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Abstract
In this paper we present a queuing network approach to the problem of routing and
rebalancing a fleet of self-driving vehicles providing on-demand mobility within a
capacitated road network. We refer to such systems as autonomous mobility-on-
demand (AMoD) systems. We first cast an AMoD system into a closed, multi-class
BCMP queuing network model capable of capturing the passenger arrival process,
traffic, the state-of-charge of electric vehicles, and the availability of vehicles at
the stations. Second, we propose a scalable method for the synthesis of routing and
charging policies, with performance guarantees in the limit of large fleet sizes. Third,
explore the applicability of our theoretical results on a case study of Manhattan.
Collectively, this paper provides a unifying framework for the analysis and control of
AMoD systems, which provides a large set of modeling options (e.g., the inclusion of
road capacities and charging constraints), and subsumes earlier Jackson and network
flow models.
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Introduction

Personal mobility in the form of privately owned automobiles contributes to
increasing levels of traffic congestion, pollution, and under-utilization of vehicles
(on average 5% in the US (Neil 2015)) – clearly unsustainable trends for the
future. The pressing need to reverse these trends has spurred the creation of cost-
competitive, on-demand personal mobility solutions such as car-sharing (e.g.
Car2Go, ZipCar) and ride-sharing (e.g. Uber, Lyft). However, without proper
fleet management, car-sharing and, to some extent, ride-sharing systems lead to
vehicle imbalances; vehicles aggregate in some areas while becoming depleted in
others, due to the asymmetry between trip origins and destinations (Zhang and
Pavone 2016).

Self-driving vehicles offer the distinctive advantage of being able to rebalance
themselves, in addition to the convenience, cost savings, and possibly safety of
not requiring a driver. Indeed, it has been shown that one-way vehicle sharing
systems with self-driving vehicles (referred to as autonomous mobility-on-
demand systems, or AMoD) have the potential to significantly reduce passenger
cost-per-mile-traveled, while keeping the advantages and convenience of personal
mobility (Spieser et al. 2014). Accordingly, a number of works have recently
investigated the potential of AMoD systems, with a specific focus on the
synthesis and analysis of coordination algorithms.

This paper aims to devise a general, unifying analytical framework for the
analysis and control of AMoD systems, which subsumes many of the analytical
models recently presented in the literature, chiefly, Pavone et al. (2012), Zhang
and Pavone (2016), and Rossi et al. (2018). Specifically, this paper extends the
Jackson network approach in Zhang and Pavone (2016) by adopting a Baskett-
Chandy-Muntz-Palacios (BCMP) queuing-theoretical framework (Baskett et al.
1975; Kobayashi and Gerla 1983). The generality offered by the BCMP
framework allows one to take into account several real-world constraints, in
particular (i) state-of-charge of autonomous electric vehicles and (ii) road
capacities (that is, congestion). In contrast to previous work, the proposed
BCMP model allows one to characterize such effects analytically along with
performance guarantees. Moreover, the proposed BCMP model recovers the
traffic congestion results in Rossi et al. (2018), with the additional benefits of
taking into account the stochasticity of transportation networks and providing
estimates for performance metrics. Thus, the results in this paper provide
novel tools for the analysis and control of AMoD systems in the presence of
stochasticity and system-wide constraints such as traffic congestion and vehicle
charging.

Literature Review: The issue of vehicle rebalancing has been addressed in a
variety of ways in the literature. For example, in the context of bike-sharing,
Chemla et al. (2013) proposes rearranging the stock of bicycles between stations
using trucks. The works in Nourinejad et al. (2015), Boyacı et al. (2015), and

A preliminary version of this paper has appeared in the Proceedings of the 2016 Workshop on the
Algorithmic Foundations of Robotics (Iglesias et al. 2016).
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Acquaviva et al. (2014) investigate using paid drivers to move vehicles between
car-sharing stations where cars are parked, while Banerjee et al. (2015) studies
the merits of dynamic pricing for incentivizing drivers to move to underserved
areas.

Within the context of AMoD systems, where vehicles can rebalance
themselves, previous work can be categorized into two main classes: heuristic
methods and analytical methods. Heuristic routing strategies are extensively
investigated in Fagnant and Kockelman (2014), Fagnant et al. (2015), and
Levin et al. (2016) by leveraging a traffic simulator and, in Zhang et al.
(2016), by leveraging a model predictive control framework. Analytical models
of AMoD systems are proposed in Pavone et al. (2012), Zhang and Pavone
(2016), and Rossi et al. (2018), by using fluidic, Jackson queuing network,
and capacitated flow frameworks, respectively. Analytical methods have the
advantage of providing structural insights (e.g., Rossi et al. (2018)), and provide
guidelines for the synthesis of control policies. The problem of controlling AMoD
systems is similar to the System Optimal Dynamic Traffic Assignment (SO-
DTA) problem (see, e.g., Chiu et al. (2011); Patriksson (2015)) where the
objective is to find optimal routes for all vehicles within congested or capacitated
networks such that the total cost is minimized. The main differences between
the AMoD control problem and the SO-DTA problem is that SO-DTA only
optimizes customer routes, and not rebalancing routes.

Previous work addressing AMoD charging and congestion constraints rely
either on deterministic models or are simulation-based studies. Integration of
electric vehicles in AMoD systems has been studied in a model-predictive control
setting in Zhang et al. (2016) and in an agent-based simulation framework in
Chen et al. (2016). Both studies characterize the effects of charging speed on
the level of service via simulations. As for congestion, the impact of AMoD
systems on traffic has been a hot topic of debate. For example, Levin et al.
(2016) notes that empty-traveling rebalancing vehicles may increase congestion
and total in-vehicle travel time for customers, but Rossi et al. (2018) shows that,
with congestion-aware routing and rebalancing, the increase in congestion can be
avoided. However, their proposed model does not account for the stochasticity
of travel demand.

Statement of Contributions: The contribution of this paper is threefold. First,
we show how an AMoD system can be cast within the framework of closed, multi-
class BCMP queuing networks. The framework captures stochastic passenger
arrivals, vehicle routing on a road network, congestion effects, and battery
charging-discharging for electric vehicles. Importantly, such a framework allows
one to use a number of queuing theoretical tools to analyze performance metrics
for a given routing policy in terms, e.g., of vehicle availabilities and second-order
moments of vehicle throughput. Second, we propose a scalable method for the
synthesis of routing and charging policies: namely, we show that, for large fleet
sizes, the stochastic optimal routing and charging strategy can be found by
solving a linear program. Finally, we explore the applicability of our theoretical
results on a case study of Manhattan.
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A preliminary version of this paper appeared as Iglesias et al. (2016).
This extended and revised version contains as additional contributions: (i) an
extension of the BCMP model to capture the state-of-charge of the vehicles, (ii) a
corresponding extension of the solution algorithms, (iii) a new set of numerical
experiments that characterize the effects of vehicle charging on the level of
service, and (iv) proofs of all results.

Organization: The rest of the paper is organized as follows. In the
“Background Material” section we discuss basic properties of BCMP networks.
In the “Model Description and Problem Formulation” section we describe the
model of the AMoD system in the presence of road congestion constraints, cast
it into a BCMP network, and formally present the routing and rebalancing
problem. In the “Asymptotically Optimal Algorithms for AMoD Routing”
section we focus on the derivation of solution algorithms that are shown to
achieve optimal performance in the limit of large fleet sizes. In the section
on “Battery Charge Constraints” we extend the BCMP model and solution
algorithms to capture the state-of-charge of the vehicles. We validate our
approach in the “Numerical Experiments” section by performing a case study
of Manhattan. Finally, in the “Conclusions” section, we state our concluding
remarks and discuss potential avenues for future research.

Background Material

In this section we review some basic definitions and properties of BCMP
networks, on which we will rely extensively later in the paper.

Closed, multi-class BCMP networks

Let Z be a network consisting of N independent queues (or nodes). A set of
agents move within the network according to a stochastic process, i.e., after
receiving service at queue i they proceed to queue j with a given probability. No
agent enters or leaves the network from the outside, so the number of agents is
fixed and equal to m. Such a network is referred to as a closed queuing network.
Agents belong to one of K ∈ N>0 classes, and they can switch between classes
upon leaving a node.

Let xi,k denote the number of agents of class k ∈ {1, . . . ,K} at node i ∈
{1, . . . , N}. The state of node i, denoted by xi, is given by xi = (xi,1, ..., xi,K) ∈
NK . The state space of the network is (Gelenbe et al. 1998):

Ωm := {(x1, ...,xN ) : xi ∈ NK ,
N∑
i=1

‖xi‖1 = m},

where ‖ · ‖1 denotes the standard 1-norm (i.e., ‖xi‖1 =
∑
k |xi,k|). The relative

frequency of visits (also known as relative throughput) to node i by agents of
class k, denoted as πi,k, is given by the traffic equations (Gelenbe et al. 1998):

πi,k =
K∑
k′=1

N∑
j=1

πj,k′pj,k′;i,k, for all i ∈ {1, . . . , N}, (1)
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where pj,k′; i,k is the probability that upon leaving node j, an agent of class
k′ goes to node i and becomes an agent of class k. Equation (1) does not
have a unique solution (a typical feature of closed networks), and π = {πi,k}i,k
only determines frequencies up to a constant factor (hence the name “relative”
frequency). It is customary to express frequencies in terms of a chosen reference
node, e.g., so that π1,1 = 1.

Queues are allowed to be one of four types: First Come, First Served (FCFS),
Processor Sharing, Infinite Server, and Last Come, First Served. FCFS nodes
have exponentially distributed service times, while the other three queue types
may follow any Cox distribution (Gelenbe et al. 1998). Such a queuing network
model is referred to as a closed, multi-class BCMP queuing network (Gelenbe
et al. 1998).

Let N represent the set of nodes in the network. For the remainder of the
paper, we will focus on networks that have only two types of nodes: FCFS
queues with a single server (for short, SS queues), forming a set S ⊂ N , and
infinite server queues (for short, IS queues), forming a set I ⊂ N . Furthermore,
we consider class-independent and load-independent nodes (i.e. nodes whose
service rate is independent of the agent classes or number of agents in the
queue), whereby at each node i ∈ {1, . . . , N} the service rate is given by:

µi(xi) = ci(xi)µ
o
i ,

where xi := ‖xi‖1 is the number of agents at node i, µoi is the (class-independent)
base service rate, and ci(xi) is the (load-independent) capacity function

ci(xi) =

{
xi if xi ≤ coi ,
c0i if xi > coi ,

which depends on the number of servers coi at the queue. In the case considered
in this paper, coi = 1 for all i ∈ S and coi =∞ for all i ∈ I.

Under the assumption of class-independent service rates, the multi-class
network Z can be “compressed” into a single-class network Z∗ with
state-space Ω∗m := {(x1, ..., xN ) : xi ∈ N,

∑N
i=1 xi = m} (Kant and Srinivasan

1992). Performance metrics for the original, multi-class network Z can be found
by first analyzing the compressed network Z∗, and then applying suitable
scalings for each class. Specifically, let πi =

∑K
k=1 πi,k and γi =

∑K
k=1

πi,k

µo
i

, be

the total relative throughput and relative utilization at a node i, respectively.
Then, the stationary distribution of the compressed, single-class network Z∗ is
given by

P(x1, ..., xN ) =
1

G(m)

N∏
i=1

γxi
i∏xi

a=1 ci(a)
, where G(m) =

∑
xi∈Ω∗m

N∏
i=1

γxi
i∏xi

a=1 ci(a)

is a normalizing constant. Remarkably, the stationary distribution has a product
form, a key feature of BCMP networks.

Three performance metrics that are of interest at each node are throughput,
expected queue length, and availability. First, the throughput at a node (i.e.,
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the number of agents processed by a node per unit of time) is given by

Λi(m) = πi
G(m− 1)

G(m)
. (2)

Second, let Pi(xi; m) be the probability of finding xi agents at node i; then the
expected queue length at node i is given by Li(m) =

∑m
xi=1 xiPi(xi; m).

In the case of IS nodes (i.e., nodes in I), the expected queue length can be
more easily derived via Little’s Law as (George 2012)

Li(m) = Λi(m)/µoi , for all i ∈ I. (3)

The throughputs and the expected queue lengths for the original, multi-class
network Z∗ can be found via scaling (Kant and Srinivasan 1992), specifically,
Λi,k(m) = (πi,k/πi)Λi(m) and Li,k(m) = (πi,k/πi)Li(m).

Finally, the availability of single-server, FCFS nodes (i.e., nodes in S) is
defined as the probability that the node has at least one agent, and is given
by (George 2012)

Ai(m) = γi
G(m− 1)

G(m)
, for all i ∈ S.

It is worth noting that evaluating the three performance metrics
above requires computation of the normalization constant G(m), which is
computationally expensive. However, several techniques are available to avoid
the direct computation of G(m). In particular, in this paper we use the Mean
Value Analysis method (Gelenbe et al. 1998).

Asymptotic behavior of closed BCMP networks

In this section we describe the asymptotic behavior of closed BCMP networks as
the number of agents m goes to infinity. The results described in this section are
taken from George (2012), and are detailed for a single-class network. However,
as stated in the previous section, results found for a single-class network can
easily be ported to the multi-class equivalent in the case of class-independent
service rates.

Let ρi := γi/c
o
i be the utilization factor of node i ∈ N , where coi is the

number of servers at node i. Assume that the relative throughputs {πi}i are
normalized so that maxi∈S ρi = 1; furthermore, assume that nodes are ordered
by their utilization factors so that 1 = ρ1 ≥ ρ2 ≥ . . . ≥ ρN , and define the set of
bottleneck nodes as G := {i ∈ S : ρi = 1}.

It can be shown (George 2012, p. 14) that, as the number of agents m in the
system approaches infinity, the availability at all bottleneck nodes converges to
1 while the availability at non-bottleneck nodes is strictly less than one, that is

lim
m→∞

Ai(m)

{
= 1 ∀i ∈ G,
< 1 ∀i /∈ G.

(4)
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Additionally, the queue lengths at the non-bottleneck nodes have a limiting
distribution given by

lim
m→∞

Pi(xi;m) =

{
(1− ρi) ρxii i ∈ S, i /∈ G,
e−γi

γ
xi
i
xi!

i ∈ I.
(5)

Together, (4) and (5) have strong implications for the operation of queuing
networks with a large number of agents, and in particular for the operation
of AMoD systems. Intuitively, (4) shows that as we increase the number of
agents in the network, they will be increasingly queued at bottleneck nodes,
driving availability in those queues to one. Alternatively, non-bottleneck nodes
will converge to an availability strictly less than one, implying that there is
always a non-zero probability of having an empty queue. In other words, agents
will aggregate at the bottlenecks and become depleted elsewhere. Additionally,
(5) shows that, as the number of agents goes to infinity, non-bottleneck nodes
tend to behave like queues in an equivalent open BCMP network with the
bottleneck nodes removed, i.e., individual performance metrics can be calculated
in isolation.

Model Description and Problem Formulation

In this section, we introduce a BCMP network model for AMoD systems,
and formalize the problem of routing and rebalancing such systems under
stochastic conditions. Casting an AMoD system as a queuing network allows us
to characterize and compute key performance metrics including the distribution
of the number of vehicles on each road link (a key metric to characterize traffic
congestion) and the probability of servicing a passenger request. To emphasize
the relationship with the theory presented in the previous section, we reuse the
same notation whenever concepts are equivalent.

Autonomous Mobility-on-Demand model

Consider a set of stations∗ S distributed within an urban area connected by
a network of road links I, and m autonomous vehicles providing one-way
transportation between these stations for incoming customers. Customers arrive
to a station s ∈ S with a target destination t ∈ S according to a time-invariant
Poisson process with rate λ ∈ R>0. The arrival process for all origin-destination
pairs is summarized by the set of tuples Q = {(s(q), t(q), λ(q))}q.

If on customer arrival there is an available vehicle, the vehicle drives the
customer towards its destination. Alternatively, if there are no vehicles, the
customer leaves the system (i.e., chooses an alternative transportation system).
Thus, we adopt a passenger loss model. Such model is appropriate for systems
where high quality-of-service is desired; from a technical standpoint, this

∗Stations are not necessarily physical locations: they can also be interpreted as a set of
geographical regions.
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modeling assumption decouples the passenger queuing process from the vehicle
queuing process.

A vehicle driving a passenger through the road network follows a routing
policy α(q) (defined in the next section) from origin to destination, where q
indicates the origin-destination-rate tuple. Once it reaches its destination, the
vehicle joins the station FCFS queue and waits for an incoming trip request.

A known problem of such systems is that vehicles will inevitably accumulate
at one or more of the stations and reduce the number of vehicles servicing the
rest of the system (George 2012) if no corrective action is taken. To control
this problem, we introduce a set of “virtual rebalancing demands” or “virtual
passengers” whose objective is to balance the system, i.e., to move empty
vehicles to stations experiencing higher passenger loss. Similar to passenger
demands, rebalancing demands are defined by a set of origin, destination and
arrival rate tuples R = {(s(r), t(r), λ(r))}r, and a corresponding routing policy
α(r). Therefore, the objective is to find a set of routing policies α(q), α(r), for
all q ∈ Q, r ∈ R, and rebalancing rates λ(r), for all r ∈ R, that balances the
system while minimizing the number of vehicles on the road, and thus reducing
the impact of the AMoD system on overall traffic congestion.

Casting an AMoD system into a BCMP network

We are now in a position to frame an AMoD system in terms of a BCMP network
model. Initially, we will present the framework in the absence of charging
constraints, and in a later section we will extend the model to include them.
First, the passenger loss assumption allows the model to be characterized as a
queuing network with respect only to the vehicles. In other words, at each station
node, vehicles form a queue while waiting for customers and are “serviced” when
a customer arrives. Thus, we will henceforth use the term “vehicles” to refer to
the queuing agents. From this perspective, the stations S are equivalent to SS
queues, and the road links I are modeled as IS queues. The set of all queues is
given by N = {S ∪ I}, in analogy with the Background Material.

Second, we specify the BCMP network model. We abstract the underlying
road network and the stations as a directed graph where the edges represent
either the road links or the stations, and the vertices represent the road
intersections. The BCMP network model can then be derived from such
a directed graph as follows. Let Parent(i) and Child(i) be the origin and
destination vertices of edge i in the directed graph. Then, a road that goes
from intersection j to intersection l is represented in the BCMP network model
by an IS queue i ∈ I such that Parent(i)= j and Child(i)= l. Note that the
road may not have lanes in the opposite direction, in which case a queue i′ with
Parent(i′)= l and Child(i′)= j would not exist. For example, in Figure 1, queue
14 starts at vertex 1 and ends at vertex 5. However, there is no queue that
connect the vertices in the opposite direction. In turn, we assume that stations
are adjacent to road intersections, and therefore stations are represented in the
BCMP network model as SS queues i ∈ S with the same parent and child vertex,
i.e., a self-loop. An intersection may have access to either one station (e.g., vertex
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2 in Figure 1) or zero stations (e.g., vertex 5 in Figure 1). Finally, intersections
in the BCMP network model are simply conceptual entities playing the role of
“connectors” among the queues, see Figure 1.

Figure 1. BCMP network model of an AMoD system. Diamonds represent infinite-server
road links, squares represent the single-server vehicle stations, and dotted circles
represent road intersections (playing the role of “connectors” among the queues).

Third, we introduce classes to represent the process of choosing destinations.
We map the set of tuples Q and R to a set of classes K such that K = {Q ∪R}.
Moreover, let Oi be the subset of classes whose origin s(k) is the station i, i.e.,
Oi := {k ∈ K : s(k) = i}, and Di be the subset of classes whose destination t(k)

is the station i, i.e., Di := {k ∈ K : t(k) = i}. Thus, the probability that a vehicle
at station i will leave for station j with a (real or virtual) passenger is the ratio
between the respective (real or virtual) arrival rate λ(k), with s(k) = i, t(k) = j,
and the sum of all arrival rates at station i. Formally, the probability that a
vehicle of class k switches to class k′ upon arrival to its destination t(k) is

p̃
(k′)

t(k) =
(
λ(k′)/λ̃t(k)

)
,

where λ̃i =
∑
k∈Oi

λ(k) is the sum of all arrival rates at station i. In other words,

λ̃i represents the rate of arrival of passenger and rebalancing requests to station

i, while p̃
(k′)
i encodes the likelihood of whether the request is a real passenger

or rebalancing task and the desired target destination. Note that at all times
a vehicle belongs to some class k ∈ K, regardless of whether it is waiting at a
station or traveling along the network.

The traversal of a vehicle from its source s(k) to its destination t(k) is guided
by a routing policy α(k). This routing policy consists of a matrix of transition
probabilities. Let Wi = {j ∈ N : Parent(j) = i} be the set of queues that begin
at vertex i, and Ui = {j ∈ N : Child(j) = i} be the set of queues that end at
vertex i. A vehicle of class k leaves the station s(k) via one of the adjacent

roads j ∈ WChild(s(k)) with probability α
(k)

s(k),j
. It continues traversing the road

network via these adjacency relationships following the routing probabilities
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α
(k)
i,j until it is adjacent to its goal t(k). At this point, the vehicle proceeds to

the destination and changes its class to k′ ∈ Ot(k) with probability p̃
(k′)

t(k) . This
behavior is encapsulated by the routing matrix

pi,k;j,k′ =


α
(k)
i,j if k = k′, j ∈ WChild(i), t

(k) /∈ WChild(i),

p̃
(k′)
j if j = t(k), t(k) ∈ WChild(i), k

′ ∈ Oj ,
0 otherwise,

(6)

such that
∑
j,k′ pi,k;j,k′ = 1. Thus, the relative throughput πi,k, total relative

throughput πi, and utilization γi have the same definition as in the Background
Material.

As stated before, the queuing process at each station is modeled as a SS queue
where the service rate of the vehicles µi(a) is equal to the sum of real and virtual

passenger arrival rates, i.e., µi(a) = λ̃i for any station i and queue length a.
Additionally, by modeling road links as IS queues, we assume that their service

rates follow a Cox distribution with mean µi(a) = ci(a)
Ti

, where Ti is the expected
time required to traverse link i in absence of congestion, and ci(a) is the capacity
factor when there are a vehicles in the queue. In this paper, we only consider
the case of load-independent travel times, therefore ci(a) = a for all a, i.e., the
service rate is the same regardless of the number of vehicles on the road. We
do not make further assumptions on the distribution of the service times. The
assumption of load-independent travel times is representative of uncongested
traffic (Bureau of Public Roads 1964); in the next section we discuss how to
incorporate probabilistic constraints for congestion on road links.

Problem formulation

As stated in Equation (4), vehicles tend to accumulate in bottleneck stations
driving their availability to 1 as the fleet size increases, while the rest of the
stations have availability strictly smaller than 1. In other words, for unbalanced
systems, availability at most stations is capped regardless of fleet size. Therefore,
it is desirable to make all stations “bottleneck” stations, i.e., set the constraint
γi = γj for all i, j ∈ S, so as to (i) enforce a natural notion of “service fairness,”
and (ii) prevent needless accumulation of empty vehicles at the stations.

However, it is desirable to minimize the impact that the rebalancing vehicles
have on the road network. We achieve this by minimizing the expected number of
vehicles on the road serving customer and rebalancing demands. Using Equation
(3), the expected number of vehicles on a given road link i is given by Λi(m)Ti.

Lastly, we wish to avoid congestion on the individual road links. Traditionally,
the relation between vehicle flow and congestion is parametrized by two basic
quantities: the free-flow travel time Ti, i.e., the time it takes to traverse a link
in absence of other traffic; and the nominal capacity Ci, i.e., the measure of
traffic flow beyond which travel time increases very rapidly (Patriksson 2015).
Assuming that travel time remains approximately constant when traffic is below
the nominal capacity (an assumption typical of many state-of-the-art traffic
models (Patriksson 2015)), our approach is to keep the expected traffic Λi(m)Ti
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below the nominal capacity Ci and thus avoid congestion effects. Note that
by constraining in expectation there is a non-zero probability of exceeding
the capacity; however, we will show that, asymptotically, it is also possible to
constrain the probability of exceeding the congestion constraint.

Accordingly, the routing problem we wish to study in this paper (henceforth
referred to as the Optimal Stochastic Capacitated AMoD Routing and
Rebalancing problem, or OSCARR) can now be formulated as follows:

minimize
λ(r∈R),α

(k∈K)
ij

∑
i∈I

Λi(m)Ti,

subject to γi = γj , i, j ∈ S, (7a)

Λi(m)Ti ≤ Ci, i ∈ I, (7b)

πs(k),k =
∑
k′∈K

∑
j∈N

πj,kpj,k;t(k),k′ , k ∈ K, (7c)

πi,k =
∑
k∈K

∑
j∈N

πj,k′pj,k′;i,k i ∈ {S ∪ I}, (7d)

∑
j∈WChild(i)

α
(k)
ij = 1, α

(k)
ij ≥ 0, i, j ∈ {S ∪ I}, (7e)

λ(r) ≥ 0, r ∈ R. (7f)

Constraint (7a) enforces equal availability at all stations, while constraint (7b)
ensures that all road links are (on average) uncongested. Constraints (7c)–(7f)
enforce consistency in the model. Specifically, (7c) ensures that all traffic leaving
the source s(k) of class k arrives at its destination t(k), (7d) enforces the traffic

equations (1), (7e) ensures that α
(k)
ij is a valid probability measure, and (7f)

guarantees nonnegative rebalancing rates.

Limitations

At this point, we would like to reiterate some assumptions and limitations
built into the model. First, the proposed model is time-invariant. That is, we
assume that customer and rebalancing rates remain constant for the segment
of time under analysis, and that the network is able to reach its equilibrium
distribution. An option for including the variation of customer demand over
time is to discretize a period of time into smaller segments, each with its own
arrival parameters and resulting rebalancing rates. These customer arrival rates,
in turn, could be conditioned on external factors such as weather. Second, the
passenger loss model assumes impatient customers and is well suited for cases
where a high level of service is required. This allows us to simplify the model
by focusing only on the vehicle process; however, it disregards the fact that
customers may have different waiting thresholds and, consequently, the queuing
process of waiting customers. Third, we focus on keeping traffic within the
nominal road capacities in expectation, allowing us to assume load-independent
travel times and to model exogenous traffic as a reduction in road capacity.
Finally, we make no assumptions on the distribution of travel times on the road
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links: the analysis proposed in this paper captures arbitrary distributions of
travel times and only depends on the mean travel time.

Asymptotically Optimal Algorithms for AMoD Routing

In this section we show that, as the fleet size goes to infinity, the solution
to OSCARR can be found by solving a linear program. This insight allows the
efficient computation of asymptotically optimal routing and rebalancing policies
and the characterization of the corresponding performance parameters.

First, we show that (i) the relative throughput at the stations can be expressed
in terms of the relative throughputs at the other stations, and (ii) the balanced
network constraint can be expressed in terms of the arrival rates. Then, we
express the problem from a flow conservation perspective. Finally, we show
that the problem allows an asymptotically optimal solution with bounds on the
probability of exceeding road capacities. The solution we find is equivalent to
the one presented in Rossi et al. (2018): thus, we show that the network flow
model in Rossi et al. (2018) also captures the asymptotic behavior of a stochastic
AMoD routing and rebalancing problem.

Folding of traffic equations

The next two lemmas show that the traffic equations (1) at the SS queues can be
expressed in terms of other SS queues, and that the balanced network constraint
can be expressed in terms of real and virtual passenger arrivals.

Lemma 1. (Folding of traffic equations). Consider a feasible solution to
OSCARR. Then, the total relative throughputs of the single server stations
can be expressed in terms of the relative throughputs of the other single server
stations, that is

πi =
∑
k∈Di

p̃
(k)

s(k)πs(k) , i ∈ S. (8)

Proof. Using the routing matrix specified in Equation (6) we can rewrite the
class throughputs (1) as

πi,k =
∑
k′∈K

∑
j∈N

πj,k′pj,k′;i,k =
∑
k′∈Di

∑
j∈Nin(j)

πj,k′pj,k′;i,k,

=
∑
k′∈Di

∑
j∈Nin(j)

πj,k′ p̃
(k)
i = p̃

(k)
i

∑
k′∈Di

∑
j∈Nin(j)

πj,k′ .
(9)

The second equality exploits the fact that only queues feeding into i and vehicles
whose class destination is i are routed to i. The third and fourth equalities
follow from the fact that the probability of switching into class k at queue i is
the same regardless of the original class k′. This allows us to rewrite the total
relative throughput as

πi =
∑
k∈K

p̃
(k)
i

∑
k′∈Di

∑
j∈Nin(j)

πj,k′ =
∑
k′∈Di

∑
j∈Nin(j)

πj,k′ , (10)
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since
∑K
k=1 p̃

(k)
i = 1. As a consequence of (10) and (9), the class relative

throughputs can be related to the total relative throughputs

πi,k = p̃
(k)
i πi. (11)

Now, assume the relative throughputs belong to a feasible solution to
OSCARR. We proceed to reduce (7c) by using the routing matrix

πs(k),k =
∑
k′∈K

∑
j∈N

πj,k′pj,k;t(k),k′ =
∑
k′∈K

p̃
(k′)

t(k)

∑
j∈Nin(t(k))

πj,k′ =
∑

j∈Nin(t(k))

πj,k′ . (12)

By inserting this into (10) and applying (11) we obtain

πi =
∑
k∈Di

πs(k),k =
∑
k∈Di

p̃
(k)

s(k)πs(k) . (13)

Lemma 2. (Balanced system in terms of arrival rates). Consider a feasible
solution to OSCARR, then the constraint γi = γj for all i, j is equivalent to

λ̃i =
∑
k∈Di

λ(k). (14)

Proof. The proof of this lemma is very similar to Theorem 4.3 in Zhang and
Pavone (2016). Consider the case where (14) holds. We can write (8) in terms
of the relative utilization rate: ∑

k∈Di

λ(k)

 γi =
∑
k∈Di

γs(k)λ
(k) . (15)

Now, by grouping customer and rebalancing classes by origin-destination
pairs, we define ϕ as

ϕij = λ(q) + λ(r), (16)

such that s(q) = s(r) = j and t(q) = t(r) = i. Additionally, let ζij = ϕij/
∑
j ϕij .

We note that there are no classes for which s(k) = t(k), so we set ϕii = ζii = 0.
Under this definition, the variables {ζij}ij represent an irreducible Markov
chain. Thus, Equation (15) can be rewritten as γi =

∑
j γjζij or more compactly

as Zγ = γ, where the rows of Z are [ζi1, ζi2, ..., ζiS ], with S = |S|, i = 1, ..., S,
and γ = (γ1, ..., γs). Since Z is an irreducible, row stochastic Markov chain, by
the Perron-Frobenius theorem the unique solution is given by γ = (1, ..., 1)T .
Thus, γi = γj for all i.

On the other hand, we consider again Equation (15). If the network Z is a
solution to problem (7), then for all i, j, we have γi = γj = γ, and (15) becomes

γλ̃i = γ
∑
k∈Di

λ(k), λ̃i =
∑
k∈Di

λ(k). (17)
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Asymptotically optimal solution

As discussed in the background material, relative throughputs are computed up
to a constant multiplicative factor. Thus, without loss of generality, we can set
the additional constraint πs(1) = λ̃1, which, along with (7a), implies that

πi = λ̃i, πs(k),k = λ(k), and γi = 1, for all i ∈ S. (18)

As discussed earlier, the availabilities of stations with the highest relative
utilization tend to one as the fleet size goes to infinity. Since the stations are
modeled as SS queues, ρi = γi for all i ∈ S. Therefore, if the system is balanced,
γi = γmax

S = γ = 1 for all i ∈ S. That is, the set of bottleneck stations G includes

all stations in S and limm→∞
G(m−1)
G(m) = 1 by Equation (4).

As m→∞ and G(m−1)
G(m) → 1, the throughput at every station Λi(m) becomes

a linear function of the relative frequency of visits to that station, according to
Equation (2). Thus, the objective function and the constraints in (7) are reduced
to linear functions. We define the resulting problem (i.e., Problem (7) with
G(m− 1)/G(m) = 1) as the Asymptotically Optimal Stochastic Capacitated
AMoD Routing and Rebalancing problem, or A-OSCARR. The following lemma
shows that the optimal solution to OSCARR approaches the optimal solution
to A-OSCARR as m increases.

Lemma 3. (Asymptotic behavior of OSCARR). Let {π∗i,k(m)}i,k be a set of
relative throughputs corresponding to an optimal solution to OSCARR with a
given set of customer demands {λ(q)}q and a fleet size m. Also, let {π̂i,k}i,k be
a set of relative throughputs corresponding to an optimal solution to A-OSCARR
for the same set of customer demands. Then,

lim
m→∞

G(m− 1)

G(m)

∑
i∈I

Ti
∑
k∈K

π∗i,k(m) =
∑
i∈I

Ti
∑
k∈K

π̂i,k . (19)

Proof. We arrive to the proof by contradiction. Recall that πi =
∑
k∈K πi,k.

Assume Equation (19) did not hold. By definition,

G(m− 1)

G(m)

∑
i∈I

Tiπ
∗
i (m) ≤ G(m− 1)

G(m)

∑
i∈I

Tiπi , (20)

and ∑
i∈I

Tiπ̂i(m) ≤
∑
i∈I

Tiπi , (21)

for all m and {πi,k}i,k. Applying the limit to (20) and using (4), we obtain∑
i∈I

Ti lim
m→∞

(π∗i (m)) ≤
∑
i∈I

Tiπi .

However, according to our assumption,

either
∑
i∈I

Ti lim
m→∞

(π∗i (m)) >
∑
i∈I

Tiπ̂i , or
∑
i∈I

Ti lim
m→∞

(π∗i (m)) <
∑
i∈I

Tiπ̂i .

But the former violates Equation (20), and the latter Equation (21).
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As discussed in the Problem Formulation, constraint (7b) only enforces an
upper bound on the expected number of vehicles traversing a link. However,
in the asymptotic regime, it is possible to enforce an analytical upper bound
on the probability of exceeding the nominal capacity of any given road link. As
seen in Equation (5), as the fleet size increases, the distribution of the number
of vehicles on a road link i converges to a Poisson distribution with mean Tiπi.
The cumulative density function of a Poisson distribution is given by Pr(X <
x̄) = Q(bx̄+ 1c, C̃), where C̃ is the mean of the distribution and Q is the
regularized upper incomplete gamma function. Let ε be the maximum tolerable
probability of exceeding the nominal capacity. Set Ĉi = Q−1(1− ε; bCi + 1c),
i.e., Q(bCi + 1c, Ĉi) = 1− ε. Then the constraint Λi(m)Ti ≤ Ĉi is equivalent to
limm→∞ Pi(xi < Ci;m) ≥ 1− ε.

Linear programming formulation and multi-commodity flow
equivalence

In the previous subsection, we show that A-OSCARR collapses into linear
functions. In this subsection, we further show that A-OSCARR can be framed
as an instance of the well-known multi-commodity flow problem and that
A-OSCARR is equivalent to the Congestion-Free Routing and Rebalancing
problem presented in Rossi et al. (2018): thus, (i) A-OSCARR can be solved
efficiently by ad-hoc algorithms for multi-commodity flow (e.g. Goldberg et al.
(1998)) and (ii) the theoretical results presented in Rossi et al. (2018) (namely,
the finding that rebalancing trips do not increase congestion) extend, in
expectation, to stochastic systems.

First, we show that the problem can be solved exclusively for the relative
throughputs on the road links, and then we show that the resulting equations
are equivalent to a minimum cost multi-commodity flow problem.

The relative throughput going from an intersection i into adjacent roads is∑
j∈W′i πj,k, where W ′i = {Wi ∩ I} is the set of road links that begin in node

i. Similarly, the relative throughput entering the intersection i from the road
network is

∑
j∈U ′i πj,k, where U ′i = {Ui ∩ I} is the set of road links terminating

in i. Additionally, define d
(k)
i as the difference between the relative throughput

leaving the intersection and the relative throughput entering the intersection.
From (7d), (7c), and (18), it can be shown that, for a customer class q at an

intersection i, d
(q)
i should be equal to the arrival rate if i is adjacent to the

source station, the negative arrival rate if it is adjacent to the target station,
and 0 otherwise. Formally,

∑
j∈W′i

πj,q −
∑
j∈U ′i

πj,q = d
(q)
i , where d

(q)
i =


λ(q) if i = s(q),

−λ(q) if i = t(q),

0 otherwise.
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While the rebalancing arrival rates λ(r) are not fixed, we do know from Equation

(7c) and from the definition of d
(q)
i that d

(r)

s(r)
= −d(r)

t(r)
. Thus,∑

j∈W′
s(r)

πj,r −
∑

j∈U ′
s(r)

πj,r = −
∑

j∈W′
t(r)

πj,r +
∑

j∈U ′
t(r)

πj,r.

Finally, we can rewrite Lemma 2 as∑
q∈Q

d
(q)
i +

∑
r∈R

∑
j∈W′i

πj,r −
∑
j∈U ′i

πj,r = 0.

Thus, in the asymptotic regime, Problem (7) can be restated as

minimize
πi∈I,k∈K

∑
i∈I

Ti
∑
k∈K

πi,k,

subject to
∑
q∈Q

d
(q)
i +

∑
r∈R

∑
j∈W′i

πj,r −
∑
j∈U′i

πj,r = 0 ∀i ∈ S, (22a)

Ti
∑
k∈K

πj,k ≤ Ĉi ∀i ∈ I, (22b)

∑
j∈W′i

πj,q −
∑
j∈U′i

πj,q = d
(q)
i ∀i ∈ S, (22c)

∑
j∈W′

s(r)

πj,r −
∑

j∈U′
s(r)

πj,r =
∑

j∈U′
t(r)

πj,r −
∑

j∈W′
t(r)

πj,r ∀r ∈ R, (22d)

∑
j∈W′i

πj,r −
∑
j∈U′i

πj,r = 0 ∀i ∈ S \ {s(r), t(r)}, (22e)

∑
j∈W′

s(r)

πj,r −
∑

j∈U′
s(r)

πj,r ≥ 0 ∀r ∈ R, (22f)

πi,k ≥ 0, ∀i ∈ I, k ∈ K. (22g)

Here, constraints (22a) and (22b) are direct equivalents to (7a) and (7b),
respectively. By keeping traffic continuity and equating throughputs at source
and target stations, (22c) enforces (7c) and (7d) for the customer classes. For the
rebalancing classes, (22d) is equivalent to (7c) and (22e) to (7d). Non-negativity
of rebalancing rates (7f) is kept by (22f).

Thus, A-OSCARR can be solved efficiently as a linear program. Note that this
formulation is very similar to the multi-commodity flow formulation presented
in Rossi et al. (2018). The formulation in this paper prescribes specific routing
policies for distinct rebalancing origin-destination pairs, while Rossi et al. (2018)
only computes a single “rebalancing flow.” These two formulations, however,
are equivalent, as by using a flow decomposition algorithm (Ford and Fulkerson
1962), one can “expand” the single rebalancing flow considered in (Rossi et al.
2018) into a set of rebalancing flows, one for each origin-destination pair.
Therefore, it is possible to extend the theoretical results presented in Rossi et al.
(2018) to the stochastic setting. Most notably, it is possible to find rebalancing
trips that in expectation do not cause more congestion than what would be
caused from the same travel demand being satisfied by private vehicles.
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Battery Charge Constraints

Plug-in electric vehicles (EVs) are especially suitable to AMoD systems. On the
one hand, the type of short-range trips typical of Mobility-on-Demand (and, in
the future, AMoD) systems is well-suited to the current generation of range-
limited electric vehicles; on the other hand, intelligent policies for rebalancing
and charging of EVs can ensure that vehicles with an adequate charge level
are available to passengers, greatly reducing “range anxiety”—one of the main
barriers to EV adoption (Evarts 2013).

The BCMP framework (and in particular the notion of queuing classes) can
be leveraged to model the battery charge level of electric vehicles and efficiently
compute coupled rebalancing and charging policies. Accordingly, in this section,
we extend the proposed BCMP model to include the constraints imposed by
operating a fleet of charge-constrained autonomous EVs.

Casting charge constraints as classes

We discretize the state-of-charge (SOC) of vehicles using a finite set of quantized
charge levels. Specifically, we define B = {1, 2, ..., B} as an ordered set of B
charge levels, such that B denotes a full battery and 1 denotes an empty battery.
A vehicle entering road j ∈ I at charge level b ∈ B spends ej energy in its
traversal; thus, the vehicle’s charge level at the end of the road is b− ej . We
assume that vehicles spend no energy while idle at the stations, i.e., ei = 0 if
i ∈ S. Note that this model assumes that charge depletion on a road segment is
independent of speed/congestion: this approximation is reasonable in our model
as (i) we force the transportation network to be (mostly) congestion free and
(ii) if a road link is congestion free, it is reasonable to assume that each vehicle
travels at the same free flow speed for that link. Vehicles can recharge their
batteries at a set of plug-in chargers F : a vehicle can increase the level of charge
of its batteries at charger f ∈ F by up to ef levels in time Tf . Analogously to
road links, chargers are modeled as IS queues with service rate 1/Tf .

To track the SOC of individual vehicles, we include the charge level as part of
their class. Classes are henceforth denoted by the tuple (k, b): a vehicle belonging
to class (k, b) is servicing request k at charge level b. Analogously, the relative
throughput of vehicles serving request k at charge level b on road link i is πi,k,b.
We refer to the total relative throughput on a road link i as

πi =
∑
k∈K

∑
b∈B

πi,k,b.

Routing and charging depend on the vehicles’ SOC: for example, energy-
depleted vehicles need to charge their batteries before providing service to
passengers. Accordingly, rebalancing requests are characterized by a set of tuples

that include the initial and final SOC, namely R = {s(r), t(r), λ(r), soc
(r)
s , soc

(r)
t }

where soc
(r)
s is the initial SOC and soc

(r)
t is the final SOC.

For a given station j, the distribution of customer destinations is encoded by

the distribution of the transition probabilities {p(k′)
j }j,k′ in Equation (6), for any
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class k′ ∈ Q corresponding to passenger requests. In the closed queuing network
model adopted in this paper, customers are assigned to the first available vehicle
in the FCFS queue, irrespective of its charge level. Therefore, for classes k′ ∈ Q,

the distribution {p(k′)
j }j,k′∈Q must be independent of the charge level b of

incoming vehicles: if this was not the case, the arrival rate of passengers in
a given class would depend on the SOC of vehicles queuing at the station.

On the other hand, the system operator should enforce different rebalancing
and charging strategies for non-passenger-carrying vehicles depending on the
vehicles’ SOC. For example, it may be preferable to charge vehicles that are
running out of battery, whereas vehicles with a high charge level may be devoted

to rebalancing purposes. To enable this, the distribution {p(k′)
j }j,k′∈R for the

rebalancing classes k′ ∈ R is modeled as dependent on the charge level. However,
if we were to include the notion of SOC-dependent class assignment directly
into the BCMP model from the previous section, we would introduce a spurious
correlation between the passenger arrivals and the SOC: for example, in the
case where vehicles with low charge were to be primarily assigned to rebalancing
classes, a station having only low charge vehicles would behave as if there were
no passenger arrivals. To address this issue, our strategy is to introduce the
notion of stations with double queues.

Specifically, each station i ∈ S is represented by two vehicle queues, one
awaiting passenger requests, indexed with iQ, and one awaiting rebalancing
requests, indexed with iR. Let βi,b be the probability that a vehicle arriving at
station i is assigned to the rebalancing queue iR. Specifically, upon arrival to its
destination station i = t(k), a vehicle of class (k, b) proceeds to the rebalancing
queue iR with probability βi,b and switches to class (r, b) with probability

p̃
(r)
iR,b

= λ(r)/
∑
r′∈Oi,b,R

λ(r′), where Oi,b,R is the set of rebalancing requests r′

with s(r′) = i and soc
(r′)
s = b. Conversely, the vehicle proceeds to the passenger

queue iQ with probability 1− βi,b and switches to class (q, b) with probability

p̃
(q)
iQ

= λ(q)/
∑
q′∈Oi

λ(q′). Figure 2 shows a graphical depiction of the station
model with double queues.

The routing policy for both customer-carrying and rebalancing vehicles is
allowed to depend on the state of charge: for instance, vehicles with a low SOC
may traverse a charging station to recharge their batteries. Accordingly, we let
α(k,b) denote the routing policy for a vehicle of class (k, b) (as before, a routing
policy is simply a matrix of transition probabilities).

We are now in a position to extend the routing matrix to the setup with

battery charge levels. Specifically, let B(k)
t be the set of acceptable SOC at the

target station for class k, defined as B(k)
t = {soc(k)

t } if k ∈ R, and B(k)
t = B
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Figure 2. Graphical depiction of a double queue. Vehicles directed to station i at charge
level b enter the rebalancing queue iR with probability βi,b; they enter the
passenger-serving queue iQ, with probability 1− βi,b. Note that the probability of joining
iR (or, equivalently, iQ) depends on the SOC. Vehicles entering iR switch to a class r,

corresponding to a rebalancing request, with probability λ(r)/
∑
r′∈Oi,b,R

λ(r′).

Conversely, vehicles entering iQ switch to class q, corresponding to a customer request,

with probability λ(q)/
∑
q′∈Oi

λ(q′).

otherwise. We then define the routing matrix as

pi,k,b;j,k′,b′ =



α
(k,b)
i,j if k = k′, j ∈ WChild(i),

t(k) /∈ WChild(i), b′ = b− ei ,
βi,bp̃

(k′)
jR,b

if j = t(k), t(k) ∈ WChild(i),

k′ ∈ Oj,b′,R, b′ = b− ei ∈ B(k)
t ,

(1− βi,b)p̃(k′)
jQ

if j = t(k), t(k) ∈ WChild(i),

k′ ∈ Oj , b′ = b− ei ∈ B(k)
t ,

0 otherwise.

(23)

Problem Formulation

The goal of the problem is to minimize the amount of traffic both on the
roads and at the charging stations. Accordingly, we consider the cost function∑
i∈I′ Λi(m)Ti, where I ′ represents the union of road link and plug-in charger

queues, i.e., I ′ := {I ∪ F}. In analogy to the OSCARR problem, the system is
constrained to remain in balance, i.e., γi = γj for all i, j ∈ S (note that in this
case i and j might denote either a rebalancing or a passenger queue). We refer
to the resulting problem as the Optimal Stochastic Capacitated AMoD Routing,
Rebalancing and Charging problem (OSCARR-C):
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minimize
λ(r∈R),α

(k∈K)
ij

∑
i∈I′

Λi(m)Ti,

subject to γi = γj , i, j ∈ S, (24a)

Λi(m)Ti ≤ Ci , i ∈ I ′, (24b)

πs(q),q =
∑
k′∈K

∑
j∈N

∑
b∈B

∑
b′∈B

πj,q,bpj,q,b;t(q),k′,b′ , q ∈ Q, (24c)

π
s(r),r,soc

(r)
s

=
∑
k′∈K

∑
j∈N

∑
b∈B

πj,q,bpj,q,b;t(r),k′,b′ , r ∈ R, b′ = soc
(r)
t ,

(24d)

πi,k,b =
∑
k′∈K

∑
j∈N

∑
b′∈B

πj,k′,b′pj,k′,b′;i,k,b , i ∈ N , k ∈ K, b ∈ B ,

(24e)∑
j∈WChild(i)

α
(k,b)
ij = 1, α

(k,b)
ij ≥ 0 , i, j ∈ N , k ∈ K, b ∈ B

(24f)

λ(r) ≥ 0 , r ∈ R. (24g)

Constraints (24c) and (24d) ensure that passengers’ and rebalancing traffic
leaving a source reaches the corresponding destination, and, in the case of
rebalancing, a desired charge level. In analogy to (7d), (24e) enforces traffic

continuity at the road and charge level. Constraint (24f) ensures that α
(k,b)
ij is

a valid probability measure, and (24g) limits rebalancing requests to positive
values.

The setups of OSCARR-C and of OSCARR are very similar. Specifically, the
modeling assumptions required to derive the asymptotically optimal formulation
of OSCARR are also valid for OSCARR-C; namely, a closed, multi-class network
with IS and SS queues constrained to maintain equal relative availability across
the SS queues. Therefore, in analogy with (18), the desired relative utilizations
can be set to γi = 1 for all i ∈ S without loss of generality. As a result, the SS
relative throughputs are constrained to equal their service rates, that is,

πi = λ̃i , for all i ∈ S. (25)

Additionally, Lemma 3 is still valid. Indeed, the queues I ′ in the objective
function are all IS queues. Furthermore, since for a feasible solution to
OSCARR-C Equation (25) holds, it follows that γi = γmax

S = 1 for all i ∈ S,
and, thus, all the SS queues in S are bottleneck queues. Therefore, from (4),

limm→∞
G(m−1)
G(m) = 1. Thus, the two assumptions for Lemma 3 are verified. As a

consequence, according to Lemma 3, the optimal solution {π̂i} to the asymptotic
approximation of OSCARR-C is also optimal for the full OSCARR-C as the fleet
size goes to infinity. We define the problem of finding an asymptotically optimal
solution to OSCARR-C as the Asymptotically Optimal Stochastic Capacitated
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AMoD Routing, Rebalancing and Charging problem, or A-OSCARR-C. We next
discuss how to solve A-OSCARR-C.

The key strategy is to rewrite constraints (24a),(24c),(24d),(24e), and (24f)
as traffic conservation constraints, both at intersections and at stations. To
this purpose, we first find a traffic conservation constraint in terms of both
the relative throughputs and the transition probabilities. We then derive
traffic conservation constraints only in terms of relative throughputs, both at
intersections and at stations – these are the constraints that will be used to set
up A-OSCARR-C (46). In the following paragraphs, we provide and rigorously
derive a tractable formulation of A-OSCARR-C based on the aforementioned
strategy.

Traffic conservation in terms of relative throughputs and transition probabilities:
Denote the relative throughput of vehicles arriving at station iR with charge
level b as πiR,b. In other words, according to the routing matrix (23), πiR,b =
βi,b

∑
k∈K πi,k,b. Similarly, denote the relative throughput of vehicles arriving

at station iQ with charge level b as πiQ,b. In other words, πiQ,b = (1−
βi,b)

∑
k∈K πi,k,b. For bookkeeping purposes, we define the combined relative

throughput as π̂i,b := πiR,b + πiQ,b. From (25), the relative throughput for the
passenger queues must equal the rate of arrival, that is:

∑
q∈Oi

λ(q) =
∑
q∈Q

∑
b∈B

(1− βi,b)π̂i,bp̃(q)
i

=
∑
q∈Q

p̃
(q)
i

∑
b∈B

(1− βi,b)π̂i,b

=
∑
b∈B

(1− βi,b)π̂i,b

=
∑
b∈B

π̂i,b − πiR,b .

(26)

We now turn our attention to the traffic equations (24e). Note that, as per
(23), the only queues that contribute relative throughput into a queue i ∈ I ′
are the set of queues UParent(i) that feed into the parent intersection of i. Thus,
for queues i ∈ I ′

πi,k,b =
∑
k′∈K

∑
j∈N

∑
b′∈B

πj,k′,b′pj,k′,b′;i,k,b

=
∑
k′∈K

∑
j∈UParent(i)

∑
b′∈B

πj,k′,b′pj,k′,b′;i,k,b .
(27)

Moreover, pj,k′,b′;i,k,b 6= 0 only for queues j which feed into the parent
intersection of i and for charge levels b′ such that b′ = b+ ej (note that ej = 0,
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if j ∈ S). Therefore, for queues i ∈ I ′

πi,k,b =
∑
k′∈K

∑
j∈UParent(i)

∑
b′∈B

πj,k′,b′pj,k′,b′;i,k,b

=
∑

j∈UParent(i)

πj,k,b+ejα
(k,b+ej)
j,i .

(28)

Let W ′Parent(i) = {WParent(i) ∩ I ′}, U ′Parent(i) = {U ′Parent(i) ∩ I} and

l = Parent(i). For a road or charger queue i ∈ I ′ such that l = Parent(i),
we can then simplify (24e) and obtain the traffic conservation equation

πi,k,b =
∑
j∈U ′l

πj,k,b+ejα
(k,b)
j,i

=


∑
j∈U ′l πj,k,b+ejα

(k,b+ej)
j,i , if s(k) /∈ U ′l ,∑

j∈U ′l πj,k,b+ejα
(k,b+ej)
j,i + πs(k),k,bα

(k,b)
j,i , if s(k) ∈ Ul , k ∈ Q ,∑

j∈U ′l πj,k,b+ejα
(k,b+ej)
j,i + πs(k),k,bα

(k,b)
j,i , if s(k) ∈ Ul , b = soc

(k)
s , k ∈ R ,

(29)

where the second equality exploits the fact that only the source station of class
k sends vehicles of class k into the road network.
Traffic conservation at intersections in terms of relative throughputs only: We
are now in a position to derive a number of traffic conservation constraints at
intersections, in terms of only relative throughputs.

Case 1: if an intersection l is not adjacent to either the source or target of
a passenger class q ∈ Q (that is, l /∈ {Child(s(q)),Parent(t(q))} for q ∈ Q), then∑
j′∈W′l α

(q,b)
jj′ = 1. Thus, we can sum (29) over all queues to obtain the following

traffic conservation equations for class q ∈ Q in terms of the relative throughput:∑
j∈W′l

πj,q,b =
∑
j∈U ′l

πj,q,b+ej , for l /∈ {Child(s(q)),Parent(t(q))}, q ∈ Q. (30)

Case 2: for a rebalancing class r ∈ R, if neither {l = Child(s(r)) ∧ b = soc
(r)
s }

nor {l = Parent(t(r)) ∧ b = soc
(r)
t }, then

∑
j′∈W′l α

(r,b)
jj′ = 1. Thus, we can obtain

the following traffic conservation equations for class r ∈ R in terms of the
relative throughput∑
j∈W′i

πj,r,b =
∑
j∈U ′i

πj,r,b+ej if ¬{l = Child(s(r)) ∧ b = soc(r)s }

and ¬{l = Parent(t(r)) ∧ b = soc
(r)
t }, r ∈ R.

(31)

Case 3: If l is adjacent to the source station, then summing (29) over all
queues, one obtains∑

j∈W′l

πj,k,b =
∑
j∈U ′l

πj,k,b+ej + πi,k,b , i = s(k) , l = Child(s(k)) . (32)
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If k is a passenger class q ∈ Q, then πi,k,b = (1− βi,b)π̂i,bp̃qi , and one can derive
the traffic conservation constraint∑
j∈W′l

πj,q,b −
∑
j∈U ′l

πj,q,b+ej = (1− βi,b)π̂i,bp̃qi ,

= (π̂i,b − πiR,b)p̃qi ,

= (π̂i,b − πiR,b)
λq∑

q∈Oi
λ(q)

,

=
(π̂i,b − πiR,b)∑
b∈B π̂i,b − πiR,b

λ(q) ,

= %iQ,bλ
(q) , if i = s(q) , q ∈ Q , l = Child(s(q)) ,

(33)

where the fourth equality follows from (26). In the fifth equality, we denote %iQ,b
as the ratio of the relative throughput that goes through queue iQ at charge level
b, that is %iQ,b = πiQ,b/πiQ . We treat this ratio as a decision variable: intuitively,
%iQ,b controls the charge level distribution of the vehicles available for passenger
use.

If, instead, k = r ∈ R, l is adjacent to the source station, and b is the
desired target charge level, then πi,r,b = λ(r). Therefore one obtains the traffic
conservation constraint∑
j∈W′l

πj,k,b =
∑
j∈U ′l

πj,k,b+ej + λ(r) , b = soc(r)s , l = Child(s(r)) , r ∈ R . (34)

Case 4: If the intersection l is adjacent to the target station t(k) of a class k

(either in Q or R), then
∑
j′∈W′l α

(k,b)
jj′ 6= 1 in general. Let ζt(k),k,b be the relative

throughput of class k that enters station t(k) from adjacent road and charger
queues at charge level b. Then, the sum of (29) must satisfy∑

j∈W′l

πj,q,b + ζt(k),k,b =
∑
j∈U ′l

πj,q,b+ej , if l = Parent(t(k)) . (35)

However, we know from (24c) that the total relative throughput of a passenger
class q ∈ Q entering its target station t(q) must equal the the total relative
throughput at its source station, i.e., πs(q),q =

∑
b∈B ζt(q),q,b. Additionally, if (25)

holds, it can be shown that πs(q),q = λ(q). Thus, summing (35) over all charge
levels for passenger class q ∈ Q , we obtain the traffic conservation constraint∑

b∈B

∑
U ′l

πj,q,b+ej −
∑
j∈W′l

πj,q,b = λ(q) , if l = Parent(t(q)) , q ∈ Q . (36)

Alternatively, equation (24d) enforces that the total relative throughput of a

rebalancing class r ∈ R entering its target station t(r) with charge level soc
(r)
t be

equal to the relative throughput leaving its source s(r) with charge level soc
(r)
s .

Prepared using sagej.cls



24 Journal Title XX(X)

Thus, π
s(r),r,soc

(r)
s

= ζt(r),r,b = λ(r), and the sum of (29) must satisfy∑
U ′l

πj,r,b+ej −
∑
j∈W′l

πj,r,b = λ(r), if l = Parent(t(r)) , b = soc
(r)
t , r ∈ R . (37)

Note that both the arrival rates and the relative throughputs of the
rebalancing classes are decision variables. The rebalancing rates are not
explicitly represented in the optimization problem: rather, they are implicitly
set by equating (34) and (37):∑
W′

Child(s(r))

π
j,r,soc

(r)
s
−

∑
j∈U ′

Child(s(r))

π
j,r,soc

(r)
s +ej

=

∑
j∈U ′

Parent(t(r))

π
j,r,soc

(r)
t +ej

−
∑

W′
Parent(t(r))

π
j,r,soc

(r)
t
,

r ∈ R ,

(38)

and by setting a positive constraint on the relative throughputs at the source
station, i.e. ∑

W′
Child(s(r))

π
j,r,soc

(r)
s
−

∑
j∈U ′

Child(s(r))

π
j,r,soc

(r)
s +ej

> 0 , r ∈ R . (39)

Traffic conservation at stations in terms of relative throughputs only: Finally, we
characterize a traffic conservation constraint for the stations (namely, Equation
(45)), by manipulating the traffic equations (24e). Specifically, recall that,
for a given station i ∈ S, π̂i,b = πiR,b + πiQ,b. Due to Equation (25), πiR,b =∑
r∈Oi,b,R

λ(r) and πiQ,b =
∑
q∈Oi

%iQ,bλ
(q). Therefore,

π̂i,b =
∑

r∈Oi,b,R

λ(r) +
∑
q∈Oi

%iQ,bλ
(q) . (40)

Conversely, π̂i,b must equal the sum of passenger and rebalancing traffic that
enters station i ∈ S at charge level b. In particular, the rebalancing traffic
entering station i at charge level b is

∑
r∈Di,b,R

λ(r), where Di,b,R is the set of
rebalancing classes whose destination is i ∈ S with target charge level b. From
(36), we see that for a single charge level the relative throughput of a passenger
class q ∈ Q entering i ∈ S is

∑
U ′l πj,q,b+ej −

∑
j∈W′l πj,q,b, where l = Parent(i).

Summing this over all passenger classes and adding the rebalancing traffic we
obtain

π̂i,b =
∑

r∈Di,b,R

λ(r) +
∑

q∈Di,Q

∑
U ′l

πj,q,b+ej −
∑
j∈W′l

πj,q,b . (41)

Together, (40) and (41) imply that∑
r∈Oi,b,R

λ(r) +
∑
q∈Oi

%iQ,bλ
(q) =

∑
r∈Di,b,R

λ(r) +
∑

q∈Di,Q

∑
U ′l

πj,q,b+ej −
∑
j∈W′l

πj,q,b .

(42)
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Note that
∑
W′l πj,r,b −

∑
j∈U ′l πj,r,b+ej equals λ(r) at its source station, −λ(r)

at the target station, and 0 otherwise. Therefore, we can express λ(r) in terms
of the relative throughputs

∑
W′l

πj,r,b −
∑
j∈U ′l

πj,r,b+ej =


λ(r) , if l = Child(s(r)) ,

−λ(r) , if l = Parent(t(r)) ,

0 , otherwise .

(43)

The difference between incoming and departing rebalancing relative throughput
at a station now becomes∑

r∈R

∑
W′l

πj,r,b −
∑
j∈U ′l

πj,r,b+ej =
∑

r∈Oi,b,R

λ(r) −
∑

r∈Di,b,R

λ(r) . (44)

Thus, by rewriting (42), we obtain the traffic conservation constraint at each
station i ∈ S∑
q∈Oi,Q

%iQ,bλ
(q) +

∑
r∈R

∑
W′l

πj,r,b −
∑
j∈U ′l

πj,r,b+ej

−
∑

q∈Di,Q

∑
U ′l

πj,q,b+ej −
∑
j∈W′l

πj,q,b = 0 , l = Parent(i) = Child(i).

(45)

Collecting all the results above, A-OSCARR-C can now be framed in terms
of the relative throughputs {πi,k,b}i,k,b and the ratios {%iQ,b}i,b:

minimize
πi∈I′,k∈K,b∈B,%iQ∈S,b∈B

∑
i∈I′

Ti
∑
k∈K

∑
b∈B

πi,k,b,

subject to (30), (31), (33), (36), (38), (39), (45)

Ti
∑
k∈K

∑
b∈B

πi,k,b ≤ Ĉi , ∀i ∈ I, (46a)

πi,k,b ≥ 0, , ∀i ∈ I, k ∈ K, b ∈ B (46b)∑
b∈B

%iQ,b = 1 , ∀i ∈ S, (46c)

%iQ,b ≥ 0 i ∈ S, b ∈ B . (46d)

Constraints (30)-(39) enforce consistency in the model. Constraint (45)
enforces conservation of traffic at each charging level and, consequently, equal
availabilities at each station. (46a) sets the bounds on the expected traffic at
the road and charger queues, and (46b) enforces non-negative traffic values.
Finally, constraints (46c) and (46d) make sure that the ratios {%i,b} are a valid
probability measure.

As in the non-battery case, A-OSCARR-C can be solved as a linear program.
The state size is O(|I ′||B|(|R|+ |Q|)). |Q| grows quadratically with |S|, and
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|R| grows quadratically with |S||B|; thus, for large road networks, the problem
size can become unwieldy even for modern linear programming algorithms. For
instance, for a road network with 350 nodes, 1000 road segments and 60 charge
levels, the problem size is slightly above 9 billion variables; for comparison,
state-of-the-art LP solvers can reliably handle problems with tens of millions of
variables on modern machines (Mittelmann 2016). Remarkably, it is possible
to reduce the problem size, with no loss of information, by addressing A-
OSCARR-C as an augmented network flow problem, bundling customer traffic
demands according to their source node, and collecting all rebalancing demands
into a single class. Under this approach, the same problem instance would be
reduced to just over 3 million variables. For a given set of optimal customer and
rebalancing flows, individual routes can be recovered using a flow decomposition
algorithm (Ford and Fulkerson 1962), in analogy with A-OSCARR. We refer the
reader to (Rossi et al. 2018) for a thorough discussion.

Numerical Experiments

To illustrate a real-life application of the models and methods presented in this
paper, we performed a case study of Manhattan, where system performance
metrics were computed as a function of fleet size using Mean Value Analysis
(Gelenbe et al. 1998). The road network model used for this case study consists
of a subset of Manhattan’s real road network (shown in Figure 3), with 1,005
road links and 357 intersections. To select station positions and compute the
rates λ(q) (for each tuple q ∈ Q modeling the arrival process) we used the
taxi trips within Manhattan that took place between 7:00AM and 8:00AM
on March 1, 2012 (22,416 trips) from the New York City Taxi and Limousine
Commission dataset†. We clustered the pickup locations into 50 different groups
with K-means clustering and placed a station at the road intersection closest to
each cluster centroid. We then fit an origin-destination model with exponential
distributions to describe the customer trip demands between the stations. In
order to observe congestion effects, road capacities were reduced (specifically,
by 55%) to ensure that maximum road utilization is achieved on some of the
road links; in the real world, an analogous reduction in road capacity would be
caused by traffic exogenous to the taxi system.

†http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
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Figure 3. Manhattan scenario. Left: modeled road network. Center: Station locations.
Right: Resulting vehicular flow (darker flows show higher vehicular presence).

Routing and rebalancing under congestion constraints

We considered two scenarios: (i) the “baseline” scenario where traffic constraints
on each road link are based on expectation, i.e., the average number of vehicles
on a road link is below its nominal capacity; and (ii) the “conservative” scenario
where the constraints are based on the asymptotic probability of exceeding
the nominal capacity (specifically, the asymptotic probability of exceeding the
nominal capacity is constrained to be lower than 10%). Figure 3 shows the road
network, the station locations, and the resulting traffic flow, and Figure 4 shows
the results.

We see from Figure 4a that, as intended, the station availabilities are balanced
and approach one as the fleet size increases. However, Figure 4b shows that
there is a trade off between availability and vehicle utilization. For example,
for a fleet size of 4,000 vehicles, on average, half of the vehicles are waiting at
the stations. In contrast, a fleet of 2,400 vehicles results in availability of 91%
and only 516 vehicles (in expectations) wait at the stations. Not shown in the
figures, 34% of the trips are for rebalancing purposes; in contrast, only about
18% of the traveling vehicles are rebalancing. This shows that rebalancing trips
are significantly shorter than passenger trips, which is in line with the goal of
minimizing the number of empty vehicles on the road and thus road congestion.

Figures 4a and 4b show only the results for the baseline case; for the
conservative scenario, the difference in availabilities is less than 0.1%, and the
difference in the total expected number of vehicles on the road is less than 7,
regardless of fleet size. However, road utilization is significantly different in the
two scenarios we considered. In Figure 4c, we see that, as the fleet size increases,
the likelihood of exceeding the nominal capacity approaches 50%. In contrast,

Prepared using sagej.cls



28 Journal Title XX(X)

in the conservative scenario, the probability of exceeding the capacity is never
more than 10% –by design– regardless of fleet size.

Finally, we verified the validity of the load-independent travel time
assumption. Assuming asymptotic conditions (in which case the number of
vehicles on each road follows a Poisson distribution), we computed for both
scenarios the expected travel time between each origin-destination pair by using
the Bureau of Public Roads (BPR) delay model (Bureau of Public Roads 1964),
and estimated the difference with respect to the load-independent travel time
used in this paper. The BPR delay model is a commonly used equation for
relating traffic to travel time (Bureau of Public Roads 1964). Under this model,
the travel time on a road link is given by

T ′i = Ti

(
1 + δ

(
xi
Ci

)β)
, (47)

where T ′i is the real mean travel time, Ti is the free flow travel time, xi is the
number of vehicles on the road, Ci is the nominal capacity of the road, and δ and
β are parameters usually set to 0.15 and 3, respectively. The results, depicted in
Figure 4d, show that the maximum difference for the baseline and conservative
scenarios are an increase of around 8% and 4%, respectively, and the difference
tends to be smaller for higher trip times. Thus, for this specific case study, our
assumption is reasonable.
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Figure 4. (a) Station availabilities as a function of fleet size for the baseline case. (b)
Expected number of vehicles by usage as a function of fleet size for the baseline case. (c)
Utilization as a function of fleet size for the most utilized road. The colored band denotes
±1 standard deviation from the mean. (d) Increase in expected travel time for each O-D
pair when considering the BPR delay model.
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Inclusion of charging constrains

To study the behavior of the Manhattan scenario under charging constraints,
we made some additional assumptions. We assumed a vehicle battery size of 8
kWh and a full charge range of 50km, specifications that are similar to Toyota’s
iRoad urban mobility vehicle‡. We assumed that energy consumption depends
exclusively on distance and computed the road energy costs, ej , using the
road lengths and battery range. Additionally, we assumed that every station
is equipped with chargers capable of delivering 75kW of power per vehicle,
comparable to the superchargers offered by Tesla (Tesla Motors 2017), and did
not enforce a limit on the number of vehicles that can charge simultaneously.
Battery capacity was discretized into 60 discrete charge levels, a number that
showed a good trade-off between accuracy in the energy cost at the roads and
the problem size. Finally, in order to discourage recharging of customer-carrying
vehicles while penalizing needless rebalancing of customer-empty vehicles, we
imposed a higher cost per unit of time for passenger-carrying trips. Currently,
the average hourly salary in the United States is $26.19§, and the hourly cost
of a rental car with the ZipCar car-sharing service starts at $7¶. Assuming
that the cost per unit time of a vehicle is $7/hr and the value of time of a
passenger is $26.19/hr, then the overall value of time of a passenger-carrying
vehicle is approximately $33/hr, or five time higher than the cost of an empty,
or rebalancing, vehicle. Therefore, we weigh passenger traffic as being five times
costlier than rebalancing traffic.

Figures 5a and 5b show our results. As expected, the algorithm does not route
any of the passenger classes through the chargers, that is, a customer should
not expect to spend time charging or worry about the range of the vehicle.
Conversely, vehicles entering a station at lower charge levels are overwhelmingly
devoted to rebalancing tasks. For example, in Figure 5, we see the throughput
distribution, as the fleet size approaches infinity, for the station with the
highest number of rebalancing requests (5a) and for the station with the highest
passenger arrival rate (5b). As intended, all the charging is done by rebalancing
vehicles. This explains the rebalancing spike at lower charge levels: the optimizer
assigns vehicles with lower energy levels exclusively to serve rebalancing tasks. In
contrast, the algorithm utilizes vehicles at the highest charge levels exclusively
for passenger requests. By satisfying all charging requirements with empty
vehicles, the proposed approach is able to successfully mitigate the risk of range
anxiety.

‡http://www.toyota-global.com/innovation/personal_mobility/i-road/
§https://www.bls.gov/news.release/empsit.t19.htm
¶http://www.zipcar.com/check-rates/sf
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Figure 5. Passenger and rebalancing request throughput distribution for (a) the station
with the highest rebalancing rate, and (b) the station with highest number of passenger
requests.

The impact of the charging constraints on availability is notable. In order
to maintain 91% availability, the fleet should comprise 3,300 vehicles, a 37.5%
increase over the scenario without charging. A fleet this large has an average of
384 vehicles charging at any given time. The fleet may also have a significant
effect on the electric power system. The range of charger utilization varies
significantly by location. The power draw of the most used charger station
is between 1.1 and 2.2 MW 90% of the time, while the least utilized charger
is between 0 and 300 kW. While the smaller charging stations could be well
served by current charging station standards, like Tesla Supercharger stations
which offer 145kW per charger for two cars, the larger stations will likely require
greater coordination with the local power authorities. In total, the expected
power consumption in the system is around 30MW.

Discussion

The two previous experiments showcase the modeling power of the proposed
framework. In particular, the framework enables future practitioners to
couple key modeling features, such as congestion and charging, to stochastic
performance metrics such as availability, and, thus, to synthesize control policies.
However, it is important to highlight some limitations. First, the problem
formulations OSCARR and OSCARR-C are not always feasible. Most notably,
travel demand might exceed road capacity. In such cases, some available options
are to evaluate whether to increase the threshold in some of the road links (and
reduce the freeflow speed accordingly), or whether to relax the problem by
including slack variables that penalize capacity violation. Second, the numerical
experiments presented rely on steady state analysis of the AMoD system with
a fixed freeflow in the road links. A further study should evaluate its merits
by comparing against microscopic simulations such as MATsim (Balmer et al.
2009).

Conclusions

In this paper we presented a novel queuing theoretical framework for modeling
AMoD systems. We showed that, for the routing and rebalancing problem, the
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stochastic model we propose asymptotically recovers existing models based on
network flow approximations. The model enables the analysis and control of
the probabilistic distribution of the vehicles, as opposed to just expected values.
In particular, this model allows one to set arbitrary bounds on the asymptotic
probability of exceeding the capacity of individual road links. The model is
very expressive and can capture both congestion and the charge level of electric
vehicles servicing the customers. As such, it can be used to synthesize routing,
rebalancing and charging control policies for AMoD fleets with electric vehicles
and stochastic demand.

The flexibility of the model presented will be further exploited in future work.
First, we would like to incorporate a more accurate congestion model, using load-
dependent IS queues as roads, in order to study heavily congested scenarios.
Second, we currently consider the system in isolation from other transportation
modes, whereas, in reality, customer demand depends on the perceived quality of
the different transportation alternatives. Future research will explore the effect
of AMoD systems on customer behavior and how to optimally integrate fleets
of self-driving vehicles with existing public transit. Third, we would like to
further explore the couplings that might arise between the charging policies of
an electric-powered AMoD fleet and the electric grid. Of particular interest is
the potential participation of an electric-powered AMoD system in the ancillary
services market of the power grid. Fourth, the current model assumes that each
customer travels alone: future research will address the problem of ride-sharing,
where multiple customers may share the same vehicle. Lastly, the control policy
proposed in this paper is open-loop and thus sensitive to modeling errors (e.g.,
incorrect estimation of customer demand). Future research will characterize the
stability, persistent feasibility and performance of real-time, closed-loop model
predictive control schemes based on a receding-horizon implementation of the
routing policies presented in this paper.
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