proven by
(Nemhauser et al 1978) states that if f is a monotone, nor-
malized, non-negative, and submodular set function, then
f (X̄K) ≥ (1− 1

e ) f (X∗). This is a powerful result, but if the
set X is large we might only be able to approximately solve
the greedy sub-problem. An α–approximate greedy algo-
rithm constructs the set X̂K by iteratively adding elements
which approximately maximize the discrete derivative of f
at the partial set already selected. In particular, for some
fixed α ≤ 1 the `th element x̂` satisfies:

∆ f (x̂` | X̂`−1)≥ α∆ f (x | X̂`−1) ∀x ∈X \ X̂`−1.

We provide a guarantee for the α–approximate greedy
algorithm analogous to the guarantee for the greedy algo-
rithm, thereby extending Theorem 4.2 of (Nemhauser et al
1978):

Theorem 1 (α–approximate greedy guarantee)
Let f be a monotone, normalized, non-negative, and sub-
modular function with discrete derivative ∆ f . For α ∈ [0,1]
and positive integer K, the output of any α–approximate
greedy algorithm with L ≥ K elements, X̂L, satisfies the fol-
lowing inequality:

f (X̂L)≥
(

1− e−αL/K
)

max
X∈2X :|X |=K

f (X).

Proof The case where L = K is a special case of Theorem
1 from (Wei et al 2014). To generalize to L > K we extend
the proof for the greedy algorithm in (Krause and Golovin
2014). Let X∗ ∈ 2X be a set which maximizes f (X) subject
to the cardinality constraint |X |= K. For ` < L, we have:

f (X∗)≤ f (X∗∪ X̂`)

= f (X̂`)+
K

∑
k=1

∆ f (x∗k | X̂`∪{x∗1, . . . ,x∗k−1})

≤ f (X̂`)+
K

∑
k=1

∆ f (x∗k | X̂`)

≤ f (X̂`)+
1
α

K

∑
k=1

∆ f (x̂`+1 | X̂`)

≤ f (X̂`)+
K
α
( f (X̂`+1)− f (X̂`)).

The first line follows from the monotonicity of f , the second
is a telescoping sum, and the third follows from the submod-
ularity of f . The fourth line is due to the α–approximate
greedy construction of X̂L, and the last is because all terms
in the sum are equal. Now define δ` = f (X∗)− f (X̂`). We
can re-arrange the inequality above to yield:

δ`+1 ≤
(

1− α

K

)
δ` ≤

(
1− α

K

)`+1
δ0.

Since f is non-negative, δ0≤ f (X∗) and using the inequality
1− x≤ e−x we get

δL ≤
(

1− α

K

)L
δ0 ≤

(
e−αL/K

)
f (X∗).

Now substituting δL = f (X∗)− f (X̂L) and rearranging:

f (X̂L)≥
(

1− e−αL/K
)

f (X∗). ut

Remark: We can generalize this theorem to the case where
each x` has guarantee α`. Using the same line of reasoning
as in the proof for Theorem 1, we have

f (X̂L)≥
(

1− e−∑
L
`=1 α`/K

)
f (X∗).



The Team Surviving Orienteers Problem 5

2.3 Graphs

Let G (V ,E ) denote an undirected graph, where V is the
node set and E ⊂ V ×V is the edge set. Explicitly, an edge
is a pair of nodes (i, j) and represents the ability to travel be-
tween nodes i and j. If the graph is directed, then the edge is
an ordered pair of nodes, and represents the ability to travel
from the source node i to the sink node j. A graph is called
simple if there is only one edge which connects any given
pair of nodes, complete if there is an edge between each pair
of nodes, and planar if nodes can be embedded in Rd in such
a way that the edge weight is the distance between nodes. A
path is an ordered sequence of unique nodes such that there
is an edge between adjacent nodes. For n≥ 0, we denote the
nth node in path ρ by ρ(n) and denote the number of edges
in a path by |ρ|. Under this notation, ρ(|ρ|) is the last node
in path ρ .

2.4 Poisson Binomial Distribution

The sum of K Bernoulli random variables with success prob-
abilities {pk}K

k=1 follows the Poisson binomial distribution.
Let Fm be the

(K
m

)
sets with m unique elements from {k}K

k=1.
For any A∈Fm, its complement is denoted Ac = {k}K

k=1 \A.
The probability mass function for the Poisson binomial dis-
tribution is

fPB
(
m;{pk}K

k=1
)
= ∑

A∈Fm

∏
i∈A

pi ∏
j∈Ac

(1− p j),

which is the sum of the probabilities of each of the
(K

m

)
ways

that exactly m variables are one and K −m are zero. The
special case where pk = p for all k, is referred to as the bi-
nomial distribution with parameters K and p. The binomial
distribution has received much study because of its relatively
simple form and extensive applications, but the Poisson bi-
nomial distribution is more difficult to analyze because each
event has different probability. In the following lemma, we
give a new result which gives sufficient conditions for the
cumulative distribution function of a Poisson binomial ran-
dom variable to be smaller than that of a specially crafted
binomial random variable.

Lemma 1 (Bound for the Poisson Binomial Distribution)
For K > 2, let fPB be a Poisson binomial probability mass
function with parameters {pk}K

k=1, where pk ≤ pK , and let
fB be a binomial probability mass function with parameters
K and p= 1

K ∑
K
k=1 pk. Then for M≤ (1− pK)

(
(K−2) p

1−p

)
+

pK ,

M

∑
m=0

fPB(m)≤
M

∑
m=0

fB(m).

Proof See the Appendix.

Although one could come up with a similar bound using
a binomial distribution with parameters K and pK , it would
become quite loose if K becomes large or if pK is very close
to one but p is not. Lemma 1 is less susceptible to these ef-
fects since it uses the mean of {pk}K

k=1. We use this result
later to derive performance bounds for our algorithms (by
setting m as the number of robots which survive to the desti-
nation), but it has much broader uses outside the context of
the TSO problem.

3 Problem Statement

In this section we give the formal problem statement for
the static TSO problem and on-line TSO problem, provide
an example, and give sufficient conditions for the objective
function to be submodular.

3.1 Static TSO problem

Let G be a simple graph with |V |=V nodes. Edge weights
ω : E → (0,1] correspond to the probability of survival for
traversing an edge. Time is discretized into iterations n =

0,1, . . . ,N. At iteration n ≥ 1 a robot following path ρ tra-
verses edge en

ρ = (ρ(n− 1), ρ(n)). Robots are indexed by
variable k, and for each we define the independent Bernoulli
random variables sk

n(ρ) which are 1 with probability ω(en
ρ)

and 0 with probability 1−ω(en
ρ). If robot k follows path ρ ,

the random variables ak
n(ρ) := ∏

n
i=1 sk

i (ρ) can be interpreted
as being 1 if the robot ‘survived’ all of the edges taken until
iteration n and 0 if the robot ‘fails’ on or before iteration n
(see Figure 2 and Table 1).

Given a start node vs, a terminal node vt , and survival
probability ps, we must find K ≥ 1 paths {ρk}K

k=1 (one for
each of K robots) such that, for all k, the probability that
ak
|ρk|

(ρk) = 1 is at least ps, ρk(0) = vs, and ρk(|ρk|) = vt .
The set of paths which satisfy these constraints is written as
X (ps,ω). One can readily test whether X (ps,ω) is empty
as follows: Set edge weights as − log(ω(e)), and for each
node j, compute the shortest path from vs to j, delete the
edges in that path, then compute the shortest path from j
to vt . If the sum of edge weights along both paths is less
than− log(ps) then the node is reachable, otherwise it is not.
Using Dijkstra’s algorithm this approach can prove whether
X (ps,ω) is empty after O(V 2 log(V )) computations. From
here on we assume that X (ps,ω) is non-empty.

Define the indicator function I{x}, which is 1 if x is true
(or nonzero) and zero otherwise. Define the Bernoulli ran-
dom variables for j = 1, . . . ,V :

zk
j(ρ) :=

|ρ|

∑
n=1

ak
n(ρ)I{ρ(n) = j},



6 Stefan Jorgensen et al.

Variable Description
en

ρ The nth edge in path ρ , from node ρ(n−1) to ρ(n)
ω(e) Probability robot survives edge e
ps Survival threshold for each robot
sk

n(ρ) One if robot k following path ρ survives edge en
ρ

ak
n(ρ) One if robot k following path ρ survives to iteration n

zk
j(ρ) One if robot k following path ρ visits node j

p j(m,XK) Probability that m of the K robots following paths in
set XK visit node j

Table 1 Summary of notation for the TSO problem.

Fig. 2 Illustration of the notation used. Robot k plans to take path ρ ,
whose edges are represented by lines. The fill of the lines represent the
value of sk

n(ρ). In this example sk
3(ρ) = 0, which means that ak

3(ρ) =

ak
4(ρ) = ak

5(ρ) = 0. The variables zk
j(ρ) are zero if either the robot fails

before reaching node j or if node j is not on the planned path.

which are 1 if robot k following path ρ visits node j and
0 otherwise (zk

j(ρ) is binary because a path is defined as
a unique set of nodes). Note that zk

j(ρ) is independent of
zk′

j (ρ
′) for k 6= k′, and the number of times that node j is

visited by robots following the paths {ρk}K
k=1 is given by

∑
K
k=1 zk

j(ρk).
The number of robots which visit node j is distributed

according to a Poisson binomial distribution. Given that K
robots follow the paths {ρk}K

k=1, we write the probability
that exactly m robots visit node j as

p j

(
m, {ρk}K

k=1

)
:= fPB

(
m;
{
E[zk

j(ρk)]
}K

k=1

)
.

Finally, let h j : Z+ → R+ be a function that maps the
number of visits to node j to the reward accumulated at that
node. Then the TSO problem is formally stated as:

Team Surviving Orienteers (TSO) Problem: Given
a graph G , edge weights ω , survival probability thresh-
old ps and team size K, maximize the expected re-
ward of the node visits:

maximize
ρ1,...,ρK

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
subject to P

{
ak
|ρk|(ρk) = 1

}
≥ ps k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρk|) = vt k = 1, . . . ,K

Remarks – The objective represents the expected reward
obtained by the K robots by visiting the nodes of the graph.
The first set of constraints enforces the survival probability,
the second and third sets of constraints enforce the initial and
final node constraints. In particular, the survival probability
threshold ps serves two purposes: first, it requires that, on
average, ps K robots will reach node vt safely, and second,
it enforces that risk is distributed fairly (i.e., no robot fails
with too high a probability).

The model we use for risky traversal assumes that the
survival random variables sk

n(ρ) are independent for all n
and k. This is consistent with assumptions typical of navi-
gation in unknown environments (e.g., SLAM applications
where the environment is represented by occupancy grids),
and navigation in adverse environments (e.g., due to piracy
(Vaněk et al 2013) or storms (Zhang et al 2017)).

The TSO problem can be viewed as a set maximization
problem with a cardinality constraint, where the domain of
optimization is the set X containing K copies of each path
in X (ps,ω). Crucially, if the objective function is a sub-
modular function, then Theorem 1 guarantees that the greed-
ily selected set of paths will achieve reward close to the op-
timum – a central result for this paper. Sufficient conditions
for submodularity will be presented in Section 3.4. First, we
state an online version of the TSO problem and provide an
illustrative example.

3.2 On-line TSO problem

In the static TSO problem, the paths {ρk}K
k=1 are computed

at the beginning and then followed by the robots until the last
iteration, with no path updates during execution. However
at iteration n the variables {ak

n(ρk)}K
k=1 are observed, and

this knowledge could be used to update the paths in order
to account for the realized robot failures. Specifically, we
seek to re-plan the paths surviving robots take such that the
expected number of robots which reach node vt safely is still
psK (consistent with the initial safety threshold), and that
the risk is still distributed fairly. This can be accomplished
by choosing a new survival probability threshold as follows.

Define the list of surviving robots at iteration n as Un :=
{k∈ {1, . . . ,K} : ak

n(ρk) = 1}. Also, for robots k∈Un, let the
maximum probability that robot k can reach node vt be de-
noted by ψk. The survival probability threshold at iteration
n, denoted as pn

s , is computed as the solution to the opti-
mization problem:

minimize
p∈(0,1)

p

subject to psK ≤ ∑
k∈Un

min{p,ψk}.

Intuitively, pn
s represent the smallest probability threshold

p such that the average number of robots which reach vt



The Team Surviving Orienteers Problem 7

safely will be no smaller then psK, while accounting for the
fact that the maximum probability with which robot k can
reach node vt is ψk. If the minimization problem is infeasi-
ble, this means that for any set of paths, the expected number
of robots that will reach node vt safely is smaller than psK,
and so pn

s is simply set to one. We then define the on-line
TSO problem as:

On-line Team Surviving Orienteers Problem: At
iteration n, given a graph G , edge weights ω , sur-
vival probability threshold pn

s , paths {ρn−1
k }K

k=1, and
the list of surviving robots Un, select new paths {ρn

k }K
k=1

in order to maximize the cumulative rewards:

maximize
ρn

1 ,...,ρ
n
K

V

∑
j=1

E

[
h j

(
∑

k∈Un

zk
j(ρ

n
k )

)
| ak

n(ρ
n
k ) = 1, k ∈Un

]
subject to ρ

n
k (n
′) = ρ

n−1
k (n′) n′ = 1, . . . ,n, k ∈Un

ρ
n
k (|ρn

k |) = vt k ∈Un

P
{

ak
|ρn

k |
(ρn

k ) = 1
}
≥min{pn

s ,ψk} k ∈Un

The objective is to maximize the expected cumulative re-
ward conditioned on the set of surviving robots. The first
constraint enforces continuity with actions taken up to itera-
tion n, the second constraint enforces that each path ends at
vt , and the third constraint enforces the survival probability
constraint. Note that if pn

s = 1, this means that the number of
robots which reach node vt is expected to be less than psK
regardless of the paths chosen. If for any robot k, pn

s > ψk,
then this robot will take the one of the safest paths to vt , and
will reach vt with probability ψk.

3.3 Example

An example of the TSO problem with a reward function
that is one if the node is visited at least once and zero oth-
erwise, is given in Figure 3(a). There are five nodes, and
edge weights are shown next to their respective edges. Two
robots start at node 1, and must end at virtual node 1′ (which
is a copy of node 1) with probability at least ps = 0.75.

(a) Graph G (b) Path for one robot (c) Path for two robots

Fig. 3 (a) Example of a TSO problem. Robots start at the bottom (node
1) and darker lines correspond to safer edges. (b) A single robot can
only visit four nodes safely. (c) Two robots can visit all nodes safely. It
is easy to verify that adding more robots yields diminishing returns.

Path ρ1 = {1,3,5,2,1′} is shown in Figure 3(b), and path
ρ2 = {1,4,5,2,1′} is shown alongside ρ1 in Figure 3(c).
Robot 1 visits node 3 with probability 1.0 and node 5 with
probability 0.96. Robot 2 also visits node 5 with probability
0.96 and so the probability at least one robot visits node 5 is
E [1− p5(0,{ρ1,ρ2})] = 0.9984. The probability that robot
1 returns safely is E

[
a1

4(ρ1)
]
= 0.794. For this simple prob-

lem, ρ1 and ρ2 are two of three possible paths (the third is
{1,3,5,4,1′}). The expected number of nodes visited by the
first robot following ρ1 is 3.88, and for two robots follow-
ing ρ1 and ρ2 it is 4.905. Since there are only five nodes,
it is clear that adding more robots must yield diminishing
returns.

3.4 Sufficient Conditions for Submodular Objective

The domain of optimization for the TSO problem with K
robots is the set X that contains K copies of each element in
X (ps,ω). With mild conditions on the functions {h j}Vj=1,
the objective function for the TSO problem (and also for the
on-line TSO problem) is submodular, as stated below.

Lemma 2 (Submodularity of the TSO problem objective)
Consider a set of paths XK := {ρk}K

k=1 and the objective
function

J(XK) =
V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
.

For L≥ 1, the objective function has discrete derivative with
respect to path ρL at partial solution XL−1 = {ρ`}L−1

`=1 ,

∆J(ρL | XL−1) =
V

∑
j=1

E
[
zL

j (ρL)
]

δ j(XL−1),

where we define the set function,

δ j(XK) :=E

[
h j

(
1+

K

∑
k=1

zk
j(ρk)

)]
−E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
.

Furthermore, the objective function is submodular if for all
j, −δ j(X) is a monotone function of X.

Proof Let L ≥ 1. The random variable zL
j (ρL) is indepen-

dent of the random variables {z`j(ρ`)}L−1
`=1 . Hence from the

definition of the discrete derivative and the tower property
one has:

∆J(ρL | XL−1) =
V

∑
j=1

E[zL
j (ρL)]E

[
h j

(
1+

L−1

∑
`=1

z`j(ρ`)

)]

+
(
1−E

[
zL

j (ρL)
]
−1
)
E

[
h j

(
L−1

∑
`=1

z`j(ρ`)

)]
,



8 Stefan Jorgensen et al.

which upon simplification yields the first statement of the
lemma.

We now consider the second statement of the lemma.
By definition, a set function is submodular if the negative
of its discrete derivative is a monotone function. If −δ ( j)
is monotone, then the negative of the discrete derivative is
also monotone (since E[zL

j (·)]≥ 0 and the sum of monotone
functions is monotone). Hence the objective function is sub-
modular. ut

Note that we can easily extend this result to the on-line case
by conditioning on {ak

n(ρk)}K
k=1. For the remainder of this

paper we will restrict our attention to TSO problems that
fulfill the assumptions of Lemma 2. This class of problems is
indeed large; we show several examples in the next section.

4 Applications and Examples

The TSO problem has many applications which have sub-
modular reward functions, which means that a greedily se-
lected set of paths will give near-optimal rewards (as dis-
cussed in Section 2). We provide some specific examples of
such applications below.

4.1 Aid Delivery (single-visit rewards)

Consider an aid delivery problem where robots deliver a re-
source to sites with different demands. The reward accumu-
lated for delivering resources to node j is the demand d j ≥ 0,
and reward is only accumulated for the first visit. Formally,
for XK = {ρk}K

k=1, the objective function is

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
=

V

∑
j=1

E

[
d j I

{
K

∑
k=1

zk
j(ρk)> 0

}]

=
V

∑
j=1

d j (1− p j(0,XK)).

We refer to this form of objective function as an single-visit
reward function, because reward is only accumulated for the
first visit to a node. The following lemma shows that such
reward functions are submodular:

Lemma 3 (Submodularity of single-visit rewards)
For d j ≥ 0, the single-visit reward function,

V

∑
j=1

d j(1− p j(0,XK)),

is a normalized, non-negative, monotone, and submodular
function with discrete derivative with respect to ρL at partial
solution XL−1 = {ρ`}L−1

`=1

V

∑
j=1

E[zL
j (ρL)]d j p j(0,XL−1).

Proof Non-negativity follows from the fact that d j ≥ 0 and
p j(·)≥ 0. The normalized property follows since p j(0, /0) =
1, and since p j(0,X) is a decreasing function of X , the ob-
jective function is monotone. For the single-visit reward func-
tion the quantity,

−δ j(X) =−d j p j(0,X),

is monotone, so using Lemma 2 we conclude that the objec-
tive function is submodular. ut

4.2 Property Classification (multi-visit rewards)

Now consider a multiple visit reward function where reward
h j(m) ≥ 0 is accumulated after m visits to node j. A con-
crete example is a classification scenario, where each robot
measures a binary property of a node imperfectly, and the
objective is to minimize the posterior variance of the prop-
erty distribution. If one uses a Haldane prior, which is the
β (0,0) function (Haldane 1932), the posterior variance af-
ter m measurements is 1

4(m+1) . Setting the node priorities

to h j(m) =
(

1
4 −

1
4(m+1)

)
gives a multi-visit reward func-

tion. Maximizing the expected cumulative rewards h j(m) is
equivalent to minimizing the expected posterior variance of
the distribution of the feature probabilities.

With fairly mild conditions on the rewards h j, the multi-
visit reward function is submodular, as stated in the follow-
ing lemma:

Lemma 4 (Submodularity of multi-visit rewards)
Let h j : Z+→ R+ be an increasing function with finite dif-
ference ∆h j(m) = h j(m)− h j(m− 1) which satisfies the di-
minishing returns property

∆h j(m+1)≤ ∆h j(m), m≥ 1

and h j(0) = 0. Then the reward function at the solution set
XK = {ρk}K

k=1,

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρk)

)]
,

is a normalized, non-negative, monotone, and submodular
function with discrete derivative with respect to ρL at partial
solution XL−1 = {ρ`}L−1

`=1 :

V

∑
j=1

E[zL
j (ρL)]

L−1

∑
m=0

∆h j(m+1)p j(m,XL−1).

Proof The reward function is non-negative because h j(·)≥
0 and normalized because h j(0) = 0. The number of visits
to a node, ∑

K
k=1 zk

j(ρk), is a monotone function. Since h j is
an increasing function of the number of visits to a node, this



The Team Surviving Orienteers Problem 9

implies that the objective function is monotone. From the
definition of the multi-visit reward function we have

δ j(X) =
|X |

∑
m=0

∆h j(m+1)p j(m,X).

Consider Y =X∪x and define γ ∈ [0,1] such that p j(m,Y ) =
(1−γ)p j(m,X)+γ p j(m−1,X). From the definition of δ j(X)

and using the properties of h j, we have

δ j(X)−δ j(Y ) =
|X |

∑
m=0

∆h j(m+1)p j(m,X)

−
|X |+1

∑
m=0

∆h j(m+1)(γ p j(m−1,X)+(1− γ)p j(m,X))

= γ

|X |

∑
m=1

(∆h j(m+1)−∆h j(m+2))p j(m,X)

≥ 0.

The first equality is derived by expressing p j(m,Y ) in terms
of p j(m,X), the second from simplification and the fact that
p j(|X |+1,X) = 0, and the inequality is due to the diminish-
ing returns property of h j.

This implies that−δ j(X) is monotone and so from Lemma
2 we have that the multi-visit objective function is submod-
ular with the stated discrete derivative. ut

Note that the objective function of the feature classifi-
cation example at the beginning of this subsection satisfies
the conditions of Lemma 4, and hence it is a normalized,
non-negative, monotone and submodular function.

4.3 Informative Path Planning

The multi-visit reward function can also model an informa-
tive path planning problem, where each node has a random
variable Yj, and the objective is to select measurements in or-
der to minimize the entropy of the posterior distribution of
{Yj}Vj=1 given the measurements. Setting h j(m) to be the in-
formation gained about Yj after taking m measurements, the
TSO problem becomes an informative path planning prob-
lem. It is easy to verify that information functions satisfy the
conditions of Lemma 4: the information gained from tak-
ing zero measurements is zero, information is an increasing
function, and it satisfies the diminishing returns property.
Hence we have that the informative path planning applica-
tion of the TSO problem has a submodular objective func-
tion.

4.4 Edge Rewards

Each of the formulations above can easily be extended to
a scenario where the goal is to maximize a function of the

edges traversed. Here we describe how to extend the single-
visit case, but a similar approach can be used for any of the
other reward functions described above. Define zk

i, j(ρ) to in-
dicate whether robot k following path ρ takes edge (i, j),
and for (i, j) ∈ E define pi, j(m,{ρk}K

k=1) as in the single
visit case with zk

j(·) replaced by zk
i, j(·) (if (i, j) /∈ E , then

set pi, j(0, ·) = 1). Instead of node rewards d j, we now have
edge rewards di, j (with di, j = 0 if (i, j) /∈ E ), and the objec-
tive function is
V

∑
i=1

V

∑
j=1

di, j (1− pi, j(0,{ρk}K
k=1)).

This variant could be used to model a patrolling problem,
where the goal is to inspect the maximum number of roads
subject to the survival probability threshold. Such problems
also occur when planning scientific missions (e.g., on Mars),
where the objective is to execute the most important traver-
sals.

4.5 Visit Risks

Consider a scenario where the action of visiting a node is
risky: a robot visiting node j survives with probability υ( j)
and fails with probability 1−υ( j). We can easily incorpo-
rate this additional randomness into the TSO problem by us-
ing a directed graph to represent the traversals and directed
edge weights, ωd(i, j) = ω(i, j)υ( j), which incorporate the
visit risk.

4.6 Non-homogeneous Traversal Time

The formal definitions of the static and on-line TSO problem
above assume that exactly one edge is traversed per iteration
by each robot. This greatly simplifies notation by allowing
us to index paths with the time variable n, but is not a nec-
essary assumption for our results.

For the static variant, homogeneous traversal time is purely
a notational convenience and arbitrary times can be handled
without modifying the problem statement. This is because
the variables ak

N are evaluated from the perspective of time
zero and do not depend on the number of events between
time zero and time N (and hence are independent of how
‘time’ is split).

The on-line variant is slightly more involved. At any
given time t (now not necessarily the same as the index n for
each path), each robot will either be at the terminal node, or
be travelling to node ρ t ′

k (n(ρ
t ′
k , t)), where t ′ is the last time

that robot k’s path was updated, and n(ρ t ′
k , t) is defined as

the index of the first node visited after time t in path ρ t ′
k . If

we allow mid-course corrections (for example, with aerial
vehicles), then the continuity constraints become

ρ
t
k(n
′) = ρ

t ′
k (n
′) n′ = 1, . . . ,n(ρ t ′

k , t)−1, k ∈Ut ,



10 Stefan Jorgensen et al.

and if we do not allow mid-course corrections (for example,
on road networks), then the continuity constraints become

ρ
t
k(n
′) = ρ

t ′
k (n
′) n′ = 1, . . . ,n(ρ t ′

k , t), k ∈Ut .

In either case the fundamental structure of the problem
remains the same as when traversal times are homogeneous.

5 Approximate Solution Approach to the Static TSO

As discussed in Section 3.4, we restrict our attention to TSO
problems with objective functions that fulfill the assump-
tions of Lemma 2. Our approach to solving the TSO prob-
lem is then to exploit submodularity of the objective func-
tion using an α–approximate greedy algorithm (as defined
in Section 2.2). In Section 5.1 we present a linearization of
the greedy sub-problem, which in the context of the TSO
problem entails finding a path which maximizes the discrete
derivative of the objective function, at the partial set already
constructed. We use this linearization to find a polynomial-
time (ps/λ )–approximate greedy algorithm for finding the
best path given a partial solution. Leveraging this result,
we describe our GreedySurvivors algorithm for the TSO
problem in Section 5.2, discuss its approximation guarantee
in Section 5.3, and characterize its computational complex-
ity in Section 5.4.

5.1 Linear Relaxation for the Greedy Sub-problem

Given a previously selected set of paths, XL−1 = {ρ`}L−1
`=1 ,

the greedy sub-problem for the TSO problem at step L re-
quires us to find a path ρL from the set X \ XL−1 which
maximizes the discrete derivative of the objective function
at XL−1 with respect to ρL. Note that because we define X
to have as many copies of each path as the maximum num-
ber of robots we plan for, the set X \ {ρ`}L−1

`=1 always con-
tains at least one copy of each path in X (ps,ω). Since the
discrete derivative of the objective function at XL−1 with re-
spect to any of the copies of a path ρ ∈ X (ps,ω) is the
same, we can solve the greedy sub-problem by only consid-
ering elements in the set X (ps,ω). Even with this simplifi-
cation, the greedy sub-problem is very difficult for the TSO
problem: it requires finding a path which maximizes sub-
modular node rewards subject to a budget constraint (this
is the submodular orienteering problem). No polynomial-
time constant-factor approximation algorithm is known for
general submodular orienteering problems (Chekuri and Pál
2005), and so in this section we design one specifically for
the greedy sub-problem for the TSO problem.

Under the assumptions of Lemma 2, the discrete deriva-
tive is of the form ∑

V
j=1E[zL

j (ρL)]δ j(XL−1), for δ j(XL−1) ≥
0. We relax the problem of maximizing the discrete deriva-
tive by replacing the probability that robot L traversing path

ρ visits node j, E[zL
j (ρ)], with the maximum probability that

any robot following a feasible path can visit node j, ζ j:

ζ j := max
ρ∈X (ps,ω)

E[zL
j (ρ)].

For a given graph this upper bound can be found eas-
ily by using Dijkstra’s algorithm with log transformed edge
weights ωO(e) := − log(ω(e)). Let I j(ρ) be equal to 1 if
node j is in ρ and 0 otherwise. In the relaxed problem we
are looking to maximize the sum:

∆ J̄(ρ | XL−1) :=
V

∑
j=1

I j(ρ)ζ jδ j(XL−1),

which represents an optimistic estimate of the actual discrete
derivative of our objective function at XL−1 with respect to
ρ . We can find the (approximately) best path by solving an
orienteering problem as follows. Recall that for the orien-
teering problem we provide node weights and a constraint
on the sum of edge weights (referred to as a budget), and
find the path which maximizes the node rewards along the
path while guaranteeing that the sum of edge weights along
the path is below the budget.

We use the graph GO, which has the same edges and
nodes as G but has edge weights ωO(e) and node rewards
νL( j) = ζ jδ j(XL−1). Solving the orienteering problem on
GO with budget − log(ps) will return a path that maximizes
the sum of node rewards (which is ∆ J̄(ρ | XL−1)), and sat-
isfies ∑e∈ρ− log(ω(e)) ≤ − log(ps), which is equivalent to
P{aL

|ρ|(ρ) = 1} ≥ ps.
Although solving the orienteering problem is NP-hard,

several polynomial-time constant-factor approximation al-
gorithms exist which guarantee that the returned objective
is lower bounded by a factor of 1/λ ≤ 1 of the optimal ob-
jective. For undirected graphs (Chekuri et al 2012) gives a
guarantee λ = (2+ ε) with complexity O(V 1/ε2

), and for
directed graphs (Chekuri and Pál 2005) gives a guarantee in
terms of the number of nodes. An important special case is
when the nodes represent points in Rd and for all edges in
E the edge weights ωO(e) is proportional to the distance be-
tween the source and sink nodes of the edge. In this case,
the graph GO is called planar, and the underlying orienteer-
ing problem is significantly easier to solve. For undirected
planar graphs (Chen and Har-Peled 2006) gives a guarantee
λ = (1+ε) with complexity O(V 1/ε). Using such an oracle,
we have the following guarantee:

Lemma 5 (Single robot constant-factor guarantee)
Let Orienteering be a routine that solves the orienteering
problem within constant-factor 1/λ , that is for node weights
ν( j) = ζ jc j, path ρ̂ output by the routine and any path ρ ∈
X (ps,ω),

V

∑
j=1

I j(ρ̂)ν( j)≥ 1
λ

V

∑
j=1

I j(ρ)ν( j).



The Team Surviving Orienteers Problem 11

Then for any c j > 0 and any ρ ∈X (ps,ω), the cumula-
tive rewards for a robot following path ρ̂ satisfies

V

∑
j=1

c jE[z j(ρ̂)]≥
ps

λ

V

∑
j=1

c jE[z j(ρ)].

Proof By definition of ζ j and the Orienteering routine,
we have:

V

∑
j=1

c jE[z j(ρ)]≤
V

∑
j=1

I j(ρ)ζ jc j ≤ λ

V

∑
j=1

I j(ρ̂)ζ jc j.

Path ρ̂ is feasible, so I j(ρ̂)psζ j ≤ I j(ρ̂)ps≤E[z j(ρ̂)], which
combined with the equation above completes the proof. ut

This is a remarkable statement because it guarantees that,
if we solve the orienteering problem near-optimally, choose
c j = δ j(XL−1) and ps is not too small, the solution to the
linear relaxation will give nearly the same result as the op-
timal solution to the greedy sub-problem at step L for the
TSO problem. The intuition is that for ps close to unity no
feasible path can be very risky and so the probability that a
robot actually reaches a node will not be too far from the
maximum probability that it could reach the node.

5.2 Greedy Approximation for the TSO Problem

Using this relaxation with c j = δ j(XL−1) we have an ps/λ–
approximate algorithm for the greedy sub-problem at step
L. This gives us a (1− e−ps/λ )–approximate greedy algo-
rithm for maximizing the discrete derivative of the objective
function for the variants discussed in Section 4, as detailed
next.

Define the method Dijkstra(G , i, j), which returns the
length of the shortest path from i to j on the edge weighted
graph G using Dijkstra’s algorithm. Given an edge weighted
graph G and node rewards ν , the Orienteering(G ,ν) rou-
tine solves the orienteering problem (assuming vs = 1, vt =

V and budget − log(ps)) within factor 1/λ , and returns the
best path. Pseudocode for our algorithm is given in Figure
4. We begin by forming the graph GO with log-transformed
edge weights ωO(e), and then use Dijkstra’s algorithm to
compute the maximum probability that a node can be reached.
For each robot k = 1, . . . ,K, we solve an orienteering prob-
lem to greedily choose the path that maximizes the discrete
derivative of J̄.

Given a node index j and set of paths X , the update( j,X)

routine returns the value of δ j(X) as detailed below.

Updates for single-visit reward functions– Recall from Lemma
3 that for the single-visit reward function

δ j(XL) = d j p j(0,XL),

1: procedure GREEDYSURVIVORS(G ,K)
2: Form GO from G , such that vs = 1, vt =V
3: for j = 1, . . . ,V do
4: ζ j ← exp(−Dijkstra(GO,1, j))
5: end for
6: for k = 1, . . . ,K do
7: for j = 1, . . . ,V do
8: c j ← Update( j,{ρ`}k−1

`=1)
9: νk( j)← ζ jc j

10: end for
11: ρk← Orienteering(GO,νk)
12: end for
13: end procedure

Fig. 4 Approximate greedy algorithm for solving the TSO problem.

which can be computed efficiently. Initially, δ j( /0)= d j. When
adding ρL, δ j(XL) updates to

δ j(XL)←
(
1−E[zL

j (ρL)]
)

δ j(XL−1),

which can be interpreted as the value of the node times the
probability that none of the first L robots visit node j. The
complexity of updating the node weights is O(V ).

Updates for multi-visit reward functions– Recall from Lemma
4 that for the multi-visit reward function

δ j(XL) =
|XL|

∑
m=0

∆h j(m+1)p j(m,XL),

which can be updated by tracking the probability distribu-
tion of the number of visits to each node. The probability
p j(m,XL) can be computed recursively, since we have

p j(m,XL) = E[zL
j (ρL)]p j(m−1,XL−1)

+(1−E[zL
j (ρL)])p j(m,XL−1).

Updating the node weights requires O(L+1)≤ O(K) com-
putations.

5.3 Approximation Guarantees

In this section we combine the results from Section 2.2 and
5.1 to prove that the output of the GreedySurvivors algo-
rithm is close to the optimal solution to the TSO problem.
Specifically, we compare a team with L ≥ K robots using
greedily selected paths to a team with K optimally selected
paths, because this gives us a way to compute tighter bounds
on the performance of our algorithm.

Theorem 2 (Multi-robot constant-factor guarantee)
Given an Orienteering routine with constant-factor guar-
antee 1/λ as in Lemma 5, assign robot ` path ρ̂` corre-
sponding to the path returned by the Orienteering routine
on graph GO with node weights ν j = ζ jδ j({ρ̂k}`−1

k=1).



12 Stefan Jorgensen et al.

Let X∗K = {ρ∗k }K
k=1 be an optimal solution to the TSO

problem with K robots. For some L≥ K and 1≤ `≤ L, sup-
pose the objective is a normalized, non-negative, monotone,
and submodular function with discrete derivative of the form

∆J(ρ` | X`−1) =
V

∑
j=1

E[z`j(ρ`)]δ j(X`−1).

Then the expected cumulative reward gathered by a team
of L robots with types and paths X̂L = {ρ̂`}L

`=1 is at least a

fraction γ =
(

1− e−
psL
λK

)
of the optimal:

V

∑
j=1

E

[
h j

(
L

∑
`=1

z`j(ρ̂`)

)]
≥ γ

V

∑
j=1

E

[
h j

(
K

∑
k=1

zk
j(ρ
∗
k )

)]
.

Proof The objective is a set function with domain X , which
has L copies of each feasible path. Hence for 1 ≤ ` < L,
the set X \ {ρ̂k}`−1

k=1 will always contain at least one copy
of each path in X (ps,ω), and since the discrete derivative
evaluated at any of the copies of the same path is the same,
we can solve the greedy sub-problem by only considering el-
ements in X (ps,ω). Using Lemma 5 with c j chosen appro-
priately for the objective function, we have a constant-factor
guarantee α = ps/λ for the problem of finding the path from
X (ps,ω) that maximizes the discrete derivative of our ob-
jective function. Now applying Theorem 1 to our objective
function (which by assumption is normalized, non-negative,
monotone, and submodular) we have the desired result. ut

In many scenarios of interest ps is quite close to 1, since
robots are typically valuable or difficult to replace. For L =

K this theorem gives an 1− e−ps/λ guarantee for the out-
put of our algorithm. This bound holds for any team size,
and guarantees that the output of the (polynomial-time) lin-
earized greedy algorithm will have a similar reward to the
output of the (exponential time) optimal algorithm.

Taking L > K gives a practical way of testing how much
more efficient the allocation for K robots could be. For ex-
ample, if L ps

λ
= 6K we have a (1− 1/e6) ' 0.997 factor

approximation for the optimal value achieved by K robots.
We use this approach to generate tight upper bounds for our
experimental results. Note that this theorem also guarantees
that as L→ ∞, the output of our algorithm has at least the
same value as the optimum, which emphasizes the impor-
tance of guarantees for small teams.

Next we use the Poisson binomial bound from Section
2.4 to bound the probability of worst-case events, namely
that a small number of robots reach node vt safely.

Lemma 6 (Worst-case Probability Bounds)
For K > 2, let XK = {ρk}K

k=1 be a set of paths which is a fea-
sible solution to the TSO problem. Denote pK :=maxk E[zk

vt (ρk)]

and let µ := 1
K ∑

K
k=1E[zk

vt (ρk)] ≥ ps be the expected frac-
tion of robots which will reach node vt . Then for M ≤ b(1−

pK)(K−2) µ

1−µ
+ pKc, the probability that M or fewer robots

reach node vt decreases exponentially as M decreases:

M

∑
m=0

pvt (m,XK)≤ exp
(
−2K(µ−M/K)2) .

Proof Recall that if robots follow paths XK , the probabil-
ity that m robots reach node vt is pvt (m,XK), which is the
Poisson binomial probability mass function evaluated at m
with parameters

{
E[zk

vt (ρk)]
}K

k=1. Using Lemma 1, we have
that the Poisson binomial cumulative distribution function
is bounded by the binomial cumulative distribution function
with parameters K and µ . Applying Hoeffding’s inequality,

M

∑
m=0

pvt (m,XK)≤
M

∑
m=0

(
K
m

)
µ

m(1−µ)K−m

≤ exp
(
−2

(Kµ−M)2

K

)
which after simplification is the stated result. ut

This statement gives a very strong guarantee that the
number of surviving robots will not be significantly below
psK. For example, if K = 25, µ = 0.85 and pK ≤ 0.89, then
the probability that 15 or fewer robots reach vt is less than
0.044, but the probability that 13 or fewer robots reach vt is
less than 0.0043.

5.4 Computational Complexity

Suppose that the complexity of the Orienteering oracle is
CO, and the complexity of the update step is CU . Then the
complexity of our algorithm is:

O(V 2 log(V ))+O(KCU )+O(KCO).

The first term is the complexity of running Dijkstra’s to cal-
culate ζ j for all nodes, the second term is the complexity
of updating the weights K times, and the final term is the
complexity of solving the K orienteering problems. Gener-
ally CU = O(V ) and is dominated by CO so the asymptotic
complexity of our algorithm is KCO. Relying on an oracle
routine makes the GreedySurvivors routine applicable for
several diverse communities of researchers.

Complexity theory – From a theoretical standpoint, if a
polynomial-time approximation scheme (PTAS) for the ori-
enteering problem is used, then our algorithm is a PTAS for
the TSO problem. This is a meaningful result on the com-
plexity of the TSO problem: although the TSO is NP-hard,
it can be approximated within a constant factor in polyno-
mial time. The complexity of the best known PTAS routines
for the orienteering problem and its variants are high or-
der polynomials - for example (Chen and Har-Peled 2006)
gives a λ = 1+ ε PTAS for the planar case which runs in



The Team Surviving Orienteers Problem 13

O(V 16d3/2/ε) time, where d in this context is the dimension
of the plane that nodes are embedded in. Even for ε = 1 and
d = 2, this is O(V 46), which is not suitable for real-world
applications.

Certifiable performance applications – Practitioners who
require guarantees on the quality of the solution can use
mixed integer linear programming (MILP) formulations of
the orienteering problem (Kara et al 2016). Commercial and
open source software for solving MILP problems are read-
ily available, and return an optimality gap along with the
solution. Such solvers can be configured to terminate after
a set amount of time or when the ratio between the current
solution and upper bound becomes greater than 1/λ .

Time-critical applications – Finally, practitioners who
require fast execution but not guarantees can use a heuris-
tic to solve the orienteering problem. There are a number of
fast, high quality heuristics with open source implementa-
tions such as (Wagner and Affenzeller 2005; Vansteenwe-
gen et al 2009). While these heuristics do not provide guar-
antees, they often produce near-optimal solutions and are
capable of solving large problems in seconds.

5.5 Modifications for Variants

Edge rewards – The GreedySurvivors routine is easily
modified for the edge rewards variant. After re-defining the
variables as described in Section 4.4, define ζi, j = ζiω(i, j),
which is the largest probability that edge (i, j) is success-
fully taken. The linearized greedy algorithm will still have
a constant-factor guarantee, but now requires solving an arc
orienteering problem. Constant-factor approximations for the
arc orienteering problem can be found using algorithms for
the OP as demonstrated in (Gavalas et al 2015): for an undi-
rected graph λ = 6+ ε + o(1) in polynomial-time V O(1/ε).
The arguments for Theorem 2 are the same as in the node
reward case.

Walks – We can also consider walks, which are like a
path but allow nodes and edges to be visited more than once.
In this setting, zk

j(ρ) is no longer binary, and so the proofs
for submodularity of the various reward functions must be
updated. The argument used for Lemma 5 can be extended
to walks by using an oracle which maximizes ∑

V
j=1 z j(ρ)c j.

If m̄ is the maximum number of visits to a node, then this
approach would give the constant factor guarantee for the
greedy sub-problem as α = ps

λ m̄ . While this model does not
have orienteering PTAS, it is straightforward to modify the
MILP and heuristic formulations to allow for walks in in this
way.

On the other hand, if we define I j(ρ,m) := I{z j(ρ) =

m}, and the oracle maximizes ∑
V
j=1 I j(ρ,m)c j(m), then we

recover the ps
λ

guarantee from Lemma 5. It is unclear whether
there is an efficient MILP formulation which can act as such

an oracle, though it can be posed as a Mixed Integer Pro-
gram (which is generally much more difficult to solve than
a MILP).

6 Approximate Solution Approach to the On-line TSO

Information gathered on-line can be incorporated to solve
the on-line TSO problem in a manner similar to the static
case. There are two main structural differences between the
static and the on-line planning problems: the space of fea-
sible paths for each robot might be different (since nodes
cannot be re-visited, due to the definition of paths in Sec-
tion 2.3), and the survival constraint must be updated appro-
priately. These changes are handled by modifying the pre-
processing step and solving a minimization problem to find
pn

s . In Section 6.1 we outline the on-line algorithm, discuss
guarantees on performance in Section 6.3, and characterize
the worst-case complexity in Section 6.4.

6.1 On-line Algorithm

At iteration n, the on-line algorithm re-plans paths given a
list of surviving robots Un and the planned paths at the pre-
vious iteration, Xn−1

K = {ρn−1
k }K

k=1. The first constraint of
the on-line TSO problem requires that the first n− 1 steps
of a new plan be consistent with the past, that is ρn

k (n
′) =

ρ
n−1
k (n′) for n′ ≤ n− 1, which implies that the rest of the

path cannot contain these nodes. We focus on finding sub-
paths which do not contain any nodes already visited, start
at ρ

n−1
k (n), and end at vt . Our algorithm consists of three

stages: the first is a pre-processing stage which identifies the
safest paths for every robot to reach the remaining nodes,
the second stage computes the updated survival probability
threshold, pn

s , and the third stage runs the greedy algorithm
to select new sub-paths.

6.1.1 Pre-processing

Due to the strict definition of paths in Section 2, robots are
not permitted to re-visit nodes. Hence for each robot k ∈Un,
we must update the maximum probability that robot k can
visit each node j in V n

k := V \ {ρn−1
k (n′)}n−1

n′=1 given that it
starts from node ρ

n−1
k (n) and cannot travel through nodes

in {ρn−1
k (n′)}n−1

n′=1. We denote this probability as ζ
k,n
j , and

compute it using Dijkstra’s algorithm on the graph G n
k which

has node set V n
k , edges in E with both the source and sink

nodes in V n
k , and each edge given weight − log(ω(e)). The

maximum probability that robot k can reach node vt is given
by ψk := ζ

k,n
vt .



14 Stefan Jorgensen et al.

Fig. 5 Illustration of the algorithm for updating the survival probabil-
ity threshold. The maximum survival probabilities ψk and intervals are
shown on the left. At the first step, we assume the optimum is in the in-
terval I4 which has the smallest upper bound (ψ2), but this assumption
is false since p4 > ψ2. At the second step we proceed to the interval
with the next smallest upper bound, I3, and find that p3 ∈ I3. Since the
assumption is correct, we know p3 is the optimum.

6.1.2 Survival threshold update

The on-line version of the TSO problem requires updating
the survival probability threshold pn

s in order to guarantee
that, if possible, the risk is distributed fairly and the expected
number of robots which reach node vt safely is psK. Recall
from Section 3.2 that pn

s is defined as the solution to a mini-
mization problem, and set to one if the problem is infeasible.

If ψk ≤ pn
s for any k, this means that there is no path

which satisfies the desired survival probability threshold for
robot k. In this case, {k} is removed from Un, and ρn

k is set
to the safest path for robot k to reach node vt .

Solving for pn
s is straightforward, as illustrated in Figure

5. The survival probability threshold pn
s lies in one of at most

|Un|+ 1 intervals between the maximum survival probabil-
ities {ψk}k∈Un . We begin by sorting the survival probabili-
ties and guessing that the solution is in the interval with the
smallest upper bound, evaluating the ‘min’ operator in the
constraint, and then finding the value of p which makes the
constraint active. If the result is in the interval we guessed,
then we are done and return the result. Otherwise we move
to the interval with the next smallest upper bound and re-
peat. If p is in none of these intervals then the problem is
infeasible and we return 1. The complexity of this algorithm
is O(|Un|(1+ log(|Un|)))≤ O(K log(K)).

6.1.3 Greedy selection

The greedy selection step is quite similar to the static TSO
problem, except the survival probability threshold is now pn

s
when solving for the best path for robot k to take (the case
ψk ≤ pn

s is handled in the previous step). Because each robot
has a different graph, we must solve O(K) orienteering prob-
lems when selecting each path (one for each robot in Un),
which means the oracle routine is called O(K2) times dur-
ing the greedy selection step. While Un is not empty, we set
the node weights appropriately (by choosing the appropri-
ate value for δ j(X`) conditioned on Un and accounting for

already selected paths) and find the maximum weight path
with survival probability at least pn

s for each k ∈ Un. The
most valuable path is assigned to its respective robot, that
robot is removed from Un and the loop continues.

6.2 Decentralized Implementations

The presentation above is from a centralized perspective,
where a single processing node runs all computations and
sends the paths to each robot. In practice, especially for the
on-line version of this problem, the robots may not be able to
communicate with every other member of the team and may
have noisy communications. Greedy algorithms can be de-
centralized by using ‘iterative assignment’ (e.g., as used by
(Atanasov et al 2015)). In this approach, each robot solves a
single-robot sub-problem over its own sub-graph. A leader
election is then held to determine which path has the high-
est discrete derivative. The winner of the election updates
its plan and is removed from the pool. Remaining robots
repeat the process of planning and determining a leader un-
til every robot has a plan. If the communications graph is
connected (meaning there is a way for every robot to com-
municate with any other robot), then this routine will yield
the same result as the centralized counterpart. The commu-
nications complexity is (loosely) bounded by K3 messages
containing a path and the value of the path (Lynch 1997). Fi-
nally, since each message is small (a path can be represented
by V log2(V ) bits), noisy communications can be mitigated
by adding strong error correction and repeated transmission.

In the case where Kd robots cannot communicate with
the rest of the team, submodularity implies that the perfor-
mance degrades by a factor of at most (K−Kd)/K. If robots
not heard from are presumed ‘failed’, then our algorithm
will make conservative choices, causing the robots to return
to the terminal node sooner than if the communications were
perfect. This has the added benefit that, for disk connected
communications graphs, the communications network will
get stronger as robots converge to vt . This enables the list
of surviving robots to be updated and the correct survival
probability thresholds computed, so in a sense the commu-
nications network will be self-healing.

6.3 On-line Performance Guarantees

Both of the guarantees from the static TSO problem can be
extended to the on-line case. The approximation guarantee
can be applied because the objective function of the on-line
problem inherits submodularity from the objective function
of the static problem. Conditioning on Un will change the
value of the constants δk(XL−1), but not the basic form of the
discrete derivative (in the sense of Lemma 2). The proofs for



The Team Surviving Orienteers Problem 15

Lemma 5 and Theorem 2 depend only on the form of the dis-
crete derivative, which means that we can immediately ap-
ply them by exchanging ps with pn

s . This means that robots
following the paths output by the on-line algorithm will ac-
cumulate at least a constant factor 1− exp(−pn

s/λ ) of the
reward accumulated by the optimal solution to the on-line
TSO problem.

The on-line algorithm adapts the survival probability thresh-
old in order to keep the expected number of robots that ac-
tually reach node vt as close to psK as possible. When it in-
creases pn

s in response to robot failures, the guarantees that
few robots fail become much stronger. As discussed after
Lemma 6, the probability that m or fewer robots reach node
vt decreases exponentially as m decreases. So by adapting
pn

s , the on-line algorithm ensures that it is very unlikely for
|UN | to be much smaller than psK.

6.4 Complexity

The computational complexity consists of four factors: pre-
processing, updating the survival constraints, running the or-
acle, and updating the node weights. Preprocessing requires
running Dijkstra’s algorithm for each node and robot which
has complexity O(KV 2 log(V )). Updating the survival con-
straints requires sorting at most K elements and running at
most K multiplications for the optimization routine, hence
has complexity O(K log(K)+K). The oracle routine is called
at most O(K2) times, since each remaining robot re-plans at
every planning step. Finally, the update routine is called after
each robot is selected with complexity described in Section
5. The total complexity is then

O(KV 2 log(V ))+O(K(log(K)+1))+O(K2CO)+O(KCU ).

For most applications, the complexity of the oracle will
dominate, and so the asymptotic complexity will typically
be O(K2CO).

This complexity can be improved by using the acceler-
ated greedy algorithm, as discussed in (Krause and Golovin
2014). The basic idea is to use the non-increasing property
of the discrete derivative to quickly determine whether a
given orienteering problem is worth solving. If the marginal
benefit of best path for robot k at iteration n is less than the
marginal benefit of some robot k′ already calculated for iter-
ation n+1, then we can skip re-calculating the path for robot
k at iteration n+ 1. In the worst-case, this acceleration will
not improve the run-time complexity, but in practice it can
yield a significant improvements – in the best case, the com-
plexity becomes O(KCO). Note that this accelerated greedy
algorithm only helps when because each robot has a differ-
ent feasible set, hence we cannot use it for the static algo-
rithm.

Variable Description
ωr(e) Probability robot of type r survives edge e
ps(r) Survival threshold for each type of robot
sk

n(r,ρ) One if robot k of type r following path ρ survives
edge (ρ(n−1),ρ(n)).

ak
n(r,ρ) One if robot k of type r following path ρ survives

to iteration n
zk

j(r,ρ) One if robot k of type r following path ρ visits
node j

pr
j(m,XK) Probability of m robots of type r following paths

in set XK visiting node j

Table 2 Summary of notation for the HTSO problem.

Fig. 6 Illustration of the notation used for the HTSO (note that this
is similar to Figure 2, except variables are now indexed by r). Robot
k has type r and plans to take path ρ , whose edges are represented by
lines. The fill of the lines represent the value of sk

n(r,ρ). In this example
sk

3(r,ρ) = 0, which means that ak
3(r,ρ) = ak

4(r,ρ) = ak
5(r,ρ) = 0. The

variables zk
j(r,ρ) are zero if either the robot fails before reaching node

j or if node j is not on the planned path.

7 Heterogeneous Teams

The TSO problem and our algorithm can be readily extended
to a heterogeneous setting, where there are R types of robots,
and we are given the co-design problem of optimizing over
both paths and robot types. In Section 7.1 we outline the
problem statement and necessary modifications to notation,
in Section 7.2 we give sufficient conditions for the objective
function to be submodular and provide an application, and
in Section 7.3 we outline the static algorithm and guarantees
for the heterogeneous case. In Section 7.4 we describe the
on-line HTSO problem and its relationship to the on-line
TSO problem.

7.1 Static HTSO Problem

The problem statement for the heterogeneous case is quite
similar to the TSO problem, except that there are R edge
weight functions and survival constraints, and any variables
which previously were a function of path (e.g. sk

n, zk
j, and ak

n)
are now a function of path and robot type. The notation for
the HTSO problem is summarized in Table 2 and Figure 6.



16 Stefan Jorgensen et al.

Given a set XK = {rk,ρk}K
k=1, define the R element vec-

tor Vj(XK) element-wise as the number of robots of type r
which visit node j by iteration N:

[Vj (XK)]r :=
K

∑
k=1

zk
j(r,ρk).

Let the value of visiting node j with Vj visits be given by
the function H j : ZR

+→ R+. The HTSO problem is defined
formally as:

Heterogeneous Team Surviving Orienteers Prob-
lem: Given a graph G , edge weights ωr, survival
probability thresholds {ps(r)}R

r=1 and team size K,
choose robot types and paths in order to maximize
the expected reward accumulated by the team:

maximize
r1,ρ1,...,rK ,ρK

V

∑
j=1

E
[
H j
(
Vj
(
{rk,ρk}K

k=1
))]

subject to P{ak
|ρk|(rk,ρk) = 1} ≥ ps(rk) k = 1, . . . ,K

ρk(0) = vs k = 1, . . . ,K

ρk(|ρk|) = vt k = 1, . . . ,K

The objective is to choose a team of K feasible type/path
pairs which maximize the expected cumulative rewards. The
first constraint enforces the survival probability constraint
for each path, the second and third constraints enforce that
each path starts at vs and end at vt . Note that the reward func-
tion H j maps a vector number of visits to a reward, rather
than in the TSO problem, where the reward function h j maps
a scalar number of visits to a reward.

7.2 Submodularity and Applications

We begin by characterizing when the objective function is
submodular:

Lemma 7 (Submodularity of the HTSO problem objec-
tive) Let er be rth canonical basis vector of RR. Given an
objective function

J(XK) =
V

∑
j=1

E [H j (Vj(XK))] ,

define the set function

δ
r
j (X) = E [H j (Vj(X)+ er)−H j (Vj(X))] .

The objective function has discrete derivative with respect
to (rL,ρL) at partial solution XL−1 = {r`,ρ`}L−1

`=1

∆J((rL,ρL) | XL−1)
V

∑
j=1

E
[
zL

j (rL,ρL)
]

δ
rL
j (XL−1),

and is submodular −δ r
j (X) is a monotone function of X for

all j, r.

Proof The random variable zL
j (rL,ρL) is independent of each

element of the random vector Vj(XL−1). Hence from the def-
inition of the discrete derivative and the tower property we
have for xL = (rL,ρL)

∆J(xL | XL−1) =
V

∑
j=1

E [H j (Vj(XL−1∪ (rL,ρL)))]

−E [H j (Vj(XL−1))]

=
V

∑
j=1

E[zL
j (rL,ρL)]E [H j (Vj(XL−1)+ erL)]

−
(
E[zL

j (rL,ρL)]
)
E [H j (Vj(XL−1))] ,

which upon simplification yields the first statement of the
lemma. By definition, a set function is submodular if the
negative of its discrete derivative is a monotone function.
Since E[zL

j (·)] ≥ 0 and the sum of monotone functions is
monotone, we have that the negative of the discrete deriva-
tive is monotone (hence the objective function is submodu-
lar). ut

We can use Lemma 7 to immediately extend the settings
described in Section 4 to their uncoupled analogues, where
each robot type has its own single or multi-visit reward func-
tion, and the total reward is the sum of the rewards accumu-
lated by each type. We can also consider coupled reward
functions, as described next.

Consider a scenario where robot types correspond to sen-
sor resolutions, and the information gained about a node
is determined by only the highest resolution data recorded
about the node. Let dr

j the information gained about node
variable j by a sensor of type r. The best-visit reward func-
tion is:

V

∑
j=1

E [H j(Vj(XK))] =
V

∑
j=1

E
[

max
k

drk
j zk

j(rk,ρk)

]
Given a partial solution XL−1 = {r`,ρ`}L−1

`=1 , we write the
probability that at least one robot of type r will visit node j
as

p j,r(XL−1) = 1− pr
j(0,XL−1),

and write the probability no robot of type r or less visits
node j as

p̄+j,r(XL−1) =
r

∏
r′=1

(
1− p j,r′(XL−1)

)
.

Without loss of generality, we assume that sensors with smaller
type have superior resolution. The reward function depends
only on the first visit for robots of a given type:

V

∑
j=1

E [H j (Vj(XK))] =
V

∑
j=1

R

∑
r=1

dr
j p j,r(XK)p̄+j,r−1(XK).



The Team Surviving Orienteers Problem 17

Lemma 8 (Submodularity of best-visit rewards) Let dr
j ≥

∑
R
r̂=r+1 d r̂

j ≥ 0. Then the reward function at the solution set
XK = {rk,ρk}K

k=1,

V

∑
j=1

E [H j(Vj(XK))] =
V

∑
j=1

E
[

max
k

drk
j zk

j(rk,ρk)

]
,

is a normalized, non-negative, monotone, and submodular
function with discrete derivative with respect to (rL,ρL) at
partial solution XL−1 = {r`,ρ`}L−1

`=1 :

V

∑
j=1

E[zL
j (rL,ρL)]

(
drL

j p̄+j,rL
(XL−1)

−
R

∑
r=rL+1

dr
j p j,r(XL−1)p̄+j,r−1(XL−1)

)
.

Proof The normalized, non-negative and monotone proper-
ties follow immediately from the positivity of dr

j , zr
j and the

fact that the maximum function is monotone. From the defi-
nition of the best-visit reward function we have

δ
rL
j (X) = drL

j p̄+j,rL
(X)−

R

∑
r=rL+1

dr
j p j,r(X)p̄+j,r−1(X).

The first term can be interpreted as the negative probability
that a robot of type rL following path ρL is the best robot
to visit the nodes in path ρL, and the second term is the re-
duction in the probability that robots in X with type r > rL
will be the best type to visit nodes in path ρL. Consider
two sets X and Y = X ∪ (r̃, ρ̃). If p j,r̃(X) = 1, then trivially
δ

rL
j (X) = δ

rL
j (Y ). Otherwise, p j,r(Y ) ≥ p j,r(X) with equal-

ity if r 6= r̃. For r ≥ r̃, we have p̄+j,r(X)(1− p j,r̃(Y ))/(1−
p j,r̃(X)) = p̄+j,r(Y ), and otherwise p̄+j,r(X) = p̄+j,r(Y ). Now
we show that δ

rL
j (X)≥ δ

rL
j (Y ) by considering three cases:

1. (r̃ ≤ rL): From the definition of δ
rL
j (X) we have

δ
rL
j (X)≥

1− p j,r̃(Y )
1− p j,r̃(X)

δ
rL
j (X) = δ

rL
j (Y )

The inequality is due to the fact that 1−p j,r̃(Y )
1−p j,r̃(X) ≤ 1, and

the equality because rL ≥ r̃.
2. (r̃ > rL, p j,r̃(X) = 0): We have from the definition of

δ
rL
j (X):

δ
rL
j (X) = drL

j p̄+j,rL
(X)−

r̃−1

∑
r=rL+1

dr
j p j,r(X)p̄+j,r−1(X)−0

= drL
j p̄+j,rL

(Y )−
r̃−1

∑
r=rL+1

dr
j p j,r(Y )p̄+j,r−1(Y )−0

≥ drL
j p̄+j,rL

(Y )−
R

∑
r=rL+1

dr
j p j,r(Y )p̄+j,r−1(Y )

= δ
rL
j (Y )

where we use the properties introduced above for each
line.

3. (r̃ > rL, p j,r̃(X)> 0): Define γ ≥ 0 such that p j,r̃(X)(1+
γ) = p j,r̃(Y ). Then we have

δ
rL
j (X)−δ

rL
j (Y ) = γd r̃

j p j,r̃(X)p j,r̃−1(X)

−
R

∑
r=r̃+1

dr
j p j,r(X)p̄+j,r−1(X)

(
γ p j,r̃(X)

1− p j,r̃(X)

)

≥ γ p j,r̃(X)p̄+j,r̃(X)

(
d r̃

j−
R

∑
r=r̃+1

dr
j p j,r(X)

)
≥ 0

The first and second statements are due to the definition
of γ and the given identities, and the final inequality fol-
lows from the definition of d r̃

j .

This implies that −δ
rL
j (X) is a monotone function of X ,

which implies that the best-reward objective function is sub-
modular. ut

An example which satisfies the requirement that dr
j ≥

∑
R
r̂=r+1 d r̂

j is an imaging scenario, where r corresponds to
observation distance. The area covered by a picture is pro-
portional to the square of distance, and so a small distance
implies a high density of pixels (i.e. high resolution). An-
other example of a coupled reward function is informative
path planning where each robot has a different sensor qual-
ity, and the goal is to minimize the entropy of the posterior
distribution of node variables Yj, similar to the multi-visit
example from Section 4.

7.3 Algorithm

The algorithm for the static HTSO problem proceeds in an
identical manner as for the TSO problem, except that at each
step we must consider each of the R types of robots. We be-
gin by computing the maximum probability that a node can
be visited by a robot of type r, which we denote ζ r

j . Then
we solve R orienteering problems to find the (approximate)
best type/path pair to add. Using Lemma 5 we can guaran-
tee that each path is within constant factor ps(r)/λ of the
optimal path (for a fixed robot of type r), and hence the best
path/pair is within constant factor minr ps(r)/λ of the op-
timal path/type pair for the greedy step. After choosing the
path/type pair to add, we update the reward function appro-
priately and continue on to the next iteration.

Updates for best-visit reward functions – Recall from Lemma
8 that for the best-visit reward function

δ
rL
j (XL−1) = drL

j p̄+j,rL
(XL−1)

−
R

∑
r=rL+1

dr
j p j,r(XL−1)p̄+j,r−1(XL−1),



18 Stefan Jorgensen et al.

which can be computed recursively by updating the visit and
non-visit probabilities p j,r and p̄+j,r. When (rL,ρL) is added
to XL−1, we update the visit probabilities for j ∈ ρL as

p j,rL(XL) = 1− (1− p j,rL(XL−1))(1−E[zL
j (rL,ρL)]),

and the non-visit probabilities for j ∈ ρL, r ≥ rL as

p̄+j,r(XL) = p̄+j,r(XL−1)(1−E[zL
j (rL,ρL)]).

The complexity of updating the probabilities is O(V R), and
updating the node weights is O(V R2).

Guarantees We can easily get a 1− e−minr ps(r)/λ constant
factor guarantee by using the same approach as was used for
Theorem 2. Using the remark following Theorem 1, we can
provide a tighter guarantee at run-time by computing the ap-
proximation factors α` for each step of the greedy algorithm
as follows. If ρ̂r

` is the best path found for type r at step `,
the optimum is bounded by

JUB
` = max

r

(
1− e−ps(r)/λ

)−1 V

∑
j=1

E
[
H j(Vj(X̂`−1∪ ρ̂

r
` ))
]
,

and so the approximation factor for step ` is bounded by the
ratio of the upper bound on the optimum to the value of the
approximate greedy set X̂`.

α` ≥
V

∑
j=1

E
[
H j(Vj(X̂`−1∪ρ

r`
` ))
]
/JUB

` ,

which in practice will be tighter than the 1− e−minr ps(r)/λ

guarantee.

7.4 On-line Heterogeneous TSO problem

We can also consider the on-line heterogeneous TSO prob-
lem, where the robot types remain fixed, but the paths can be
updated. We compute an updated survival probability thresh-
old for each robot type in a manner identical to that de-
scribed in Section 6, where Un is replaced by Un(r), the list
of surviving robots of type r. Because robot types are not re-
computed on-line (they are fixed after iteration n = 0), after
iteration 0 the computational complexity and algorithm will
be the same as for the on-line TSO problem.

8 Numerical Experiments

In this section we provide numerous numerical experiments
over a variety of synthetic and real-world graphs to charac-
terize the performance of our algorithm in the settings de-
scribed above. In Section 8.1 we verify that the theoretical
bounds hold for a highly structured problem (where we have

(a) Graph G (b) Optimal X∗6 (c) Greedy X̄6

Fig. 7 (a) Example of a team surviving orienteers problem with depot
in the center. Thick edges correspond to survival probability 0.98, light
edges have survival probability 0.91. (b) Optimal paths for survival
threshold ps = 0.70 and K = 6. (c) Greedy paths for the same problem.

access to the optimal solution). In Section 8.2 we character-
ize the empirical approximation factor over a wide range of
survival probability thresholds. In Sections 8.3 and 8.4 we
consider real-world scenarios involving classification during
a storm and information gathering in hostile environments.
We demonstrate the effectiveness of simple heuristics for
the orienteering problem for very large problems in Section
8.5. Finally we consider the on-line and heterogeneous vari-
ants in Sections 8.6 and 8.7, respectively. Unless otherwise
stated, we pose the orienteering problem as a MILP and use
the Gurobi solver with tolerance 10−4 as the oracle routine.

8.1 Verification of Bounds

We consider a TSO problem (where we seek to maximize
the expected number of nodes visited by a homogeneous
team) on the graph shown in Figure 7(a): the central start-
ing node has ‘safe’ transitions to six nodes, which have ‘un-
safe’ transitions to the remaining twelve nodes. Due to the
symmetry of the problem we can compute an optimal pol-
icy for a team of six robots, which is shown in Figure 7(b).
The output of the greedy algorithm is shown in Figure 7(c).
The GreedySurvivors solution comes close to the opti-
mal, although the initial path planned (shown by the thick
dark blue line) does not anticipate its impact on later paths.
The expected number of nodes visited by robots following
optimal paths, greedy paths, and the upper bound are shown
in Figure 8. Note that the upper bound is close to the opti-
mal, even for small teams, and that the GreedySurvivors

performance is nearly optimal.

8.2 Empirical Approximation Factor

We compare our algorithm’s performance against an upper
bound on the optimal value to get a sense of the empiri-
cal versus theoretical approximation ratios. We use an exact
solver for the orienteering problem, and generate instances
on a complete undirected graph (meaning there is an edge
between every pair of nodes) with V = 65 nodes and uni-
formly distributed edge weights in the interval [0.3,1). The



The Team Surviving Orienteers Problem 19

Fig. 8 Performance comparison for the example in Figure 7(a). The
optimal value is shown in green and the GreedySurvivors value is
shown in red. The upper bound on the optimum from Theorem 2 is
shown by the dotted line.

Fig. 9 Ratio of actual result to upper bound for a 65 node complete
graph. The team size ranges from 1 (at the bottom) to 5 (at the top), and
in all cases a significant fraction of the possible reward is accumulated
even for small ps.

upper bound used for comparison is the smallest of 1) the
number of nodes which can be reached within the budget, 2)
the constant-factor guarantee times our approximate solu-
tion, and 3) the guarantee from solving the problem with an
oversized team (from Theorem 2). The average performance
(relative to the upper bound) along with the total range of
results are shown in Figure 9, with the function 1− e−ps/λ

drawn as a dashed line. As shown, the approximation fac-
tor converges to the optimal as the team size grows. The dip
around ps = 0.85 is due to looseness in the bound and the
fact that the optimum is not yet reached by the greedy rou-
tine.

8.3 Information Gathering

Consider a setting where robotic sensors are used to gather
information about a physical phenomena (e.g., health of coral
reefs, algae blooms) in the Coral Triangle, an ecologically
significant region surrounding Indonesia. Figure 10 shows
108 marine protected areas listed by (Cros et al 2014). Each

area is marked by an ‘X’, and areas are contained in larger
regions highlighted by boxes (corresponding to relatively
similar environments). One commonly proposed platform
for long-duration environmental monitoring are underwater
gliders (?), which have limited communication. Hence we
consider the off-line TSO problem, as uncertain communi-
cations would otherwise lead to overly conservative actions
(as discussed in Section 6.2).

We represent this environment using a graph with nodes
corresponding to a fine uniform grid (with respect to dis-
tance). Neighboring nodes are connected (including diago-
nals) with edges, and we use piracy incident data (Interna-
tional Chamber of Commerce: Commercial Crime Services
2017) and a Poisson model similar to (Vaněk et al 2013)
to calculate the risk of traversing along the edge. Since we
are not running the on-line algorithm we can simplify the
problem by only considering the graph induced by the nodes
corresponding to marine protected regions and edges cor-
responding to the shortest (maximum survival probability)
path between these nodes. We assume a Gaussian measure-
ment model, where the marginal information gain of the mth
visit to node j is 1

2 log(1+σ
−2
j (1+m)−1), where σ2

j is the
noise variance for measurements at node j.

Figure 11 compares the performance of a team of 25
robots with survival probability threshold 0.64 when using
paths computed by a MILP formulation (with λ = 1.5) and
using the Variable Neighborhood Search (VNS) heuristic
with depth 10 (implemented as part of HeuristicLab (Wag-
ner and Affenzeller 2005)). The two approaches are com-
pared over 30 scenarios with σ2

j drawn from the uniform
distribution over [0.1,1.0], and objective is plotted relative to
the information gained if every robot visited every node. The
mean is shown as a solid line, and total range is shown using
the dotted lines. The two approaches provide similar quality
answers, though for these problems the VNS approach per-
forms 8% better on average. The MILP formulation takes
between 2.59 seconds and 71.01 seconds to find a path, with
an average of 14.9 seconds and standard deviation of 13.6
seconds. The VNS approach takes between 17.7 and 26.8
seconds to find a path, with an average of 21.0 seconds and
standard deviation of 1.52 seconds. Hence the VNS heuris-
tic (with the given parameters) provides a higher quality so-
lution in a more consistent, though longer amount of time
compared to the MILP approach.

8.4 Classification During a Storm

As the problems become large, solving MILP using per-
sonal computers becomes impractical. However cloud com-
puting offers a low-cost way of solving even moderately
large MILP problems. In this scenario, we demonstrate the
effectiveness of a 64-core cluster with 200GB of RAM in
solving a problem with 225 nodes and 25 robots.



20 Stefan Jorgensen et al.

Fig. 10 Illustration of an ocean monitoring scenario. Various regions
in the Coral Triangle are outlined by boxes, sites to visit within each
region are marked by ‘X’, and the heatmap indicates the risk of robot
failure inferred from piracy incidents. Data is from the Coral Triangle
Atlas (Cros et al 2014) and IMB Piracy Reporting Centre (International
Chamber of Commerce: Commercial Crime Services 2017).

Fig. 11 Normalized information gained by team of 25 robots when
using a VNS heuristic and the MILP formulation. The mean and range
are shown as solid and dotted lines, respectively. Note that depending
on the parameters given, the VNS heuristic quickly produces quality
solutions.

Fig. 12 Illustration of the “base reflectivity” of a storm, which can be
used to infer the danger to robots. Data from the NOAA NEXRAD
level II dataset, visualization courtesy the Weather and Climate Toolkit
(NOAA National Weather Service Radar Operations Center 1991).

Fig. 13 Reduction in posterior variance (using the Haldane prior)
for the storm classification scenario. Note that the team of 25 robots
achieves 95.8% of the maximum award available, essentially solving
the problem.

Consider a setting where robots travel through a storm
and must classify some property of each node (e.g., whether
a piece of infrastructure is operational or if there are people
present). We use data from the NOAA NEXRAD system
(NOAA National Weather Service Radar Operations Center
1991), shown in Figure 12. We assume a team of relatively
simple robots is used, which in turn limits the communica-
tions available. This is because (1) wireless quality degrades
with precipitation, and (2) turbulence limits the ability to
steer directional antenna. Accordingly, we consider the off-
line TSO problem in this setting.

Robots seek to classify a single property for each node
using a Haldane prior (as discussed in Section 4.2). Recall
that this means the value for the mth visit to node j is h j(m)=(

1
4 −

1
4(m+1)

)
.

The risk a storm poses to robots was analyzed by (Zhang
et al 2017) with a survival model very similar to ours (i.e. the
product of Bernoulli random variables over each edge in a
graph). For simplicity we assume that survival probability
is inversely proportional to “base reflectivity” (the propor-
tion of radar energy reflected by the weather system), though
in practice one would want to use a more sophisticated ap-
proach such as the ensemble models used in (Zhang et al
2017).

We place 225 sites in a grid and compute edge weights
across the straight-line connection between sites. We use a
team of 25 robots with ps = 0.8. Paths are found using the
Gurobi solver with tolerance λ = 1.5, and each path takes an
average of 55.4 seconds to find. Figure 13 shows the objec-
tive achieved by our team along with an upper bound (which
is the smaller of the constant factor guarantee and the upper
bound computed using ζ j and k only). The team of 25 robots
achieves 95.8% of the maximum reduction in posterior vari-
ance possible.



The Team Surviving Orienteers Problem 21

Fig. 14 Histogram comparing surviving robots with and without re-
planning for 20 trials with K = 25 and ps = 0.8. Note that the expected
number of surviving robots at the initial iteration is 20.

8.5 Large Scale Performance

As the problems become very large, it becomes impractical
to solve them using a MILP approach. We demonstrate the
usefulness of simple heuristics in solving such large prob-
lems by planning K = 25 paths for synthetic complete undi-
rected graphs of various sizes. We use two Orienteering

routines: the mixed integer formulation from (Kara et al 2016)
with Gurobi’s MILP solver, and an adapted version of the
open source heuristic developed by the authors of (Vansteen-
wegen et al 2009). For the cases where we have comparison
data (up to V = 100 nodes) the team using paths computed
using the heuristic achieves an average of 98.2% the reward
of the MILP algorithm. Even very large problems, e.g. 25
robots on a 900 node graph, can be solved in approximately
an hour with the heuristic on a machine that has a 3GHz i7
processor using 8 cores and 64GB of RAM.

8.6 Benefits of Re-planning

We demonstrate the benefits of an on-line approach using a
synthetic complete undirected planar graph with 50 nodes
and 25 homogeneous robots that have survival probability
threshold ps = 0.8. Figure 14 shows the histogram of the
number of surviving robots at iteration N for 20 trials. With-
out re-planning, 45% of trials finished with fewer than 20
survivors, versus 15% when paths were re-planned. Condi-
tioned on the event that the final budget is negative, the ex-
pected value of the overrun is reduced by 25% from −1.78
(without re-planning) to −1.33. A side effect of re-planning
in the worst-case regime is that the average reward is re-
duced, but the effect is not significant. For the same set of
trials discussed above, the average reward with re-planning
was 93% of the reward gained without re-planning.

8.7 Heterogeneous Team with Best-visit Rewards

Using heterogeneous teams can give substantial advantages
over homogeneous teams of the same size. We demonstrate
this by comparing teams of 20 robots on a complete undi-
rected graph with 35 nodes in a setting where robots with
higher sensor qualities have more stringent survival proba-
bility thresholds. Namely, the sensing qualities are (1, 2, 4, 8,
16), and the survival constraints are respectively (0.30, 0.45,
0.6, 0.75, 0.90). Figure 15 shows the expected cumulative
reward as a function of the team size for the heterogeneous
team (solid line) and best homogeneous teams among the
five robot types (dashed line). For teams of 20 robots, the
heterogeneous team vastly outperforms the homogeneous
teams, in this example it is expected to achieve 186% the
reward of the best homogeneous team (and 851% of the
worst). We note that this is for the static HTSO problem,
meaning that the paths are not re-planned based on survival
events.

Fig. 15 Cumulative reward of a heterogeneous team versus a homoge-
neous team for best-visit rewards. The graph has V = 35.

9 Conclusions

In this paper we formulate the Team Surviving Orienteers
problem, where we are asked to plan a set of paths that
maximizes the expected cumulative reward at nodes visited
while guaranteeing that every robot survives with probabil-
ity at least ps. What sets this problem apart from previous
work is the notion of risky traversal, where a robot might not
complete its planned path. This creates a complex, history-
dependent coupling between the edges chosen and the distri-
bution of nodes visited, which precludes the application of
existing approaches available for the traditional orienteering
problem. We give numerous applications where the objec-
tive function is submodular in the paths chosen, present a
linearization for a class of submodular functions, and use



22 Stefan Jorgensen et al.

it to develop the GreedySurvivors algorithm which has
polynomial-time complexity with a constant-factor guaran-
tee that the returned objective is lower bounded by (1−
e−ps/λ )OPT, where OPT is the optimum.

We then provide an algorithm for the on-line TSO prob-
lem, where at iteration n the list of surviving robots and
edges traversed is given and we are asked to re-plan the
paths in order to maximize the expected cumulative rewards,
while observing an updated survival probability thresholds.
We give an algorithm which finds a near-optimal set of paths
which satisfy the constraints in polynomial-time. Third, we
outline how to extend the TSO to the co-design problem
where we are asked to assemble a heterogeneous team of
robots. We give an algorithm for the HTSO with complex-
ity that grows only linearly in the number of robots types
relative to the complexity of the TSO. Finally we demon-
strate the effectiveness of our approach using numerical ex-
periments for a variety of settings. Our experiments support
the theoretical performance guarantees, and we demonstrate
the efficiency of our algorithm for large graphs by solving
a TSO with 25 robots and 900 nodes. Finally we illustrate
the performance gains of running the on-line version of the
TSO and of using heterogeneous teams.

Future Work There are numerous directions for future work.
First, we are interested in more general models for the re-
ward functions, such as time-varying rewards, or when the
reward functions between nodes are correlated. Our analysis
assumes that the reward functions at each node are indepen-
dent, which does not capture applications such as informa-
tive path planning with covariance between node variables.

Second, we are interested in more general models for
traversal, such as allowing walks or more complicated sur-
vival models. As mentioned in Section 5.5 it is possible to
recover the 1−exp(−ps/λ ) guarantee if we use a solver that
can assign different rewards based on the number of visits to
a node, but this becomes a MIP rather than a MILP, which
is significantly more difficult to solve. We leave a more de-
tailed investigation of this to future work. More general sur-
vival models (e.g., non-binary survival states) should also
be considered. The approach taken by (Campbell et al 2011)
may be a good starting point and may also allow for depen-
dence between the survival variables sk

n.
Third, we are interested in applying the notion of adap-

tive submodularity (Golovin and Krause 2011), to the on-
line TSO problem. In this case, we would optimize over
policies of paths, which would specify which path to take
based on all of the survival outcomes. Using such an ap-
proach will require extending the setting in (Golovin and
Krause 2011) to allow for sequences of outcomes (the sk

n
variables) to be associated with each ‘item’ in the feasible
set.

Finally, we are interested in investigating numerous re-
lated problems, such as the dual problem (where the survival
probabilities are given as the objective, and the visit prob-
abilities as the constraint), or the knapsack variant where
we are given a cost function and must assemble a team that
satisfies the cost constraint (rather than the cardinality con-
straint used in the present work).

Acknowledgements The authors would like to thank Federico Rossi,
Edward Schmerling, and Sumeet Singh for their comments and in-
sights which led to tighter analysis.

References

Atanasov N, Le Ny J, Daniilidis K, Pappas GJ (2015) Decentralized ac-
tive information aquisition: Theory and application to multi-robot
SLAM. In: Proc. IEEE Conf. on Robotics and Automation

Campbell AM, Gendreau M, Thomas BW (2011) The orienteering
problem with stochastic travel and service times. Annals of Op-
erations Research 186(1):61–81

Chao IM, Golden BL, Wasil EA (1996) The team orienteering prob-
lem. European Journal of Operational Research 88(3):464–474

Chekuri C, Pál M (2005) A recursive greedy algorithm for walks in
directed graphs. In: IEEE Symp. on Foundations of Computer Sci-
ence

Chekuri C, Korula N, Pál M (2012) Improved algorithms for orien-
teering and related problems. ACM Transactions on Algorithms
8(3):23:1–23:27

Chen K, Har-Peled S (2006) The orienteering problem in the plane
revisited. In: ACM Symp. on Computational Geometry

Chen XH, Dempster AP, Liu JS (1994) Weighted finite population sam-
pling to maximize entropy. Biometrika 81(3):457–469

Cros A, Ahamad Fatan N, White A, Teoh S, Tan S, Handayani C,
Huang C, Peterson N, Venegas Li R, Siry HY, Fitriana R, Gove
J, Acoba T, Knight M, Acosta R, Andrew N, Beare D (2014) The
Coral Triangle Atlas: An integrated online spatial database system
for improving coral reef management. PLoS ONE 9(6):1–7

Gavalas D, Konstantopoulos C, Mastakas K, Pantziou G, Vathis N
(2015) Approximation algorithms for the arc orienteering prob-
lem. Information Processing Letters 115(2):313–315

Golden BL, Yee JR (1979) A framework for probabilistic vehicle rout-
ing. AIIE Transactions 11(2):109–112

Golden BL, Levy L, Vohra R (1987) The orienteering problem. Naval
Research Logistics 34(3):307–318

Golovin D, Krause A (2011) Adaptive submodularity: Theory and ap-
plications in active learning and stochastic optimization. Journal
of Artificial Intelligence Research 42:427–486

Gunawan A, Lau HC, Vansteenwegen P (2016) Orienteering problem:
A survey of recent variants, solution approaches and applications.
European Journal of Operational Research 255(2):315–332

Gupta A, Krishnaswamy R, Nagarajan V, Ravi R (2012) Approxima-
tion algorithms for stochastic orienteering. In: ACM-SIAM Symp.
on Discrete Algorithms

Haldane JBS (1932) A note on inverse probability. Mathematical Pro-
ceedings of the Cambridge Philosophical Society 28(1):55–61

Hollinger GA, Sukhatme GS (2014) Sampling-based robotic infor-
mation gathering algorithms. Int Journal of Robotics Research
33(9):1271–1287

International Chamber of Commerce: Commercial Crime Services
(2017) IMB piracy reporting centre. Available at https://www.
icc-ccs.org/piracy-reporting-centre

Jorgensen S, Chen RH, Milam MB, Pavone M (2017) The team surviv-
ing orienteers problem: Routing robots in uncertain environments

https://www.icc-ccs.org/piracy-reporting-centre
https://www.icc-ccs.org/piracy-reporting-centre


The Team Surviving Orienteers Problem 23

with survival constraints. In: IEEE Int. Conf. on Robotic Comput-
ing

Kara I, Biçakci PS, Derya T (2016) New formulations for the orien-
teering problem. Procedia Economics and Finance 39:849–854

Krause A, Golovin D (2014) Submodular function maximization. In:
Tractability: Practical approaches to hard problems, Cambridge
University Press

Laporte G, Louveaux F, Mercure H (1989) Models and exact solutions
for a class of stochastic location-routing problems. European Jour-
nal of Operational Research 39(1):71–78

Lynch NA (1997) Distributed Algorithms, 1st edn. Morgan Kaufmann
Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approx-

imations for maximizing submodular set functions–I. Mathemati-
cal Programming 14(1):265–294

NOAA National Weather Service Radar Operations Center (1991)
NOAA next generation radar (NEXRAD) level II base data

Pillac V, Gendreau M, Guéret C, Medaglia AL (2013) A review of dy-
namic vehicle routing problems. European Journal of Operational
Research 225(1):1–11

Psaraftis HN, Wen M, Kontovas CA (2016) Dynamic vehicle routing
problems: Three decades and counting. Networks 67(1):3–31

Singh A, Krause A, Guestrin C, Kaiser WJ (2009) Efficient informa-
tive sensing using multiple robots. Journal of Artificial Intelligence
Research 34:707–755

Stewart WR, Golden BL (1983) Stochastic vehicle routing: A com-
prehensive approach. European Journal of Operational Research
14(4):371–385

Vaněk O, Jakob M, Hrstka O, Pěchouček M (2013) Agent-based model
of maritime traffic in piracy affected waters. Transportation Re-
search Part C: Emerging Technologies 36:157–176

Vansteenwegen P, Souffriau W, Berghe GV, Van Oudheusden D (2009)
Iterated local search for the team orienteering problem with time
windows. Computers & Operations Research 36(12):3281–3290

Vansteenwegen P, Souffriau W, Van Oudheusden D (2011) The orien-
teering problem: A survey. European Journal of Operational Re-
search 209(1):1–10

Varakantham P, Kumar A (2013) Optimization approaches for solving
chance constrained stocahstic orienteering problems. In: Proc. Int.
Conf. on Algorithmic Decision Theory

Wagner S, Affenzeller M (2005) HeuristicLab: A generic and extensi-
ble optimization environment. In: Adaptive and Natural Comput-
ing Algorithms, Springer

Wei K, Iyer RK, Bilmes JA (2014) Fast multi-stage submodular maxi-
mization. In: Int. Conf. on Machine Learning

Zhang B, Tang L, Roemer M (2017) Probabilistic planning and risk
evaluation based on ensemble weather forecasting. IEEE Transac-
tions on Automation Sciences and Engineering PP(99):1–11

Zhang H, Vorobeychik Y (2016) Submodular optimization with rout-
ing constraints. In: Proc. AAAI Conf. on Artificial Intelligence

Appendix

In the following we prove the technical lemma stated in the
background section. We start the proof by considering a se-
quence of Poisson binomial distributions f0, f1, . . . . The pa-
rameters of the nth distribution are denoted as {pn,k}K

k=1,
with pn,1 ≤ pn,2 ≤ ·· · ≤ pn,K . The parameters of the n+1st
distribution are

{pn+1,k}K
k=1 =

{
pn,1 + pn,K

2
,{pn,k}K−1

k=2 ,
pn,1 + pn,K

2

}
,

that is, the largest and smallest event probabilities of the
nth distribution are averaged to form the n + 1st distribu-
tion. Note that we re-sort the parameters after construct-
ing them from the nth distribution, so it is still true that
pn+1, j ≤ pn+1,k for j ≤ k.

It is easy to verify that this sequence converges to the
binomial distribution with parameters K and p = 1

K ∑
K
k=1 pk.

We are interested in showing that the tails of the sequence
become heavier as n increases. We begin by making some
basic observations:

Lemma 9 Define

εn :=
1
2
(pn,K− pn,1)

and

p̄n :=
1
2
(pn,K + pn,1) .

Then

pn,1 pn,K = p̄2
n− ε

2
n ,

(1− pn,1)(1− pn,K) = (1− p̄n)
2− ε

2
n ,

and

pn,1(1− pn,K)+ pn,K(1− pn,1) = 2p̄n(1− p̄n)+2ε
2
n .

Proof Each of these statements follows from straightforward
algebra:

p̄2
n− ε

2
n =

1
4
(

p2
n,1 +2pn,1 pn,K + p2

n,K
)

− 1
4
(
(p2

n,K−2pn,1 pn,K + p2
n,1)
)

=
1
4
(4pn,1 pn,K) = pn,1 pn,K

(1− p̄n)
2− ε

2
n = 1−2p̄n + p̄2

n− ε
2
n

= 1− (pn,1 + pn,K)+ pn,1 pn,K

= (1− pn,1)(1− pn,K)

2 p̄n(1− p̄n)+2ε
2
n =−2(p̄2

n− ε
2
n )+2 p̄n

=−2(pn,1 pn,K)+(pn,1 + pn,K)

= pn,1(1− pn,K)+ pn,K(1− pn,1)

ut

It is useful to define an auxiliary sequence of Poisson
binomial probability mass functions

gn(m) = f (m;{pn,k}K−1
k=2 ),

which correspond to the probabilities of m successes exclud-
ing the most and least likely “events” of the nth distribution.
Note that by definition gn(m) = 0 if m < 0 or m > K− 2.



24 Stefan Jorgensen et al.

We also define notation for the first and second-order finite
difference of gn(m), which are crucial quantities in our in-
equalities below.

∆1,n(m) := gn(m)−gn(m−1),

and

∆2,n(m) := ∆1,n(m)−∆1,n(m−1)

= gn(m)−2gn(m−1)+gn(m−2).

Using these relationships, we can form a succinct recur-
sive description of fn(m):

Lemma 10 For the sequence of probability mass functions
above, we have

fn(m) = fn+1(m)− ε
2
n ∆2,n(m),

and for Fn(m′) := ∑
m′
m=0 fn(m),

Fn(m′) = Fn+1(m′)− ε
2
n ∆1,n(m′).

Proof By definition of the probability mass function and
gn(m),

fn(m) = pn,1 pn,Kgn(m)

+(pn,1(1− pn,K)+ pn,K(1− pn,1))gn(m−1)

+(1− pn,1)(1− pn,K)gn(m−2)

= p̄2
ngn(m)+ p̄n(1− p̄n)gn(m−1)+(1− p̄n)

2gn(m−2)

− ε
2
n (gn(m)−2gn(m−1)+gn(m−2))

= fn+1(m)− ε
2
n ∆2,n(m).

The second equality follows from the identities in Lemma
9, and the second equality follows by definition of fn+1(m)

and ∆2,n.
Now taking the summation gives us the second state-

ment:

Fn(m′) =
m′

∑
m=0

fn+1(m)− ε
2
n (gn(m)−2gn(m−1)+gn(m−2))

= Fn+1(m′)− ε
2
n

(
m′

∑
m=0

gn(m)−2
m′−1

∑
m=0

gn(m)+
m′−2

∑
m=0

gn(m)

)
= Fn+1(m′)− ε

2
n (gn(m′)−gn(m′−1))

= Fn+1(m′)− ε
2
n ∆1,n(m′).

ut

This lemma gives us an exact characterization of the dif-
ference between successive distributions in our sequence.
Specifically, fn(m)≤ fn+1(m) if and only if the second order
finite difference, ∆2,n(m), is non-negative, and Fn(m′) ≤
Fn+1(m′) if and only if the first order finite difference, ∆ 1

n (m
′)

is non-negative. In the following lemma, we give a sufficient
condition on m to ensure that ∆1,n(m)≥ 0.

Lemma 11 Let {pn,k}K
k=1 and µ be defined as in Lemma

1, and ∆1,n(m) defined as the first order finite difference
of gn(m), the Poisson binomial distribution with parame-
ters {pn,k}K−1

k=2 . Then for m≤ (1− p1,K)(K−2) µ

1−µ
+ p1,K ,

∆1,n(m)≥ 0.

Proof We start by expressing gn(m) using the recursive char-
acterization of the Poisson binomial probability mass func-
tion given by (Chen et al 1994):

gn(m) =
1
m

m

∑
i=1

(−1)i−1gn(m− i)Tn(i),

where Tn(i) = ∑
K−1
k=2

(
pn,k

1−pn,k

)i
. Note that for i ≥ 2, we have

Tn(i) ≤ Tn(i−1) p1,K
1−p1,K

. The case ∆1,n(m+1) ≥ 0 is equiv-

alent to saying that gn(m+1)
gn(m) ≥ 1. Using the recursive expres-

sion above,

gn(m+1)
gn(m)

=
Tn(1)
m+1

− ∑
m
i=1(−1)i−1gn(m− i)Tn(i+1)

(m+1)gn(m)

≥ Tn(1)
m+1

−
∑

m
i=1(−1)i−1gn(m− i)Tn(i)

(
p1,K

1−p1,K

)
(m+1)gn(m)

≥ Tn(1)
m+1

− m
m+1

(
p1,K

1− p1,K

)
≥ K−2

m+1
µ

1−µ
− m

m+1
p1,K

1− p1,K
.

Solving for m+1 we have that ∆1,n(m+1)≥ 0 if

m+1≤ (1− p1,K)

(
(K−2)

µ

1−µ

)
+ p1,K

ut

Combining Lemmas 10 and 11 completes the proof for
Lemma 1.


	Introduction
	Background
	Problem Statement
	Applications and Examples
	Approximate Solution Approach to the Static TSO
	Approximate Solution Approach to the On-line TSO
	Heterogeneous Teams
	Numerical Experiments
	Conclusions

