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Abstract
Probabilistic sampling-based algorithms, such as the probabilistic roadmap (PRM) and the rapidly-exploring random tree
(RRT) algorithms, represent one of the most successful approaches to robotic motion planning, due to their strong theoretical
properties (in terms of probabilistic completeness or even asymptotic optimality) and remarkable practical performance.
Such algorithms are probabilistic in that they compute a path by connecting independently and identically distributed
(i.i.d.) random points in the configuration space. Their randomization aspect, however, makes several tasks challenging,
including certification for safety-critical applications and use of offline computation to improve real-time execution. Hence,
an important open question is whether similar (or better) theoretical guarantees and practical performance could be obtained
by considering deterministic, as opposed to random sampling sequences. The objective of this paper is to provide a rigorous
answer to this question. Specifically, we first show that PRM, for a certain selection of tuning parameters and deterministic
low-dispersion sampling sequences, is deterministically asymptotically optimal, i.e., it returns a path whose cost converges
deterministically to the optimal one as the number of points goes to infinity. Second, we characterize the convergence rate,
and we find that the factor of sub-optimality can be very explicitly upper-bounded in terms of the `2-dispersion of the
sampling sequence and the connection radius of PRM. Third, we show that an asymptotically optimal version of PRM
exists with computational and space complexity arbitrarily close to O(n) (the theoretical lower bound), where n is the
number of points in the sequence. This is in contrast to the O(n log n) complexity results for existing asymptotically-
optimal probabilistic planners. Fourth, we show that our theoretical results and insights extend to other batch-processing
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algorithms such as FMT∗ , to non-uniform sampling strategies, to k-nearest-neighbor implementations, and to differentially-
constrained problems. Finally, through numerical experiments, we show that planning with deterministic low-dispersion
sampling generally provides superior performance in terms of path cost and success rate.

1. Introduction

Probabilistic sampling-based algorithms represent a particularly successful approach to robotic motion planning problems
[Thrun et al., 2005, Lavalle, 2006]. The key idea behind probabilistic sampling-based algorithms is to avoid the explicit
construction of the configuration space (which can be prohibitive in complex planning problems) and instead conduct a
search that probabilistically probes the configuration space with independently and identically distributed (i.i.d.) random
samples. This probing is enabled by a collision detection module, which the motion planning algorithm considers as
a “black box" [Lavalle, 2006]. Examples, roughly in chronological order, include the probabilistic roadmap algorithm
(PRM) [Kavraki et al., 1996], expansive space trees (EST) [Hsu et al., 1999, Phillips et al., 2004], Lazy-PRM [Bohlin and
Kavraki, 2000], the rapidly exploring random trees algorithm (RRT) [LaValle and Kuffner, 2001], sampling-based roadmap
of trees (SRT) [Plaku et al., 2005], rapidly-exploring roadmap [Alterovitz et al., 2011], PRM∗ and RRT∗ [Karaman and
Frazzoli, 2011], RRT# [Arslan and Tsiotras, 2013], and the fast marching tree algorithm (FMT∗) [Janson et al., 2015]. A
central result is that these algorithms provide probabilistic completeness guarantees in the sense that the probability that
the planner fails to return a solution, if one exists, decays to zero as the number of samples approaches infinity [Barraquand
et al., 2000]. Recently, it has been proven that RRT∗ , PRM∗ , RRT# , and FMT∗ are asymptotically optimal, i.e., the cost
of the returned solution converges almost surely to the optimum [Karaman and Frazzoli, 2011, Arslan and Tsiotras, 2013,
Janson et al., 2015].

It is natural to wonder whether the theoretical guarantees and practical performance of sampling-based algorithms would
hold if these algorithms were to be de-randomized, i.e., run on a deterministic, as opposed to random sampling sequence.
This is an important question, as de-randomized planners would significantly simplify the certification process (as needed
for safety-critical applications), enable the use of offline computation (particularly important for planning under differential
constraints or in high-dimensional spaces—exactly the regime for which sampling-based planners are designed), and, in
the case of lattice sequences, drastically simplify a number of operations (e.g., locating nearby samples). This question
has received relatively little attention in the literature. Specifically, previous research [Branicky et al., 2001, LaValle et al.,
2004, Hsu et al., 2006] has focused on the performance of de-randomized versions of sampling-based planners in terms
of convergence to feasible paths. A number of deterministic variants of the PRM algorithm were shown to be resolution
complete (i.e., provably converging to a feasible solution as n→∞) and, perhaps surprisingly, offer superior performance
on an extensive set of numerical experiments [Branicky et al., 2001, LaValle et al., 2004]. Prompted by these results, a
number of deterministic low-dispersion, incremental sequences have been specifically tailored to motion planning problems
[Yershova and LaValle, 2004, Lindemann et al., 2005, Yershova et al., 2010].

The results in [Branicky et al., 2001, LaValle et al., 2004, Hsu et al., 2006] are restricted to convergence to feasible, as
opposed to optimal paths. Several questions are still open. Are there advantages of i.i.d. sampling in terms of convergence
to an optimal path? Can convergence rate guarantees for the case of deterministic sampling be provided, similar to what
is done for probabilistic planners in [Janson et al., 2015, Dobson et al., 2015]? For a given number of samples, are there
advantages in terms of computational and space complexity? The objective of this paper is to rigorously address these
questions. Our focus is on the PRM algorithm. However, we show that similar results hold for many of the existing batch
(i.e., not anytime) algorithms, including Lazy-PRM and FMT∗ .

Statement of Contributions: The contributions of this paper are as follows.

Deterministic asymptotic optimality of sampling-based planning: We show that the PRM algorithm is asymptotically
optimal when run on deterministic sampling sequences in d dimensions whose `2-dispersion is upper-bounded by
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γ n−1/d, for some γ ∈ R>0 (we refer to such sequences as deterministic low-dispersion sequences), and with a
connection radius rn ∈ ω(n−1/d)1. In other words, the cost of the solution computed over n samples converges
deterministically to the optimum as n → ∞. As a comparison, the analogue result for the case of i.i.d. random
sampling holds almost surely or in probability [Karaman and Frazzoli, 2011, Janson et al., 2015] (as opposed to
deterministically) and requires a connection radius Ω

(
(log(n)/n)1/d

)
, i.e., bigger.

Convergence rate: We show that, in the absence of obstacles, the factor of sub-optimality of PRM is upper-bounded by
2Dn/(rn−2Dn), whereDn is the `2-dispersion of the sampling sequence. A slightly more sophisticated result holds
for the obstacle-cluttered case. As a comparison, the analogue result for the case of i.i.d. sampling only holds in
probability and is much more involved (and less interpretable) [Janson et al., 2015]. Our results could be instrumental
to the certification of sampling-based planners.

Computational and space complexity: We prove that PRM, when run on a low-dispersion lattice, has computational
and space complexity O(n2 rdn). As asymptotic optimality can be obtained using rn ∈ ω(n−1/d), there exists an
asymptotically optimal version of PRM with computational and space complexity ω(n), where O(n) represents the
theoretical lower bound (as, at the very least, n operations need to be carried out to load samples into memory). As a
comparison, the analogous complexity results for the case of i.i.d. sampling are of order O(n log(n)) [Karaman and
Frazzoli, 2011].

Extensions: We extend the contributions in all three of the preceding categories to much broader settings. Specifically, we
find that many of the results that hold for PRM run on a low-dispersion lattice hold either exactly or approximately for
k-nearest-neighbor algorithms, for other batch-processing algorithms such as FMT∗ , for non-lattice low-dispersion
sampling such as the Halton sequence, for non-uniform sampling, and for kinodynamic planning.

Experimental performance: Finally, we compare performance (in terms of path cost and success rates) of deterministic
low-dispersion sampling versus i.i.d. sampling on a variety of test cases ranging from two to eight dimensions and
including geometric, kinematic chain, and kinodynamic planning problems. In all our examples, for a given number
of samples, deterministic low-dispersion sampling performs no worse and sometimes substantially better than i.i.d.
sampling (this is not even accounting for the potential significant speed-ups in runtime, e.g., due to fast nearest-neighbor
indexing).

The key insight behind our theoretical results (e.g., smaller required connection radius, better complexity, etc.) is the
factor difference in dispersion between deterministic low-dispersion sequences versus i.i.d. sequences, namely O(n−1/d)

versus O((log n)1/d n−1/d) [Deheuvels, 1983, Niederreiter, 1992]. Interestingly, the same O(n−1/d) dispersion can be
achieved with non-i.i.d. random sequences, e.g., randomly rotated and offset lattices. As we will show, these sequences
enjoy the same deterministic performance guarantees of deterministic low-dispersion sequences and retain many of the
benefits of deterministic sampling (e.g., fast nearest-neighbor indexing). Additionally, their “controlled" randomness may
allow them to address some potential issues with deterministic sequences (in particular lattices), e.g., avoiding axis-
alignment issues in which entire rows of samples may become infeasible due to alignment along an obstacle boundary.
In this perspective, achieving deterministic guarantees is really a matter of i.i.d. sampling versus non-i.i.d. low-dispersion
sampling (with deterministic sampling as a prominent case), as opposed to random versus deterministic. Collectively,
our results, complementing and corroborating those in [Branicky et al., 2001, LaValle et al., 2004], strongly suggest that
both the study and application of sampling-based algorithms should adopt non-i.i.d. low-dispersion sampling. From a
different viewpoint, our results provide a theoretical bridge between sampling-based algorithms with i.i.d. sampling and

1For f, g : N → R, we say f ∈ O(g) if there exists n0 ∈ N and k ∈ R>0 such that |f(n)| ≤ k |g(n)| for all n ≥ n0. We say f ∈ Ω(g) if there
exists n0 ∈ N and k ∈ R>0 such that |f(n)| ≥ k |g(n)| for all n ≥ n0. Finally, we say f ∈ ω(g) if limn→∞ f(n)/g(n) =∞.
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non-sampling-based algorithms on regular grids (e.g., D* [Stentz, 1995] and related kinodynamic variants [Pivtoraiko et al.,
2009]).

Organization: This paper is structured as follows. In Section 2 we provide a review of known concepts from low-
dispersion sampling, with a focus on `2-dispersion. In Section 3 we formally define the optimal path planning problem. In
Section 4 we present our three main theoretical results for planning with low-dispersion sequences: asymptotic optimality,
convergence rate, and computational and space complexity. In Section 5 we extend the results from Section 4 to other batch-
processing algorithms, non-uniform sampling, and kinodynamic motion planning. In Section 6 we present results from
numerical experiments supporting our statements. Finally, in Section 7, we draw some conclusions and discuss directions
for future work.

2. Background

A key characteristic of any set of points on a finite domain is its `2-dispersion. This concept will be particularly useful in
elucidating the advantages of deterministic sampling over i.i.d. sampling. As such, in this section we review some relevant
properties and results on the `2-dispersion.

Definition 1 (`2-dispersion). For a finite, nonempty set S of points contained in a d-dimensional compact Euclidean

subspace X with positive Lebesgue measure, its `2-dispersion D(S) is defined as

D(S) := sup
x∈X

min
s∈S
‖s− x‖2 = sup {r > 0 : ∃x ∈ X with B(x, r) ∩ S = ∅} , (1)

where B(x, r) is the open ball of radius r centered at x.

Intuitively, the `2-dispersion quantifies how well a space is covered by a set of points S in terms of the largest open
Euclidean ball that touches none of the points. The quantity D(S) is important in the analysis of path optimality as an
optimal path may pass through an empty ball of radius D(S). Hence, D(S) bounds how closely any path tracing through
points in S can possibly approximate that optimal path.

The `2-dispersion of a set of deterministic or random points is often hard to compute, but luckily it can be bounded by the
more-analytically-tractable `∞-dispersion. The `∞-dispersion is defined by simply replacing the `2-norm in equation (1) by
the `∞-norm, or max-norm. The `∞-dispersion of a set S, which we will denote by D∞(S), is related to the `2-dispersion
in d dimensions by [Niederreiter, 1992],

D∞(S) ≤ D(S) ≤
√
dD∞(S),

which allows us to bound D(S) when D∞(S) is easier to compute. In particular, an important result due to [Deheuvels,
1983] is that the `∞-dispersion of n independent uniformly sampled points on [0, 1]d isO((log(n)/n)1/d) with probability
1. Corollary to this is that the `2-dispersion is also O((log(n)/n)1/d) with probability 1.

Remarkably, there are deterministic sequences with `2-dispersions of order O(n−1/d), an improvement by a factor
log(n)1/d. (Strictly speaking, one should distinguish point sets, where the number of points is specified in advance, from
sequences [LaValle et al., 2004]—in this paper we will simply refer to both as “sequences.”) For instance, the Sukharev
sequence [Sukharev, 1971], whereby [0, 1]d is gridded into n = kd hypercubes and their centers are taken as the sampled
points, can easily be shown to have `2-dispersion of (

√
d/2)n−1/d for n = kd points. As we will see in Section 4, the

use of sample sequences with lower `2-dispersions confers on PRM a number of beneficial properties, thus justifying the
use of certain deterministic sequences instead of i.i.d. ones. In the remainder of the paper, we will refer to sequences with
`2-dispersion of order O(n−1/d) as low-dispersion sequences. A natural question to ask is whether we can use a sequence
that minimizes the `2-dispersion. Unfortunately, such an optimal sequence is only known for d = 2, in which case it is
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represented by the centers of the equilateral triangle tiling [Lavalle, 2006]. In this paper, we will focus on the Sukharev
[Sukharev, 1971] and Halton sequences [Halton, 1960], except in two dimensions when we will consider the triangular
lattice as well, though there are many other deterministic sequences with `2-dispersion of order O(n−1/d); see [Yershova
and LaValle, 2004, Lindemann et al., 2005, Yershova et al., 2010] for other examples.

3. Problem Statement

The problem formulation follows that in [Janson et al., 2015] very closely. Let X = [0, 1]d be the configuration space,
where d ∈ N. Let Xobs be a closed set representing the obstacles, and let Xfree = cl(X \ Xobs) be the obstacle-free space,
where cl(·) denotes the closure of a set. The initial condition is xinit ∈ Xfree, and the goal region isXgoal ⊂ Xfree. A specific
path planning problem is characterized by a triplet (Xfree, xinit,Xgoal). A function σ : [0, 1]→ Rd is a path if it is continuous
and has bounded variation. If σ(τ) ∈ Xfree for all τ ∈ [0, 1], σ is said to be collision-free. Finally, if σ is collision-free,
σ(0) = xinit, and σ(1) ∈ cl(Xgoal), then σ is said to be a feasible path for the planning problem (Xfree, xinit,Xgoal).

The goal region Xgoal is said to be regular if there exists ξ > 0 such that ∀y ∈ ∂Xgoal, there exists z ∈ Xgoal with
B(z; ξ) ⊆ Xgoal and y ∈ ∂B(z; ξ) (the notation ∂X denotes the boundary of set X ). Intuitively, a regular goal region is a
smooth set with a boundary that has bounded curvature. Regularity is a technical condition we will use in our results, but is
in fact quite weak, as nearly any goal region can be well-approximated by a regular goal region. Furthermore, we will say
Xgoal is ξ-regular if Xgoal is regular for the parameter ξ. Denote the set of all paths by Σ. A cost function for the planning
problem (Xfree, xinit,Xgoal) is a function c : Σ→ R≥0; in this paper we will focus on the arc length function. The problem
is then defined as follows:

Optimal path planning problem: Given a path planning problem (Xfree, xinit,Xgoal) with an arc length cost function
c : Σ→ R≥0, find a feasible path σ∗ such that c(σ∗) = min{c(σ) : σ is feasible}. If no such path exists, report failure.

A path planning problem can be arbitrarily difficult if the solution traces through a narrow corridor, which motivates the
standard notion of path clearance [Karaman and Frazzoli, 2011]. For a given δ > 0, define the δ-interior of Xfree as the set
of all configurations that are at least a distance δ from Xobs. Then a path is said to have strong δ-clearance if it lies entirely
inside the δ-interior ofXfree. Further, a path planning problem with optimal path cost c∗ is called δ-robustly feasible if there
exists a strictly positive sequence δn → 0, and a sequence {σn}ni=1 of feasible paths such that limn→∞ c(σn) = c∗ and
for all n ∈ N, σn has strong δn-clearance, σn(1) ∈ ∂Xgoal, and σn(τ) /∈ Xgoal for all τ ∈ (0, 1).

Lastly, in this paper we will be considering a generic form of the PRM algorithm. That is, denote by gPRM (for generic
PRM) the algorithm given by Algorithm 1. The function SampleFree(n) is a function that returns a set of n ∈ N
points in Xfree. Given a set of samples V , a sample v ∈ V , and a positive number r, Near(V, v, r) is a function that
returns the set of samples {u ∈ V : ‖u − v‖2 < r}. Given two samples u, v ∈ V , CollisionFree(u, v) denotes the
boolean function which is true if and only if the line joining u and v does not intersect an obstacle. Given a graph (V,E),
where the node set V contains xinit and E is the edge set, ShortestPath(xinit, V, E) is a function returning a shortest
path from xinit to Xgoal in the graph (V,E) (if one exists, otherwise it reports failure). Deliberately, we do not specify
the definition of SampleFree and have left rn in line 3 of Algorithm 1 unspecified, thus allowing for any sequence
of points—deterministic or random—to be used, with any connection radius. These “tuning" choices will be studied in
Section 4. We want to clarify that we are in no way proposing a new algorithm, but just defining an umbrella term for the
PRM class of algorithms which includes, for instance, sPRM and PRM∗ as defined in [Karaman and Frazzoli, 2011].
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Algorithm 1 gPRM Algorithm
1 V ← {xinit} ∪ SampleFree(n); E ← ∅
2 for all v ∈ V do
3 Xnear ← Near(V \{v}, v, rn)
4 for x ∈ Xnear do
5 if CollisionFree(v, x) then
6 E ← E ∪ {(v, x)} ∪ {(x, v)}
7 end if
8 end for
9 end for

10 return ShortestPath(xinit, V, E)

4. Theoretical Results

In this section we present our main theoretical results. We begin by proving that gPRM on low-dispersion sequences is
asymptotically optimal, in the deterministic sense, for connection radius rn ∈ ω(n−1/d). Previous work has required rn
to be at least Ω((log(n)/n)1/d) for asymptotic optimality.

Theorem 1 (Asymptotic optimality with deterministic sampling). Let (Xfree, xinit,Xgoal) be a δ-robustly feasible path

planning problem in d dimensions, with δ > 0 and Xgoal ξ-regular. Let c∗ denote the arc length of an optimal path σ∗,

and let cn denote the arc length of the path returned by gPRM (or ∞ if gPRM returns failure) with n vertices whose

`2-dispersion is D(V ) using a radius rn. Then if D(V ) ≤ γn−1/d for some γ ∈ R and

n1/drn →∞, (2)

then limn→∞ cn = c∗.

Proof. Fix ε > 0. By the δ-robust feasibility of the problem, there exists a σε such that c(σε) ≤ (1 + ε/3)c∗ and σε has
strong δε-clearance for some δε > 0, see Figure 1(a). Let Rn be a sequence such that Rn ≤ rn, n1/dRn → ∞, and

xinit

Xobs

Xgoal

�⇤

�n

�n

Xobs

Xobs

Xobs �"

�"

(a)

� n�1/d

Rn � 2 � n�1/d

⇠

Bn,Mn+2

Bn,Mn+1

Rn � 2 � n�1/d

�n

Xgoal

�"

(b)

Fig. 1. Figure 1(a): Illustration in 2D of σε as the shortest strongly δε-robust feasible path, as compared to the optimal path σ∗, as used
in the proof of Theorem 1. Figure 1(b): Illustration in 2D of the construction of B1, . . . , BMn+2 in the proof of Theorem 1.

Rn → 0, guaranteeing that there exists a n0 ∈ N such that for all n ≥ n0,

(4 + 6/ε)γn−1/d ≤ Rn ≤ min{δε, ξ, c∗ε/6}. (3)
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For any n ≥ n0, construct the closed balls Bn,m such that Bn,i has radius γn−1/d and has center given by tracing a
distance (Rn − 2γn−1/d)i from x0 along σε (this distance is positive by equation (3)) until (Rn − 2γn−1/d)i > c(σε).
This will generateMn = bc(σε)/(Rn− 2γn−1/d)c balls. DefineBn,Mn+1 to also have radius γn−1/d but center given by
the point where σε meets Xgoal. Finally, define Bn,Mn+2 to have radius γn−1/d and center defined by extending the center
of Bn,Mn+1 into Xgoal by a distance Rn − 2γn−1/d in the direction perpendicular to ∂Xgoal. Note that by equation (3),
Bn,Mn+2 ⊂ Xgoal. See Figure 1(b) for an illustration.

Since the dispersion matches the radii of all the Bn,m, each Bn,m has at least one sampled point within it. Label these
points x1, . . . , xMn+2, with the subscripts matching their respective balls of containment. For notational convenience,
define x0 := xinit. Note that by construction of the balls, for i ∈ {0, . . . ,Mn + 1}, each pair of consecutively indexed
points (xi, xi+1) is separated by no more than Rn ≤ rn. Furthermore, since Rn ≤ δε by equation (3) above, there cannot
be an obstacle between any such pair, and thus each pair constitutes an edge in the gPRM graph. Thus, we can upper-bound
the cost cn of the gPRM solution by the sum of the lengths of the edges (x0, x1), . . . , (xMn+1, xMn+2):

cn ≤
Mn+1∑
i=0

‖xi+1 − xi‖ ≤ (Mn + 2)Rn ≤
c(σε)

Rn − 2γn−1/d
Rn + 2Rn

≤ c(σε) +
2γn−1/d

Rn − 2γn−1/d
c(σε) + 2Rn = c(σε) +

1
Rn

2γn−1/d − 1
c(σε) + 2Rn

≤
(

1 +
ε

3

)
c∗ +

1
3
ε + 1

(
1 +

ε

3

)
c∗ +

ε

3
c∗ = (1 + ε)c∗.

The second inequality follows from the fact that the distance between xi and xi+1 is upper-bounded by the distance between
the centers of Bn,i and Bn,i+1 (which is at most Rn − 2γn−1/d) plus the sum of their radii (which is 2γn−1/d). The last
inequality follows from the facts that c(σε) ≤ (1 + ε/3)c∗ and equation (3).

Note that if gPRM using rn > 2D(V ) reports failure, then there are two possibilities: (i) a solution does not exist,
or (ii) all solution paths go through corridors whose widths are smaller than 2D(V ). Such a result can be quite useful in
practice, as solutions going through narrow corridors could be undesirable anyways (see [LaValle et al., 2004, Section 5]
for the same conclusion).

Next, we relate the solution cost returned by gPRM to the best cost of a path with strong δ-clearance in terms of the
`2-dispersion of the samples used. This is a generalization of previous convergence rates, e.g. [Janson et al., 2015], which
only apply to obstacle-free spaces. Previous work also defined convergence rate as, for a fixed level of suboptimality ε,
the rate (in n) that the probability of returning a greater-than-ε-suboptimal solution goes to zero. In contrast, we compute
the rate (in n) that solution suboptimality approaches zero. Lastly, previous work focused on asymptotic rates in big-O
notation, while here we provide exact upper-bounds for finite samples.

Theorem 2 (Convergence rate in terms of dispersion). Consider the simplified problem of finding the shortest feasible

path between two points x0 and xf in Xfree, assuming that both the initial point and final point have already been sampled.

Define

δmax = sup{δ > 0 : ∃ a feasible σ ∈ Σ with strong δ-clearance}

and assume δmax > 0. For all δ < δmax, let c(δ) be the cost of the shortest path with strong δ-clearance. Let cn be the length

of the path returned by running gPRM on n points whose `2-dispersion is Dn and using a connection radius rn. Then for

all n such that rn > 2Dn and rn < δ,

cn ≤
(

1 +
2Dn

rn − 2Dn

)
c(δ). (4)



8

Proof. Let σδ be a feasible path of length c(δ) with strong δ-clearance. Construct the ballsB1, . . . , BMn
with centers along

σδ as in the proof of Theorem 1 (note we are not constructing BMn+1 or BMn+2), except with radii Dn and centers
separated by a segment of σδ of arc-length rn − 2Dn. Note that Mn = bc(δ)/(rn − 2Dn)c. Then by definition each Bi
contains at least one point xi. Furthermore, each xi is connected to xi−1 in the gPRM graph (because xi is contained in
the ball of radius rn −Dn centered at xi−1, and that ball is collision-free), and xf is connected to xMn

as well. Thus cn is
upper-bounded by the path tracing through x0, x1, . . . , xMn , xf :

cn ≤ ‖x1 − x0‖+

Mn∑
i=2

‖xi − xi−1‖+ ‖xf − xMn‖ ≤ rn −Dn +

Mn∑
i=2

rn + ‖xf − xMn‖

≤ (Mnrn −Dn) +

((
c(δ)

rn − 2Dn
−
⌊

c(δ)

rn − 2Dn

⌋)
(rn − 2Dn) +Dn

)
= c(δ) + 2DnMn ≤

(
1 +

2Dn

rn − 2Dn

)
c(δ),

where the second and third inequalities follow by considering the farthest possible distance between neighboring points,
given their inclusion in their respective balls.

Remark 1 (Convergence rate in obstacle-free environments). Note that when there are no obstacles, δmax = ∞ and

c(δ) = ‖xf − x0‖ for all δ > 0. Therefore, an immediate corollary of Theorem 2 is that the convergence rate in free space

of gPRM to the optimal solution is upper-bounded by 2Dn/(rn − 2Dn) for rn > 2Dn.

Remark 2 (Practical use of convergence rate). Theorem 2 provides a convergence rate result to a shortest path with strong

δ-clearance. This result is useful for two main reasons. First, in practice, the objective of path planning is often to find a

high-quality path with some “buffer distance" from the obstacles, which is precisely captured by the notion of δ-clearance.

Second, the convergence rate in equation (4) could be used to certify the performance of gPRM (and related batch planners)

by placing some assumptions on the obstacle set (e.g., minimum separation distance among obstacles and/or curvature

of their boundaries). For instance, consider a deterministic low-dispersion sequence with dispersion upper bounded by

γ n−1/d, and assume one has time to plan on n̄ samples. Choose rn̄ = 2ψγ n̄−1/d for someψ > 1 and choose δ0 > rn̄ (one

can readily verify that such a choice of rn̄ satisfies the assumptions of Theorem 2). Then one can state the deterministic

guarantee “For all planning problems where there exists a feasible δ0-clear path (see Figure 2), the cost of the path

returned is within a factor 1/(ψ− 1) of the cost of the best δ0-clear path." For given values of ψ and δ0, one can therefore

“certify” the performance of the planner for a desired target performance. An interesting avenue for future research is to

use information about the curvature of the obstacles to quantify the difference between c(δ) and the true optimal cost c∗.

Both the asymptotic optimality and convergence rate results can be extended to other batch planners such as Lazy-PRM
or FMT∗ , as discussed in Section 5.1.

Lastly, we show that using a low-`2-dispersion lattice sample set, an asymptotically-optimal (AO) version of gPRM can
be run that has lower-order computational complexity than any existing AO algorithm, namelyω(n) instead ofO(n log(n)).

Theorem 3 (Computational complexity with deterministic sampling). gPRM run onn samples arranged in a d-dimensional

cubic lattice with connection radius rn satisfying equation 2 has computational complexity

O(n2rdn). (5)

Furthermore, as long as nrdn 9 0, the space complexity is also O(n2rdn).

Proof. The algorithm gPRM has three steps: (1) For each sampled point x, it needs to compute which other sampled points
are within a distance rn of x. (2) For each pair of sampled points within rn of one another, their connecting edge needs
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xinit

Xobs

�0

�0

Xobs

Xobs

xgoal

Fig. 2. An example of a planning problem with a feasible δ0-clear path. For a given clearance parameter δ0 and suboptimality factor ψ,
one can readily determine the number of samples (and, hence, computation time) that is deterministically guaranteed to return a path
whose cost is within 1/(ψ − 1) of the cost of the best δ0-clear path, for all planning problems where a feasible δ0-clear path exists.

to be checked for collision, and if collision-free, its edge-length needs to be computed. (3) The shortest path through the
graph produced in steps (1) and (2) from the initial point to the goal region needs to be computed.

The lattice structure makes it trivially easy to bound a point’s rn-neighborhood by a bounding hypercube with side-
length 2rn, ensuring only O(nrdn) nearby points need to be checked for each of the n samples, so this step takes O(n2rdn)

time.
In step (2), one collision-check and at most one cost computation needs to be performed for each pair of points found in

step (1) to be within rn of one another. The number of such pairs can be bounded above by the number of sampled points
times the size of each one’s neighborhood, leading to a bound of the form O(n · nrdn). Thus step (2) takes O(n2rdn) time.

After steps (1) and (2), a weighted (weights correspond to edge lengths) graph has been constructed on n vertices with
a number of edges asymptotically upper-bounded by n2rdn. One more property of this graph, because it is on the cubic
lattice, is that the number of distinct edge lengths is asymptotically upper-bounded by nrdn. An implementation of Dijkstra’s
algorithm for the single source shortest path problem is presented in [Orlin et al., 2010] with running time linear in both
the number of edges and the number of vertices times the number of distinct edge lengths. Since both are O(n2rdn), that is
the time complexity of step (3).

The space complexity is proportional to the number of edges plus the number of vertices, which areO(n2rdn) andO(n),
respectively. By assumption that nrn 9 0, O(n2rdn) will be the (possibly co-) dominant term.

Since Theorem 1 allows rn ∈ ω(n−1/d) while maintaining AO, Theorem 3 implies that cubic-lattice sampling allows
for an AO algorithm with computational and space complexity ω(n). All other AO algorithms in the literature have
computational and space complexity at leastO(n log(n)). While the use of an rn ∈ ω(n−1/d) makes the graph construction
phase (steps (1) and (2)) ω(n), step (3) would in general take longer, as shortest-path algorithms on a general graph with
n vertices requires Ω(n log(n)). Thus the lattice structure must be leveraged to improve the complexity of step (3)—we
discuss the limitations implied by this in the next section.

5. Extensions

In this section we discuss several extensions to the results presented in Section 4. In particular, we discuss extensions to
alternative implementations and other types of batch-processing algorithms (Sections 5.1 and 5.2), to non-uniform sampling
sequences (Section 5.3), and to kinodynamic motion planning (Section 5.4).
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5.1. Convergence Results for Other Batch-Processing Algorithms

The theoretical convergence results of the previous section (Theorems 1 and 2) extend to alternative implementations of
gPRM and other batch-processing algorithms. We first discuss a variant of gPRM which makes connections based on
k-nearest-neighbors instead of a fixed connection radius. This variant, referred to as k-nearest gPRM, has the advantage of
being more adaptive to different obstacle spaces than its connection-radius counterpart (we refer the reader to [Janson et al.,
2015, Section 5.3] for a more detailed discussion about the relative benefits of a k-nearest-neighbors implementation).
Assuming that k-nearest gPRM is implemented so that the number of neighbors kn (a function of n, as rn) is taken for
each sample to be roughly connected to its rn-neighborhood if there were no obstacles, then deterministic asymptotic
optimality and rate convergence guarantees can be readily derived. Specifically, assuming kn = (1+ ε)nζdr

d
n, where ε > 0

and ζd is the volume of the unit ball in d dimensions, then a graph constructed in k-nearest gPRM with kn neighbors will
asymptotically contain all the edges (and more) of the graph constructed in gPRM with radius rn, and thus will return a
path at least as low-cost.

A second example is Lazy-PRM [Bohlin and Kavraki, 2000], where the extension of the theoretical convergence results
is straightforward, as the path returned by Lazy-PRM is identical to that returned by gPRM (using the same radius).

A third example is FMT∗ [Janson et al., 2015]. The only difference in the proof for FMT∗ from that for gPRM is that
cn cannot naïvely be upper-bounded by the length of a path tracing through a sequence of points in the gPRM graph, as
FMT∗may not use some edges. However, as shown in the proof of Lemma 4.2 (pages 912–913) in [Janson et al., 2015,
Appendix A], FMT∗’s cn can be bounded by the length of a path tracing through a sequence of points in the gPRM graph
if those points are contained in a suitable sequence of balls. In particular, the sequence of balls needs to be sufficiently far
from obstacles and adjacent balls need to be sufficiently close together. It is easy to check that the sequences {Bi} used in
the proofs of the previous section satisfy these conditions.

5.2. Complexity Results for Different Sampling Schemes and Other Batch-Processing Algorithms

The complexity result in Theorem 3, strictly speaking, only applies to gPRM as defined in Algorithm 1 run on n samples
arranged in a d-dimensional cubic lattice. Using other low-dispersion but non-lattice sampling schemes, such as the
Halton/Hammersley sequence, would not give O(nrdn) distinct edge lengths, which precludes the use of the improved
implementation of Dijkstra’s algorithm [Orlin et al., 2010]. A k-nearest-neighbor implementation (where kn is selected as
specified in Section 5.1 in order to ensure convergence), even on a lattice, would also no longer in general have O(nrdn)

distinct edge lengths. Lastly, other batch-processing algorithms, such as FMT∗ , do not separate graph construction and
shortest-path computation, again precluding, at least naïvely, the use of the improved implementation of Dijkstra’s algorithm.

In all the above cases, all the same computational advantages stated in the proof of Theorem 3 would hold, except the
advantage from the sped-up shortest-path algorithm in step (3). In practice the shortest-path algorithm is typically a trivial
fraction of path planning runtime, as it requires none of the much-more-complex edge-cost and collision-free computations.
In other words, the constant hidden in the big-O notation for the shortest-path algorithm is drastically smaller than that in
the other steps. Thus, a practical approximation of the runtime could ignore the shortest-path component, in which case
the result of Theorem 3 can be extended to all of the aforementioned examples.

5.3. Non-uniform Sampling

A popular method for incorporating prior knowledge about a problem is to draw samples in a way that is not uniform
throughout the configuration space. Increased sampling density in areas that are especially hard to traverse gives a motion
planning algorithm help in that area. Thus if these areas can be identified a priori or even adaptively (see, for example,
[Boor et al., 1999]), observed convergence can be substantially sped up. Sampling non-uniformly in the i.i.d. setting is
often fairly straightforward, for instance by simply adding sample-rejection rules to the uniform strategy [Hsu et al., 2006].
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In fact, every non-uniform sampling strategy that we are aware of can be formulated as a transformation of uniformly
sampled points, and we expect that applying the same transformation to a low-dispersion set of points will provide a similar
improvement as in the uniformly sampled case. The intuitive reasoning is the same: non-uniform sampling seeks to place
samples in regions of space that are chosen better than uniformly, but low-dispersion samples characterize a volume better
locally, so that the non-uniformly chosen regions will be better covered. Section 6.6 shows simulations in support of this
conjecture.

Furthermore, as long as there remains a “baseline density” of samples everywhere in the space, similar guarantees to
the uniform case can still be made. Specifically, think of the baseline density of samples as a low-dispersion set of samples
whose size is a constant fraction α of n. Then those samples alone have low-dispersion not only with respect to their size
αn, but also with respect to the full sample size n, since the two only differ by a constant multiple. Since adding back the
rest of the samples can only lower the dispersion further, such a non-uniform set of samples must still have `2-dispersion
that scales as n−1/d, and thus the theoretical results of this paper apply. There is a rich literature in different methods for
non-uniform sampling, but providing theoretical results quantifying their improvement over uniform sampling is still a
topic of current research. Once such results are established, an interesting future direction will be to understand the benefits
of the non-uniform analogue of low-dispersion sampling.

5.4. Deterministic Kinodynamic Planning

Another important extension is to motion planning with differential constraints. In particular, we consider here the extension
to systems with linear affine dynamics of the form: ẋ(t) = Ax(t) + Bu(t) + c, where A, B, and c are constants. The
extension of the `2-dispersion-based analysis of this paper to that case poses some challenges. The key roadblock is that the
`2-dispersion is no longer a particularly accurate measure of how suitable a set of points is to track an optimal differentially-
constrained path. Essentially, Euclidean balls must be replaced by “perturbation” balls [Schmerling et al., 2015b], which
are high-dimensional ellipses. To be clear, by a high-dimensional ellipse we mean a volume defined by

{x : xTQx < r} (6)

for some positive-definite matrix Q and scalar r. Although such ellipses may be inner-bounded by a Euclidean ball, this
(poor) approximation adds an exponential factor of the controllability index of the pair (A,B) [Schmerling et al., 2015b]
to the analysis. (Assuming the pair (A,B) is controllable, the controllability indices νi give a fundamental notion of how
difficult a linear system is to control in the various directions, see [Kailath, 1980, p. 431] or [Chen, 1995, pp. 150] for a
detailed treatment. The number of controllability indices is equal to the number of control inputs, that is to the number of
columns ofB. The maximum, that is ν = max νi, is referred to as the controllability index of the pair (A,B).) The following
theorem (whose proof is largely based on the analysis framework devised in [Schmerling et al., 2015b]) summarizes the
optimality result. Here gDPRM is just Algorithm 1 except that Near uses the cost in [Schmerling et al., 2015b, equation
(2)] instead of arc-length.

Theorem 4 (Asymptotic optimality with deterministic sampling for systems with linear affine dynamics). Under

the assumptions of [Schmerling et al., 2015b, Theorem VI.1], gDPRM with deterministic low-dispersion sampling is

asymptotically-optimal for

rn = C1n
−1/(νd) (7)

for some constant C1, while gDPRM with i.i.d. uniform sampling is asymptotically optimal for

rn = C2

(
log(n)

n

)1/D̃

(8)
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for some constant C2, where D̃ = (d+
∑
ν2
i )/2, the νi are the controllability indices of the pair (A,B), and ν = max νi.

Proof sketch. For the sake of brevity, we only describe here the changes needed to the theory in [Schmerling et al., 2015b],
as the results have much in common. The proof of (7) is nearly identical to that of [Schmerling et al., 2015b, Theorem
VI.1] except with a low-dispersion analogue of [Schmerling et al., 2015b, Theorem IV.6] which uses the same rn rate as
in (7). To see this analogue result, note that [Schmerling et al., 2015b, Lemma IV.5] holds deterministically under low-
dispersion sampling with the log term removed from the condition on the volume µ[Tk]. Then the proof of the analogue
of [Schmerling et al., 2015b, Theorem IV.6] only requires construction of the sets Sk (no Tk), again without the log term.
From the deterministic version of [Schmerling et al., 2015b, Lemma IV.5], we have that for the scaling of rn as in (7),
every set Sk will contain a sample, and equation (7) follows.

Finally, equation (8) is a direct corollary of [Schmerling et al., 2015b, Theorem VI.1].

If ν = 1 (i.e., all directions are “equally difficult” to control), deterministic sampling and our analysis show all the
same benefits as in the case of the path planning (non-kinodynamic) problem by getting rid of the log(n) term required by
i.i.d. sampling without changing the exponent (as in this case, νd = d and D̃ = d). Note that a special case where ν = 1 is
represented by the single-integrator model ẋ(t) = u(t), which effectively reduces the kinodynamic planning problem to
the path planning problem stated in Section 3—in this sense, Theorem 7 recovers Theorem 1 when ẋ(t) = u(t). However,
in general, the exponent for the case of deterministic low-dispersion sampling (i.e., the exponent in equation (7)) may
be worse. For instance, for the double-integrator model in three dimensions, namely ẍ(t) = u(t) and d = 6, the three
controllability indices are ν1 = ν2 = ν3 = 2. As a consequence, one obtains νd = 12 and D̃ = 9, and the radius in
equation (7) (i.e., for the deterministic case) is larger that the radius for equation (8) (i.e., for the case with i.i.d. uniform
sampling).

This is not to say that deterministic sampling is necessarily inappropriate or not advantageous for differentially-
constrained problems, but just that the analysis used here is inadequate (most critically, we crudely inner-bound ellipses via
Euclidean balls). Our analysis does, however, suggest possible ways forward. One could consider a measure of dispersion
which applies more specifically to ellipses, and possibly tailor a deterministic sequence to be low-dispersion in this sense.
To our knowledge, no assessment of sample sequences in terms of this type of dispersion has been performed previously,
and this represents a theoretically and practically important direction for future research (together with studying tailored
notions of sampling sequences and dispersion for other classes of dynamical systems, e.g., driftless systems).

We will further study kinodynamic motion planning via deterministic sampling sequences through numerical
experiments in Section 6.

6. Numerical Experiments

In this section we numerically investigate the benefits of planning with deterministic low-dispersion sampling instead of i.i.d.
sampling. Section 6.1 overviews the simulation environment used for this investigation. Section 6.2 details the deterministic
low-dispersion sequences used, namely, lattices and the Halton sequence. Several simulations are then introduced and results
compared to i.i.d. sampling in Sections 6.3 and 6.4. Finally, we briefly discuss non-i.i.d., random, low-dispersion sampling
schemes in Section 6.5 and show simulation results for deterministic low-dispersion sampling applied to non-uniform
sampling in Section 6.6.

6.1. Simulation Environment

Simulations were written in C++, MATLAB, and Julia [Bezanson et al., 2012], and run using a Unix operating system
with a 2.3 GHz processor and 8 GB of RAM. The C++ simulations were run through the Open Motion Planning Library
(OMPL) [Şucan et al., 2012]. The planning problems simulated in OMPL were rigid body problems, the simulations
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in MATLAB involved point robots and kinematic chains, and those in Julia incorporated kinodynamic constraints. For
each planning problem, the entire implementation of gPRM was held fixed (including the sequence of rn) except for the
sampling strategy. Specifically, for all simulations (except the chain and kinodynamic simulations), we use as connection
radius rn = γPRM (log(n)/n)1/d, where γPRM = 2.2

(
1 + 1/d)1/d(1/ζd

)1/d
and ζd is again the volume of the unit ball

in d-dimensional Euclidean space. This choice ensures asymptotic optimality both for i.i.d. sample sequences [Karaman
and Frazzoli, 2011, Janson et al., 2015] and deterministic low-dispersion sequences (Theorem 1). Because this is an exact

“apples-to-apples” comparison, we do not present runtime results but only results in terms of sample count, which have the
advantage that they do not depend on the specific hardware or software we use. (Note that drawing samples represents a trivial
fraction of the total algorithm runtime. Furthermore, as mentioned in the introduction, deterministic sampling even allows for
possible speedups in computation.) The code for these results can be found athttps://github.com/stanfordasl.

6.2. Sampling Sequences

We consider two deterministic low-dispersion sequences, namely the Halton sequence [Halton, 1960] and lattices. Halton
sampling is based on a generalization of the van der Corput sequence and uses prime numbers as its base to form a
deterministic low-dispersion sequence of points [Halton, 1960, LaValle et al., 2004]. Lattices in this work were implemented
as a triangular lattice in two dimensions and a Sukharev grid in higher dimensions [Sukharev, 1971].

Along with the benefits described throughout the paper, lattices also present some challenges [LaValle et al., 2004].
First, for basic cubic lattices with the same number of lattice points k per side, the total number of samples n is constrained
to kd, which limits the potential number of samples. For example, in 10 dimensions, the first four available sample counts
are 1, 1024, 59,049, and 1,048,576. There are some strategies to allow for incremental sampling [Yershova and LaValle,
2004, Lindemann et al., 2005, Yershova et al., 2010], but in this paper we overcome this difficulty by simply “weighting"
dimensions. Explicitly, we allow each side to have a different number of lattice points. Independently incrementing each
side’s number of points by 1 increases the allowed resolution of n by a factor of d, as it allows all numbers of the form
n = (k − 1)m(k)d−m.

Second, lattices are sensitive to axis-alignment effects, whereby an axis-aligned obstacle can invalidate an entire axis-
aligned row of samples. A simple solution to this problem is to rotate the entire lattice by a fixed amount (note this changes
nothing about the `2-dispersion or nearest-neighbor sets). We chose to rotate each dimension by 10π degrees as an arbitrary
angle far from zero (in practice, problems often show a “preferential” direction, e.g., vertical, so there may be an a priori
natural choice of rotation angle).

Finally, we include examples in SE(2) and SE(3) because they are standard, even though the cost function is no longer
arc-length in the configuration space, but closer to arc-length in the translational dimensions. As this is technically outside
the theory in this paper, we must consider an appropriate analogue of deterministic low-dispersion sampling. In the naïve
Sukharev lattice, each translational lattice point represents many rotational orientations. For instance, in SE(3), this means
there are only k3 translational points when n = k6, providing a poor extension of the theory in this paper to the rigid body
planning problem. A better approximate extension is to “spread” the points, which entails de-collapsing all the rotational
orientations at each translational lattice point by spreading them deterministically in the translational dimensions around
the original point. An example of this process with one rotational and two spatial dimensions is shown in Figure 3. A
similar phenomenon occurs with kinodynamic sampling, in which case it is beneficial to spread velocity samples. For the
double-integrator model, as shown in Figure 4, this process entails offsetting velocity samples from their original positions
by an amount proportional to their velocities. To then reduce unfavorable structure between neighboring lattice points and
increase variation in connection types, alternating samples were rotated 180 degrees for the final implementation in Figure
4(c).

https://github.com/stanfordasl
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(a) (b)

Fig. 3. Figure 3(a): Rectangular rigid body lattice samples with one rotational and two spatial degrees of freedom. Figure 3(b): A
“spread” lattice formed by spreading the different rigid body orientations spatially around the original point results in a better spatial
coverage of the configuration space.

(a) (b) (c)

Fig. 4. Figure 4(a): A lattice for the double-integrator model with two spatial and two velocity degrees of freedom. Figure 4(b): A
“spread” lattice formed by offsetting the velocity samples from their original positions (by an amount proportional to their velocities) to
obtain better spatial coverage. Figure 4(c): The same lattice with alternating samples rotated 180 degrees to increase variation in types
of connections and reduce unfavorable structure (this implementation was used for our results).

6.3. Simulation Test Cases

Within the MATLAB environment, results were simulated for a point robot within an Euclidean unit hypercube with a
variety of geometric obstacles over a range of dimensions. First, rectangular obstacles in 2D and 3D were generated with a
fixed configuration that allowed for several homotopy classes of solutions. A 2D maze with rectangular obstacles was also
created (Figure 5(a)). These sets of rectangular obstacles are of particular interest as they represent a possible “worst-case”
for lattice-based sampling because of the potential for axis alignment between samples and obstacles. The results, shown
for the 2D maze in Figure 5 and for all experiments in Table 1, show that Halton and lattice sampling outperform i.i.d.
sampling in both success rate and solution cost.

To illustrate planning with rectangular obstacles in higher dimensional space, we constructed a recursive maze obstacle
environment. Each instance of the maze consists of two copies of the previous dimension’s maze, separated by an obstacle
with an opening through the new dimension, as detailed in [Janson et al., 2015]. Figure 6(a) shows the maze in 2D and
Figure 6(b) shows the maze in 3D with the two copies of the 2D maze in black and the opening in red. Halton and lattice
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(a) (b) (c)

Fig. 5. Figure 5(a): The planning setup for a point robot with rectangular obstacles in a 2D maze. Figures 5(b) and 5(c): The results for
solution cost and success rate versus sample count (averaged over 50 runs). For clarity we only report data for i.i.d. sampling and lattice
sequences, results including Halton sampling are reported in Table 1. Only points with greater than 50% success are shown in Figure
5(b).

sampling conferred similar benefits in the recursive mazes in 2D, 3D, 4D, 5D, 6D, and 8D as they did in other simulations
(see Table 1).

Along with the rectangular obstacles, hyperspherical obstacles within a Euclidean unit hypercube were generated to
compare performance on a smooth obstacle set with no possibility of axis alignment between samples and obstacles. The
setups for 2D and 3D (Figures 6(c) and 6(d)) were fixed, while in 4D, obstacles were randomly generated to match a
specified spatial coverage. Again, Halton and lattice sampling consistently outperformed random sampling, as shown in
Table 1.

As an additional high-dimensional example, an 8D kinematic chain planning problem with rotational joints, eight links,
and a fixed base was created (Figure 6(e)). The solution required the chain to be extracted from one opening and inserted
into the other, as inspired by [Lindemann et al., 2005]. The chain cost function was set as the sum of the absolute values of
the angle differences over all links and the connection radius was thus scaled by

√
dπ. With this high dimension and new

cost function, the Halton and lattice still perform as well as or better than i.i.d. sampling (see Table 1).
Within the OMPL environment, rigid body planning problems from the OMPL test banks were posed for SE(2) and

SE(3) configuration spaces. In the SE(2) case, one rotational and two translational degrees of freedom are available, resulting
in a three dimensional space, shown in Figure 6(f). The SE(3) problem consists of an “L-shaped" robot moving with three
translational and three rotational degrees of freedom, resulting in six total problem dimensions, shown in Figure 6(g). As
already mentioned, the rigid body planning problems are not strictly covered by the theory in this paper, and thus the SE(2)
and SE(3) lattices use the spreading method described in Section 6.2. The results, summarized in Table 1, show that Halton
and lattice sampling generally outperform i.i.d. random sampling.

Lastly, planning problems with kinodynamic constraints were simulated within the Julia environment using the gDPRM
algorithm defined in Section 5.4, with reference to [Schmerling et al., 2015b]. The connection radius was computed using
equation (8) in Theorem 4. First, a double-integrator model with two spatial dimensions and two velocity dimensions was
posed to simulate a system with drift (Figure 6(h)). To obtain better spatial coverage, the lattice was spread as described in
Section 6.2. Second, results were simulated for the Reeds-Shepp car system [Reeds and Shepp, 1990], a regular driftless
control-affine system with one rotational and two translational degrees of freedom (Figure 6(h)). The Reeds-Shepp car is
constrained to move with a unit speed (forwards or backwards) and turn with a fixed radius. Although these dynamics are
different from those discussed in Section 5.4, we can still define gDPRM with respect to [Schmerling et al., 2015a] and
evaluate the benefits of deterministic low-dispersion sampling. Again, spreading was used in the spatial dimension. With
the addition of kinodynamic constraints, the Halton and lattice sampling continue to outperform i.i.d. random sampling, as
summarized in Table 1.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

Fig. 6. Images of the recursive maze planning problem in 2D (6(a)) and 3D (6(b)) and the spherical obstacle sets in 2D (6(c)) and 3D
(6(d)). Also shown are an 8D kinematic chain planning problem in 6(e) and the OMPL rigid body planning problems for SE(2) and
SE(3) in 6(f) and 6(g) respectively. Lastly, 6(h) shows the setup for the double-integrator and Reeds-Shepp car. Note that the problems
in 6(h) have kinodynamic constraints, where we are not only considering straight line connections, but ones with curvature. A summary
of results can be found in Table 1.

6.4. Summary of Results

Table 1 shows a summary of the results from simulations detailed in Section 6.3. Results are shown normalized by the
i.i.d. sampling results. In each case the sample count at which a success rate greater than 90% is achieved and sustained is
reported. Additionally, the solution costs at a medium and high sampling count are shown. For all cases the lattice sampling
finds a solution with fewer or an equal number of samples and of lower or equal cost than that found by i.i.d. sampling. The
Halton sampling also always finds a solution at lower sample counts than i.i.d. sampling, and almost always finds solutions
of lower cost as well. The deterministic low-dispersion sequences particularly outperform random sampling in terms of
number of samples required for a 90% success rate.



Deterministic Sampling-Based Planning 17

Halton Lattice
Dim Obstacles 90% Success Medium High 90% Success Medium High

2 Rectangular 38% 118% 80% 15% 56% 80%
3 Rectangular 36% 88% 94% 19% 80% 87%
2 Rect Maze 13% 98% 99% 13% 100% 99%
2 Sphere 16% 93% 99% 7% 93% 99%
3 Sphere 36% 97% 100% 8% 97% 99%
4 Sphere 100% 97% 97% 100% 97% 100%
2 Recursive Maze 33% 100% 100% 18% 100% 100%
3 Recursive Maze 22% 95% 99% 22% 96% 98%
4 Recursive Maze 56% 95% 98% 56% 100% 100%
5 Recursive Maze 45% 97% 96% 60% 95% 96%
6 Recursive Maze 56% 95% 97% 75% 94% 96%
8 Recursive Maze 56% 98% 99% 75% 99% 99%
8 Chain 67% 112% 91% 7% 76% 87%
3 SE(2) 81% 96% 100% 81% 101% 101%
6 SE(3) 32% 96% 93% 42% 94% 95%
4 Double-Integrator 53% 90% 93% 30% 92% 96%
3 Reeds-Shepp Car 44% 97% 99% 44% 98% 100%

Table 1. Summary of results. Each entry is divided by the results of i.i.d. sampling (averaged over 50 runs). For Halton sampling and
lattice sampling, the number of samples at which 90% success is achieved and the cost at a medium number of samples (near 700) and
a high number of samples are shown (highest samples simulated, always 3000 or greater). Note that nearly all table entries are below
100%, meaning the Halton and lattice sampling outperformed i.i.d. sampling.

6.5. Non-deterministic Sampling Sequences

The above simulations showed deterministic lattice sampling, with a fixed rotation around each axis, and the deterministic
Halton sequence outperform uniform i.i.d. sampling. Both deterministic sequences have low `2-dispersions of O(n−1/d),
but sequences with the same order `2-dispersion need not be deterministic. Figure 7 shows results for a randomly rotated and
randomly offset version of the lattice (again, the `2-dispersion and neighborhoods are all still deterministically the same).
The same cases in Table 1 were run for the randomly rotated lattice and the results showed it performed as well as or better
than random sampling (over 50 runs). In general, low-dispersion random sequences might provide some advantages, e.g.,
eliminating axis alignment issues while still enjoying deterministic guarantees (see Section 4). Hsu et al. [2006] reported on
similar advantages to randomization for finding a feasible solution. Their further study represents an interesting direction
for future research.

(a) (b) (c)

Fig. 7. Results for deterministic and non-deterministic low-dispersion sampling. “Rand Rot Lattice” refers to a randomly rotated lattice.
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6.6. Non-uniform Sampling

Following the discussion in Section 5.3, we consider the extension of deterministic low-dispersion sampling to two planning
algorithms with non-uniform sampling. First, using OMPL’s default RRT∗ implementation, the SE(3) problem in Figure
6(g) was simulated with samples drawn from i.i.d. and Halton sequences [Şucan et al., 2012, Karaman and Frazzoli,
2011]. Second, the Batch Informed Trees algorithm (BIT∗) was implemented in MATLAB and simulated with the 3D
spherical obstacles problem in Figure 6(d) with samples drawn from i.i.d. and Halton sequences and only relevant samples
kept [Gammell et al., 2015]. The non-uniformity of RRT∗ samples arises from the use of a steering function, which
limits individual connection distance when growing the tree, thus only allowing for nearby connections, while BIT∗’s
non-uniformity is a consequence of adaptively resampling only relevant samples at each batch, as well as using RRT∗

if no solution is found. The results, shown in Table 2, show similar benefits to those in Table 1 for uniform sampling,
demonstrating that non-uniform sampling strategies derive the same improvement in solution quality as uniform sampling
does, when i.i.d. sampling is replaced by low-dispersion sampling in the pipeline that generates the non-uniform samples.

Halton
Algorithm Dim Obstacles 90% Success Medium High

RRT∗ 6 SE(3) 32% 95% 99%
BIT∗ 3 Sphere 51% 100% 100%

Table 2. Results for non-uniform sampling algorithms. Each entry shows the results of Halton sampling divided by the results of i.i.d.
sampling (averaged over 50 runs). For RRT∗ , the number of samples at which 90% success is achieved and the cost at a medium and
high number of samples are shown, while BIT∗ compares time rather than sample count. Again note that all table entries are at or below
100%, meaning Halton sampling outperformed i.i.d. sampling.

7. Conclusions

This paper has shown that using low-dispersion sampling strategies (in particular, deterministic) can provide substantial ben-
efits for solving the optimal path planning problem with sampling-based algorithms, in terms of deterministic performance
guarantees, reduced computational complexity per given number of samples, and superior practical performance.

This paper opens several directions for future research. First, we plan to deepen our study of deterministic kinodynamic
motion planning, in particular in terms of tailored notions of sampling sequences and dispersion and more general dynamical
models. Second, it is of interest to extend the results herein to other classes of sampling-based motion planning algorithms
(beyond the ones studied in this paper), especially the large class of anytime algorithms (e.g., RRT/RRT∗). This leads directly
into a third key direction, which is to study alternative low-dispersion sampling strategies beyond the few considered here,
particularly incremental sequences for use in anytime algorithms. There is already some work in this area, although thus
far it has focused on the use of such sequences for the feasibility problem [Yershova and LaValle, 2004, Lindemann
et al., 2005, Yershova et al., 2010]. It may also be of interest to study low-dispersion sampling strategies that incorporate
prior knowledge of the problem by sampling non-uniformly, as discussed in Section 5.3. Fourth, we plan to investigate
the topological relationship between the optimal path cost and that of the best strong-δ-clear path, in order to frame the
convergence rate in terms of the true optimal cost. Fifth, from a practical standpoint, it is of interest to adapt existing
algorithms or design new ones that explicitly leverage the structure of low-dispersion sequences (e.g., fast nearest neighbor
indexing or precomputed data structures). This would be especially beneficial in the domain of kinodynamic motion
planning. Finally, leveraging our convergence rate results, we plan to further investigate the issue of certification for
sampling-based planners, e.g., in the context of trajectory planning for drones or self-driving cars.
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