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Abstract Hopping rovers have emerged as a promising platform for the future
surface exploration of small Solar System bodies, such as asteroids and comets.
However, hopping dynamics are governed by nonlinear gravity fields and stochas-
tic bouncing on highly irregular surfaces, which pose several challenges for tra-
ditional motion planning methods. This paper presents the first ever discussion of
motion planning for hopping rovers that explicitly accounts for various sources of
uncertainty. We first address the problem of planning a single hopping trajectory
by developing (1) an algorithm for robustly solving Lambert’s orbital boundary
value problems in irregular gravity fields, and (2) a method for computing land-
ing distributions by propagating control and model uncertainties—from which, a
time/energy-optimal hop can be selected using a (myopic) policy gradient. We then
cast the sequential planning problem as a Markov decision process and apply a
sample-efficient, off-line, off-policy reinforcement learning algorithm—namely, a
variant of least squares policy iteration (LSPI)—to derive approximately optimal
control policies that are safe, efficient, and amenable to real-time implementation
on computationally-constrained rover hardware. These policies are demonstrated in
simulation to be robust to modelling errors and outperform previous heuristics.

1 Introduction
Small Solar System bodies, such as asteroids, comets, and irregular moons, have
become a key target for exploration due to their scientific interest, potential for re-
source extraction, and for studying impact mitigation strategies. While some in-
formation about their chemical and structural properties can be obtained remotely,
measurements that constrain composition and physical properties require direct con-
tact with the surface at multiple locations and over extended periods of time [1].
Accordingly, NASA and space agencies worldwide have recognized the need for
rovers capable of controlled surface mobility [2, 3, 4].
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However, the surface environment of small bodies presents many unique chal-
lenges for mobility, including their highly irregular shape and extremely reduced
gravity (10–1000 µg), which prohibit conventional wheeled rovers that rely on sur-
face traction. Instead, hopping systems are more naturally suited for such environ-
ments, as they can traverse large distances over arbitrarily rough terrain with little
energy. In fact, four small hoppers are currently en route to asteroid Ryugu aboard
JAXA’s Hayabusa 2 spacecraft—a MASCOT lander developed by DLR [3] and
three MINERVA landers [4], which are equipped with internal momentum devices
to provide a “kick” for hopping, albeit with minimal control.

To extend the idea of hopping to an architecture capable of targeted science,
NASA has invested in various new technologies to enable controlled mobility in
microgravity. As part of the Evolvable Mars Campaign, Howe and Gernhardt et.
al investigated a pressurized, six-legged hopping excursion vehicle for human ex-
ploration of Mars’ moon, Phobos [5] (see Fig. 1, right). The authors have been
developing a small, internally-actuated hopping rover called “Hedgehog,” which
can perform various motion primitives by applying torques to three orthogonal fly-
wheels, including long-range hops as well as short, precise tumbling (see Fig. 1,
left). The dynamics and control of these motion primitives has been studied in de-
tail, from analytical models to high fidelity simulations [6, 7, 8]. Experiments in
various test beds have also validated these control laws, including a custom-built 6
DoF gravity-offloading test bed [8] and a parabolic flight campaign [9].

Fig. 1: Rovers designed for precise mobility on small bodies. Left: Hedgehog: a small (15-
25 cm), internally-actuated rover that uses three internal flywheels to hop and tumble in micro-
gravity. Right: ATHLETE hopper: a pressurized excursion vehicle that uses six spring-loaded
legs to hop and transport humans on the surface of Phobos.

In addition to controllability, hopping rovers operating on distant bodies require
a high degree of autonomy, as communication suffers from long light-speed de-
lays and relies on a mothership relay, which may be infrequent. On Mars, wheeled
rovers are equipped with visual perception, terrain classification, and path planning
algorithms for autonomous mobility [10]. However, in contrast to wheeled rovers,
which operate through continuous interaction with the environment, hoppers can
only apply forces from rest on the surface and have no control of their trajectory
mid-flight. Thus, autonomy for hopping systems requires a more discrete and se-
quential structure, which can be decomposed into four phases: (1) localization, (2)
trajectory planning, (3) hop execution, and (4) ballistic dynamics (see Fig. 2).
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Fig. 2: The high-level autonomy architecture for hopping rovers consists of four phases: (1) local-
ization, (2) trajectory planning, (3) hop execution, and (4) uncontrolled, ballistic dynamics.

Localization on the surface of small bodies is an open area of research, which has
been addressed from two perspectives: (1) assuming an “eye-in-the-sky” mother-
ship [11], and (2) mothership-independent, on-board perception, primarily through
visual odometry [12]. While each method has its strengths and weaknesses, any
approach is likely to produce pose estimates with some level of uncertainty.

Hop execution addresses the problem of pushing off from the surface to achieve
some desired velocity vector (v∗) and, as discussed for Hedgehog in [8], is highly
dependent on the rover architecture (e.g. actuation mechanisms, surface interaction,
etc.). Generally, for a given hopper, v∗ can only be executed approximately—due
to environmental uncertainty and control errors—and must obey certain constraints,
such as speed and direction limitations.

Dynamics about small bodies has a rich body of literature for orbiting spacecraft
[13], and to a lesser extent for surface interaction [14, 15]. The key challenges lie
in accurate modeling of the gravity field about irregularly shaped bodies and the
physical interactions with the surface. However, even the highest fidelity gravity
and contact models rely on information that may not be available a priori via remote
observations, such as internal mass distribution and surface structure.

The focus of this paper is on phase II, planning, which is by far the least ad-
dressed element in the autonomy stack. Planning seeks to answer the question:

“What is the next best hop to perform, given a set of mission objectives, an estimate of the
rover’s location, an understanding of its capabilities, and a model of the world?”

In other words, planning represents the rover’s decision-making module and is
tightly intertwined with all other elements in the mobility pipeline. Previous studies
of planning for hopping rovers have assumed highly simplified and deterministic
models of the dynamics, localization, and the hopper itself. Bellerose, et. al derive
analytical control laws for a spherical hopper on a smooth, spherical asteroid with a
coulomb friction contact model, and exact localization [16]. This work is extended
to the case of smooth, ellipsoidal asteroids in [17], which also derives approximate
speed constraints to prevent escape trajectories. However, these results are founded
on oversimplifications of the body shape, gravity, and contact models, as evidenced
by remote observations of highly uneven and rocky surfaces (see Fig. 3), and the
chaotic bouncing pattern of the Philae lander on comet 67P [18].

Statement of Contributions: In contrast to the approaches of [16] and [17], the
goal of this paper is not to derive closed-form analytical expressions for optimal
control laws, which requires a number of unrealistic simplifications. Instead, we
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Fig. 3: High-resolution images and shape models of two small bodies. Left: Asteroid 25143
Itokawa (535 m, 6−9 µg), Right: Comet 67P Churyumov-Gerasimenko (4.3 km, 140−300 µg).

propose a planning architecture that directly accounts for various sources of uncer-
tainty, and thus, produces control policies that are more robust to modeling, control,
and localization errors. The key idea is to shift from a “first-principles” approach,
to a data-driven approach, whereby high-fidelity dynamics models can be used to
simulate instances of hopping trajectories from various uncertainty distributions.

Specifically, the contributions of this paper are twofold: First, we solve the prob-
lem of planning a single hop under uncertainty and assuming minimal bouncing
(Sect. 3). We develop a robust and efficient algorithm for solving “Lambert’s orbital
boundary value problem”—the problem of finding an initial velocity to intercept a
target—in highly irregular gravity fields (Sect. 3.1). We then forward propagate con-
trol and gravity uncertainty (modeled as Gaussian mixtures) through the dynamics
to compute trajectory funnels and landing distributions for a given nominal trajec-
tory (Sect. 3.2). Then, we compute myopic policy gradients based on these landing
distributions to derive time/energy-optimal single-hop control policies (Sect. 3.3).
Second, in Sect. 4 we extend the planning problem to the case where multiple hops
are required and structure the problem as an MDP. We apply a variant of Least
Squares Policy Iteration (LSPI) to derive approximately optimal control policies that
are safe, efficient, and amenable to real-time implementation on computationally-
constrained rover hardware. The performance of these policies is evaluated on a
high fidelity dynamics simulator and compared to that of a greedy heuristic pol-
icy. Collectively, the methods presented in this paper constitute the first ever study
of uncertainty-aware motion planning for hopping rovers—a crucial component of
autonomy for future exploration missions to small Solar System bodies.

2 Preliminaries
In this section, we present the dynamics models used to simulate the trajectories of
a hopping rover. Section 2.1 details the forces acting on the rover during ballistic
flight, and Sect. 2.2 discusses the model used for the contact dynamics of bouncing
on the surface.

2.1 Ballistic Dynamics
A rover, R, at position r and velocity v relative to the asteroid body, B, hops from rest
at rt0 with velocity vt0 and impacts at rt f with velocity vt f . The body is represented
as a closed polygonal mesh with k triangular facets, where facet Fi has outward
normal Ni. The asteroid rotates at a constant angular velocity ωB = Ω b̂z.



Motion Planning for Hopping Rovers 5

Definition
B small body
R hopping rover

Bcm body’s center of mass
n̂ inertial frame
b̂ frame fixed to B at Bcm
r rover position from Bcm
v rover velocity relative to b̂
Ω ang. velocity of B about b̂z
Fi ith triangular surface facet
N̂i outward normal of facet Fi

Fig. 4: Dynamic model of rover R hopping on body B, which is rotating at ωB = Ω b̂z and is
represented by a closed surface mesh consisting of k triangular facets, Fi.

The external forces (Fe) acting on a hopping rover include gravitational forces
(of the primary and possibly tertiary bodies), solar radiation pressure (SRP), elec-
trostatic forces, and contact forces. It will also be convenient to represent the rover’s
dynamics in the rotating body frame, thus introducing effective centrifugal and Cori-
olis forces. The total effective force is expressed as,

F = Fe−mωB× (ωB× r)−2mωB×v. (1)

In general, Fe (expressed in b̂) is a function of not only position and velocity, but
also time. In this paper, we focus on the stationary case to derive time-invariant
control policies, which excludes forces that are periodic when expressed in the ro-
tating body frame such as SRP and third body perturbations. This assumption is
not overly restrictive since SRP is typically three to six orders of magnitude weaker
than gravity in close proximity to small bodies, and most small bodies of interest
for exploration are either gravitationally isolated (e.g., Itokawa, Bennu, and Psyche)
or tidally locked secondaries (e.g., Phobos and Deimos). However, if periodic force
models are important, the methods in this paper can be generalized by augmenting
the rover’s “state” with a temporal state (e.g., body phase). Nutation of the body’s
spin axis can also be accounted for in this way, although most asteroids are believed
to be in stable spin about their major axis [19].

Gravity on small bodies may be orders of magnitude weaker than on Earth, but it
still represents the dominant force on rovers, so accurate modeling is essential. With
only shape information, the most accurate gravity model is a polyhedral model [20],
which leverages the divergence theorem to exactly model the gravitational potential
(U), attraction (g = ∇U), gradient (∇∇U), and Laplacian (∇2U) of a constant den-
sity polyhedron as a summation over all facets and edges of the surface mesh. This
representation, while highly computational, is especially critical in close proximity
to irregular bodies (see, e.g., Fig 3), where conventional models such as harmonic
expansions and mascons yield large errors [20]. We alleviate the computational bur-
den of evaluating the surface integral at each time step by precomputing the gravity
field at regular grid points within the vicinity of the body offline, and then interpo-
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lating within this precomputed field online. Validation tests comparing this approxi-
mate interpolation to exact evaluation suggest errors on the order of 0.01% for a 5m
field discretization on Itokawa using a 5000-facet shape model.

However, most small bodies are likely not constant density, and internal density
variations are, in general, not know a priori. The polyhedral model may be super-
imposed with harmonics or mascons if in situ measurements are taken, but a model
of uncertainty is perhaps more import for robust policy generation. We consider a
parametric uncertainty model,

g = ḡ+δg, δg∼ Pθ , θ ∈ Rk, (2)

where ḡ∈R3 is the nominal modeled gravity vector, and δg is a random perturbation
from distribution Pθ . As a simple example, Gaussian uncertainty on the mass of the
body could be encoded with a single parameter, δg∼N (0,σ2

M).

2.2 Contact Model
Finally, we require a model for the dynamics of the rover upon impact with the
surface. In some cases, it may be sufficient to assume that the rover can achieve a
dead-stick landing (e.g., if it is equipped with a damping mechanism), but in gen-
eral, uncontrolled impact will cause the rover to rebound somewhat randomly. The
dynamic response of an impact event is a complex function of the physical proper-
ties of both the surface and rover, and the speed and orientation of the rover upon
contact. Tardivel and Van wal, et al. developed high-fidelity small body lander sim-
ulations to model the rebound and settling behavior of landers using rigid-body
contact models [14, 15], and Murdock, et al. have studied low-velocity impact dy-
namics in granular media [21]. However, for the motion planning problem, we only
need a model of the rebound distribution,

vt+f
∼ Pζ (vt−f

,ζ (rt f )), (3)

where the rebound velocity, vt+f
, is a random variable dependent on the pre-impact

velocity, vt−f
, and a parametrized description of the surface properties, ζ (rt f ) (e.g.

surface friction and elasticity). This allows us to abstract away the detailed contact
physics in a general way, whereby the rover can be modeled as a dimensionless
particle. In practice, Pζ should be fit to the rebound dynamics observed on a higher
fidelity model. For the data used in Sect. 4.2, we use a kernel density estimator to fit
Pζ to the rebound dynamics of a cube impacting a flat surface with some friction and
elasticity. The simulation is stopped when ||vt−f

|| < vmin. An example of 20 Monte
Carlo simulations is shown in Fig. 5.

3 Single-Hop Planning
Before addressing the inherently sequential planning problem, we first consider
the simpler problem of planning a single hop. However, even this problem is far
from trivial, as the rover must contend with highly nonlinear dynamics (discussed
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Fig. 5: Monte Carlo simulation of
a single hopping trajectory sub-
ject to control, gravity, and re-
bound uncertainty. The rover is
modeled as a particle and is sub-
ject to forces based on Eq. (1).

in Sect. 2) and many sources of uncertainty. In this section, we develop a framework
for studying stochastic hopping trajectories and extracting approximately optimal
(myopic) control policies.

3.1 Impact Targeting
In some cases, it may be desirable for a hopper to target a specific touch down
location in a single hop (e.g., if the impact rebounds are expected to be minimal).
The problem of computing the launch velocity (vt0 ) to intercept a target location (rt f )
at time τ = t f −t0 is the well-known “Lambert orbital boundary-value problem,” and
has efficient numerical solutions for spherical [22] and perturbed [23] gravity fields.
However, for a polyhedral gravity model, a shooting method is required, which relies
on good initial guesses for convergence.

Accordingly, we propose an algorithm that procedurally solves for the set of ini-
tial velocities (vt0 ) that correspond to a range of flight times τ = [τ1, ...,τn]

T . Algo-
rithm 1 leverages three key insights to robustly and efficiently compute the solution
set. First, the dynamics model in the shooting solver (line 3) ignores collisions with
the surface, which leverages the fact that the polyhedral gravity model is also valid
inside the body [20]. Avoiding collision checks makes the dynamics continuous and
differentiable and drastically speeds up integration. Surface penetration is checked
for feasibility only after the solution has converged (line 6). The second key insight
is that gravity has a second order effect on position, and thus has more influence
the longer it is integrated. Thus, by setting τ1 sufficiently small, the solution is close
to a straight line between rt0 and rt f , and, although it may often be infeasible (or
impractical), this serves as a robust initialization for subsequent solutions for larger
τ . Finally, we leverage the differentiability of the dynamics to make a good initial
guess of vt0(τi+1) given the solution for vt0(τi) and the Jacobian, J(τi) (lines 4-5).

Lambert’s problem is known to have multiple solutions for a given τ: two for
each integer number of orbits. Although Alg. 1 will always return the most direct
family of solutions (i.e., shortest path with zero orbits), other families of solutions
may be found through a bisection search on vt0 . Figure 6 illustrates an example of
three such families of solutions for a given (rt0 ,rt f ) pair, which vary in duration
from 25 minutes to 4 hours (blue trajectories represent the nominal, most direct
solution family). Interestingly, the fact that three families of solutions exist within a
single orbit—albeit, not all feasible—contradicts the Lambert solution for spherical
gravity, thus illustrating the importance of high-fidelity gravity models.
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Algorithm 1 Procedural Lambert Solver for Irregular Gravity Fields
Input: rt0 ,rt f ∈ R3, τ = [τ1, ...,τn]

T ∈ Rn s.t. τi+1 > τi, gravity field ḡ(r)
1: initialize guess for vt0 (τ1) (e.g., as Lambert solution in spherical gravity field)
2: for i = 1, ...,n do
3: Use shooting solver to solve for vt0 (τi) and Jacobian, J(τi):

vt0 (τi), vt f (τi), J(τi) ← Solve
(
rt0 ,rt f , ḡ(r),vt0 (τi)

)
4: Compute first-order estimate of partial vt0 w.r.t. τ:

∂vt0
∂τ
← J(τi)

−1vt f (τi)

5: Initial guess for τi+1: vt0 (τi+1) ← vt0 (τi)+
∂vt0
∂τ

(τi+1− τi)
6: isValid(i) ← Check for trajectory surface penetration
7: end for

Output: vt0 ,vt f ∈ R3×n, J ∈ R3×3×n, isValid ∈ {0,1}n

Fig. 6: Left: Three families of hopping solutions computed by Alg. 1, ranging from short and direct
to long and winding. Right: Plot of hopping speed,

∥∥vt0

∥∥, vs. elevation angle (with respect to the
local surface plane). Line thickness is proportional to τ for that solution.

3.2 Uncertainty Propagation
Computing the nominal Lambert solutions for planning a single hop helps to inform
what trajectories may be beneficial for targeting a specific impact location, but it
assumes a perfect gravity model, perfect control accuracy, and perfect state infor-
mation. It is also important to understand how sensitive these solutions are to various
sources of uncertainty. In other words, we would like to predict the impact distri-
bution by treating the gravity field, control accuracy, and state estimate as random
variables rather than known quantities.

In general, there are two approaches to density estimation for nonlinear functions
of random variables: (1) analytical propagation of simplified uncertainty models
through linearized dynamics, and (2) sampling-based techniques. While sampling-
based techniques (e.g., kernel methods) are amenable to arbitrarily complex dynam-
ics and uncertainty models, they typically assume some measure of “local smooth-
ness” and do not scale well to higher dimensions. On the other hand, analytical
methods can be much more sample efficient for high-dimensional uncertainty mod-
els (e.g., by approximating gradients), but are often restricted to simple uncertainty
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models and locally linear dynamics. The ballistic dynamics of hopping are indeed
smooth and linearizable, but also depend on the collision with a highly irregular sur-
face. Accordingly, we decompose the density estimation problem into two phases:
(1) Gaussian error propagation through the linearized ballistic dynamics, and (2)
projection onto the irregular surface mesh.

For error propagation through the ballistic dynamics, we assume Gaussian uncer-
tainty on the gravity, g, according to Eq. (2) and Gaussian uncertainty on the control
(v0) and initial state (r0) according to v0∼N (µv0 ,Σv0), and r0∼N (µr0 ,Σr0). More
generally, the joint uncertainty of g, v0, and r0 may be expressed as,δg

v0
r0

∼N (µδg,v0,r0 ,Σδg,v0,r0), µδg,v0,r0 =

 0
µv0
µr0

 , Σδg,v0,r0 =

[
Σδg 0
0 Σv0,r0

]
, (4)

where Σδg ∈ Sk
+ is the covariance of the gravity model, and Σv0,r0 ∈ S6

+ is the
joint state-control covariance. A two-sided finite difference approximation of the
Jacobian, Jv0,r0 = [∂r f /∂θ ∂r f /∂v0 ∂r f /∂r0] ∈ R3×(k+6), can be approximated
with 2(k + 6) simulations (note that ∂r f /∂v0 is obtained for free from Alg. 1).
With this linear approximation, the impact covariance about r f can be computed as
Σr f = Jv0,r0Σδg,v0,r0JT

v0,r0
.

To get an impact distribution over the surface, we then project this covariance
along v f , whereby the probability of impact on any facet can be computed as,

P(rt f ∈ Fi) ≈ ai

(
e−

1
2 rT

Fi
Σ−1

uw rFi

−2π
√
|Σuw|

)
max

{
N̂i · ĉv, 0

}
, (5)

where Σuwv =
cRb

Σr f
cRbT =

 Σuw
σuσv
σwσv

σvσu σvσw σ2
v

 . (6)

Here, cRb is the rotation matrix from b̂ to ĉ, rFi ∈ R2 is the vector from rt f to the
center of facet Fi (in 〈ĉu, ĉw〉), and ai is the area of facet Fi (see Fig. 7, left).

Figure 7 (right) illustrates this two-phase error propagation method on three tra-
jectories from the example in Fig. 6, where trajectory funnels bound a 90% confi-
dence envelope, and surface color denotes projected uncertainty distribution, Σr f .
Interestingly, these funnels are not always divergent along the trajectory as one
might expect (e.g. the blue trajectory). While the total magnitude of the error (|Σuwv|)
does generally grow, its projection along the trajectory (i.e., |Σuw|) can shrink, indi-
cating that errors can grow in time while shrinking in spatial dispersion. Also, while
this analysis assumed Gaussian uncertainty, it can be trivially extended to Gaussian
mixture models by simply taking a weighted sum of the components.

One drawback of the projection in Eq. 5 is that it does not capture “shadowing”
effects, which is the case whenever N̂i · ĉv > 0. For surfaces that are highly irregular
in the vicinity of rt f or for shallow, glancing impacts, Eq. 5 may be augmented with a
“ray-tracing” collision checker to accurately project shadows—an established, albeit
more computational technique commonly used for graphics rendering.
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Fig. 7: Left: Landing distributions are computed using covariance propagation and projection.
Right: Error propagation for three trajectories on Itokawa, corresponding to position uncertainty,
Σr0 = Iσ2

r0
,σr0 = 1m, velocity error Σv0 = Iσ2

v0
,σv0 = 0.03||v0||, and gravity error σg = 0.03||ḡ||.

3.3 Optimal Hop Selection
Equipped with an algorithm to compute exact solutions for Lambert’s two-point
boundary value problem (Sect. 3.1) and a method for propagating uncertainty to
compute approximate landing distributions (Sect. 3.2), we can now formulate an
optimization problem for selecting the best (nominal) hop velocity, µ∗v0

. We consider
the following optimization problem:

minimize
µv0

J(µv0) = E
[
λuvT

0 Suv0 +λT τ(r0,v0)−V (r f |r0,v0)
]

subject to µv0 ∈ A(r0)

where v0 ∼N (µv0 ,Σv0), r0 ∼N (µr0 ,Σr0)

(7)

where the additive cost function, J, represents an expectation of the control effort
(weighted by λu), flight time, τ (weighted by λτ ), and the negative “value,” V , of
impacting at location r f . The surface value map, V , may encode various mission
objectives including the distance to the goal, possible hazards, or even the expected
future rewards in the context of sequential hopping (to be addressed in Sect. 4). The
constraint on µv0 belonging to the action space of the rover, A, at position estimate,
(µr0 ,Σv0), can be quite naturally constructed as the intersection of two convex sets
representing the speed, ||µv0 || ≤ vmax, and direction, cos−1(µv0 · N̂(r0)/||µv0 ||) ≤
π/2−θmin, which is a cone about the local surface normal vector, N̂(r0), bounded
by the minimum elevation angle, θmin.

Assuming that V primarily encodes a “distance-to-goal” metric, choosing one
solution from each homotopy class of trajectories (e.g., the blue and pink solution
families in Fig. 6) can serve as good initializations for a gradient descent solver.
An estimate for the global minimum can then be obtained by comparing the local
minimum obtained from each homotopy class. For example, in the case where λτ �
λu, µ∗v0

belongs to the most direct class (blue trajectories in Fig. 6), whereas for
λu� λτ , µ∗v0

belongs to the longer, albeit less energy intensive solution class (pink
trajectories in Fig. 6). The details of the gradient descent solver are omitted for
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brevity, but at a high level, E(V ) can be derived from Eq. (5) and finite difference
estimates of the cost gradient, ∇µv0

J, can be obtained in a similar fashion to the
Jacobian in Sect. 3.2.

4 Sequential Hop Planning
Recall the sequential autonomy architecture illustrated in Fig. 2. For mobility tasks
that require multiple hops (e.g., traversing long distances or correcting for unfa-
vorable bouncing), we must extend the myopic strategies developed in Sect. 3 for
planning over a longer horizon. This requires some notion of how immediate actions
facilitate future actions and how this sequence of actions achieves certain mission
objectives. A natural framework for modeling this inherently discrete and stochas-
tic planning problem is a Markov Decision Process (MDP). In contrast to “clas-
sical” open-loop motion planning algorithms (e.g., combinatorial and sampling-
based) that search for feasible (or even “optimal”) reference trajectories, MDPs pro-
vide a more explicit representation of uncertainty and a powerful reward structure
for encoding more complex mission objectives (i.e., not just “steering towards the
goal”). Section 4.1 outlines how the planning problem can be structured as an MDP,
Sect. 4.2 discusses a sample-efficient reinforcement learning method for learning
approximate state-action value (Q-) functions and implicitly, approximately optimal
policies. Finally, Sect. 4.4 compares the performance of learned control policies to
heuristics proposed in [6], and evaluates performance robustness to modeling errors.

4.1 Hopping as an MDP
In accordance with the “classic” infinite horizon MDP formulation, we cast the se-
quential hop planning problem as the five-tuple, (S,A,T,R,γ)—the state space, ac-
tion space, transition model, reward model, and discount factor. However, unlike
most planning problems in robotics that force an MDP structure by temporally dis-
cretizing an inherently continuous-in-time process, hopping has a natural sequential
decomposition, where transitions are marked by the eventual settling of each hop.

State space: At rest on the surface, the rover’s state is simply its position and ori-
entation. However, assuming that a lower level controller can reorient the rover as
needed (as is the case for Hedgehog), we can collapse the state to just the surface
position—an irregular manifold in R3. For nearly-spherical bodies, spherical coordi-
nates (i.e., latitude/longitude) may be sufficient to uniquely parametrize the surface,
but for highly irregular bodies such as those in Fig. 3, more elaborate map projec-
tions may be required. More generally, other state formulations might also include
the rover’s internal state (e.g., battery charge), its state history (e.g., in the context
of a coverage problem), or its belief state (in the case of partial observability).

Action space: In its most fundamental form, the action space of a hopping rover
can be described by raw actuators (e.g., three motors and brakes for Hedgehog).
However, for motion planning it is more convenient to consider the rover’s action
as its velocity immediately after hopping—a higher level abstraction of the action
space that leverages a lower level hopping controller (e.g., the controller discussed
in [8]) and is amenable to the ballistic particle simulator presented in Sect. 2.
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Moreover, it is critical that this velocity vector be expressed in a global reference
frame—rather than a local surface frame—to maintain continuity in the transition
dynamics; informally, T (·|s,a)≈ T (·|s+δ s,a). In other words, action descriptions
that depend on the local surface slope (e.g., “spin flywheel number 2” or “hop left”)
can yield sharp changes in T for small changes in state on irregular terrain, whereas
global descriptions (e.g, “hop north”) are unaffected by local changes in topography.

However, local surface properties impose critical constraints on the feasible ac-
tion space of the rover, A(s) (e.g., that the velocity vector must lie within some
“friction cone” about the local surface normal). Thus, expressing actions in a global
frame helps to “smooth” the dynamics (and consequently, the Q-function) but comes
at the cost of requiring sharp discontinuities in A(s), suggesting that it may be
advantageous to store a policy implicitly through a Q-function approximator (i.e.
π(s) = argmaxa∈A(s) Q̂(s,a)) rather than explicit function approximators on π .

Reward model: The reward model is a mission designer’s tool for encoding various
mission objectives, such as “visit sites A, B, and C under time and energy constraints
while avoiding hazards D and E.” Thus, a reward function can take many forms and,
in general, may be updated based on new information gathered or new objectives.
We consider a general formulation that penalizes the time and energy required for
each hop, incentivizes a set of ng goal regions, and penalizes a set of nh hazardous
regions. In summary, the state, action and reward models we consider here are:

s ∈ S2, a ∈ A(s)⊂ R3,

R(s,a) =−E[τ(s,a)]/τmax−λuE[u(s,a)], R(sgi) = ri, R(sh j) = r j,
(8)

where E[τ(s,a)] and E[u(s,a)] are the expected time and energy required to execute
action a at state s. States sgi ∈ Sgi and sh j ∈ Sh j are states within the goal and hazard
regions, with associated rewards ri > 0 and r j < 0, respectively. τmax is a maximum
travel time, and λu weights the control effort.

4.2 Reinforcement Learning Method
The transition model, T , is unknown. In the case of minimal bouncing, approxima-
tions of the dynamics such as those discussed in Sect. 3.2 may work, but in general,
a series of elastic bounces (e.g., Fig 5) induces chaotic, highly non-Gaussian, mul-
timodal transition dynamics. Without discretization of the state or action spaces, T
is extremely difficult to approximate. Accordingly, model-free methods are better
suited for this domain, whereby simulations (discussed in Sect. 2) can be used to
generate large sets of transition data offline.

One popular technique for such batch, off-line, off-policy, model-free RL is Least
Squares Policy Iteration (LSPI), which, as originally described in [24], uses a linear
function approximator for the Q-function, and an exact, fixed-point projection for
policy evaluation (LSTD-Q):
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solve: (Ân− γB̂n)θ = b̂n, where b̂n =
1
n

n

∑
i=1

ρi [φ(si,ai)ri] ,

Ân− γB̂n =
1
n

n

∑
i=1

ρiφ(si,ai)
[
φ

T (si,ai)− γφ
T (s′i,π(s

′
i))
]
,

(9)

π(s) = argmax
a∈A(s)

[
φ

T (s,a)θ
]
. (10)

Here, φ(s,a) is the state-action feature vector, and ρ is a weight vector that sums to
one. Like most approximate RL methods, LSPI is not guaranteed to yield optimal
policies, but it is a stable algorithm. That is, it will either converge or it will oscillate
in an area of the policy space where policies have suboptimality bounded by some
approximation error, ε , which is highly dependent on the richness of the feature
space and the coverage of the sampling distribution [24]. In practice, this bound is
often quite conservative and LSPI typically converges in very few iterations.

One of the most important features of LSPI for deriving hopping policies is its
amenability to off-policy exploration strategies, which provides the ability to reuse
large data sets, and thus, relearn a policy for a new reward structure on the fly.
The weight vector, ρ , provides a convenient way to preferentially bias previously
collected samples via importance weighting (i.e., ρi = p(si,ai)/q(si,ai), where p
is the desired distribution and q is the sample distribution); q may be approximated
directly from samples via kernel density estimation, and p may be chosen arbitrarily
(e.g., a uniform distribution).

4.3 Practical Considerations

Data Collection: An off-line simulator provides large flexibility for data collection.
For a given initial state, s0, and policy, π , state-action samples can be biased towards
more likely regions (e.g., through direct Monte Carlo sampling, or importance sam-
pling/variance reduction techniques). However, in the more general case when s0 is
uncertain, or the reward structure may change (and thus, π), we would like a good
fit of Q̂ over a much broader range of the state-action space. Thus, a mostly “pure
exploration” strategy is preferred, with a combination of full episode rollouts and
periodic restarts, perhaps with some bias towards “hard-to-reach” regions.

Feature Engineering: Linear function approximation relies on a rich set of features
over the state-action space to produce good estimates for the Q-function (i.e., small
||φ T (s,a)θ ∗−Q∗||2). At the same time, the feature set must be amenable for com-
puting the argmax in Eq. (10) for policy extraction. Accordingly, we decouple state
and action features such that φ(s,a) = φs(s)φa(a), where φs can be arbitrarily com-
plex in the state while φa remains “simple” enough for optimization. We construct
φs from a set of “hand-crafted” features that leverage domain knowledge (e.g. local
geopotential and surface slope) and a set of distributed basis functions—namely, a
Fourier basis (similar to [25]), which is more naturally suited to spherical state do-
mains than say, polynomials or RBFs. The action features are simple monomials of
the form φa(v) = vi

xv j
yvk

z , where i+ j+k≤m, such that a polynomial root solver can
compute all local minima exactly.
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4.4 Evaluation of Learned Policies
As a preliminary case study, we consider a notional mission scenario on Asteroid
Itokawa in which the hopper must reach a target location in minimum time. The
reward model (Eq. (8)) is defined as R(sg) = +1 and R(s,a,s′) = −τ/τmax, where
τmax = 10 hrs, and γ = 11. Approximately five million trajectories were simulated
over a broad range of the state-action space, sampling from a Gaussian distribution
on the gravity field (σg ∼ 5%) and a rebound distribution as discussed in Sect. 2.2,
with a mean restitution of 0.65. Uniformly random mini-batches of size 100,000
were used in each iteration of LSPI. The action space, A(s), is speed constrained
by vmax = 10 cm/s and direction constrained by 40o ≤ β ≤ 50o, where the eleva-
tion angle, β , must lie within an annular cone about the local surface normal (in
accordance with the hopping constraints for Hedgehog, derived in [8]). With this
problem definition, LSPI was able to converge to a small error, ||θi− θi−1|| < ε ,
in only a few tens of iterations and within tens of minutes on a laptop (though,
significant speedups may be achieved with a more efficient implementation).

Fig. 8: Top: Three rollouts of the learned policy. The surface color map shows the optimal value
function under π∗. Bottom: Two rollouts of the “hop-to-the-goal” heuristic policy, where the color
map shows the difference between the learned and heuristic value functions (∆Q = Qπ∗ −Qπh ).

Figure 8 shows a few example trajectories comparing the performance of the
learned policy, π∗, with a “hop-towards-the-goal” heuristic policy, πh, that attempts
to take the most direct path to the goal. From 1000 policy rollouts, the mean time to
reach the goal from deployment was 5.1 hours for the learned policy, and 7.6 hours
for the heuristic policy. The color map in the top figure shows the optimal value,
Q∗, at each point on the surface, and due to the reward structure defined above, it
also represents the expected time to reach the goal (as a function of τmax). Not sur-
prisingly, Q∗ decays away from the goal region. The color map in the bottom figure

1 Non-discounting is stable since the reward is always negative and each episode must terminate.
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shows the value margin of the optimal policy over the heuristic policy, suggesting
that the heuristic policy has difficulties on sloped surfaces and states farther from
the goal. The second hop of the blue trajectory in the top figure illustrates how the
learned policy enables the hopper to perform local adjustments to better position
itself for future hops—in this case, by performing a small backwards hop off of
a sloped region. The last hop of the green trajectory highlights another interesting
learned behavior: the rover hops uphill from the goal region, “understanding” that
it is likely to tumble downhill, thereby leveraging the dynamics of the environment
without ever having explicitly learned a model.

An important consideration when learning in simulation and executing in the
real world is robustness to modeling errors. This “transfer learning” problem for
asteroid environments may have three major types of modeling errors: (1) the aster-
oid’s shape, (2) its surface properties, and (3) its density/gravity. While this learning
method does require an accurate shape model at a global scale, it is insensitive to
smaller scale variations due to the global-frame representation of the action space.
That is, unanticipated deviations in local topography only affect the constraints for
policy extraction, not the optimal value function itself. As a preliminary study of
robustness to contact modeling errors, we rolled out the learned policy in an envi-
ronment with a different contact model—specifically, one with higher surface elas-
ticity and one with lower elasticity. For the more elastic case, 1000 policy rollouts
exhibited significantly longer traverse times, with a mean of 8.2 hours. These tra-
jectories often bounce off course or overshoot the goal, requiring major corrections.
On the other hand, policy rollouts in an environment with reduced elasticity actually
exhibit better performance, with a mean traverse time of only 4.7 hours. This result
suggests that one should err on the side of overestimating the surface elasticity for
simulations. Finally, although density/gravity models are likely to be fairly accurate
from preliminary surveying by the mothership, simulations can use a conservative
underapproximation of gravity for safe policy transfer (i.e., so that the hopper does
not overshoot it’s target or reach escape velocity).

5 Conclusions
In this paper, we presented an uncertainty-aware approach to motion planning for
hopping rovers on small Solar System bodies. We first examined the problem of
planning a single hopping trajectory using a model-based approach, computing ex-
act solutions for impact targeting, propagating uncertainty, and deriving optimal
hops from a myopic policy gradient. We then cast the sequential planning problem
as an MDP, proposed an offline, off-policy, model-free RL method, and evaluated
learned policies against heuristic policies and robustness to modeling errors.

This paper leaves numerous important extensions open for further study. First,
we would like to explore various additional mission scenarios that include expert-
defined hazards (e.g. pits and caves), multiple target sites, and constraints on moth-
ership communication and solar recharge. Localization errors, or state uncertainty,
is another important aspect to consider. Future work will consider extensions of
this approach that are amenable to partial observability (POMDPs). Finally, learned
policies should be validated in a higher fidelity simulation environment that captures
cm-scale contact interactions as well as simulated visual odometry.
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