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Abstract. In this paper we present a queuing network approach to the
problem of routing and rebalancing a fleet of self-driving vehicles pro-
viding on-demand mobility within a capacitated road network. We refer
to such systems as autonomous mobility-on-demand systems, or AMoD.
We first cast an AMoD system into a closed, multi-class BCMP queuing
network model. Second, we present analysis tools that allow the char-
acterization of performance metrics for a given routing policy, in terms,
e.g., of vehicle availabilities, and first and second order moments of vehi-
cle throughput. Third, we propose a scalable method for the synthesis of
routing policies, with performance guarantees in the limit of large fleet
sizes. Finally, we validate the theoretical results on a case study of New
York City. Collectively, this paper provides a unifying framework for the
analysis and control of AMoD systems, which subsumes earlier Jackson
and network flow models, provides a quite large set of modeling options
(e.g., the inclusion of road capacities and general travel time distribu-
tions), and allows the analysis of second and higher-order moments for
the performance metrics.

Keywords: queuing networks, autonomous vehicles, self-driving cars,
transportation.

1 Introduction

Personal mobility in the form of privately owned automobiles contributes to in-
creasing levels of traffic congestion, pollution, and under-utilization of vehicles
(on average 5% in the US [17]) — clearly unsustainable trends for the future. The
pressing need to reverse these trends has spurred the creation of cost compet-
itive, on-demand personal mobility solutions such as car-sharing (e.g. Car2Go,
ZipCar) and ride-sharing (e.g. Uber, Lyft). However, without proper fleet man-
agement, car-sharing and, to some extent, ride-sharing systems lead to vehicle
imbalances: vehicles aggregate in some areas while becoming depleted in others,
due to the asymmetry between trip origins and destinations [24]. This issue has
been addressed in a variety of ways in the literature. For example, in the context
of bike-sharing, [5] proposes rearranging the stock of bicycles between stations
using trucks. The works in [18], [4], and [1] investigate using paid drivers to move
vehicles between car-sharing stations where cars are parked, while [2] studies the
merits of dynamic pricing for incentivizing drivers to move to underserved areas.

Self-driving vehicles offer the distinctive advantage of being able to rebalance
themselves, in addition to the convenience, cost savings, and possibly safety of



not requiring a driver. Indeed, it has been shown that one-way vehicle shar-
ing systems with self-driving vehicles (referred to as autonomous mobility-on-
demand systems, or AMoD) have the potential to significantly reduce passenger
cost-per-mile-traveled, while keeping the advantages and convenience of personal
mobility [22]. Accordingly, a number of works have recently investigated the po-
tential of AMoD systems, with a specific focus on the synthesis and analysis of
coordination algorithms. Within this context, the goal of this paper is to pro-
vide a principled framework for the analysis and synthesis of routing policies for
AMoD systems.

Literature Review: Previous work on AMoD systems can be categorized into
two main classes: heuristic methods and analytical methods. Heuristic routing
strategies are extensively investigated in [7,8,16] by leveraging a traffic sim-
ulator and, in [25], by leveraging a model predictive control framework. Ana-
lytical models of AMoD systems are proposed in [20], [24], and [26], by using
fluidic, Jackson queuing network, and capacitated flow frameworks, respectively.
Analytical methods have the advantage of providing structural insights (e.g.,
[26]), and provide guidelines for the synthesis of control policies. The problem
of controlling AMoD systems is similar to the System Optimal Dynamic Traffic
Assignment (SO-DTA) problem (see, e.g., [6,19]) where the objective is to find
optimal routes for all vehicles within congested or capacitated networks such
that the total cost is minimized. The main differences between the AMoD con-
trol problem and the SO-DTA problem is that SO-DTA only optimizes customer
routes, and not rebalancing routes.

This paper aims at devising a general, unifying analytical framework for anal-
ysis and control of AMoD systems, which subsumes many of the analytical mod-
els recently presented in the literature, chiefly, [20], [24], and [26]. Specifically,
this paper extends our earlier Jackson network approach in [24] by adopting a
BCMP queuing-theoretical framework [3,15]. BCMP networks significantly ex-
tend Jackson networks by allowing almost arbitrary customer routing and service
time distributions, while still admitting a convenient product-form distribution
solution for the equilibrium distribution [15]. Such generality allows one to take
into account several real-world constraints, in particular road capacities (that
is, congestion). Indeed, the impact of AMoD systems on congestion has been a
hot topic of debate. For example, [16] notes that empty-traveling rebalancing
vehicles may increase congestion and total in-vehicle travel time for customers,
but [26] shows that, with congestion-aware routing and rebalancing, the increase
in congestion can be avoided. The proposed BCMP model recovers the results
in [26], with the additional benefits of taking into account the stochasticity of
transportation networks and providing estimates for performance metrics.

Statement of Contributions: The contribution of this paper is fourfold. First,
we show how an AMoD system can be cast within the framework of closed, multi-
class BCMP queuing networks. The framework captures stochastic passenger
arrivals, vehicle routing on a road network, and congestion effects. Second, we
present analysis tools that allow the characterization of performance metrics
for a given routing policy, in terms, e.g., of vehicle availabilities and second-
order moments of vehicle throughput. Third, we propose a scalable method for
the synthesis of routing policies: namely, we show that, for large fleet sizes, the



stochastic optimal routing strategy can be found by solving a linear program.
Finally, we validate the theoretical results on a case study of New York City.
Organization: The rest of the paper is organized as follows. In Section 2, we
cover the basic properties of BCMP networks and, in Section 3, we describe the
AMoD model, cast it into a BCMP network, and formally present the routing
and rebalancing problem. Section 4 presents the mathematical foundations and
assumptions required to reach our proposed solution. We validate our approach
in Section 5 using a model of Manhattan. Finally, in Section 6, we state our
concluding remarks and discuss potential avenues for future research.

2 Background Material

In this section we review some basic definitions and properties of BCMP net-
works, on which we will rely extensively later in the paper.

2.1 Closed, Multi-Class BCMP Networks

Let Z be a network consisting of N independent queues (or nodes). A set of
agents move within the network according to a stochastic process, i.e. after
receiving service at queue ¢ they proceed to queue j with a given probability.
No agent enters or leaves the network from the outside, so the number of agents
is fixed and equal to m. Such a network is also referred to as a closed queuing
network. Agents belong to one of K € N5 classes, and they can switch between
classes upon leaving a node.

Let z;  denote the number of agents of class k € {1,..., K} at node i €
{1,..., N}. The state of node i, denoted by «;, is given by ®; = (x; 1, ..., Ti k) €
NX. The state space of the network is [10]:

N
Qm = {((l:17...7iBN) L X GNK, Z”mzul :m}a
=1

where || - || denotes the standard 1-norm (i.e., ||z|1 = >_,|z;|). The relative
frequency of visits (also known as relative throughput) to node i by agents of
class k, denoted as m; j, is given by the traffic equations [10]:

K N
Tik =Y Y TiwPikik foralli€{l,... N}, (1)

k/'=1j=1
where pj ;4.5 is the probability that upon leaving node j, an agent of class &’
goes to node i and becomes an agent of class k. Equation (1) does not have a
unique solution (a typical feature of closed networks), and 7 = {m; 1}, only
determines frequencies up to a constant factor (hence the name “relative” fre-
quency). It is customary to express frequencies in terms of a chosen reference

node, e.g., so that m ; = 1.

Queues are allowed to be one of four types: First Come First Serve (FCFS),
Processor Sharing, Infinite Server, and Last Arrived, First Served. FCFS nodes
have exponentially distributed service times, while the other three queue types
may follow any Cox distribution [10]. Such a queuing network model is referred
to as a closed, multi-class BCMP queuing network [10].

Let A represent the set of nodes in the network and N its cardinality. For
the remainder of the paper, we will restrict networks to have only two types of



nodes: FCFS queues with a single server (for short, SS queues), forming a set
S C N, and infinite server queues (for short, IS queues), forming a set Z C
N. Furthermore, we consider class-independent and load-independent nodes,
whereby at each node ¢ € {1,..., N} the service rate is given by:

i) = ci(wq) g,

where x; := ||a;||1 is the number of agents at node ¢, ug is the (class-independent)
base service rate, and ¢;(x;) is the (load-independent) capacity function

. (x ) x; if x; <cf,
& if x> ¢,

which depends on the number of servers ¢ at the queue. In the case considered
in this paper, ¢f =1 for alli € S and ¢ = oo for all i € 7.

Under the assumption of class-independent service rates, the multi-class net-
work Z can be “compressed” into a single-class network Z* with state-space
28 ={(x1,...,zN) 1 x2; €N, vazl x; = m} [14]. Performance metrics for the
original, multi-class network Z can be found by first analyzing the compressed
network Z*, and then applying suitable scalings for each class. Specifically, let
T = Z,If:l ik and y; = Zszl 7;7,", be the total relative throughput and rela-
tive utilization at a node 1, respectlively. Then, the stationary distribution of the
compressed, single-class network Z* is given by

P(zy,...,x H H 3 where ZH

a= 1C’L 2z, i=1 a 1C’L

is a normalizing constant. Remarkably, the stationary distribution has a product
form, a key feature of BCMP networks.

Three performance metrics that are of interest at each node are throughput,
expected queue length, and availability. First, the throughput at a node (i.e.,
the number of agents processed by a node per unit of time) is given by

G(im—1)

As(m) =7 Gm) (2)

Second, let P;(z;; m) be the probability of finding z; agents at node 4; then the
expected queue length at node i is given by Li(m) = Y27 _) x;P;(x; m).

In the case of IS nodes (i.e., nodes in ), the expected queue length can be
more easily derived via Little’s Law as [11]

L;(m) = Ay(m)/u;  for all i € 7. (3)

Finally, the availability of single-server, FCFS nodes (i.e., nodes in §) is defined
as the probability that the node has at least 1 agent, and is given by [11]

G(m—1)
G(m)
The throughputs and the expected queue lengths for the original, multi-class

network Z* can be found via scaling [14], specifically, A; x(m) = (m; /) A; (M)
and L; p(m) = (m; x/7:) Li(m).

Ai(m) = foralli € S.



It is worth noting that evaluating the three performance metrics above re-
quires computation of the normalization constant G(m), which is computation-
ally expensive. However, several techniques are available to avoid the direct com-
putation of G(m). In particular, in this paper we use the Mean Value Analysis
method, which, remarkably, can be also used to compute higher moments (e.g.,
variance) [23]. Details are provided in the Appendix.

2.2 Asymptotic Behavior of Closed BCMP Networks

In this section we describe the asymptotic behavior of closed BCMP networks as
the number of agents m goes to infinity. The results described in this section are
taken from [11], and are detailed for a single-class network; however, as stated in
the previous section, results found for a single-class network can easily be ported
to the multi-class equivalent in the case of class-independent service rates.

Let p; := ~;/c? be the utilization factor of node i € N, where ¢f is the
number of servers at node i. Assume that the relative throughputs {m;}; are
normalized so that max;cs p; = 1; furthermore, assume that nodes are ordered
by their utilization factors so that 1 = p; > ps > ... > pn, and define the set of
bottleneck nodes as B:={i € S : p; = 1}.

It can be shown [11, p. 14] that, as the number of agents m in the system
approaches infinity, the availability at all bottleneck nodes converges to 1 while
the availability at non-bottleneck nodes is strictly less than 1, that is

{_1 Vi € B.

fim Adm)y 4 Vig¢ B

m—r o0

(4)

Additionally, the queue lengths at the non-bottleneck nodes have a limiting
distribution given by

1—p)pit 1€8,i¢ B,
lim P;(xi;m) = {( p@? pi # (5)

m—rc0 e il iel.

Together, (4) and (5) have strong implications for the operation of queuing net-
works with a large number of agents, and in particular for the operation of AMoD
systems. Intuitively, (4) shows that as we increase the number of agents in the
network, they will be increasingly queued at bottleneck nodes, driving availabil-
ity in those queues to one. Alternatively, non-bottleneck nodes will converge to
an availability strictly less than one, implying that there is always a non-zero
probability of having an empty queue. In other words, agents will aggregate at
the bottlenecks and become depleted elsewhere. Additionally, (5) shows that,
as the number of agents goes to infinity, non-bottleneck nodes tend to behave
like queues in an equivalent open BCMP network with the bottleneck nodes
removed, i.e., individual performance metrics can be calculated in isolation.

3 Model Description and Problem Formulation

In this section, we introduce a BCMP network model for AMoD systems, and
formalize the problem of routing and rebalancing such systems under stochastic
conditions. Casting an AMoD system as a queuing network allows us to char-
acterize and compute key performance metrics including the distribution of the
number of vehicles on each road link (a key metric to characterize traffic con-
gestion) and the probability of servicing a passenger request. To emphasize the



relationship with the theory presented in the previous section, we reuse the same
notation whenever concepts are equivalent.

3.1 Autonomous Mobility-on-Demand Model

Consider a set of stations! S distributed within an urban area connected by a
network of individual road links Z, and m autonomous vehicles providing one-
way transportation between these stations for incoming customers. Customers
arrive to a station s € S with a target destination t € S according to a time-
invariant Poisson process with rate A € R<(. The arrival process for all origin-
destination pairs is summarized by the set of tuples Q = {(s(@), (@), )\(q))}q.

If on customer arrival there is an available vehicle, the vehicle drives the cus-
tomer towards its destination. Alternatively, if there are no vehicles, the customer
leaves the system (i.e., chooses an alternative transportation system). Thus, we
adopt a passenger loss model. Such model is appropriate for systems where high
quality-of-service is desired; from a technical standpoint, this modeling assump-
tion decouples the passenger queuing process from the vehicle queuing process.

A vehicle driving a passenger through the road network follows a routing
policy a(? (defined in Section 3.2) from origin to destination, where ¢ indicates
the origin-destination-rate tuple. Once it reaches its destination, the vehicle joins
the station first-come, first-serve queue and waits for an incoming trip request.

A known problem of such systems is that vehicles will inevitably accumulate
at one or more of the stations and reduce the number of vehicles servicing the
rest of the system [11] if no corrective action is taken. To control this problem,
we introduce a set of “virtual rebalancing demands” or “virtual passengers”
whose objective is to balance the system, i.e., to move empty vehicles to sta-
tions experiencing higher passenger loss. Similar to passenger demands, rebal-
ancing demands are defined by a set of origin, destination and arrival rate tuples
R = {(s,t() X))}, and a corresponding routing policy a("). Therefore, the
objective is to find a set of routing policies a(?, ("), for all ¢ € Q, r € R, and
rebalancing rates A("), for all » € R, that balances the system while minimizing
the number of vehicles on the road, and thus reducing the impact of the AMoD
system on overall traffic congestion.

3.2 Casting an AMoD System into a BCMP Network

We are now in a position to frame the AMoD system in terms of a BCMP
network model. To this end, we represent the vehicles, the road network and the
passenger demands in the BCMP framework.

First, the passenger loss assumption allows the model to be characterized as
a queuing network with respect only to the wvehicles. Thus, we will henceforth
use the term “vehicles” to refer to the queuing agents. From this perspective,
the stations S are equivalent to SS queues, and the road links 7 are modeled as
IS queues.

Second, we map the underlying road network to a directed graph with the
queues as edges, and introduce the set of road intersections V to function as
graph vertices. As in Section 2, the set of all queues is given by N' = {SUZ}.

1 Stations are not necessarily physical locations: they can also be interpreted as a set
of geographical regions.



Let Parent (i) and Child(4) be the origin and destination vertices of edge i. Then,
a road that goes from intersection j to intersection [ is represented by a queue
i € Z such that Parent(i)= j and Child(¢)= I. Note that the road may not have
lanes in the opposite direction, in which case a queue i’ with Parent(i')= [ and
Child(#")= j would not exist. For example, in Figure 1, queue 14 starts at vertex
1 and ends at vertex 5. However, there is no queue that connect the vertices in
the opposite direction. Similarly, we assume that stations are adjacent to road
intersections, and therefore stations are modeled as edges with the same parent
and child vertex. An intersection may have access to either one station (e.g.,
vertex 2 in Figure 1), or zero stations (e.g., vertex 5 in Figure 1).

<9> IS Queues

SS Queues

Fig. 1: BCMP network model of an AMoD system. Diamonds represent infinite-
server road links, squares represent the single-server vehicle stations, and dotted
circles represent road intersections.

Third, we introduce classes to represent the process of choosing destinations.
We map the set of tuples Q and R defined in Section 3.1 to a set of classes K
such that £ = {Q U R}. Moreover, let O; be the subset of classes whose origin
s(*) is the station 4, such that O; := {k € K : s®¥) =i} and D; be the subset
whose destination ¢*) is the station i, such that D; := {k € K : t*) = 4}. Thus,
the probability that a vehicle at station ¢ will leave for station j with a (real
or virtual) passenger is the ratio between the respective (real or virtual) arrival
rate A% with s*) = 4, t*) = j and the sum of all arrival rates at station
1. Formally, the probability that a vehicle of class k switches to class ¥/ upon

arrival to its destination ¢ is ]Bff,:)) = ()\(’“/)/XM)) where X; = > keo; AF)

is the sum of all arrival rates at station t(*). Consequently, at any instant in
time a vehicle belongs to a class k € IC, regardless of whether it is waiting at a
station or traveling along the road network. By switching class on vehicle arrival,

the vehicles’s transition probabilities f)ﬁ,:)) encode the passenger and rebalancing
demands defined in Section 3.1.

As mentioned in the previous section, the traversal of a vehicle from its
source s™) to its destination ¢t*) is guided by a routing policy a*). This routing
policy, in queuing terms, consists of a matrix of transition probabilities. Let
W; = {j € N : Parent(j) = i} be the set of queues that begin in vertex 4, and
U; = {j € N : Child(j) = i} the set of queues that end in vertex 7. A vehicle of



class k leaves the station s(*) via one of the adjacent roads j € Wenild(st) with
(k)

(%) - It continues traversing the road network via these adjacency
s(0)j
(k)

]

probability «a
relationships following the routing probabilities "/ until it is adjacent to its
goal t*) At this point, the vehicle proceeds to the destination and changes its

class to k' € O,u with probability ;Bffk/)) . This behavior is encapsulated by the
routing matrix

k). .
Oé,(,]) if k=&, j € Weniae), t* ¢ Wenias
Diksj k! = ]5§k b oif =1 0 e Wenita@y, k' € Oy, (6)
0 otherwise,

such that ZLM Dikij ke = 1. Thus, the relative throughput m; 1, total relative
throughput m;, and utilization 7; have the same definition as in Section 2.

As stated before, the queuing process at the stations is modeled as a SS
queue where the service rate of the vehicles p;(a) is equal to the sum of real and

virtual passenger arrival rates, i.e. u;(a) = \; for any station ¢ and queue length
a. Additionally, by modeling road links as IS queues, we assume that their service
rates follow a Cox distribution with mean p;(a) = #, where T is the expected
time required to cross link ¢ in absence of congestiori7 and ¢;(a) is the capacity
factor when there are a vehicles in the queue. In this paper, we only consider
the case of load-independent travel times, therefore ¢;(a) = a for all q, i.e., the
service rate is the same regardless of the number of vehicles on the road. We
do not make further assumptions on the distribution of the service times. The
assumption of load-independent travel times is representative of uncongested
traffic [21]: in Section 3.3 we discuss how to incorporate probabilistic constraints

for congestion on road links.
3.3 Problem formulation

As stated in Equation (4), vehicles tend to accumulate in bottleneck stations
driving their availability to 1 as the fleet size increases, while the rest of the
stations have availability strictly smaller than 1. In other words, for unbalanced
systems, availability at most stations is capped regardless of fleet size. Therefore,
it is desirable to make all stations ”bottleneck” stations, i.e., set the constraint
v =1, for all 4,5 € S, so as to (i) enforce a natural notion of “service fairness,”
and (i) prevent needless accumulation of empty vehicles at the stations.
However, it is desirable to minimize the impact that the rebalancing vehicles
have on the road network. We achieve this by minimizing the expected number of
vehicles on the road serving customer and rebalancing demands. Using Equation
(3), the expected amount of vehicles on a given road link ¢ is given by A;(m)T;.
Lastly, we wish to avoid congestion on the individual road links. Traditionally,
the relation between vehicle flow and congestion is parametrized by two basic
quantities: the free-flow travel time T;, i.e., the time it takes to traverse a link
in absence of other traffic; and the nominal capacity C;, i.e., the measure of
traffic flow beyond which travel time increases very rapidly [19]. Assuming that
travel time remains approximately constant when traffic is below the nominal
capacity (an assumption typical of many state-of-the-art traffic models [19]),
our approach is to keep the expected traffic A;(m)T; below the nominal capacity



C; and thus avoid congestion effects. Note that by constraining in expectation
there is a non-zero probability of exceeding the constraint; however, in Section
4.2, we show that, asymptotically, it is also possible to constrain the probability
of exceeding the congestion constraint.

Accordingly, the routing problem we wish to study in this paper (henceforth
referred to as the Optimal Stochastic Capacitated AMoD Routing and Rebalanc-
ing problem, or OSCARR) can now be formulated as follows:

L Ai(m)Ts,
A(iﬂ%lril(l’?g’c) Z (m)
Y i€T
subject to Yi = V4, i, €S, (7a)
As(m)T; < Cs, 1€1, (7b)
Tk = D D TokD; () s keK, (7c)
k'eKjEN

K N
ik = Z Zﬂj,k/pj,k’;i,k i€ {SUT}, (7d)

k=1 j=1
Zaﬁ? =1, oY >0, i,j € {SUT}, (7e)

J

Ar >0, rer. (1)

Constraint (7a) enforces equal availability at all stations, while constraint (7b)
ensures that all road links are (on average) uncongested. Constraints (7¢)—(7f)
enforce consistency in the model. Namely, (7c) ensures that all traffic leaving
the source s(*¥) of class k arrives at its destination t(*), (7d) enforces the traffic
equations (1), (7e) ensures that agf) is a valid probability measure, and (7f)
guarantees nonnegative rebalancing rates.

At this point, we would like to reiterate some assumptions built into the
model. First, the proposed model is time-invariant. That is, we assume that
customer and rebalancing rates remain constant for the segment of time under
analysis, and that the network is able to reach its equilibrium distribution. An
option for including the variation of customer demand over time is to discretize
a period of time into smaller segments, each with its own arrival parameters and
resulting rebalancing rates. Second, the passenger loss model assumes impatient
customers and is well suited for cases where high level of service is required. This
allows us to simplify the model by focusing only on the vehicle process; how-
ever, it disregards the fact that customers may have different waiting thresholds
and, consequently, the queuing process of waiting customers. Third, we focus
on keeping traffic within the nominal road capacities in expectation, allowing
us to assume load-independent travel times and to model exogenous traffic as a
reduction in road capacity. Finally, we make no assumptions on the distribution
of travel times on the road links: the analysis proposed in this paper captures
arbitrary distributions of travel times and only depends on the mean travel time.

4 Asymptotically Optimal Algorithms for AMoD routing

In this section we show that, as the fleet size goes to infinity, the solution to
OSCARR can be found by solving a linear program. This insight allows the
efficient computation of asymptotically optimal routing and rebalancing policies



and of the resulting performance parameters for AMoD systems with very large
numbers of customers, vehicles and road links.

First, we introduce simplifications possible due to the nature of the routing
matrix {al(-)kj)}(i’ j),k- Then, we express the problem from a flow conservation per-
spective. Finally, we show that the problem allows an asymptotically optimal
solution with bounds on the probability of exceeding road capacities. The solu-
tion we find is equivalent to the one presented in [26]: thus, we show that the
network flow model in [26] also captures the asymptotic behavior of a stochastic
AMoD routing and rebalancing problem.

4.1 Folding of traffic equations

The next two lemmas show that the traffic equations (1) at the SS queues can be
expressed in terms of other SS queues, and that the balanced network constraint
can be expressed in terms of real and virtual passenger arrivals. The proof of
Lemmas 1 and 2 are omitted for space reasons and can be found in the Appendix.

Lemma 1 (Folding of traffic equations). Let Z be a feasible solution to
OSCARR. Then, the relative throughputs of the single server stations can be
expressed in terms of the relative throughputs of the other single server stations,
that is
= Z i’é?}i)“s(k)a foralli e S. (8)
kED;

Lemma 2 (Balanced system in terms of arrival rates). Let Z be a feasible
solution to OSCARR, then the constraint ~v; = v; Y1, j, is equivalent to

=DA% 9)

kED;

4.2 Asymptotically Optimal Solution

As discussed in Section 2.1, relative throughputs are computed up to a constant
multiplicative factor. Thus, without loss of generality, we can set the additional
constraint 71y = A1, which, along with (7a), implies that

= i, o) g = AP and =1, forallies. (10)

As seen in Section 2.2, the availabilities of stations with the highest relative
utilization tend to one as the fleet size goes to infinity. Since the stations are
modeled as single-server queues, p; = «y; for all i € S. Therefore, if the system is
balanced, v; = v§'** =~y =1 for all i € S. That is, the set of bottleneck stations

B includes all stations in S and lim,;,— oo G((;Trg)l) = 1 by Equation (4) .
Asm — oo and GéTn:)l) — 1, the throughput at every station A;(m) becomes

a linear function of the relative frequency of visits to that station, according
to Equation (2). Thus, the objective function and the constraints in (7) are
reduced to linear functions. We define the resulting problem (i.e., Problem (7)
with G(m—1)/G(m) = 1) as the Asymptotically Optimal Stochastic Capacitated
AMoD Routing and Rebalancing problem, or A-OSCARR. The following lemma
shows that the optimal solution to OSCARR approaches the optimal solution
to A-OSCARR as m increases.



Lemma 3 (Asymptotic behavior of OSCARR). Let {7}, (m)}; 1 be the set
of relative throughputs corresponding to an optimal solution to OSCARR with a
given set of customer demands {\;}; and a fleet size m. Also, let {7; 1 }i 1 be the
set of relative throughputs corresponding to an optimal solution to A-OSCARR
for the same set of customer demands. Then,

W}Lw G ZTka STy Fik (11)

iel ke iel ke

Proof. We arrive to the proof by contradiction. Recall that m; = >, i T
Assume Equation (11) did not hold. By definition,

ZTz m < ZT% (12)

i€l i€l
and
> Tiwi <Y Tims, (13)
il il
for all m and {m; x}; . Applying the limit to (12) and using (4), we obtain
Yier Tilimy, oo (m7) < 37, Timi. However, according to our assumption, either

Yoier Tilimy, oo () > 7, Tyt or ZZGIT limy,, o0 (7}) < 3 -,c; Tift; but the
former violates Equatlon (12), and the latter (13).

As discussed in Section 3.3, constraint 7b only enforces an upper bound on
the expected number of vehicles traversing a link. However, in the asymptotic
regime, it is possible to enforce an analytical upper bound on the probability of
exceeding the nominal capacity of any given road link. As seen in Equation (5),
as the fleet size increases, the distribution of the number of vehicles on a road link
i converges to a Poisson distribution with mean Tjm;. The cumulative density
function of a Poisson distribution is given by Pr(X < ) = Q(|Z+1],C), where
C is the mean of the distribution and Q@ is the regularized upper incomplete
gamma function. Let € be the maximum tolerable probability of exceeding the
nominal capacity. Set C; = Q=1 (1—¢; |Ci+1]), i.e. Q(|Ci+1],C;) = 1—¢. Then
the constraint A;(m)T; < C, is equivalent to lim,, o P;(z; < Cj;m) > 1 —e.

4.3 Linear programming formulation and multi-commodity flow
equivalence

We now show that an asymptotically optimal routing and rebalancing problem
can be framed as a multi-commodity flow problem. Specifically, we show that
A-OSCARR is equivalent to the Congestion-Free Routing and Rebalancing prob-
lem presented in [26]: thus, (i) A-OSCARR can be solved efficiently by ad-hoc
algorithms for multi-commodity flow (e.g. [12]) and (ii) the theoretical results
presented in [26] (namely, the finding that rebalancing trips do not increase
congestion) extend, in expectation, to stochastic systems.

First, we show that the problem can be solved exclusively for the relative
throughputs on the road links, and then we show that the resulting equations
are equivalent to a minimum cost, multi-commodity flow problem.

The relative throughput going from an intersection ¢ into adjacent roads is
Zjewg ik, where W/ = {W,; NI} is the set of road links that begin in node



1. Similarly, the relative throughput entering the intersection ¢ from the road
network is 3, 7; , where U; = {U; NI} is the set of road links terminating

in ¢. Additionally, define dgk) as the difference between the relative throughput
leaving the intersection and the relative throughput entering the intersection.
From (7d), (7¢), and (10), we see that for customer classes

A@ if § = 5@,
S M= Y mig=di?, where d{ ={ A@ ifi=@),
JEW! jeu; 0 otherwise.

While the rebalancing arrival rates A(") are not fixed, we do know from Equation

(7c) and from the definition of dgq) that di?z) =— E(TT)) Thus,
D M= D M= Y Mt D W
JEW! 1y JeU’ JEW! JeU

Finally, we can rewrite Lemma 2 as
ILLES SD LD D
qeQ rER jEW! JEU!

Thus, in the asymptotic regime Problem (7) can be restated as

minimize E Tig i ks

TieT, ke

iel ke
subject to Z dgq) + Z Z T — Z e =0 Vi€ S, (14a)
qeQ TER jEW! Jeu;
Ty miw < C Vi€ Z, (14b)
ke
Z Tj,q — Z Tjq = dgq) Vi S S, (14C)
JEW] jeu!
Z Tjr — Z Tjr = Z Tjr — Z Tir Y7 €R, (14d)
JEW oy ISy ISy IEW G,
> M= > =0 Vie S\ {sM,("}, (1de)
JEW! Jjeu;
>oome— Y. mae =0 Vr € R, (14f)
IEW I ()
ik > 0, VieZ kek. (14g)

Here, constraints (14a) and (14b) are direct equivalents to (7a) and (7b), re-
spectively. By keeping traffic continuity and equating throughputs at source and
target stations, (14c) enforces (7c¢) and (7d) for the customer classes. For the
rebalancing classes, (14d) is equivalent to (7c) and (14e) to (7d). Non-negativity
of rebalancing rates (7f) is kept by (14f).

Thus, A-OSCARR can be solved efficiently as a linear program. Note that
this formulation is very similar to the multi-commodity flow found in [26]. The
formulation in this paper prescribes specific routing policies for distinct rebal-
ancing origin-destination pairs, while [26] only computes a single “rebalancing



flow”: however, stochastic routing policies can be computed from the rebalancing
flow in [26] with a flow decomposition algorithm [9].

5 Numerical Experiments

To illustrate a real-life application of the results in this paper, we applied our
model to a case study of Manhattan, and computed the system performance met-
rics as a function of fleet size using the Mean Value Analysis. Results show that
the solution correctly balances vehicle availability across stations while keeping
road traffic within the capacity constraints, and that the assumption of load-
independent travel times is relatively well founded.

Fig.2: Manhattan scenario . Left: modeled road network. Center: Station loca-
tions. Right: Resulting vehicular flow (darker flows show higher vehicular pres-
ence).

The model used for this case study consists of a simplified version of Man-
hattan’s real road network, with 1005 road links and 357 nodes. To select station
positions and compute the rates A(@ of the origin-destination flows Q, we used
the taxi trips within Manhattan that took place between 7:00AM and 8:00AM
on March 1, 2012 (22,416 trips) from the New York City Taxi and Limousine
Commission dataset?. We clustered the pickup locations into 50 different groups
with K-means clustering, and placed a station at the road intersection closest
to each cluster centroid. We fitted an origin-destination model with exponential
distributions to describe the customer trip demands between the stations. Road
capacities were reduced to ensure that the model reaches maximum utilization

2 http://www.nyc.gov/html/tlc/html/about /trip_record data.shtml



in some road links; in the real world, a qualitatively similar reduction in road
capacity is caused by traffic exogenous to the taxi system.

We considered two scenarios: the “baseline” scenario where traffic constraints
on each road link are based on expectation, i.e., on average the number of vehi-
cles on a road link is below its nominal capacity; and the “conservative” scenario
where the constraints are based on the asymptotic probability of exceeding the
nominal capacity (specifically, the asymptotic probability of exceeding the nom-
inal capacity is constrained to be lower than 10%). Figure 2 shows the station
locations, the road network, and the resulting traffic flow, and Figure 3 shows
our results.

We see from Figure 3a that, as intended, the station availabilities are balanced
and approach one as the fleet size increases. However, Figure 3b shows that there
is a trade off between availability and vehicle utilization. For example, for a fleet
size of 4,000 vehicles, half of the vehicles are expected to be waiting at the
stations. In contrast, a fleet of 2,400 vehicles results in availability of 91% and
only 516 vehicles are expected to be at the stations. Not shown in the figures,
34% of the trips are for rebalancing purposes; in contrast, only about 18% of
the traveling vehicles are rebalancing. This shows that rebalancing trips are
significantly shorter than passenger trips, in line with the goal of minimizing the
number of empty vehicles on the road and thus road congestion.

Although Figures 3a and 3b show only the results for the baseline case,
for the conservative scenario the difference in availabilities is less than 0.1%,
and the difference in the total number of vehicles on the road is less than 7,
regardless of fleet size. However, road utilization is significantly different in the
two scenarios we considered. In Figure 3c, we see that, as the fleet size increases,
the likelihood of exceeding the nominal capacity approaches 50%. In contrast,
in the conservative scenario, the probability of exceeding the capacity is never
more than 10% —by design— regardless of fleet size.

Lastly, we evaluated how much the assumption of load-independent travel
times deviates from the more realistic case where travel time depends on traffic.
Assuming asymptotic conditions (i.e., the number of vehicles on each road follows
a Poisson distribution), we computed for both scenarios the expected travel
time between each origin-destination pair by using the Bureau of Public Roads
(BPR) delay model (described in the Appendix), and estimated the difference
with respect to the load-independent travel time used in this paper. The results,
depicted in Figure 3d, show that the maximum difference for the baseline and
conservative scenarios are an increase of around 8% and 4%, respectively, and
the difference tends to be smaller for higher trip times. Thus, for this specific
case study, our assumption is relatively well founded.
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Fig.3: (a) Station availabilities as a function of fleet size for the baseline case.
(b) Expected number of vehicles by usage as a function of fleet size for the
baseline case. (¢) Utilization as a function of fleet size for the most utilized road.
The colored band denotes +1 standard deviation from the mean. (d) Increase in
expected travel time for each O-D pair when considering the BPR delay model.

6 Conclusions

In this paper, we presented a novel queuing theoretic framework for modeling
AMoD systems within capacitated road networks. We showed that, for the rout-
ing and rebalancing problem, the stochastic model we propose asymptotically
recovers existing models based on the network flow approximation. The model
enables the analysis and control of the probabilistic distribution of the vehicles,
and not only of its expectation: in particular (i) it enables the computation of
higher moments of the vehicle distribution on road links and at stations and
(ii) it allows to establish an arbitrary bound on the asymptotic probability of
exceeding the capacity of individual road links.

The flexibility of the model presented will be further exploited in future work.
First, we would like to incorporate a more accurate congestion model, using load-
dependent IS queues as roads, in order to study heavily congested scenarios.
Second, we currently consider the system in isolation from other transportation
modes, whereas, in reality, customer demand depends on the perceived qual-
ity of the different transportation alternatives. Future research will explore the
effect of AMoD systems on customer behavior and how to optimally integrate
fleets of self-driving vehicles with existing public transit. Third, we would like to
examine scenarios where the vehicle fleet is electric-powered and explore the re-
lationship between the constraints imposed by battery charging and the electric
grid. Fourth, the current model assumes that each customer travels alone: fu-
ture research will address the problem of ride-sharing, where multiple customers
may share the same vehicle. Lastly, the control policy proposed in this paper
is open-loop, and thus sensitive to modeling errors (e.g., incorrect estimation of



customer demand). Future research will characterize the stability, persistent fea-
sibility and performance of closed-loop model predictive control schemes based
on a receding-horizon implementation of the controller presented in this paper.

Acknowledgements

The authors would like to thank the National Science Foundation for funding
this proposal via the NSF CAREER award.

References

1.

11.

12.

13.

14.

15.

16.

Acquaviva, F., Di Paola, D., Rizzo, A.: A novel formulation for the distributed
solution of load balancing problems in mobility on-demand systems. In: Connected
Vehicles and Expo (ICCVE), 2014 International Conference on. pp. 906-911 (2014)

. Banerjee, S., Johari, R., Riquelme, C.: Pricing in ride-sharing platforms: A

queueing-theoretic approach. In: Proceedings of the Sixteenth ACM Conference
on Economics and Computation. pp. 639-639. ACM (2015)

Baskett, F., Chandy, K.M., Muntz, R.R., Palacios, F.G.: Open, closed, and mixed
networks of queues with different classes of customers. Journal of the Association
for Computing Machinery 22(2), 248-260 (Apr 1975)

Boyaci, B., Zografos, K.G., Geroliminis, N.: An optimization framework for the
development of efficient one-way car-sharing systems. European Journal of Oper-
ational Research 240(3), 718-733 (2015)

. Chemla, D., Meunier, F., Calvo, R.W.: Bike sharing systems: Solving the static

rebalancing problem. Discrete Optimization 10(2), 120-146 (2013)

Chiu, Y.C., Bottom, J., Mahut, M., Paz, A., Balakrishna, R., Waller, T., Hicks,
J.: Dynamic traffic assignment: A primer. Transportation Research E-Circular (E-
C153) (2011)

Fagnant, D.J., Kockelman, K.M.: The travel and environmental implications of
shared autonomous vehicles, using agent-based model scenarios. Transportation
Research Part C: Emerging Technologies 40, 1-13 (2014)

Fagnant, D.J., Kockelman, K.M., Bansal, P.: Operations of shared autonomous
vehicle fleet for austin, texas, market. Transportation Research Record: Journal of
the Transportation Research Board (2536), 98-106 (2015)

Ford, L.R., Fulkerson, D.R.: Flows in Networks. Princeton University Press (1962)

. Gelenbe, E., Pujolle, G., Nelson, J.: Introduction to queueing networks, vol. 2.

Wiley Chichester (1998)

George, D.K.: Stochastic Modeling and Decentralized Control Policies for Large-
Scale Vehicle Sharing Systems via Closed Queueing Networks. Ph.D. thesis, The
Ohio State University (2012)

Goldberg, A.V., Oldham, J.D., Plotkin, S., Stein, C.: An implementation of a
combinatorial approximation algorithm for minimum-cost multicommodity flow.
In: Bixby, R., Boyd, E., Ros-Mercado, R. (eds.) Integer Programming and Combi-
natorial Optimization, Lecture Notes in Computer Science, vol. 1412, pp. 338-352.
Springer Berlin Heidelberg (1998)

Kant, K., Srinivasan, M.: Introduction to computer system performance evaluation.
McGraw-Hill College (1992)

Kobayashi, H., Gerla, M.: Optimal routing in closed queueing networks. In: ACM
SIGCOMM Computer Communication Review. vol. 13, pp. 26-26. ACM (1983)
Levin, M.W., Li, T., Boyles, S.D., Kockelman, K.M.: A general framework for mod-
eling shared autonomous vehicles. In: 95th Annual Meeting of the Transportation
Research Board (2016)

Neil, D.: Could self-driving cars spell the end of ownership? wsj.com (2015)



17. Nourinejad, M., Zhu, S., Bahrami, S., Roorda, M.J.: Vehicle relocation and staff
rebalancing in one-way carsharing systems. Transportation Research Part E: Lo-
gistics and Transportation Review 81, 98-113 (2015)

18. Patriksson, M.: The traffic assignment problem: models and methods. Courier
Dover Publications (2015)

19. Pavone, M., Smith, S.L., Frazzoli, E., Rus, D.: Robotic load balancing for mobility-
on-demand systems. International Journal of Robotics Research 31(7), 839-854
(Jun 2012)

20. Bureau of Public Roads: Traffic assignment manual. Tech. rep., U.S. Department
of Commerce, Urban Planning Division, Washington, D.C (1964) (1964)

21. Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Morton, D., Pavone, M.: Toward
a systematic approach to the design and evaluation of automated mobility-on-
demand systems: A case study in Singapore. In: Lecture Notes in Mobility, pp.
229-245. Springer (Jun 2014)

22. Strelen, J.: A generalization of mean value analysis to higher moments: moment
analysis. In: ACM Sigmetrics Performance Evaluation Review. vol. 14, pp. 129-140.
ACM (1986)

23. Zhang, R., Pavone, M.: Control of robotic mobility-on-demand systems: A
queueing-theoretical perspective. International Journal of Robotics Research 35(1-
3), 186-203 (Jan 2016)

24. Zhang, R., Rossi, F., Pavone, M.: Model predictive control of autonomous mobility-
on-demand systems. In: Proc. IEEE Conf. on Robotics and Automation. pp. 1382
— 1389. Stockholm, Sweden (May 2016)

25. Zhang, R., Rossi, F., Pavone, M.: Routing autonomous vehicles in congested
transportation networks: Structural properties and coordination algorithms. In:
Robotics: Science and Systems (Mar 2016)

Appendix

Proof of Lemma 1 Using the routing matrix specified in Equation (6) we can
rewrite the class throughputs (1) as

K N
ik = E E T4,k Pj,k’5i,k = E E Tj,k' P,k i,k

k'=1j=1 k'€D; jEN;n (3) (]_5)
k k
=2 > mwh =R Y > mw
k'€D; JEN;n () k'€D; jEN;n (5)

where the second equality acknowledges the fact that only queues feeding into 4
and vehicles whose class destination is 7 will be routed to i, and the third and
fourth equalities take advantage of the fact that the probability of switching into
class k at queue i is the same regardless of the original class k’. This allows to
rewrite the total relative throughput

K
T = Zijik) Z Z 7Tj,k/ = Z Z 7Tj,k’7 (16)
k=1

k'€D; jENn (J) k'€D; jENn (J)

since Zle i){ik) = 1. As a consequence of (16) and (15), we can relate the class
relative throughputs to the total relative throughputs

Tk = P (7)



Now, assume the relative throughputs belong to a feasible solution to OS-
CARR. We proceed to reduce (7c) by using the routing matrix:

Motk e = Z Z”Jﬁk’pm;t“),k’ = Z f’ﬁk; Z Tk = Z Tik(18)

KK JEN KEK  jeNin(t(0) TEN 1 (80))

by inserting this into (16) and applying (17) we obtain
S SETUNES F R w0

keD; keD;

Proof of Lemma 2 The proof of Lemma 2 is very similar to Theorem 4.3 in [24].
Consider the case where (9) holds. We can write (8) in terms of the relative

utilization rate:
(Z )\ilf;z)) Vi = Z ’Ysm)\iﬁl) . (20)
keD; keD;

Now, by grouping customer and rebalancing classes by origin-destination

pairs, we define ¢ as
pij = )\S_q) + )\g-r), (21)

such that s(@ = s(") = j and (@ = ¢(") = {. Additionally, let Gij = wij/ Zj ©Dij.
We note that there are no classes for which s*) = t(k), so we set w;; = (i =
0. Under this definition, the variables {(;;}:; represent an irreducible Markov
chain. Thus, Equation (20) can be rewritten as y; = > i (i;j or more compactly
Z~ =, where the rows of Z are [(;1, (2, ..., Gis], with S =S|, i =1, ..., S, and
v = (71,..-,7s). This result is identical to [24]. Since Z is an irreducible, row
stochastic Markov chain, by the Perron-Frobenius theorem the unique solution
is given by v = (1,...,1)”. Thus, v; = ~; for all i.

On the other hand, we consider again Equation (20). If the network Z is a
solution to problem (7), then for all ¢, v; = 7; = 7, and (20) becomes

g k N k
yhi=7 DAL, =0 A% (22)
keD; keD;

Bureau of Public Roads delay model The Bureau of Public Roads (BPR) delay
model is a commonly used equation for relating traffic to travel time [21]. Under
this model, the travel time on a road link is given by

T =T, <1+5 (é)ﬂ> (23)

where T} is the real mean travel time, T; is the free flow travel time, z;is the
number of vehicles on the road, C; the nominal capacity of the road, and § and
B are function parameters usually set to 0.15 and 3, respectively.



