
Group Marching Tree: Sampling-Based
Approximately Optimal Motion Planning on GPUs

Brian Ichter
Aeronautics & Astronautics

Stanford University
Stanford, California 94305
Email: ichter@stanford.edu

Edward Schmerling
Institute for Computational &

Mathematical Engineering
Stanford University

Stanford, California 94305
Email: schmrlng@stanford.edu

Marco Pavone
Aeronautics & Astronautics

Stanford University
Stanford, California 94305

Email: pavone@stanford.edu

Abstract—This paper presents a novel approach, named the
Group Marching Tree (GMT∗) algorithm, to planning on GPUs
at rates amenable to application within control loops, allowing
planning in real-world settings via repeated computation of near-
optimal plans. GMT∗, like the Fast Marching Tree (FMT∗)
algorithm, explores the state space with a “lazy” dynamic
programming recursion on a set of samples to grow a tree
of near-optimal paths. GMT∗, however, alters the approach of
FMT∗ with approximate dynamic programming by expanding,
in parallel, the group of all active samples with cost below an
increasing threshold, rather than only the minimum cost sample.
This group approximation enables low-level parallelism over the
sample set and removes the need for sequential data structures,
while the “lazy” collision checking limits thread divergence—
all contributing to a very efficient GPU implementation. While
this approach incurs some suboptimality, we prove that GMT∗

remains asymptotically optimal up to a constant multiplicative
factor. We show solutions for complex planning problems under
differential constraints can be found in ~10 ms on a desktop GPU
and ~30 ms on an embedded GPU, representing a significant
speed up over the state of the art, with only small losses in
performance. Finally, we present a scenario demonstrating the
efficacy of planning within the control loop (~100 Hz) towards
operating in dynamic, uncertain settings.

I. INTRODUCTION

Robotic systems are increasingly operating in real-world
settings—away from the structure, repetition, and certainty of
the factory floor—that require a robot to not only sense its
environment and state in real time, but to react accordingly
[1]. Acting in these paradigms often necessitates motion plans
be computed on the basis of limited state and environmental
knowledge, both of which may vary rapidly as information
is gathered and the robot’s surroundings change. A major
challenge in this approach is thus replanning quickly, ideally
up to the bound of the control feedback loop frequency
(~100 Hz), particularly for systems governed by dynamic
constraints operating in complex environments.

Sampling-based motion planning has emerged as an es-
pecially successful paradigm for rapid planning in complex,
high-dimensional, and unstructured environments [2], and it
has been shown to extend well to planning with differential
constraints [3][4]. These methods probe the state space with

This work was supported by a Qualcomm Innovation Fellowship and
by NASA under the Space Technology Research Grants Program, Grant
NNX12AQ43G. Brian Ichter was supported by the DoD NDSEG Program.

a set of samples to be connected, under the supervision of
a collision detection module, to form a traversable graph
representation of the free state space. Sampling-based roadmap
methods, such as the probabilistic roadmap algorithm (PRM)
[5] and its asymptotically optimal variant PRM∗ [6], initially
construct a graph where samples are connected to each of
their near neighbors, provided the connection is collision-
free. A shortest path search is performed on the resulting
roadmap to yield solutions (up to the resolution constraints
of the underlying graph) to the optimal planning problem
[2]. As these methods are limited in their speed by the
initial graph building stage, variants have been developed that
simultaneously construct the graph edges while searching,
e.g., Lazy PRM [7], which avoid performing any collision
checks that are not required during the roadmap shortest
path computation. The Fast Marching Tree algorithm (FMT∗)
further reduces collision checking by implementing direct
dynamic programming (as opposed to full shortest path search)
while constructing a tree subgraph of a disk graph defined
by connection cost, increasing performance particularly in
complex, high-dimensional spaces [8]. Yet even with these
advances, path plan computation times are often over an order
of magnitude greater than the periods of controller loops and
with the slowing growth rate of CPU computational power
(due primarily to limited clock frequency), it is unlikely
raw CPU power will soon bridge this gap. We instead pro-
pose algorithm development for a different paradigm: parallel
computing, with a particular focus on development for the
interplay between algorithmic design and the many thousand
core architectures of GPUs. Unfortunately, while we seek
a solution inspired by the dynamic programming literature
for a single pair of start/goal states (the use case relevant
to control loop planning), the inherently sequential nature
of dynamic programming’s minimum cost node expansion,
which, e.g., FMT∗ is built on, complicates the necessary
massive parallelization.

Statement of Contributions. In this work, we propose the
use of approximate dynamic programming (ADP) methods
that leverage algorithm parallelism for greater speed while
incurring only a bounded degree of suboptimality. We present
the Group Marching Tree (GMT∗) algorithm that, like the
Fast Marching Tree algorithm (FMT∗) [8], performs a “lazy”
dynamic programming recursion on a set of samples in the

state space to grow a tree of near-optimal cost-to-arrive paths.
GMT∗, however, varies from the approach of FMT∗ with
ADP by expanding the tree, in parallel, from the group of
all active samples with cost below a threshold, rather than
only the minimum cost sample (essentially locally relaxing
the principle of optimality). This group approximation enables
low-level parallelism over the sample set and removes the need
for sequential data structures, allowing for massive paralleliza-
tion on GPUs. The “lazy” collision checking further facilitates
GPU implementation by limiting thread divergence at the
lowest levels. While these approximations do introduce some
suboptimality, we prove that GMT∗ remains asymptotically
optimal up to a constant multiplicative factor and demonstrate
through numerical experiments that the empirical loss is well
below the theoretical bound.

We further discuss the implementation of GMT∗ on GPU
architectures and show its application to several illustrative
motion planning problems with differential constraints, for
which we consider kinodynamic and nonholonomic planning.
These numerical experiments show that solution trajectories
can be computed in ~10 ms on a consumer grade GPU and
~30 ms on an embeddable GPU; achieving computation times
two orders of magnitude faster than a state-of-the-art CPU
algorithm and an order of magnitude faster than a state-of-
the-art GPU algorithm, again with only small performance
losses. Lastly, we demonstrate the efficacy of planning within
the control loop on a simplified quadrotor in a collapsing
cave environment, with state disturbances and environmental
dynamism.

Related Work. Previous works have addressed planning in
real-world settings through a number of methods. One ap-
proach is that of feedback motion planning, which traditionally
defines a policy over the state space to allow the current
state to be fed back into the controller [1]. Unfortunately,
the ephemeral nature of the planning environment complicates
this process; while ideally these feedback plans would always
reflect the current knowledge state, they may become quickly
outdated and inaccurate if updating or recomputing plans is
too computationally intensive. Some methods exist to simplify
this computation, such as [9], which computes a field of
guiding vectors over the entire free state space, however
they generally must interpolate over the state space to define
the local action and assume the state space can be easily
represented. The high-frequency replanning approach of [10]
uses a similar approach to our own by quickly replanning full
trajectories. This work leverages parallelism to generate many
rapidly-exploring random tree (RRT) trajectories, selecting
the trajectory with the lowest collision probability at each
computation step. Our work focuses on construction of a
single tree to allow planning within the loop at rates of
~100 Hz, rather than the 4 Hz considered in [10]. Other works,
e.g., RRTX [11], have accelerated the replanning approach by
iteratively rewiring a single tree as new information becomes
available. By reusing the previous tree at each time step,
these methods are limited in scenarios where the environment
changes drastically. Furthermore, the RRTX tree is rooted at
the goal state to enable use in scenarios with disturbances, but
this limits its utility in problems with a changing goal state.

Another approach to planning in changing environments is
to couple low-frequency global planners with high-frequency
reactive controllers that determine actions which are collision-
free and optimal in a local sense. Using methods such as pre-
computed trajectory libraries and funnels [12], learning [13],
and potential fields [14], this approach has shown practical
success in many settings, however, its focus on the local region
can ignore variations in global reachability resulting from
actions (e.g., not accounting for momentum or nonholonomic
constraints) and their use of heuristics to inform actions may
incur suboptimality (e.g., in maze-like environments). In this
work GMT∗ is shown to be capable of computing motion plans
in a tempo comparable to reactive controllers, lessening the
need for consideration of only local actions. GMT∗ can further
be used in concert with reactive controllers to better inform
actions via accurate cost-to-go computations, thus potentially
benefiting from properties like the robustness in [12].

A main tenet of our work is the use of approximate dynamic
programming (ADP) to allow parallelism while exploring the
state space. Similar search methodologies, i.e., expanding
wavefronts in low-cost groups, have been used successfully
for graph search to allow parallelism and complexity reduc-
tion. Dial’s algorithm [15] implements Dijkstra’s algorithm
on graphs with integer weights by stepping through buckets,
exactly solving for the shortest paths. The ∆-stepping algo-
rithm [16] generalizes Dial’s algorithm to solve exactly the
single source shortest path problem on non-negative real-value
weighted graphs by successively relaxing edges while stepping
through buckets with width ∆, however it performs extra
work by revisiting edges to maintain exactness. The Group
Marching Method [17] builds on the Fast Marching Method
(an inspiration for FMT∗) to solve the eikonal equations by
advancing a group of points together in two iterations, the first
forward and the second backwards to correct for instabilities.
Our work employs a similar expansion strategy, but abandons
any additional computation necessary to maintain exactness,
instead leveraging the underlying disk graph to maintain
asymptotic optimality within a constant factor.

Parallelization too has been applied successfully to mo-
tion planning by a number of researchers, finding significant
algorithm accelerations. An early result in sampling-based
motion planning showed that probabilistic roadmap methods
are embarrassingly parallel [18], which was later extended
to implementation on GPUs [19]. The focus of PRM-based
approaches on entire graph construction however can be
prohibitively slow even with GPUs. Common approaches to
parallelization of sampling-based planning include focusing
only on algorithm subroutines (such as collision checking and
nearest neighbor search) [19][20], adapting serial algorithms
via AND/OR-parallelism [10][21], or using load balancing and
domain decomposition [22][23]. GMT∗’s ADP is parallel at
the sample level, meaning many of these methodologies (e.g.,
collision checking, domain decomposition) are applicable in
implementation. Furthermore, this low-level parallelism en-
ables massive parallelization for use on GPUs.

Organization. The remainder of this document is organized
as follows. Section II describes the problem setup. Section III
discusses the GMT∗ algorithm and proves its asymptotic

optimality up to a constant multiplicative factor. Section IV
discusses its implementation on GPUs. Section V demonstrates
the performance of GMT∗ with motion planning problems
under differential constraints. Lastly, Section VI summarizes
our findings and proposes directions for future work.

II. PROBLEM SETUP

In this section and the next (which contains the description
and analysis of the GMT∗ algorithm), for ease of exposition
we consider the geometric planning problem—the problem,
loosely speaking, of computing the shortest free path from
an initial state to a goal region where any two states can be
connected by a straight line. The problem is briefly overviewed
here, but a full, detailed problem formulation can be found in
[8]. Let X = [0, 1]d be the state space, where d ∈ N, d ≥ 2.
Let Xobs be the obstacle space, Xfree = X \ Xobs be the free
state space, xinit ∈ Xfree be the initial condition, and Xgoal ⊂
Xfree be the goal region. A path is said to be collision-free if
σ(τ) ∈ Xfree for all τ ∈ [0, 1]. A path is said to be feasible if
it is collision-free, σ(0) = xinit, and σ(1) ∈ Xgoal.

Problem 1 (Optimal path planning): Given a path planning
problem (Xfree, xinit,Xgoal) and a cost measure c, find a
feasible path σ∗ such that c(σ∗) = min{c(σ) : σ is feasible}.
If no such path exists, report failure.

For Section III we consider the cost measure c(σ) as the
arc length of σ with respect to the Euclidean metric and
write ‖x− y‖ to denote the cost of the shortest path between
x, y ∈ X . Though this is arguably the simplest formulation
of robotic motion planning, we note the analytical distinction
between (a) determining, for more general problem setups with
differential constraints or alternative costs, whether a sample
set in X admits a near-optimal trajectory as a sequence of local
connections, and (b) arguing that a planning algorithm is capa-
ble of identifying such a high-quality solution given a sample
set. We refer the reader to our previous works [3][4][24] for
discussion on the first point, including expressions for local
connection radii under both randomized and deterministic
state space sampling, and abbreviate the relevant discussion
(Theorems 1 and 3) in the present work. The novel theoretical
contribution of this paper is establishing that GMT∗, which
achieves a high degree of parallelism in a single query
approach unlike the FMT∗ and PRM∗ algorithms analyzed
in those works, still recovers asymptotically optimal paths (up
to a constant factor) under the same sampling and connection
radius assumptions (Theorem 2). Our numerical experiments
in Section V consider both kinodynamic and nonholonomic
planning problems, specifically double integrator and Dubins
airplane dynamics.

III. THE GROUP MARCHING TREE ALGORITHM

A. GMT∗

We now detail the Group Marching Tree algorithm (GMT∗)
to be used to approximately solve the optimal path planning
problem. GMT∗ performs a “lazy”, approximate dynamic
programming recursion to grow a tree of paths in cost-to-arrive
space. This amounts to iteratively attempting to expand all
samples in the tree branches below a constantly increasing cost

threshold, rather than expanding only the minimum cost sam-
ple. The resulting algorithm enables simultaneous graph build-
ing and exploration of the state space, in a manner amenable
to complex planning problems, such as high-dimensional,
cluttered environments and differential constraints.

A description of the algorithm is given in Alg. 1, with
a single iteration visualized in Fig. 1. The algorithm takes
as input the planning problem (Xfree, xinit,Xgoal), a sample
set Vunexplored of n samples in Xfree (at least one in Xgoal),
a connection radius r, and a group cost threshold factor
λ ∈ (0, 1]. Together, λ and r define the group cost threshold in-
crement δ, equal to λr. We refer to nodes (or interchangeably,
samples) as neighbors if the connection cost between them
is less than the connection radius r, as defined in Theorem
1; r = 4(1 + η)1/d

(
1/d
)1/d(

µ(Xfree)/ζd
)1/d(

log n/n
)1/d

where η ≥ 0 is a tuning parameter, µ(Xfree) denotes the d-
dimensional Lebesque measure of Xfree, and ζd denotes the
volume of the unit ball in d-dimensional Euclidean space.
This r applies for geometric planning with Euclidean cost and
Vunexplored sampled uniformly randomly from Xfree; smaller
r may be considered if Vunexplored is sampled with low-
dispersion, deterministic sequences [24].

Algorithm 1 Group Marching Tree Algorithm
Require: connection radius r, group cost threshold factor λ,

set Vunexplored of n samples in Xfree, at least one in Xgoal
1: Place xinit in Vopen, set i = 0 and δ = λr
2: Initialize tree with root node xinit
3: Find nodes G in Vopen with cost ≤ iδ
4: For each unexplored neighbor, x, of any node in G:
5: Find neighbor nodes y in Vopen

6: Find locally-optimal connection to x from a node in y
7: If that connection is collision-free:
8: Add edge to tree
9: Remove x from Vunexplored and add to Vopen

10: Remove G from Vopen and add to Vclosed

11: Increment i
12: Skip to Line 3 until either:

a: Vopen is empty ⇒ return failure
b: A node in G is in Xgoal ⇒ return min cost path to Xgoal

The algorithm proceeds by expanding a tree of paths out-
ward through the state space, maintaining the samples in three
sets: Vunexplored, Vopen, and Vclosed. Vunexplored consists of
samples not yet added to the tree. Vopen consists of samples
added to the tree and still considered for expansion; intuitively
these are the samples on the tree’s outer “branches”, i.e., close
to the wavefront. Vclosed consists of samples added to the tree
and no longer considered for expansion; intuitively these are
the samples too far from the edge of the expanding tree to
make any new connections. The algorithm begins by adding
only xinit to Vopen, setting Vclosed empty, and initializing
the tree of paths with xinit at its root (Lines 1-2). At each
iteration i, all nodes in Vopen with cost below iλr (iδ) are
placed into a set G, denoting the group of samples to be
expanded in parallel (Line 3). The amount of parallelism of
this step is controlled by a tuning parameter λ, referred to
as the group cost threshold factor, which represents a trade-
off between parallelism and potential unconsidered optimal
connections; λ→ 1 represents expanding all nodes in the open
set at once, resulting in nearly a breadth first search, while

λ → 0 represents expanding only the minimum cost nodes
in a given iteration, resulting in the same final solution as
FMT∗. The other side of the tradeoff, the unconsidered optimal
connections, arises when multiple nodes along the optimal path
are considered in the same group expansion, meaning they
cannot connect to each other. They may also occur when paths
formed from the concatenation of several short connections fall
behind the wavefront. These effects, however, are curtailed by
the λ factor, the underlying disk graph’s structure, and the
notion that longer steps will generally be more favorable than
many short steps. Even with this suboptimality, we show in
Theorem 3 that asymptotic optimality within a constant mul-
tiplicative factor is maintained; furthermore, the performance
loss observed in practice is studied in Section III-C and shown
to be small. With the group of samples G in hand, all neighbors
of G in Vunexplored are considered for addition to the tree (Line
4). Referring to each sample in G as x and its neighbors in
Vopen as y, GMT∗ then selects the locally-optimal connection,
where locally-optimal is defined as the connection with the
lowest cost for the previously computed path to y concatenated
with the straight line path from y to x (Line 6). Note that
while this step potentially introduces suboptimal connections
by lazily ignoring the presence of obstacles, as in FMT∗, these
connections become vanishingly rare as the number of samples
goes to infinity, as discussed and proven in [8]. If the selected
connection is collision-free, it is added to the tree and x is
removed from Vunexplored and added to Vopen (Lines 7-9).
When all samples have been considered, the samples in G are
removed from Vopen and added to Vclosed, and GMT∗ moves
to the next iteration (Lines 10-11), where an entire iteration is
considered Lines 3-11. The algorithm terminates when either
Vopen is empty or a node in G is in Xgoal (Line 12).

(a) (b)

(c) (d)

Fig. 1: One iteration step of GMT∗ expansion, labeled with
(Fig., Line in Alg. 1). (1a, Line 3) shows the selection of
the group G. (1b, Line 4) shows the selection of the nearest
neighbors of G in Vunexplored. (1c, Line 5) shows the candidate
connections from which the locally optimal is chosen to
connect the new samples. (1d, Line 3) shows the new tree
after an iteration, Lines 3-11, and the new group G.

B. GMT∗ Approximate Asymptotic Optimality

Our analysis of GMT∗ begins with the concept of prob-
abilistic exhaustivity as applied in related work establishing
asymptotic optimality for a range of geometric [25] and differ-
entially constrained [3][4] batch-processing, sampling-based
motion planning algorithms. Briefly, probabilistic exhaustivity
is the notion that within a sufficiently large set of uniformly
sampled states, a sequence of samples approximating any path
arbitrarily well may be found. This property may be used to
construct sample sequences approaching the optimal solution
that are amenable for recovery by a planning algorithm.

In the subsequent analysis, we define SampleFree(n) to
be a function that returns n points sampled independently and
identically from the uniform distribution on Xfree, at least one
of which is in Xgoal. We define a path σ : [0, 1] → X and a
path y : [0, 1] → X that sequentially connects the sequence
of waypoints {ym}Mm=0 ∈ X with line segments. We say the
sequence of waypoints {ym} (ε, r)−traces the path σ if the
following conditions hold: (i) ||ym−ym+1|| ≤ r for all m, (ii)
the cost of y is bounded as c(y) ≤ (1 + ε)c(σ), and (iii) the
distance from any point y to σ is no more than r. We formally
state this in Theorem 1 (proven as Theorem IV.5 in [3]).

Theorem 1 (Probabilistic Exhaustivity): Define a planning
problem (Xfree, xinit,Xgoal), a feasible path σ : [0, 1]→ Xfree, a
set of samples V = {xinit}∪SampleFree(n), and ε > 0. For a
fixed n consider the event An that there exists {ym}Mm=0 ∈ V ,
y0 = xinit, yM ∈ Xgoal, which (ε, r)−trace σ, where

r = 4(1 + η)
1
d

(
1

d

) 1
d
(
µ(Xfree)

ζd

) 1
d
(

log n

n

) 1
d

with η ≥ 0. Then, as n → ∞, the probability that An does
not occur (denoted by its complement Acn) is asymptotically
bounded as P[Acn] = O(n−

n
d log−

1
d n).

We now show that the cost of the path returned by GMT∗

is bound within a constant multiplicative factor of the cost of
any such sequence of tracing waypoints.

Theorem 2 (Bounded Suboptimality): Let r > 0 and sup-
pose that the sequence of waypoints {ym}Mm=0 ⊂ Xfree satisfies
y0 = xinit, yM ∈ Xgoal, ‖ym − ym−1‖ ≤ r for all m ∈
{1, . . . ,M} and B(ym, r) ⊂ Xfree for all m ∈ {0, . . . ,M}.
Let cGMT∗ denote the cost of the path returned by GMT∗ using
a connection radius r and group cost threshold factor λ. Then

cGMT∗ ≤ (1 + 2λ)

M∑
k=1

‖yk − yk−1‖.

Proof: Note that in the subsequent analysis we refer to the
open set of nodes at iteration i as Vopen(i). We first assume,
without loss of generality, that ‖ym− ym−2‖ > r for all m ∈
{2, . . . ,M}. This condition may be enforced by making a
forward pass over the sequence and omitting the preceding
point ym−1 for any ym that violates the condition, without
affecting the other lemma assumptions and only decreasing∑M
k=1 ‖yk − yk−1‖. Consider running GMT∗ to completion

and for each ym let c(ym) denote the cost-to-arrive of ym in
the generated tree. If ym is not contained in any edge of the
tree, we set c(ym) =∞. Let im denote the first iteration after

which ym has been added to the GMT∗ tree, that is,

im = min{i ∈ N | ym ∈ Vopen(i)}.

Define S0 = 0, Sm =
∑m
k=1 ‖yk − yk−1‖, the cost of the

path connecting y0, y1, . . . , ym, and denote δ = λr. We show
by induction that for all m ∈ {1, . . . ,M}, one of the following
two possibilities must hold:

cGMT∗ ≤ Sm +mδ, (1)

or

c(ym) ≤ Sm + (m− 1)δ and im ≤
⌈
Sm−1
δ

⌉
+m. (2)

The base case m = 1 is trivial, since G0 contains only
xinit = y0, and thus the first GMT∗ iteration makes every
collision-free connection between xinit and the nodes con-
tained in B(xinit, r), including y1. Then c(y1) = ‖y1− y0‖ =
S1 and i1 = 1 = dS0/δe+1. Now suppose (1) or (2) holds for
m − 1; that means that one of the following four statements
must hold.

1. cGMT∗ ≤ Sm−1 + (m− 1)δ,
2. c(ym−1) ≤ Sm−1 + (m− 2)δ and

im−1 ≤
⌈
Sm−2

δ

⌉
+m− 1 and

a. GMT∗ ends before considering ym for connection
(im =∞), or

b. ym−1 ∈ Vopen when ym is first considered for
connection (im−1 ≤ im − 1), or

c. ym−1 /∈ Vopen when ym is first considered for
connection (im−1 ≥ im).

We show that in each of these cases, (1) or (2) holds for m.
Case 1: Since ‖ym − ym−1‖ ≥ 0, we have

cGMT∗ ≤ Sm−1 + (m− 1)δ ≤ Sm +mδ.

Case 2a: The fact that ym goes unconsidered means that up
until the time the algorithm terminates at iteration iterm (upon
finding a goal point in group Giterm), ym−1 has never been a
member of an expansion group:

iterm ≤ max{im−1, dc(ym−1)/δe}
≤ max{dSm−2/δe+m− 1, dc(ym−1)/δe}.

Then since the algorithm terminates at iteration iterm,

cGMT∗ ≤ itermδ ≤ max{Sm−2 + δ + (m− 1)δ, c(ym−1) + δ}
≤ Sm−1 +mδ.

Case 2b: ym must be connected to some parent when it is first
considered and ym−1 is a candidate, so

c(ym) ≤ c(ym−1) + ‖ym−1 − ym‖ ≤ Sm + (m− 2)δ.

Depending on whether ym−1 spends one or more steps in
Vopen, either im = im−1 + 1 or im = dc(ym−1)/δe + 1. In
the first subcase, im ≤

⌈
Sm−2

δ

⌉
+ m; in the second subcase,

im ≤ dSm−1/δe+m− 1.

Case 2c: When ym is first considered for connection during
iteration i′ < im ≤ im−1, there must be some z ∈ Gi′ such
that ‖ym − z‖ ≤ r. Then

c(ym) ≤ c(z) + r ≤ i′δ + r ≤ (im−1 − 1)δ + r

≤ Sm−2 + (m− 1)δ + r.

Recalling that the ym, by construction, are spaced so that
they satisfy the property r < ‖ym − ym−2‖ ≤ ‖ym −
ym−1‖+ ‖ym−1 − ym−2‖, we have c(ym) ≤ Sm + (m− 1)δ.

Additionally, im ≤ im−1 ≤
⌈
Sm−2

δ

⌉
+m− 1.

Thus the inductive step holds in all cases and (1) or (2)
holds for all m. In particular taking m = M we have cGMT∗ ≤
SM +Mδ or cGMT∗ ≤ c(yM) ≤ SM + (M − 1)δ. Noting that
SM ≥Mr/2 = Mδ/(2λ), we have

cGMT∗ ≤ (1 + 2λ)

M∑
k=1

‖yk − yk−1‖

as desired.

Given these results, we are now in a position to prove
asymptotic optimality within a suboptimality bound.

Theorem 3 (GMT∗ Approximate Asymptotic Optimality):
Assume a δobs-robustly feasible1 path planning problem, as
defined in [3], with optimal path σ∗ and cost c∗. Let cn
denote the cost returned by GMT∗ with n samples. Then for
any ε > 0,

lim
n→∞

P[cn > (1 + ε)(1 + 2λ)c∗] = 0.

Proof: The proof of this theorem is conceptually identical
to Theorem VI.2 in [3]; with high probability as n → ∞
there exists a sequence of waypoints (Theorem 1) tracing an
obstacle-clear, near-optimal path of cost ≤ (1 + ε)c∗ which
GMT∗ recovers up to a factor (1 + 2λ) (Theorem 2).

We remark that extending the results of this section to
differentially-constrained system dynamics or deterministic
sampling methods does not substantially change the argu-
ment in Theorem 3 (although in particular, with deterministic
sampling the convergence in probability may be replaced
with a standard limit). All that is required is an analogue of
Theorem 1, a statement on the regularity of the dynamics that
implies, with sufficient sample density, that the near-neighbor
disk graph contains near-optimal paths. The only GMT∗-
specific analysis in Theorem 2 is a graph search bound—
independent of dynamics or sampling methodology.

C. Numerical Experiments: Suboptimality Introduced

To complement the above theoretical bounds, in this sub-
section we examine the suboptimality incurred in practice
through numerical experiments. While we will later describe
implementation details and timing results in a few representa-
tive problems, this section’s focus is solely on the amount of
suboptimality resulting from the group expansion. Our figure

1Briefly, we require that σ∗ is a limit of paths with bounded clearance
from Xobs; this may be regarded as a minimum regularity assumption to guard
against problems with passages of infinitesimal width that are not amenable
to sampling-based motion planning.

of merit is thus only the percentage cost increase compared to
FMT∗, i.e., from the group expansion.

Table I lists results for two geometric planning problems
over a variety of dimensions (2D to 10D), the first of which is
shown in Fig. 2. This obstacle set was mapped to dimensions
greater than two by expanding obstacles to fully fill the
space. Fig. 2b, in particular, shows the wake-like structure of
the parallel expansion. The second planning problem listed
in Table I is a maze environment requiring exploration in
all dimensions. For each planning problem, the same setup
is run with varying λ (values of 0.2, 0.5, and 1.0) and
with sufficiently high sample counts to nearly converge to
the optimal. In each case, the suboptimality is significantly
below the proven bound, and often below 5%. We observe
the expected increase in cost error with increasing λ, and an
additional increase with increasing dimension.

(a) (b)

Fig. 2: Expansion of the GMT∗ algorithm, where Fig. 2a
shows the resulting tree (colored by cost) and Fig. 2b shows
individual groups (denoted by color) expanded in parallel.

Cost Error (cGMT∗/cFMT∗ − 1)
Obstacle d λ = 0.2 λ = 0.5 λ = 1.0

Rectangles 2D 0.2% 0.6% 1.8%
(Fig. 2a) 3D 0.1% 0.6% 3.4%

6D 0.4% 1.5% 2.1%
10D 2.0% 14.8% 17.0%

Maze 3D 0.3% 1.5% 4.7%
5D 0.9% 4.9% 7.8%

TABLE I: Suboptimality introduced by GMT∗ over FMT∗ for
a range of dimensions d and group cost threshold factors λ.
Results are averaged over 50 runs at n = 5000 samples. The
variance was found to be small.

IV. GPU IMPLEMENTATION

We begin this section with a brief discussion of GPU
architectures, as the ability of GMT∗ to exploit the compu-
tational capabilities of many-core GPUs is fundamental to
this work and has driven much of the algorithm design and
implementation. We particularly focus here on the CUDA
enabled GPUs used in this work. CUDA C functions running
on GPUs are organized in a three level thread-hierarchy. At
the lowest level, threads run in groups of 32 that execute
one common instruction at a time, i.e., any divergence will
cause branches to execute serially. A level above this, thread
groups are combined into blocks, each of which can utilize a
small, low-latency shared memory and executes concurrently
on the same multiprocessor, but is allowed to diverge without
causing serial execution. Finally, at the highest level, blocks

are formed in grids to be dispatched to the device. A more
detailed discussion can be found in [26].

We highlight here three properties of GMT∗ that, along
with the sample-level parallelism, allow efficient application
to GPU architectures. First, the use of lazy collision checking
limits thread divergence at low levels by only attempting to
connect new samples to the tree once per iteration. Second,
the design of GMT∗ is such that the sample set is partitioned
into Vunexplored, Vopen, and Vclosed, with a sample always a
member of one and only one set, allowing for little overlap of
memory access and easy memory representation as Boolean
masks. Our work accesses these sets with thread identifiers
assigned via prefix sums, a strategy described in [27]. The
use of this algorithmic primitive allows fast reorganization
of sparse and uneven workloads into dense uniform ones.
Third, as the set of samples considered for expansion, G, can
represented as a set of cost-thresholded buckets, there is no
need for the use of serial data structures, e.g., min-heaps.

V. NUMERICAL EXPERIMENTS

A. Numerical Experiment Setup
As our goal is to show planning in changing, uncertain

settings with dynamic systems, in this section we apply GMT∗

to the problem of planning under differential constraints with
a 6D double integrator (ẍ = u) and a Dubins airplane
(Dubins car with altitude [28]). The double integrator planning
problems consider a mixed time/quadratic control effort cost
function, while the Dubins airplane problems consider an
Euclidean distance cost function. The results were written
in CUDA C and generated on an NVIDIA GeForce GTX
980 GPU on a Unix system with a 3.0 GHz CPU. We
additionally provide comparison with an embeddable GPU,
the NVIDIA Jetson TX1, to show many of these performance
gains are similarly available for onboard computation. Our
implementation of GMT∗ samples the state space using the
deterministic, low-dispersion Halton sequence, to achieve best
performance, following the discussion in [24]. This sampling,
along with computation of nearest neighbor connections (edge
discretization and neighbor sets), was performed offline in a
precomputation phase.

B. Planning Under Differential Constraints
Through several motion planning problems, detailed in

Fig. 3 and Table II, we demonstrate GMT∗ achieves one
to two orders of magnitude speed up with relatively small
performance losses compared to an implementation of FMT∗

on a CPU [8] and an implementation of PRM∗ on a GPU
[6]. For each simulation, we pick a value for the connection
radius r appropriate for the dynamics [3][4] and set λ to 1,
which we have found allows simple implementation, max-
imum parallelization, and performance losses on the order
of 10%. The obstacles in our simulation are represented by
unions of axis-aligned bounding boxes, as commonly used for
a broad phase collision checking phase [2]. This methodology
can provide increasingly accurate representations of obstacle
sets as more are used (e.g., as in Fig. 3b or with octree-based
representations as in Fig. 3c).

The first problem (Fig. 3b) was built from point cloud
data collected in [29] for an indoor office environment, with

individual environmental elements bounded by boxes. The
second planning problem (Fig. 3c) represents a cave system
consisting of two maze-like levels connected by three passage-
ways. Finally, our third planning problem (Fig. 3d) represents a
forest environment. To show the results extend to systems with
nonlinear dynamics (and nonholonomic planning), this last
simulation uses Dubins airplane dynamics rather than double
integrator dynamics. Our Dubins airplane consists of a planar
Dubins car augmented with a single integrator in the third
dimension, with bounded control on turning rate, unbounded
altitude control, and a Euclidean distance cost function [28].

As shown in Table II, in all problems a solution trajectory
is found by GMT∗ in ~10 ms, a speed increase of two orders
of magnitude over CPU FMT∗ and one order of magnitude
over GPU PRM∗. The algorithm also performs well on the
embedded platform, only slowing by a factor of two, compared
to PRM∗, which slows down by approximately a factor of five.
This demonstrates GMT∗’s lightweight approach of building
a single tree is particularly amenable to onboard computation.
We also note that the cost increase incurred is less than 12%
for all cases despite the high group cost threshold factor.

(a) (b)

(c) (d)

Fig. 3: The solution trajectory connecting xinit (blue) to Xgoal
(red) returned by GMT∗ is shown in green for all figures.
(3a-3b) The indoor environment was generated with point
cloud data from [29] with individual elements bounded by
boxes. (3c) The cave environment consists of two maze-like
levels, with wall outlines shown in black, connected by three
passageways, shown in blue. (3d) The forest environment
consists of many varying tree obstacles.

Table III further demonstrates the algorithm’s scaling with
sample and obstacle counts. The small increases in compu-
tation time with increasing sample count are a result of the
GPU not being fully utilized at every iteration with lower
sample counts, i.e., the group size may be too small to use
every GPU core. The obstacle scaling too shows only slight
increases in computation time with increased obstacle reso-
lution, approximately doubling for each order of magnitude

increase, however, if obstacles and complexity of the space
becomes a significant bottleneck, GMT∗ is amenable to space
partitioning structures, e.g., k-d trees, or parallelization at the
obstacle level [20].

Double Integrator, Fig. 3b
Algorithm Device calg/cGMT∗ Time (ms) talg/tGMT∗

FMT∗ CPU 0.91 1291 129.1
PRM∗ Embd. GPU 0.88 735 73.5
PRM∗ GPU 0.88 158 15.8
GMT∗ Embd. GPU 1 27 2.7
GMT∗ GPU 1 10 1

Double Integrator, Fig. 3c
Algorithm Device calg/cGMT∗ Time (ms) talg/tGMT∗

FMT∗ CPU 0.91 1490 99.3
PRM∗ Embd. GPU 0.90 517 34.5
PRM∗ GPU 0.90 140 9.3
GMT∗ Embd. GPU 1 31 2.0
GMT∗ GPU 1 15 1.0

Dubins Airplane, Fig. 3d
Algorithm Device calg/cGMT∗ Time (ms) talg/tGMT∗

FMT∗ CPU 0.95 1312 218.7
PRM∗ Embd. GPU 0.95 945 157.5
PRM∗ GPU 0.95 96 16.0
GMT∗ Embd. GPU 1 11 1.8
GMT∗ GPU 1 6 1

TABLE II: Results for algorithms run with 5000 samples in
the environments in Fig. 3. GPU refers to the GTX 980, while
Embd. GPU refers to an embeddable Jetson TX1 GPU.

Fig. Sample Count (n) Obstacle Count Time (ms) Cost
3c 1k 300 6 552

2k 300 8 379
5k 300 15 290
10k 300 21 233

3d 5k 150 7 -
5k 500 14 -
5k 1500 18 -
5k 5000 26 -

TABLE III: Results for GMT∗ scaling with sample and obsta-
cle counts, in terms of cost and computation time. Note the
obstacle count represents varying the resolution of the obstacle
representations, not varying the obstacle location or class.

C. Planning in the Loop

The numerical experiments in Section V-B have shown
that it is possible to plan at rates amenable to implemen-
tation within control loops by allowing some performance
loss in exchange for parallelism. We now demonstrate that
this strategy is beneficial through numerical experiments for
a system operating in a dynamic environment with random
state disturbances. The setup mimics a collapsing cave system
(Fig. 3c), which a quadrotor modeled as a double integrator
must escape. A successful escape requires high performance
actions to minimize time spent in the degrading cave as well as
actions that account for state disturbances and variations in the
environment. The collapse is modeled as randomly placed box
obstacles added to the environment, with the rates representing
the number of obstacles added each second. Fig. 4 shows the
success rate over 50 runs of a quadrotor using a waypoint
tracking controller, which tracks trajectories generated with
FMT∗ and GMT∗ (replanning as quickly as possible). The
results for FMT∗ show that, as expected, success rate decreases
quickly with increased noise and environmental degradation.

Replanning with GMT∗, however, shows little variation in
failure rate with increased noise level. The results further show
significantly higher success rates for replanning with GMT∗

than replanning with FMT∗. Note that these planning problems
may not be possible to solve for every instance, as the
collapses can happen anywhere within the environment (and
very quickly), potentially trapping the quadrotor. Experiment
videos are available at https://goo.gl/67RSsp.

Fig. 4: Success rate of a quadrotor replanning with FMT∗ or
GMT∗ in the Fig. 3c environment with varying levels of state
disturbances and cave collapse rates (simulated with obstacles
randomly placed in the environment).

VI. CONCLUSION

We have introduced and analyzed a novel planning al-
gorithm, the Group Marching Tree algorithm (GMT∗), that
trades off parallelism for optimality in order to leverage GPU
hardware. The computational speed of GMT∗ allows us to
approach the problem of planning in real-world settings—
particularly focusing on the uncertain, dynamic environments
that naturally arise from active robot sensing and the uncertain,
disturbed motion of systems in the field—by replanning at
rates commensurate with the control loop frequency. Simula-
tion results show planning times on the order of 10 ms (for
a 6D double integrator and Dubins airplane) and demonstrate
the efficacy of planning at these rates in difficult environments.

This paper leaves several important research avenues open.
Foremost, we plan to validate this approach experimentally on
a platform with state and environmental sensing. We further
plan to provide a more detailed theoretical analysis of GMT∗,
such as providing time and space complexity analysis and po-
tentially proving tighter suboptimality bounds. We additionally
plan to explore extensions to other planning paradigms, which
the computational speed of GMT∗ may enable. To merge
planning and game playing, we plan to use GMT∗ as a default
simulation policy when many actions must be considered, such
as in algorithms like Monte Carlo tree search. We also plan to
show that GMT∗ may be used to construct policies in decision
making frameworks through fast approximation of the cost-
to-go. Finally, we plan to demonstrate extensions to planning
with a probabilistic state belief by utilizing a backwards search
in cost-to-go space. In this way we can define actions over
regions of the state space, with the same computation times
shown above, and select actions from criteria such as best
worst-case or maximum expected performance.

REFERENCES

[1] S. M. LaValle, “Motion planning: Wild frontiers,” IEEE Robotics and
Automation Magazine, 2011.

[2] S. Lavalle, Planning Algorithms. Cambridge University Press, 2006.
[3] E. Schmerling, L. Janson, and M. Pavone, “Optimal Sampling-Based

Motion Planning under Differential Constraints: the Driftless Case,” in
Proc. IEEE Conf. on Robotics and Automation, 2015.

[4] ——, “Optimal Sampling-Based Motion Planning under Differential
Constraints: the Drift Case with Linear Affine Dynamics,” in Proc. IEEE
Conf. on Decision and Control, 2015.

[5] L. E. Kavraki, P. Švestka, J. C. Latombe, and M. H. Overmars, “Proba-
bilistic Roadmaps for Path Planning in High-Dimensional Spaces,” IEEE
Transactions on Robotics and Automation, 1996.

[6] S. Karaman and E. Frazzoli, “Sampling-based Algorithms for Optimal
Motion Planning,” International Journal of Robotics Research, 2011.

[7] R. Bohlin and L. Kavraki, “Path Planning Using Lazy PRM,” in Proc.
IEEE Conf. on Robotics and Automation, 2000.

[8] L. Janson, E. Schmerling, A. Clark, and M. Pavone, “Fast Marching
Tree: A Fast Marching Sampling-Based Method for Optimal Motion
Planning in Many Dimensions,” International Journal of Robotics Re-
search, 2015.

[9] S. R. Lindemann and S. M. LaValle, “Simple and efficient algorithms
for computing smooth, collision-free feedback laws over given cell
decompositions,” International Journal of Robotics Research, 2009.

[10] W. Sun, S. Patil, and R. Alterovitz, “High-Frequency Replanning Under
Uncertainty Using Parallel Sampling-Based Motion Planning,” IEEE
Transactions on Robotics, 2015.

[11] M. Otte and E. Frazzoli, “RRTX: Asymptotically optimal single-query
sampling-based motion planning with quick replanning,” International
Journal of Robotics Research, 2015.

[12] A. Majumdar and R. Tedrake, “Robust online motion planning with re-
gions of finite time invariance,” in Workshop on Algorithmic Foundations
of Robotics, 2012.

[13] C. Richter, W. Vega-Brown, and N. Roy, “Bayesian learning for safe
high-speed navigation in unknown environments,” in International Sym-
posium on Robotics Research, 2015.

[14] S. Scherer, S. Singh, L. Chamberlain, and M. Elgersma, “Flying fast
and low among obstacles: Methodology and experiments,” International
Journal of Robotics Research, 2008.

[15] R. B. Dial, “Algorithm 360: Shortest-path forest with topological order-
ing [H],” Communications of the ACM, 1969.

[16] U. Meyer and P. Sanders, “∆-stepping: a parallelizable shortest path
algorithm,” Journal of Algorithms, 2003.

[17] S. Kim, “An O(n) level set method for eikonal equations,” SIAM
Journal on Scientific Computing, 2001.

[18] N. M. Amato and L. K. Dale, “Probabilistic Roadmap Methods Are Em-
barrassingly Parallel,” in Proc. IEEE Conf. on Robotics and Automation,
1999.

[19] J. Pan, C. Lauterbach, and D. Manocha, “g-Planner: Real-time Motion
Planning and Global Navigation using GPUs.” in AAAI Conf. on
Artificial Intelligence, 2010.

[20] J. Bialkowski, S. Karaman, and E. Frazzoli, “Massively Parallelizing the
RRT and the RRT*,” in IEEE/RSJ Int. Conf. on Intelligent Robots &
Systems, 2011.

[21] D. Devaurs, T. Siméon, and J. Cortés, “Parallelizing RRT on Large-scale
Distributed-Memory Architectures,” IEEE Transactions on Robotics,
2013.

[22] C. Rodriguez, J. Denny, S. A. Jacobs, S. Thomas, and N. M. Am-
ato, “Blind RRT: A Probabilistically Complete Distributed RRT,” in
IEEE/RSJ Int. Conf. on Intelligent Robots & Systems, 2013.

[23] A. Fidel, S. A. Jacobs, S. Sharma, N. M. Amato, and L. Rauchwerger,
“Using Load Balancing to Scalably Parallelize Sampling-Based Motion
Planning Algorithms,” in IEEE Parallel and Distributed Processing
Symposium, 2014.

[24] L. Janson, B. Ichter, and M. Pavone, “Deterministic Sampling-Based
Motion Planning: Optimality, Complexity, and Performance,” in Inter-
national Symposium on Robotics Research, 2015.

[25] J. A. Starek, J. V. Gomez, E. Schmerling, L. Janson, L. Moreno, and
M. Pavone, “An Asymptotically-Optimal Sampling-Based Algorithm
for Bi-directional Motion Planning,” in IEEE/RSJ Int. Conf. on
Intelligent Robots & Systems, 2015.

[26] NVIDIA, CUDA C Programming Guide, 2016.
[27] D. Merrill, M. Garland, and A. Grimshaw, “Scalable GPU graph

traversal,” in ACM SIGPLAN Notices, 2012.
[28] H. Chitsaz and S. M. LaValle, “Time-optimal paths for a Dubins

airplane,” in Proc. IEEE Conf. on Decision and Control, 2007.
[29] I. Armeni, O. Sener, A. R. Zamir, H. Jiang, I. Brilakis, M. Fischer,

and S. Savarese, “3D semantic parsing of large-scale indoor spaces,”
in IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, 2016.

https://goo.gl/67RSsp

	Introduction
	Problem Setup
	The Group Marching Tree Algorithm
	Group Marching Tree
	Group Marching Tree Approximate Asymptotic Optimality
	Numerical Experiments: Suboptimality Introduced

	GPU Implementation
	Numerical Experiments
	Numerical Experiment Setup
	Planning Under Differential Constraints
	Planning in the Loop

	Conclusion
	References

