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Abstract—The localization of landers on the surface of small bod-
ies has traditionally relied on observations from a mothership
(e.g. Rosetta’s Philae lander and Hayabusa 2’s MASCOT and
MINERVA landers). However, when line-of-sight with the moth-
ership is not always available, or for surface rovers that travel
large distances, alternative mothership-independent localization
techniques may be required. On-board vision-based techniques
have demonstrated effective localization in terrestrial applica-
tions as well as for Mars rovers, but may be unreliable on small
bodies where rovers must contend with fast-moving shadows,
difficulties observing absolute scale, and issues acquiring images
such as dust, sun blinding, tumbling and low albedo. We in-
vestigate the feasibility of an entirely new localization approach
based on surface gravimetry, where a rover can constrain its
location on the surface by precisely measuring the local gravity
vector. This mothership-independent localization technique is
well-suited to a class of hybrid rovers that can bounce and tum-
ble over the surface of small bodies; it is insensitive to surface
illumination, and even works at night. We develop a Bayesian
framework for computing localization “likelihood maps” from
gravimetry (and gradiometry) data, accounting for all sensor
and model uncertainties. We then propose a method for deriving
landing distributions of a bouncing rover from simulation data
to serve as a prior for the localization estimate. Finally, we
conduct a case study on the Philae lander, where we show how
this approach could have helped reject localization hypotheses
and significantly narrow the areas searched for the Philae lander.
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1. INTRODUCTION
Small solar system bodies, such as asteroids, comets, and
irregular moons are important targets for planetary exploration
for several reasons. First and foremost, small bodies have un-

Figure 1. Gravimetric localization concept: a small body lander or rover
equipped with (1) a star tracker to measure it’s celestial orientation, (2) a
gravimeter to measure the local gravity vector, and (3) a model of the gravity
field can infer its location on the surface.

dergone little weathering since the early formation of the solar
system, and therefore could provide unique science data to
help understand the evolution of the Solar System and origins
of life [1]. Second, impact mitigation strategies for planetary
defense require a better understanding of the structural and
compositional properties of Near-Earth Asteroids (NEAs) [2].
Third, many small bodies contain valuable resources that could
be used in-situ (e.g., to generate propellant or as construction
materials) or even for return to Earth [3]. Finally, their low ∆V
requirements makes small bodies promising targets for future
human exploration, potentially as stepping stones to Mars and
beyond [4]. Due to this breadth of exploration interests and
their relative accessibility, it is not surprising that there have
been an increasing number of missions to small bodies from
space agencies worldwide.

Launched in 1996, NASA’s Near Earth Asteroid Rendezvous
mission (NEAR) was the first to provide a detailed charac-
terization of an asteroid (Eros) and land on its surface [5].
In 1999, NASA’s Stardust mission provided the first sample
return from a small body, as it collected dust grains from the
coma of Comet Wild 2 [6]. From 2003-2005, a wave of new
missions took flight. In 2003, JAXA launched Hayabusa—a
spacecraft that characterized the surface of Asteroid 25143
Itokawa, attempted to deploy a small lander (which failed
to reach the surface), and returned fine grains of regolith for
laboratory analysis [7]. ESA’s Rosetta spacecraft, launched in
2004, began its ten-year voyage to Comet 67P/C-G, where it
performed detailed remote characterization of the cometary
nucleus and deployed the Philae lander to the surface [8]. In
2005, NASA’s Deep Impact spacecraft was sent to investigate
the sub-surface composition of Comet Tempel 1 with a surface
impactor [9]. Ongoing missions include NASA’s Dawn
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spacecraft, studying two protoplanets in the asteroid belt:
Vesta and Ceres [10], JAXA’s Hayabusa 2 spacecraft, which is
en route to Asteroid 162173 Ryugu, will deploy four surface
landers [7], and NASA’s OSIRIS-REx mission, which is en
route to rendezvous with the carbonaceous asteroid Bennu
in 2018 and return a sample in 2023 [11]. Planned future
missions include NASA’s two 2017 Discovery selections, Lucy
[12] and Psyche [13], to explore six Jupiter Trojan asteroids
and a metallic asteroid, respectively, and JAXA’s Martian
Moons eXploration mission (MMX), which will perform
close-proximity characterization and sample return from Mars’
moons Phobos and Deimos [14].

Remote observations of small bodies from orbiting spacecraft
can help to constrain some chemical and bulk physical
properties, but measurements of composition (e.g. for origin
science), physical properties of the regolith, and interior
structure require direct contact with the surface at multiple
locations for extended periods of time [15]. Accordingly, low-
cost landers and rovers could offer new scientific perspectives
and, as such, they have been included as secondary payloads
on many missions to small bodies.

In addition to deploying a surface impactor, camera, and
five target markers, Hayabusa 2—which is scheduled to
rendezvous with Asteroid 162173 Ryugu in July 2018—will
deploy four surface landers: a 10 kg MASCOT lander devel-
oped by DLR and three 500 g MINERVA landers, developed
by JAXA. Each lander/rover is equipped with an internal
momentum device for self-righting and to perform small
hops, albeit with minimal control. Other research groups
are developing hopping platforms for more precise mobility,
including the Highland Terrain Hopper [16] and Hedgehog
rover [17].

However, a key challenge for landers and rovers on small
bodies is the reduced gravity environment, or “microgravity.”
The failed gravitational capture of the MINERVA lander
deployed from Hayabusa and the inadvertent bouncing of
the Philae lander on Comet 67P/C-G highlight the difficulties
of landing on and remaining attached to small bodies. Indeed,
even the Philae lander, which was equipped with three devices
designed to attach itself to the surface (harpoon, drills and
thrusters) and touched down at only 1 m/s, still bounced over
1 km off target, landing sideways in the shadow of a large
rock/cliff.

Whether it’s a hopping rover designed to passively bounce and
tumble over the surface, or the Philae lander’s failed anchoring
attempt, the stochasticity of surface dynamics presents many
challenges for localization and navigation. The dynamics of
Mars rovers are slow and predictable, so they can reliably
navigate using wheel- and vision-based odometry. Bouncing
and tumbling rovers, however, must content with spinning
cameras, stark differences in day-to-night surface illumination,
and a large distribution of possible settling locations. In some
cases, a mothership may be able to aid localization by imaging
the landing site (as is planned for Hayabusa 2), but in general,
a mothership may have observational constraints such as line-
of-sight occlusions from orbit or simply coverage limitations
due to the camera’s field-of-view. Philae relied on Rosetta to
image the landing sight and confirm its location, which, due
to the failed anchoring attempt, took over a year of searching.
Ideally, we would like a mothership-independent localization
strategy that is robust, while both sensing and processing is
performed on-board the rover.

In this paper, we investigate the feasibility of a novel localiza-

tion approach that leverages surface gravity signatures to infer
a lander/rover’s location (see Fig. 1). The concept, in principle,
is simple: a rover equipped with a star tracker to measure its
orientation, a gravimeter to measure the local gravity vector,
and a shape and gravity model of the body can constrain the
locations at which a measurement must have been taken. This
concept is critically enabled by (1) the small sizes and irregular
shapes of small bodies which produce highly varying surface
gravity fields, and (2) the development of small precision
microgravity gravimeters. We show that... results

2. LOCALIZATION APPROACHES
Localization approaches vary depending on how “lost” one is
and what sensors are available; they can be divided into either
local or global techniques: local techniques estimate pose
(position and orientation) relative to previous poses, while
global techniques estimate pose relative to a single privileged
frame and vary depending on the type and confidence of prior
information. In terrestrial applications, the Global Positioning
System (GPS) is an example of global localization with strong
priors (satellite locations).

Without GPS, interplanetary spacecraft typically rely on
ground-based localization techniques using two-way radio-
metric measurements and navigation camera images. On-
board vision-based localization around small bodies was
demonstrated by the AutoNav system during various phases of
the Deep Space 1, Stardust, Deep Impact and Dawn missions
[18]. AutoNav matches visual features extracted from both
camera images and synthetic images rendered from a detailed
shape model prior that was processed on the ground. Another
technique that uses strong priors is Terrain Relative Navigation
(TRN), which will be used for entry descent and landing on
the Mars 2020 mission [19]. TRN estimates global pose
by matching descent camera images to a prior map and
fusing inertial measurements to provide high-rate localization,
velocity and attitude estimates.

TRN-like techniques are not suitable for global localization
on the surface of small bodies, however, because they require
a downwards-facing view of the surface and prior maps at
resolutions that are typically not available. Surface-based
localization techniques related to AutoNav have been demon-
strated for Mars rovers, however, where camera images are
matched to images synthesized from detailed 3D elevation
maps (processed on the ground from high-resolution orbital
imagery) [20]. While this approach works for rovers with
limited mobility and relatively small prior maps, for hopping
rovers that could bounce repeatedly and come to rest anywhere
on the surface of a small body, these techniques are unlikely
to scale due to prior map size.

In many interplanetary situations, global measurements and
strong priors are not available, such that only local, relative,
localization can be performed. Visual odometry (VO) is a rel-
ative localization techniques that has also been demonstrated
on Mars [21]. In VO, visual features (2D representations
of 3D landmarks) are tracked between successive camera
images and both the rovers relative motion and the 3D position
of landmarks are robustly estimated. The relative motion
estimates from VO are typically accumulated to record a rovers
local path, however uncertainties in the rover’s pose will grow
without bound. To reduce pose uncertainties, correspondences
can be manually established between landmarks (e.g. rocks)
viewed in both on-board cameras and orbital imagery.
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While the MINERVA rover never validated its localization
approach, in [22], Yoshimitsu et al. describes how the rover
was designed to estimate its attitude after awakening using six
Sun sensors and integrated gyroscope measurements. Relative
velocities were to be estimated during hops using optical
flow from surface images. Presumably, the MINERVA rover
could have estimated both hopping direction and approximate
distance, however it is not clear how it was to localize itself
globally.

For collaborative missions to small bodies like Hayabusa/
MINERVA and Rosetta/Philae, where a mothership deploys
a secondary lander (in addition to providing prior maps) the
mothership can assist in localizing the lander on the surface
using a combination of radiometrics and camera-based surveys
(assisted by reflectors or LED strobes). Both the Hayabusa
and Rosetta motherships captured images of their landers
after deployment. In the case of Rosetta, after Philae’s failed
anchoring and subsequent bounces, these images were pivotal
in narrowing down the global search area for the lander once
combined with line-of-site radiometric measurements [8].
While camera-based surveys, and other synergistic approaches,
are valuable for surface localization, they depend on the
mothership’s availability (i.e. mission priorities) and its ability
to station keep above the surface of a rotating body.

To reduce the dependence on a primary spacecraft, future mis-
sions to the surface of small bodies may rely on vision-based
techniques, such as VO [23], for relative motion estimates and
star trackers for absolute attitude estimates. Several problems
that are unique to small bodies must be addressed, however; for
example, absolute, metric scale is relatively unobservable from
a hopping rover’s on-board sensors. In [23], So et al. show
how a stereo camera pair could help determine scale, however
with small baselines (10 cm), scale remains unobservable
for hops over 10 m in height. Another problem unique to
fast-rotating airless bodies is the large numbers of visual
feature outliers caused by incorrectly tracking high-contrast
moving shadows; these and other problems make vision-
based localization highly-prone to scale drift and accumulated
position errors. Global (re)localization to a prior map may
be required to reduce errors, or after an extended maneuver
in a low-power state. This requires the rover to capture a
downwards view of the surface with sufficient overlap to the
prior map, however it may not be practical or safe to perform
such a large ballistic hop. In the next section, we introduce a
mothership-independent localization technique that does not
require the rover to perform hops or other motions.

3. GRAVIMETRIC LOCALIZATION
“Gravimetry,” or the measurement of a gravitational field,
has a long history in terrestrial geophysics for detecting and
mapping sub-surface density distributions. With extremely
high sensitivities (roughly 1µGal or 10−9 g), gravimeters can
detect perturbations in the nominal gravity field and thus,
infer local sub-surface mass/density anomalies. Moreover,
by making a large set of distributed measurements over a par-
ticular region, gravity inversion techniques can be used to, for
example, map groundwater reservoirs, prospect for petroleum
and other minerals, or reconstruct the sub-surface geophysical
structure [24]. Extending gravity inversion techniques to
small body environments was originally proposed by [25]
and enabled by the development of a small (10×10×10 cm,
1 kg), precise (1µGal) microgravity gravimeter.

Gravimetric surveys and gravity inversion techniques require

that the sensors’ locations be known precisely. The inverse is
also true: if the gravity field is assumed to be known, then the
gravity measurements provide information about the sensor’s
possible location. However, in practice, both the gravity
model and gravimeter location may have some uncertainty.
This inherent chicken-and-egg problem of estimating both the
rover’s position and gravity model is algorithmically similar
to the “simultaneous localization and mapping” (SLAM)
problem in robotics—a classical joint-estimation problem with
a rich body of literature and practical success in many domains,
including self-driving cars, unmanned aerial vehicles, and
indeed even Mars rovers. The full gravimetric SLAM problem
will be left for future work. In this paper, we focus on the more
fundamental problem of deriving a probabilistic localization
likelihood map given some prior estimate of the gravity field
and its uncertainty.

We cast the localization problem as a simple Bayesian filter,

p(x|O) =
p(O|x)p(x)∫
p(O|x′)p(x′)dx′

= ηp(O|x)p(x), (1)

where the probability of being at state x given observations O
depends on the measurement model, p(O|x), and prior, p(x).
In general, O may include information from both onboard
sensors such as cameras and solar panels, and also from a
mothership (e.g. derived from Doppler/ranging, or surface
imaging). In Sect. 4, we focus only on the measurement
model of a gravimeter/star tracker, which may be used
exclusively, or as a supplement to other sensors. In Sect. 5,
we discuss an approach for constructing a probabilistic prior,
p(xt|xt−1, vt−1), based on Monte Carlo simulations from
some previously known position and velocity—an equally
important component for computing good localization esti-
mates. Finally in Sect. 6 we combine the measurement model
and prior in a notional case study of the Philae lander, showing
that even with modest uncertainties, a gravimeter can be used
to generate high-quality localization estimates.

4. MEASUREMENT MODEL
A gravimeter at rest on the surface of a rotating body measures
the superposition of gravity and inertial acceleration. The
relative scale of inertial acceleration at Earth’s equator is only
0.3% of gravity and is ignored in most applications. However,
the size and rotation rates of small bodies vary widely—some
even have unstable equatorial regions (e.g. KW4 Alpha). Thus,
it is critical to understand both the gravity field and rotation
state of the body. We denote the total coordinate acceleration
at point x in the body frame as

a(x) = g(x)− Nax. (2)

Figure 2 depicts the geometry of the problem, whereby a
lander (L) is at rest on body B, which is rotating with respect
to the celestial (inertial) reference frame. Right-handed bases
l̂, b̂, and ĉ are attached, respectively.

With a gravimeter alone, our measurement is simply O := {ā},
where the bar denotes measured quantities. The measurement
model is given by,

p(ā|x) =

∫
a′
p(ā|a(x)=a′) p(a(x)=a′) da′, (3)
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Figure 2. Schematic of problem geometry. A lander (L) is at rest on rotating
body (B) and is equipped with a gravimeter to measure the local acceleration,
a, and its celestial orientation (Rl

c) with a star tracker pointed along s.

where the first term in the integral represents the sensor model
and captures uncertainties in the gravimeter itself and errors
associated with orienting the measured vector in the body
frame (i.e. body pose and star tracker errors). The second term
represents the acceleration model and captures uncertainties
in both the gravity field and spin state of the body.

A. Sensor Model
The sensor uncertainty model, p(ā|a(x) =a′), captures the
probability distribution of the acceleration estimate, ā, given
the true acceleration, a′. However, because a needs to be
expressed in b̂ and the gravimeter is inherently a measurement
in the lander frame, l̂, āl must be rotated first into the celestial
frame via the star tracker (Rlc), and then into the body frame
given the body’s celestial pose, Rcb:

āb = RcbR
l
cāl, (4)

where subscripts b and l explicitly denote the frame repre-
sentation of a. In this form, āb has three potential sources
of uncertainty: (1) the error model of the gravimeter itself,
p(āl|a′l), (2) the rotation uncertainty of the star tracker, and
(3) the body pose uncertainty

Gravimeter Error Model

The Vector Gravimeter/Accelerometer (VEGA) instrument
developed by Gedex [25] is a 1U microgravity gravimeter that
consists of two gimbal-mounted accelerometers to eliminate
time-varying bias. When integrated over several minutes in
microgravity (below roughly 1mg), the RMS error is expected
to be 1-10ng2. More specifically, VEGA’s “error power
spectral density” is measured to be about 10−14g2/Hz, so for
an integration time of say, 10 minutes (1/600 Hz), Parseval’s
Theorem states that RMS =

√
10−14/600 = 4.1ng. This

is about three orders of magnitude less than the surface
gravity on small asteroids (e.g. for Itokawa, |g| ≈ 2 − 9µg)
and over five orders of magnitude on larger bodies such
as Phobos (|g| ≈ 600µg). If more precision is needed,
the sensor can simply be integrated for longer. Since the
accelerometers are spherically gimballed, VEGA’s uncertainty
can be well modeled as a Gaussian with spherical covariance,
āl ∼ N (a′l,Σāl = σ2

gI).

Star Tracker Error Model

The rotation matrix between the lander and celestial frames is
provided by the star tracker, and can be parametrized by Euler

2A flight campaign in LEO is scheduled to verify this precision.

angles, εx, εy, and εz , for rotations about the lx, ly, and lz
axes respectively,

Rlc = Rz(εz)Ry(εy)Rx(εx). (5)

The accuracy of star trackers is often an order of magnitude
better about the pointing axes (i.e. cross-boresight) than it is
about the roll axis. For example, the NST-1 nano star tracker
has a 3σ pointing accuracy of 7 arcsec but a roll accuracy
of 70 arcsec. Thus, it is convenient to define l̂ such that one
of its principle axes are aligned with the boresight axis, say
s = l̂z . The rotation covariance can then assume a diagonal
form, Σε = diag([σ2

εc , σ
2
εcσ

2
εb

]), where σ2
εb

and σ2
εc are the

boresight and cross-boresight variances, respectively.

Body Pose Error Model

The rotation between the celestial and body frames, Rcb, may
also have some uncertainty. Again, we can use Euler angles
ξx, ξy , and ξz to parametrize this rotation,

Rcb = Rz(ξz)Ry(ξy)Rx(ξx), (6)

where, by convention, b̂z is aligned with the body’s spin
axis, and b̂x is typically aligned with its minor axis. Again,
this also diagonalizes the pose covariance Matrix, Σξ =
diag([σ2

ξa
, σ2
ξa
σ2
ξt

]), where σ2
ξa

represents the variance in the
direction of the spin axis (ξx, ξy), and σξt is the variance
associated with the rotation phase about that axis (ξz). In
practice, through extensive remote observation before lander
deployment, a mothership can estimate the body’s rotation and
pose quite accurately. Moreover, a stationary lander can use
it’s star tracker to take successive images over time (perhaps
one full period) to further refine the body’s spin and pose
estimate.

Note that it is not necessary that Rcb and Rlc be computed at
the exact time of the gravimetry measurement, but only that
they be estimated simultaneously (i.e. at the timestamp of the
star tracker image).

Total Sensor Uncertainty

Given uncertainty models for the gravimeter, star tracker, and
body pose, the uncertainty of āb from Eq. (4) is given by,

Σāb = JālΣālJ
T
āl

+ JεΣεJ
T
ε + JξΣξJ

T
ξ , (7)

where Jāl = ∂f/∂āl, Jε = ∂f/∂ε, Jξ = ∂f/∂ξ, and
f = RcbR

l
cāl. Since rotation matrices Rcb and Rlc can

be decomposed into a series multiplication of single-axis
rotations (i.e. Eqs. (5) and (6)), the Jacobians can also be
constructed purely through matrix multiplication of simple
rotations. For example,

Jξ=Rlc

[
RξzRξy

∂Rξx
∂ξx

āl Rξz
∂Rξy
∂ξy

Rξx āl
∂Rξz
∂ξz

RξyRξx āl

]
,

Rξx =

[
1 0 0
0 cos ξx − sin ξx
0 sin ξx cos ξx

]
,
∂Rξx
∂ξx

=

[
0 0 0
0 − sin ξx − cos ξx
0 cos ξx − sin ξx

]
.
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B. Inertial Acceleration Model
The acceleration of a point (x) on a rotating rigid body (B) is

Nax = NαB × rx/Bcm + NωB × (NωB × rx/Bcm), (8)

where NωB is the angular velocity of B, NαB is its angular
acceleration, rx/Bcm is the vector from B’s center of mass,
Bcm, to x, and left superscript N denotes rates with respect to
the inertial reference frame3. Note that although most small
bodies are in near-constant stable spin about their major axis
and α can be neglected, this may not be the case for some
“non-principle-axis rotators” where nutation effects are non-
negligible. Thus, for generality, we will keep the angular
acceleration term.

All terms in Eq. (8) are measured, or derived from measured
quantities, and thus have uncertainty. For this analysis, we will
assume that NαB , NωB , and rx/Bcm can be well approximated
by Gaussian random variables with means µα, µω, µr and co-
variances Σα,Σω,Σr, respectively. Furthermore, the position
vector is relative, i.e. rx/Bcm = rx/P − rP/Bcm , where P is
an arbitrary fixed point on B. Thus, position uncertainty is
a convolution of uncertainty in x (e.g. from errors in the
mesh model) and the center of mass: Σr = Σx + ΣBcm
(convolution of Gaussians is additive). In practice, Σα is
typically very small, ΣBcm is large only along the ω axis, and
Σω is extremely small along the ω axis (i.e. precise period
estimate) and generally less than 1o orthogonal to ω. The size
of Σx largely depends on the resolution and accuracy of the
surface mesh and is discussed further in the next section.

If we define the cross product in matrix form,

a× b =

[
0 −az ay
az 0 −ax
−ay ax 0

][
bx
by
bz

]
= Mab,

where NαB , NωB , and rx/Bcm have similar forms, Mα, Mω,
and Mr, respectively, it can be shown that the acceleration
uncertainty from Eq. (8) is,

ΣNax=MrΣαM
T
r +MαΣrM

T
α +M2

ωΣrM
2
ω

T
(9)

+(MrMω − 2MωMr)Σω(MrMω − 2MωMr)
T.

Thus, assuming Gaussian uncertainty models for NαB , NωB ,
and rx/Bcm , the inertial acceleration is also Gaussian with
mean given by Eq. (8) and covariance given by Eq. (9).

C. Gravity Model
Finally, and perhaps most importantly, the quality of gravimet-
ric localization estimates critically depend on the accuracy of
the gravity model: p(g(x) = g′). Gravity modeling has a long
history in astrodynamics and methods range in complexity
and accuracy depending on the application. Fundamentally,
the gravitational field of an arbitrary body is a sum of the
gravitational contributions of each “mass element” of that
body, and is typically defined by its potential field, U(r) =
G
∫
M

1
|r−r′|dm

′, where r is the position vector of the field
point. While this expression converges to a spherical model—
U(r) = GM/|r − rcm|—for any body shape as the distance
to the body increases, close proximity operations require more
accurate models—especially for small bodies that are highly

3If B is a secondary body (i.e. NaBcm 6= 0 ), an additional term is required.

non-spherical.

There are two general approaches for estimating the gravity
field of a body: direct methods, which model the gravity field
directly from measurements, neglecting the physical mass
distribution of the body, and indirect methods, which first
estimate the body’s mass distribution (or more commonly,
shape and density distribution), and then compute the gravity
field from this physical estimate. Spherical harmonic expan-
sions are by far the most common (direct) method used for
almost all satellite navigation, which are defined by a series of
harmonic coefficients. As the number of coefficients increase
(i.e. their “degree” and “order”), this model converges to the
true gravity field of any body with arbitrary mass distribution.
However, it is only valid outside the “Brillouin sphere” (i.e.
the circumscribing sphere) of the body, rendering it useless
for computing the gravity at a point on the surface. Other
harmonic forms exist that are valid on the body’s surface
such as interior spherical harmonics [26] and the interior
spherical Bessel gravity field [27], which have limited regions
of convergence or are prone to large acceleration errors.

Alternatively, indirect methods for gravity field estimation
attempt to construct an internal density model of the body
from orbit determination (OD) data. On the one hand, this
approach leverages a shape model of the body’s surface which
contains much more information than harmonic coefficients
alone, but on the other hand, the internal density distribution
is inherently infinite dimensional and unobservable. In other
words, any number of gravity measurements cannot uniquely
determine the density distribution. A common approach is to
start with a constant density polyhedron gravity model [28]
as a first-order estimate and then augment this model with a
best-fit solution of some parametric hypothesis class of density
distributions [29–31]. Figure 3 shows three example density
parametrizations of Comet 67P/C-G.

Figure 3. Examples of three hypotheses for the internal density morphology
of a small body. (A) Planar partitioning into constant density sections is a
common hypothesis for bodies with a suspected aggregate structure such as
“contact binary” asteroids. (B) A layered structure may be assumed for bodies
with a dense core or a porous surface layer. (C) A voxel decomposition offers
a rich representation for arbitrary density distributions but may be severely
underdetermined [31].

Density maps can either be defined based on geophysical
intuition (e.g. Figs. 3A and B), or in a more general, albeit
higher dimensional decomposition (Fig. 3C). For a given map,
the density values of each sub-volume are determined in a
least-squares sense by matching their cumulative harmonic
coefficients with those measured through OD. Additionally,
measuring the rotation state of the body can help to impose
constraints on the density values through the inferred inertia
tensor and center of mass. However, depending on the
spacecraft trajectory and the quality of the OD solution,
measured harmonic coefficients may only contain enough
information to uniquely define a very low dimensional density
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parametrization (e.g. Figs. 3A and B).

The problem with density models that are constrained to some
geophysical structure is that it becomes very difficult, if not
impossible to assess their accuracy—a critically important
capability for reliable localization. Some error metrics have
been proposed for quantifying the “goodness of fit” for such
low-dimensional density models such as the “error variance,”
which represents the percent error of the spherical harmonic
coefficients produced by the model vs. the OD solution, and
the “RMS density error,” which simply assesses the precision
of a given density estimate with respect to higher resolution
density estimates [31]. However, neither of these metrics are
able to assess the accuracy of gravity on the surface.

On the other hand, the accuracy of generalized models such as
the block decomposition in Fig. 3C is determined by the size
of the tessellation and their joint covariance [31]. Takahashi
et. al. analyzed the accuracy of a block-decomposed density
distribution of the bi-lobed asteroid Castalia. From 90 internal
blocks (fit to degree-and-order 20 harmonic coefficients), the
surface gravity errors were less than 1% across most of the
surface, with some regions near the ”neck” of the body as high
as 3% [31]. Generally, points on the surface further within the
Brillouin sphere are prone to larger gravity errors.

Density modeling is a helpful intermediary for estimating
surface gravity, but ultimately the accuracy is largely driven by
the quality of the trajectory data. In general, more information
is contained in measurements closer to the surface; distant
orbits can resolve only low order harmonics, low-altitude
flybys—especially within the Brillouin sphere—can constrain
higher order coefficients, and low-altitude hovers or touch-
and-go (TAG) maneuvers are even better. But a hopping rover
equipped with a gravimeter introduces yet another extremely
valuable source of information. In addition to the OD of
its suborbital hopping trajectories, localized point gravity
vector measurements at various locations on the surface could
potentially be used to construct much higher resolution internal
density maps. The formalization of this type of estimation is
left for future work, but for lander/rover missions of interest in
this paper, it is not unreasonable to assume an accurate surface
gravity model on the order of 1%. For the case study in Sect. 6,
we assume a spherical covariance, Σg(x) = σ2(x)I, σ(x) =
σmax − |x|/RB(σmax − σmin), where RB is the radius of the
Brillouin sphere.

Shape Uncertainty— In addition to gravity uncertainty as-
sociated with the inaccuracies of density maps, errors in
the shape model of the body may also contribute to gravity
errors. We will consider two possible sources of errors: (1)
Gaussian uncertainty in the positions of the vertices in the
triangular mesh model, and (2) unmodeled features on the
surface that are smaller than the resolution of the mesh. Shape
reconstruction methods such as stereophotoclinometry and
stereophotogrammetry, which define vertices of the triangular
mesh from image data, can also compute error covariances
for each vertex. This was done for the 3-million facet model
(shap5 [32]) of Comet 67P/C-G in [32], where vertex errors
were found to be generally less than one or two meters on
the well-observed northern hemisphere of the body with some
patches of vertices as high as 5-10 meters in the southern
hemisphere. The position covariance (Σx) of a point on the
surface (i.e. on a facet) can either be interpolated exactly
from the covariances of the three neighboring vertices or
conservatively approximated as the largest of it’s neighbors’
covariances. Finally, the gravitational uncertainty associated

with the positional uncertainty can be computed as

Σgx(x) = G(x)Σx(x)G(x)T, (10)

where the gravity gradient matrix, G(x) = ∇∇U(x), can be
computed from the augmented polyhedral gravity model as in
[28].

Another important consideration for characterizing gravity
uncertainty on the surface are the unmodeled surface irregu-
larities, which would generally be less than the length scale of
one facet. Due to the 1/r2 nature of gravity dissipation, small
mass fluctuations that are very close to a rover may also yield
an appreciable gravity perturbation. As a rough approximation,
we derive the gravity perturbation distribution produced by a
field of randomly distributed rocks on a flat plane (see Fig. 4).

Figure 4. A statistical rock distribution is defined in the vicinity of the rover
in order to estimate gravity perturbations associated with unmodeled surface
features.

N spherical rocks with constant density ρ and radius distribu-
tion fR = α(RminRmax)

α

Rα+1(Rαmax−Rαmin)
(ranging from Rmin to Rmax) are

distributed randomly over the surface disk of radius D around
the rover, where α > 0 is the power law index, which has been
determined empirically for small bodies to range from 2 to 4
[33]. The gravity contribution of a single rock is distributed as
f|gk| = β

|gk|2 , for 4πGρR3
min

3D2 < |gk| < 4
3πGρRmax, where β is

a normalizing constant. For a rock number density defined as
γ = N

πD2 (e.g. the number of rocks between Rmin and Rmax
per square meter) and in the limit as D →∞, the central limit
theorem4 can be used to determine the distribution of the net
gravity perturbation (in the plane) as a Gaussian with zero
mean and covariance,

Σ∆g = σ2
∆gI2, σ2

∆g = πγ

(
4

3
Gπρ

)2

R3
minRmax. (11)

The magnitude of this perturbation depends on the resolution
of the shape model (which influences the maximum rock size,
Rmax, not captured in the mesh), the rock density ρ, and the
number density, γ. For example, the 3-million facet model
of Comet 67P/C-G (shap5 [32]) has a mean facet area of
about 15 m2, so if we assume Rmax = 3 m, Rmin = 0.1 m,
γ = 1 rock/m2, and ρ = 1000 kg/m3 (roughly twice the mean
density of the comet), the gravity perturbation is σ∆g ≈ 3e-
8 m/s2 or roughly 4 orders of magnitude lower than the mean
surface gravity of 67P. Thus, in general, gravity perturbations
from local surface irregularities are far less than errors induced
by the gravity model.

4The use of the CLT assumes that gk are independent, which is not strictly true
(since, e.g. rocks cannot intersect). However, it is a reasonable assumption
for sparse rock fields.
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D. Total Measurement Uncertainty
In summary, the measurement model (3) is composed of the
sensor model, which has a Gaussian structure with mean (4)
and covariance (7), and the acceleration model (2), which is
the linear combination of inertial acceleration (Gaussian with
mean (8) and covariance (9)) and gravity. The gravity model
has a mean, µG = g(x), given by the gravity model of choice,
and its associated covariance, ΣG, can be augmented with
shape and terrain uncertainty given by (10) and (11). Since the
sensor model is an unbiased estimator of the the local acceler-
ation (i.e. µā|a=a′ = a′), the total measurement uncertainty
is simply a convolution of the sensor and acceleration models:
ā(x) ∼ N (µa(x),Σāb(x) + Σa(x)).

5. PROBABILISTIC DYNAMICS MODEL
In order to constrain the probable landing sites of a lander
or rover, equation (1) suggests that the measurement model
is only half of the answer. Equally important is a prior—
that is, a belief distribution over the surface derived from
prior information. In many robot localization problems, it is
common to estimate the robot’s current state from an estimate
of a previous state and a model of its dynamics—the most
famous of which being the Kalman filter and variants thereof.
However, the dynamics of an non-spherical rover bouncing on
an irregular surface with largely unknown physical properties
is extremely difficult (if not impossible) to model explicitly.
While the dynamics of a single unperturbed ballistic trajectory
are smooth and rather predictable, the surface impact dynamics
are not, and moreover, when this uncertainty is compounded
across a series of unpredictable bounces (each one highly
dependent on the last), the dynamics become chaotic.

A. Uncertainty Modeling
Uncertainty in hopping dynamics can be broadly divided into
three categories: (1) uncertainty in the initial state (i.e. position
and velocity), (2) uncertainly in the forces acting on the rover
in flight (e.g. gravity, solar radiation pressure, etc.), and (3)
uncertainty in the contact forces. Ignoring bouncing dynamics,
[34] proposed an analytical method for estimating the impact
distribution of a single trajectory by propagating Gaussian
uncertainty in the initial state and gravity model and projecting
it onto a surface mesh. However, uncertainties associated
with contact dynamics are particularly challenging to model
because they compound uncertainties in the contact pose of
the lander, the mechanical properties of the surface, and the
shape of the surface itself. Through high-fidelity rigid body
simulations, Van Wal, et. al. have studied how lander “settling
dispersion” is affected by parameters such the lander shape
[35] and surface properties [36]. Alternatively, some efforts
have been made to model the contact physics on an even
more detailed level through discrete element simulations of
impacting regolith [37], and on the other extreme, some studies
simply model the lander as a bouncing particle [34].

For the purposes of characterizing lander settling distributions,
the ultimate goal of contact modeling is to accurately estimate
the rebound distribution,

vt+ ∼ Pζ(vt− ,θt, ζ(xt)), (12)

where the rebound velocity, vt+ (optionally including rota-
tion), depends on the impact velocity, vt− , the impact pose,
θt, and a parametric description of the surface at the impact
location, ζ(xt) (e.g. surface friction, rock density, regolith
depth, etc.). By viewing rebounds in this statistical way,

multi-impact hopping simulations can be run much faster,
by obviating the need to numerically integrate the contact
dynamics at each impact. Of course, Pζ may be highly
complex and require thousands of high-fidelity simulations to
estimate accurately, but for applications where many repeated
landing distributions need to be computed, such as motion
planning, it is far more efficient to invest the upfront effort to
characterize Pζ . Note, however, that a statistical rebound
model does not capture the last phases of motion where
persistent contact such as rolling or sliding may occur, but
for non-spherical lander shapes (e.g. Philae and MASCOT),
the scale of this motion is expected to be negligible compared
to the distances traveled during ballistic flight.

In any parametric contact model such as Eq. (12), it is
crucial that the parameters, ζ, be chosen carefully, as they
can heavily influence the resulting landing distribution. For
example, if the surface damping properties are lower than
assumed, the actual landing distribution would likely be larger
than predicted. However it is often difficult to estimate this
parametric uncertainty when very little data is available, so it
is better to err on the “conservative” side by biasing parameter
values in a way that yields more dispersion and uniformity (e.g.
higher friction and restitution). In other words, any landing
distribution derived from simulations is inevitably wrong, but
it is preferable to assume a model with larger variance than
one with large bias. A more rigorous discussion of parametric
uncertainty models is left for future work.

B. Monte Carlo Simulations of the Philae Lander
As a notional case study, we simulate the deployment of Philae
from Rosetta in order to formulate a prior for localization
estimates5. In this case, we assume that the only information
available is the deployment state and uncertainty distribution,
a shape model of the body, an estimate of the gravity field,
the shape, mass, and mechanical properties of the lander, and
optionally, information recorded by the lander during landing
(e.g., the energy dissipation of the first impact measured in the
landing legs, the timing of each collision, and the impulse of
first touchdown as integrated from IMU data).

Based on the “500m landing ellipse” about the target landing
site (assumed to be 2σ), an appropriate Gaussian distribution
with spherical covariance (λI) is assumed on the deployment
velocity (given by the Philae team in [38]). A reduced-order,
constant-density polyhedral gravity model (10,000 facet) is
assumed and the lander, modeled as a particle, experiences
instantaneous impacts with a 3-million facet shape model of
the comet (shap5 [32]). Particle rebound distributions are
modeled as highly stochastic: the first impact, which occurred
in an upright orientation with some energy dissipation in the
landing legs, was modeled as having a mean restitution of
0.4 with standard deviation of 0.1 (actual value was 0.32),
and uniform angular dispersion. Subsequent collisions were
assigned a mean restitution of 0.7 with a standard deviation of
0.15, and an angular dispersion of 15o (1σ about the nominal
reflected velocity), which is in addition to a 1σ variability of
10o on the surface normal vector to account for unmodeled
rocks and surface irregularities. Finally, the simulation is
stopped probabilistically when the impact speed drops below
10 cm/s.

Figure 5 shows an example of 10,000 Monte Carlo simulations.
Interestingly, even with the reduced restitution of the first
impact, the surface dispersion is quite large. Some particles

5Note that this is a notional simulation study predicated on partial, publicly
available data and not meant to represent Philae’s actual landing distribution.
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Figure 5. Monte Carlo simulations of the Philae lander deployed on to
the surface of Comet 67P/C-G, where yellow dots mark the point of first
touchdown and cyan dots, the final resting location. The blue line represents
Philae’s actual trajectory (reconstructed by [38]) and the white circle outlines
the 500 m touchdown uncertainty (assumed 2σ).

landed in the neck region of the comet, some on the complete
opposite side, and 5-10% of simulations even enter orbit or
escape the body entirely. This is due to the fact that the
impact location has a high relative geopotential, and the lander
impacted at 101 cm/s, which is above the nominal local escape
velocity of 83 cm/s (which actually varies from 50 cm/s to
115 cm/s depending on the rebound direction).

C. Estimating Landing Distributions
While scatter plots such as Fig. 5 provide a visual description
of the landing distribution, we need a functional form of
the probability density that can be evaluated at any arbitrary
point on the surface and thus, provide a quantitative prior for
localization estimates.

Density estimation techniques fall into two categories: para-
metric and non-parametric methods. Parametric methods
assume some underlying structural form of the density, such as
a mixture of Gaussians, and they are described by a parameter
vector, θ ∈ Rk, which is often fit to data using maximum
likelihood techniques. On the other hand, non-parametric
methods make no structural assumptions on the underlying
density, but rather define it implicitly through the data itself
(e.g. through a sum of kernels). Parametric models are
often much cheaper to evaluate but rely on some intuition
or knowledge about the underlying structure, such as the
number of Gaussian components. Landing distributions are
often highly irregular and thus better suited for non-parametric
density estimation.

As an visual example, a multivariate kernel density model was
used to evaluate the pdf at the center of each facet in the surface
mesh based solely on the (x, y, z) settling position6 of 100,000
simulated landers (see Fig. 6). A standard multivariate normal
kernel was used with a uniform, spherical bandwidth matrix
(i.e. H = s2I) and a pseudo-optimal bandwidth selection

6Two-dimensional surface parameterizations are also possible, but they are
prone to singularities and require complex map projections for irregular
manifolds such as the surface of Comet 67P/C-G.

Figure 6. Multivariate kernel density estimate of the landing distribution of
Philae projected onto the 3-million facet surface model of Comet 67P/C-G.
Spherical Gaussian kernels are used with pseudo-optimal bandwidth of 60 m.

of s = 60 m (based on Silverman’s rule of thumb and cross
validation). Overall, the model is an excellent fit, but adaptive
kernel sizing would help in regions with sparse data. Not
surprisingly, the settling distribution in Fig. 6 indicates higher
probabilities in the vicinity of the touchdown site and within
local gravity wells. Interestingly however, it also suggests
that Philae’s actual settling location was rather unlikely. It
may be tempting to blame this on a bad model, but we arrive
at the same conclusion for a wide variety of contact model
parametrizations.

Model accuracies notwithstanding, the distribution in Fig. 6
is solely derived from the final location of the simulated
data, ignoring any intermediate information. For example, an
onboard IMU should easily be able to provide fairly accurate
timing and possibly acceleration data for each collision.
Therefore, by also labeling simulated trajectories with this
information, we can derive a conditional density estimate. For
kernel-based densities, this can be achieved either through
importance weighting or by using higher dimensional kernels.
Figure 7 shows two example conditional distributions for
the Philae landing: one conditioned on the timestamps of
the second and final impacts and one conditioned on the
impulse vector of the first impact. Reasonable bandwidth
values for time and impulse were chosen based on the size of
the simulated dataset and expected measurement uncertainties
(30 minutes and 5 cm/s, respectively).

The time-conditioned distribution (Fig. 7B) effectively con-
strains the distance of likely settling locations from the
touchdown point. In this instance, Philae traveled quite far—
about 1.3 km in 2 hours—so while more distant locations
such as the neck region of the comet are far less likely
when conditioned on time, the distribution largely remained
unchanged. On the other hand, conditioning on the impulse of
the first touchdown (Fig. 7C) imposes a much tighter constraint
on the landing site, as the first rebound has the largest effect
on the general direction of motion.

8



Figure 7. Conditional density estimates of the Philae landing site projected onto the 3-million facet surface model of Comet 67P/C-G. (A) The original
distribution from Fig. 6 without conditioning. (B) Settling distribution conditioned on the timestamps of Philae’s second and final impacts. (C) Settling
distribution conditioned on the surface impulse of Philae’s first touchdown.

6. CASE STUDY: THE PHILAE LANDER
To evaluate the potential efficacy of gravimetric localization,
we study the case of the Philae lander, which, as discussed
in Sect. 1, experienced a landing mishap, whereby the lander
bounced over 1 km off target and was unequipped to localize
itself on the surface. The question we will address here is, had
Philae been equipped with a gravimeter (e.g. VEGA [25]),
would it have been able to localize itself without any support
from Rosetta or mission control? Of course, a gravimeter alone
will never provide the localization precision of an ”eye-in-the-
sky” mothership (or potentially an on-board vision system),
but given the information we know about the comet, sensors,
and lander dynamics, to what degree could a gravimeter have
constrained its location?

There are two critical elements to evaluating the localization
performance: (1) what is the expected sum total of all
acceleration covariances in the measurement model, and (2)
how much does the nominal gravity signal vary spatially
across the surface. For (1), we attempt to estimate the 1σ
acceleration errors associated with each parameter. Table 1
summaries the assumed raw error values and their computed
effect on the acceleration covariance, Σā. These values are

Table 1. Estimated error values (1σ) for all parameters in the measurement
model and their calculated effect on the acceleration covariance, Σā.

estimated for Comet 67P/C-G, the NST-1 nano star tracker,

the VEGA gravimeter, and where applicable, using the actual
position of the Philae lander [25,38]. Note however, that while
these values are best estimates of true errors, they should be
regarded as reference values rather than absolute truth. In other
words, another scenario with different error values would yield
different acceleration uncertainty accordingly.

The right column of Table. 1 (shaded by value) indicates what
are the largest contributors to the acceleration uncertainty, and
by far, the leading contributor is uncertainty in the gravity
model7. Errors from the sensors and the body are relatively
low, and since the total acceleration error is the sum of the
squares of these values (i.e. summed covariances), they are
negligible compared to the gravity model.

With an understanding of the uncertainty in the measurement
model, the next question is, what is the size of the correspond-
ing uncertainty region on the body? Without considering any
dynamics prior, Fig. 8 illustrates gravity uncertainty countours
as a percentage of the nominal model at a reference point
x∗ near the Philae landing site. Encouragingly, error regions
within 10% are quite localized about the reference point, with a
5% error radius of only 15 m, or roughly 0.001% of the comet’s
surface area. This suggests that gravity error models within
a few percent may be sufficient for high quality localization
estimates.

Finally, we use the measurement model derived in Sect. 4
with values from Table 1 and the fitted prior distribution
derived in Sect. 5 (without conditioning) to compute the total
localization likelihood map (Eq. (1)) of the Philae lander.
Figure 9 shows the computed posterior distribution projected
onto the surface as a colormap. The associated 2σ gravimetry
ellipse is shown along with the search ellipse derived from
radar signals received from Phillae’s CONSERT instrument
[38]. Also shown (in green) is the preliminary search region,
where follow-up images were taken by Rosetta. Interestingly,
not only does the gravimetry ellipse contain Phillae’s actual
landing site, but it also imposes a much tighter constraint on
the search space than the CONSERT ellipse alone, suggesting
that an onboard gravimeter may have aided in the quest to
image the Phillae lander.

7While the 2% gravity error is not based explicitly on any specific gravity
model, it is an estimate based on the modeling results in [31], which is likely
conservative since Philae’s landing site is quite close to the Brillouin sphere.
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Figure 8. Spatial gravity fluctuations about a reference value of gx∗ at x∗

are shown as a colormap with contours corresponding to 2%, 5%, 10%, and
20% deviations.

Figure 9. The posterior likelihood map of the Phillae lander’s final resting
location using only a gravimeter and star tracker, which is derived from error
models summarized in Table 1. The uncertainty ellipse from the CONSERT
instrument (white) and the preliminary search region (green) are also shown
[38].

7. CONCLUSIONS
In this paper, we presented a novel localization architecture
for landers and rovers on small bodies based on the use of
an on-board gravimeter and star tracker. We cast the “single-
shot” localization as a Bayesian estimation problem (1), where
the measurement model (3) accounts for uncertainties in the
sensors (7), body parameters (9), and gravity model (10), (11).
We then proposed a kernel-based density estimation method
for fitting a prior distribution to simulation data. Finally the
Bayesian estimation framework was applied to the case of the
Philae lander, suggesting that a gravimeter can produce quite
localized likelihood estimates even for gravity models with
moderate uncertainty.

This work leaves numerous open questions for future work.
First and foremost, a formal framework is required for refining
gravity and internal density models given a set of localized
surface gravity measurements (e.g. leveraging gravity inver-
sion methods from terrestrial geophysics for small bodies).
Also, the use of a gravity gradiometer—an instrument that can
measure components of the local gravity gradient tensor—may
enhance localization capabilities and should be investigated

further. There are also other implicit pieces of information
given by the gravimeter and star tracker that may help refine
localization estimates, such as information about the local
surface slope, or the expected star field visibility given the
body pose and shape model. Another interesting piece of
information that may be provided by the gravimeter is the
time-varying component of the local acceleration, which may
be useful on bodies with complex rotation.

The case study of the Philae lander discussed here is just a
preliminary feasibility study for gravimetric localization. It
should also be studied in the context of hopping rovers and
on bodies of varying size and rotation. Finally, it is unlikely
that a gravimeter would ever be the sole instrument used for
localization, so it is also important to study the interaction and
potential synergies between this method and more traditional
vision-based approaches.
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