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Abstract

Markov decision processes (MDPs) provide a mathematical framework for modeling sequential decision

making where system evolution and cost/reward depend on uncertainties and control actions of a decision.

MDP models have been widely adopted in numerous domains such as robotics, control systems, finance,

economics, and manufacturing. At the same time, optimization theories of MDPs serve as the theoretical un-

derpinnings to numerous dynamic programming and reinforcement learning algorithms in stochastic control

problems. While the study in MDPs is attractive for several reasons, there are two main challenges associated

with its practicality:

• An accurate MDP model is oftentimes not available to the decision maker. Affected by modeling

errors, the resultant MDP solution policy is non-robust to system fluctuations.

• The most widely-adopted optimization criterion for MDPs is represented by the risk-neutral expecta-

tion of a cumulative cost. This does not take into account the notion of risk, i.e., increased awareness

of events of small probability but high consequences.

In this thesis we study multiple important aspects in risk-sensitive sequential decision making where the

variability of stochastic costs and robustness to modeling errors are taken into account. First, we address a

special type of risk-sensitive decision making problems where the percentile behaviors are considered. Here

risk is either modeled by the conditional value-at-risk (CVaR) or the Value-at-risk (VaR). VaR measures risk

as the maximum cost that might be incurred with respect to a given confidence level, and is appealing due to

its intuitive meaning and its connection to chance-constraints. The VaR risk measure has many fundamental

engineering applications such as motion planning, where a safety constraint is imposed to upper bound the

probability of maneuvering into dangerous regimes. Despite its popularity, VaR suffers from being unstable,

and its singularity often introduces mathematical issues to optimization problems. To alleviate this problem,

an alternative measure that addresses most of VaR’s shortcomings is CVaR. CVaR is a risk-measure that is

rapidly gaining popularity in various financial applications, due to its favorable computational properties (i.e.,

CVaR is a coherent risk) and superior ability to safeguard a decision maker from the “outcomes that hurt the

most”. As a risk that measures the conditional expected cost given that such cost is greater than or equal

to VaR, CVaR accounts for the total cost of undesirable events (it corresponds to events whose associated

probability is low, but the corresponding cost is high) and is therefore preferable in financial applications
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such as portfolio optimization.

Second, we consider optimization problems in which the objective function involves a coherent risk

measure of the random cost. Here the term coherent risk [7] denotes a general class of risks that satisfies

convexity, monotonicity, translational-invariance and positive homogeneity. These properties not only guar-

antee that the optimization problems are mathematically well-posed, but they are also axiomatically justified.

Therefore modeling risk-aversion with coherent risks has already gained widespread acceptance in engineer-

ing, finance and operations research applications, among others. On the other hand, when the optimization

problem is sequential, another important property of a risk measure is time consistency. A time consistent

risk metric satisfies the “dynamic-programming” style property which ensures rational decision making, i.e.,

the strategy that is risk-optimal at the current stage will also be deemed optimal in subsequent stages. To

get the best of both worlds, the recently proposed Markov risk measures [119] satisfy both the coherent risk

properties and time consistency. Thus to ensure rationality in risk modeling and algorithmic tractability, this

thesis will focus on risk-sensitive sequential decision making problems modeled by Markov risk measures.

v



Acknowledgements

First and foremost, I would like to thank my advisor, Prof. Marco Pavone. Marco has been an excellent

teacher, an influential mentor and a dependable friend. His scientific acumen, commitment to perfection,

charisma in presentation, and intellectual integrity have a continuing impact on my professional career and

personal development.

I would like to sincerely thank Dr. Mohammad Ghavamzadeh at Adobe Research and Prof. Shie Mannor

at Technion for their collaborations on several topics in this thesis. Throughout my PhD curriculum, Shie’s

profound knowledge, astuteness, and openness to innovative ideas have shaped my research paths. Moham-

mad’s rich knowledge and interests have broadened my horizons. Moreover, he has always been extremely

supportive and has spent much-appreciable effort in advising my career development. I am deeply grateful to

have both of you to be my personal mentors and friends. I am looking forward to work together and stay in

touch in the years to come.

I would like to express my appreciation to my defense committee, who provided a lot of thoughtful

comments for improving my work. I would like to thank Prof. Ramesh Johari, who worked with me on the

motivation of risk-sensitive decision using knowledge from game theory. Last but not least, I would like to

thank my committee chair Prof. Benjamin Van Roy, who offered additional insights to my research from the

operations research perspective. Your work was among the fundamental ones that initiated my interests in

the area of reinforcement learning.

I am thankful to my co-authors for all the collaborations: Stefano Carpin, Mohammad Ghavamzadeh,

Lucas Janson, Summet Katariya , Anirudua Majumdar, Alan Malek, Shie Mannor, Marek Petrik, Junjie Qin,

Sumeet Singh, Aviv Tamar, Jiyan Yang, Jiayuan Yu. It has been grateful working with all of you on vari-

ous research topics ranging from stochastic optimal control theories, reinforcement learning and sequential

hypothesis testing, to applications in energy systems and robotic platforms. You have all shared with me

brilliant insights and creative ideas. The valuable lessons learned from these experiences sharpen my skill

sets to conduct independent, high-quality research in the future.

To my friends in the ASL and in Stanford, including: Joseph Starek, Ashley Clark, Ed Schmerling,

Sumeet Singh, Ross Allen, Zach Sunberg, Brian Ichter, Federico Rossi, Ben Hockman, Rick Zhang, Jiyan

Yang, Junjie Qin, Tomas Tinoco De Rubira and Rob Wang – thank you for making my 5 years of Stanford

experience memorable. To my lab mates, it has been enjoyable working together since the early stage of

vi



ASL. Thank you for your support during all the ups and downs. Your creativity and striving for excellence

have always inspired me.

I would like to extend my gratitude to Croucher foundation for their generous financial support on my

PhD studies and research.

I am grateful to my parents, especially my mother Catherine, for their unconditional love. It has been

difficult for not being able to stay in touch at all times. On top of that, I would thank my beloved Suidan for

her support throughout these fulfilling, yet stressful years. Thanks to her unwavering encouragement, which

allows me to continue the pursuit of passion even during the downtimes. I owe everything to their dedication

and sacrifice.

vii



Contents

Abstract iv

Acknowledgements vi

1 Introduction 1
1.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Markov Decision Processes (MDPs) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Overview of Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Sources of Uncertainty in MDPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Entropic Risk and its Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Percentile Risk Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.3.4 Static, Coherent Measures of Risk . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3.5 Dynamic, Time-Consistent Measures of Risk . . . . . . . . . . . . . . . . . . . . . 9

1.4 Existing Solution Approaches and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 Time Inconsistency in Risk-aware Planning . . . . . . . . . . . . . . . . . . . . . . 12

1.4.2 Limitation 2: Complexity of solution approaches . . . . . . . . . . . . . . . . . . . 14

1.5 Risk-sensitive Decision Making Versus Reward Shaping . . . . . . . . . . . . . . . . . . . 15

1.6 Thesis Contributions and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2 Risk-Sensitive Decision Making: A CVaR Optimization Approach 18
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.1.1 Risk Sensitive Decision Making with CVaR . . . . . . . . . . . . . . . . . . . . . . 18

2.1.2 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.1.3 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Problem Formulation and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Motivation - Robustness to Modeling Errors . . . . . . . . . . . . . . . . . . . . . . 20

2.3 Bellman Equation for CVaR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Value Iteration with Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

viii



2.5 CVaR Q-learning with Linear Interpolation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.1 Synchronous CVaR Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.2 Asynchronous CVaR Q-learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.6 Extension to Mean-CVaR MDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.6.1 Bellman Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3 Risk-Constrained Reinforcement Learning with Percentile Risk 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.1 Risk Sensitive Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . 35

3.1.2 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1.3 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.2.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Lagrangian Approach and Reformulation . . . . . . . . . . . . . . . . . . . . . . . 41

3.3 A Trajectory-based Policy Gradient Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.4 Actor-Critic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4.1 Gradient w.r.t. the Policy Parameters θ . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4.2 Gradient w.r.t. the Lagrangian Parameter λ . . . . . . . . . . . . . . . . . . . . . . 48

3.4.3 Sub-Gradient w.r.t. the VaR Parameter ν . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4.4 Convergence of Actor-Critic Methods . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.5 Extension to Chance-Constrained Optimization of MDPs . . . . . . . . . . . . . . . . . . . 50

3.5.1 Policy Gradient Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.2 Actor-Critic Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6.1 The Optimal Stopping Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.6.2 A Personalized Ad-Recommendation System . . . . . . . . . . . . . . . . . . . . . 56

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Risk Sensitive Model Predictive Control 60
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.1 Model Predictive Control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.1.2 MPC with Time Consistent Risk Measures . . . . . . . . . . . . . . . . . . . . . . 60

4.1.3 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.4 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

ix



4.3 Markov Polytopic Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.1 Polytopic Risk Measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3.2 Markov Dynamic Polytopic Risk Metrics . . . . . . . . . . . . . . . . . . . . . . . 64

4.3.3 Computational Aspects of Markov Dynamic Polytopic Risk Metrics . . . . . . . . . 65

4.4 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.5 Risk-Sensitive Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6 Model Predictive Control Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.1 The Unconstrained Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.6.2 The Constrained Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.7 Bounds on Optimal Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.1 Lower Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.7.2 Upper Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8 Solution Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8.1 Dynamic Programming Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.8.2 Convex Programming Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.9 Numerical Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.9.1 Effects due to Risk Aversion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.9.2 A 2-state, 2-input Stochastic System . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.9.3 Comparison with Bernadini and Bemporad’s Algorithm [15] . . . . . . . . . . . . . 79

4.9.4 Safety Brake in Adaptive Cruise Control . . . . . . . . . . . . . . . . . . . . . . . 80

4.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5 Stochastic Optimal Control with Dynamic Risk Constraints 83
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

5.1.1 An Overview on Constrained Stochastic Optimal Control . . . . . . . . . . . . . . . 83

5.1.2 Chapter Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.1.3 Chapter Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.3 A Dynamic Programming Algorithm for Risk-Constrained Multi-Stage Decision-Making . . 86

5.3.1 Dynamic Programming Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.3.2 Construction of optimal policies . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4 Discretization/Interpolation Algorithms for AMDP . . . . . . . . . . . . . . . . . . . . . . 88

5.4.1 Discretization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.4.2 Interpolation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.1 Curse of Dimensionality with Discretization Approach . . . . . . . . . . . . . . . . 92

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

x



6 Conclusion 95
6.1 Inherent Uncertainty Versus Model Uncertainty . . . . . . . . . . . . . . . . . . . . . . . . 96

6.2 Time Consistency in Risk-aware Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.3 Risk-shaping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.1 Exploration Versus Exploitation in Risk-sensitive Reinforcement Learning . . . . . 98

6.4.2 Risk Sensitive Importance Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.4.3 Relationship to Safe Policy Improvement . . . . . . . . . . . . . . . . . . . . . . . 99

7 Supplementary Materials 100
7.1 Technical Results in Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1.1 Proof of Proposition 2.2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.1.2 Proof of Lemma 2.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.1.3 Proof of Theorem 2.3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.1.4 Proof of Theorem 2.3.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

7.1.5 Proof of Lemma 2.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

7.1.6 Useful Intermediate Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.1.7 Proof of Theorem 2.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1.8 Proof of Theorem 2.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.9 Proof of Theorem 2.5.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.10 Proof of Theorem 2.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Technical Results in Chapter 3: Policy Gradient Methods . . . . . . . . . . . . . . . . . . . 121

7.2.1 Computing the Gradients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.2.2 Proof of Convergence of the Policy Gradient Algorithm . . . . . . . . . . . . . . . 122

7.3 Technical Results in Chapter 3: Actor-Critic Algorithms . . . . . . . . . . . . . . . . . . . 136

7.3.1 Gradient with Respect to λ (Proof of Lemma 3.4.4) . . . . . . . . . . . . . . . . . . 136

7.3.2 Proof of Convergence of the Actor-Critic Algorithms . . . . . . . . . . . . . . . . . 137

7.4 Technical Results in Chapter 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.1 Proof of Lemma 4.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.2 Proof of Theorem 4.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.4.3 Proof of Lemma 4.6.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

7.4.4 Proof of Theorem 4.6.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

7.4.5 Proof of Theorem 4.6.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

7.4.6 Proof of Theorem 4.7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

7.4.7 Proof of Theorem 4.7.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.4.8 Proof of Corollary 4.8.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

7.4.9 Proof of Theorem 4.8.1 and Corollary 4.8.2 . . . . . . . . . . . . . . . . . . . . . . 153

7.4.10 Convex Programming Formulation of ProblemMPC . . . . . . . . . . . . . . . . 156

xi



7.4.11 A Generalized Stability Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

7.4.12 Alternative Formulation of Problem PE andMPC . . . . . . . . . . . . . . . . . . 161

7.4.13 Suboptimality Performance of πMPC . . . . . . . . . . . . . . . . . . . . . . . . . . 162

7.5 Technical Results in Chapter 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5.1 Proof of Theorem 5.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

7.5.2 Proof of Theorem 5.3.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

7.5.3 Proof of Lemma 5.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

7.5.4 Proof of Theorem 5.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

7.5.5 Proof of Theorem 5.4.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

Bibliography 179

xii



List of Tables

3.1 Performance comparison of the policies learned by the risk-constrained and risk-neutral algorithms. In

this table σ
(
Cθ(x0)

)
stands for the standard deviation of the total cost. . . . . . . . . . . . . . . . 55

3.2 Performance comparison of the policies learned by the CVaR-constrained and risk-neutral algorithms.

In this table σ
(
Rθ(x0)

)
stands for the standard deviation of the total reward. . . . . . . . . . . . . . 58

4.1 Statistics for Risk-Averse MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.2 Performance of Different Algorithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.3 Statistics for Risk-Averse MPC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.4 Statistics for Risk-Sensitive ACC System (with Mean Absolute Semi-deviation Risk). . . . . 82

5.1 Computation Times with Different Discretization Step Sizes. . . . . . . . . . . . . . . . . . 93

xiii



List of Figures

1.1 Scenario Tree for Example 1.3.5. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Limitations of mean-variance optimization. Underlined numbers along the edges represent

transition probabilities; non-underlined numbers represent stage-wise constraint and objec-

tive function costs (that are equal for this example). Terminal constraint costs are zero.

Under policy π1, the costs per stage are given by d(x0, a0) = 0.5 · 0 + 0.5 · 10 = 5,

d(x1, a1) = 10, and d(x2, a1) = 10; under policy π2, the costs per stage are given by

d(x0, a0) = 5, d(x1, a1) = 20, and d(x2, a1) = 10. One can verify that for policy π1 one

has var
(∑N−1

k=0 d(xk, ak)
)

= 25, while for policy π2 one has var
(∑N−1

k=0 d(xk, ak)
)

= 0.

Then, if the risk threshold is less than 25, the decision-maker would choose policy π2 and

would seek to incur losses in order to keep the variance small enough. . . . . . . . . . . . . 14

1.3 Limitations of chance-constrained optimization. The numbers along the edges represent tran-

sition probabilities, while the numbers below the terminal nodes represent the stage-wise con-

straint costs. The problem involves a single control policy (hence there is a unique transition

graph). The constraint cost appears acceptable in states x1 and x2, but unacceptable from the

perspective of the first stage in state x0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1 Grid-world simulation. First three plots show the value functions and corresponding paths

for different CVaR confidence levels. The last plot shows a cost histogram (for 400 Monte

Carlo trials) for a risk-neutral policy and a CVaR policy with confidence level α = 0.11. . . 34

3.1 Cost distributions for the policies learned by the CVaR-constrained and risk-neutral policy

gradient and actor-critic algorithms. The left figure corresponds to the PG methods and the

right figure corresponds to the AC algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Cost distributions for the policies learned by the chance-constrained and risk-neutral policy

gradient and actor-critic algorithms. The left figure corresponds to the PG methods and the

right figure corresponds to the AC algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 Reward distributions for the policies learned by the CVaR-constrained and risk-neutral policy

gradient and actor-critic algorithms. The left figure corresponds to the PG methods and the

right figure corresponds to the AC algorithms. . . . . . . . . . . . . . . . . . . . . . . . . 58

xiv



4.1 Effect of semi-deviation parameter c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Convergence of Approximated Value Functions using Different Discretization Step Sizes. . . 93

xv



Chapter 1

Introduction

Decision-making is concerned with identifying the optimal strategy (a mapping from current system states

to available actions) in which the performance is measured by an associated cost function. The cost function

captures specific evaluation criteria that are deemed relevant to the decision makers. In general, decision-

making is an interesting yet challenging problem. The challenges of decision-making are three-fold. First,

the evaluation criteria usually contain multiple conflicting elements that make decision-making non-trivial.

For example, in a Mars exploration mission the project manager (who serves as the decision maker) has to

trade-off fuel-efficiency and mission safety during the design of Mars rover deployment strategies; or the

business analyst of a manufacturing plant has to trade-off quality and cost in planning production schedules.

Second, in most practical applications, decisions are often temporally dependent. Specifically, in sequential

decision-making problems, the decision maker either interacts with the system myopically over multiple time

periods, or the decision maker decides a strategy based on the feedback observations of the system. While the

second approach is always preferable due to its full utilization of system information, it encounters a major

computational difficulty. Unlike in the myopic optimization problem, where the optimizer is a point solution,

this challenge arises from the fact that in sequential decision-making the problem is often cast as a functional

optimization problem whose solution is a mapping from the history of states to actions. Third, in decision-

making the system evolution and performance are often affected by uncertain exogenous factors, such as

system noise or measurement errors. Notice that the number of possible strategies depends exponentially on

the decision horizon and the realizations of uncertainties. Such vast amount of potential choices often makes

the direct enumeration of solutions intractable.

The most widely-adopted optimization criterion for sequential decision-making is represented by the

risk-neutral expectation of a cumulative cost. However despite its popularity, this criterion does not take

variability of the cost and sensitivity to modeling errors into account. This may lead to potential modeling

problems, where the downside risks incurred by outcome realizations are ignored. On the other hand, while

risk-sensitive decision-making provides a promising approach to compute robust solution policies (with re-

spect to cost variability and modeling errors), constructing a “good” risk criterion in a manner that is both

1
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conceptually meaningful and computationally tractable still presents a nontrivial challenge to system design-

ers.

1.1 Problem Description

In this thesis we investigate risk-aware planning and control in uncertain environments, namely, the problem

of devising a provably-safe action strategy in the presence of inherent uncertainties and model uncertainties.

Such a problem has recently been recognized as one of the main challenges in many areas such as robotic

motion planning, personalized online marketing, portfolio optimization and intelligent transportation man-

agement. The issue of planning under uncertainty without the notion of risk-awareness, has been addressed

extensively in the past; for example see [22] and references therein. In particular, in this planning problem

where a stochastic sequential objective is involved, the solution often entails a decision-making strategy as

opposed to an open-loop control sequence. Despite great strides in the theory of risk-modeling, the inclu-

sion of risk-awareness in sequential planning has so far received limited attentions. Yet, the inclusion of risk

awareness in stochastic optimal control is critical for several reasons. First, a guaranteed-feasible solution

may not exist in stochastic planning problems, and the question becomes how to properly trade-off between

planner’s conservative-ness and the risk of infeasibility. Second, risk-awareness allows decision makers to

increase policy robustness by including model uncertainties in the problem formulation. Third, by impos-

ing various levels of risk to the inherent uncertainties presented in the environment, risk-aware planning can

avoid rare undesirable events. Finally, in the reinforcement learning framework where the world model is

not known accurately, a risk-aware planner can balance exploration versus exploitation for efficient policy

learning and can guarantee safety by limiting the visiting frequency to states that lead to catastrophic failures.

Clearly, one would desire that sequential planning algorithms are able to take into the account of risks.

Unfortunately most existing planning algorithms ignore risk-awareness and safety. From a technical stand-

point, there are two main approaches for risk-sensitive decision-making: optimizing risk-sensitive objective

functions, where a risk-neutral expectation operator is replaced by a risk function, or adding risk constraints

to the optimization problem. The first approach is more suitable to portfolio optimization and online market-

ing problems for which the planning goals are to maximize expected revenue and to control variability. The

second approach is more preferable to engineering problems such as motion planning due to their ability to

enforce safety constraints.

The most common framework for planning under uncertainty is provided by Markov decision processes

(MDPs), which represent a probabilistic sequential decision-making framework such that the set of transition

probabilities to next states depend only on the current state and action of the system. This framework can be

further generalized to reinforcement learning (RL), which combines the learning of transition probabilities

and cost functions in MDPs with the computation of an optimal policy. The key research aspects that we will

explore in this thesis are: risk models in the MDP framework that ensures rational decision-making, solution

algorithms that are computationally efficient to solve real-world problems, and risk-constrained decision
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making problems that optimize a risk-neutral objective function subjected to risk-sensitive constraints.

1.2 Markov Decision Processes (MDPs)

In this thesis, the underlying mathematical model of sequential decision making and reinforcement learning

is the Markov decision process (MDP). An MDP is a tuple (X ,A, C, P, γ, x0), where X and A are state and

action spaces, C(x, a) ∈ [−Cmax, Cmax] is a bounded deterministic cost, P (·|x, a) is the transition probabil-

ity distribution, γ ∈ [0, 1] is the discounting factor1, and x0 is the initial state. Our results easily generalize

to random initial states and random costs, but for simplicity we will focus on the case of deterministic initial

state and immediate cost in this thesis. For each state x ∈ X , we also denote by A(x) the corresponding set

of admissible control actions. In a more general setting when multi-stage constraints are taken into account,

we define a constrained Markov decision process (CMDP) which extends the MDP model by introducing

additional costs and associated constraints. A CMDP is defined by (X ,A, C,D, P, γ, x0, d0) where the com-

ponents X ,A, C, P, x0, γ are the same for the unconstrained MDP. Furthermore D(x, a) ∈ [−Dmax, Dmax]

is a bounded deterministic constraint cost, and d0 ∈ R is an upper bound for the expected cumulative (through

time) D cost. Intuitively, solving an MDP means determining a sequence of policies π (mappings from his-

tories to control actions) which minimizes the risk-sensitive cumulated objective cost defined by C, while

solving a CMDP means determining a sequence of policies π which minimizes the same objective function

and at the same time ensures that the cumulated constraint cost defined by the functions D is (under specific

risk metrics) bounded by d.

In order to formalize the optimization problems associated with MDPs or CMDPs, we define the feasible

set of policies as follows. Let the space of admissible histories up to time t be ht = Ht−1 × A × X , for

t ≥ 1, and H0 = X . A generic element ht ∈ ht is of the form ht = (x0, a0, . . . , xt−1, at−1, xt). Let

ΠH,t be the set of all history-dependent policies with the property that at each time t the policy is a function

that maps ht to the probability distribution over the action space A. In other words, ΠH,t :=
{
µ0 : H0 →

P(A), µ1 : H1 → P(A), . . . , µt : Ht → P(A)}|µj(·|hj) ∈ P(A) for all hj ∈ Hj , 1 ≤ j ≤ t
}

. We also let

ΠH = limt→∞ΠH,t be the set of all history dependent policies.

While ΠH is the most generic class of policies in sequential decision making, oftentimes MDP or CMDP

problems with history dependent policies are numerically intractable. Another commonly considered class

of policies in literature is known as the class of Markovian policies ΠM , where at each time step t the policy

is a function that maps states xt to the probability distribution over the action space A. Formally the class

of Markovian policies is defined as ΠM = limt→∞ΠM,t where ΠM,t :=
{
µ0 : X → P(A), µ1 : X →

P(A), . . . , µt : X → P(A)}|µj(·|xj) ∈ P(A) for all xj ∈ X , 1 ≤ j ≤ t
}

. In the special case when the

policies are time-homogeneous, i.e., µj = µ for all j ≥ 0, then the class of policies is known as stationary

Markovian and denoted by ΠM,S . When π is stationary and Markovian (i.e., π ∈ ΠM,S), it is merely a

1By introducing γ ∈ (0, 1) to the sum of multi-stage cost functions, we aim to solve the MDP problem with more focus on optimizing
current costs over future costs. When γ = 1, the effect of discounting factor vanishes, and the corresponding MDP problem minimizes
the total cost.
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sequence of policies (denoted by µ). For notational convenience we use µ and π interchangeably in this case.

Compared to the structure of ΠH , the set of policies characterized by ΠM,S is more structured (i.e., the control

actions only depend on current state information and its state-action mapping is time-independent). Compu-

tationally this makes the procedure of solving for an optimal policy under the class of stationary Markovian

policies more tractable, and common solution techniques involve dynamic programming algorithms [17] such

as Bellman iteration.

When the objective function for an MDP is given by the risk-neutral expectation of a cumulative cost,

i.e.,

min
π∈ΠH

E

[ ∞∑
t=0

γtC(xt, at) | x0, at ∼ πt(·|ht)
]
,

Bellman’s principle of optimality [17] shows that that the optimal policy lies in the class of stationary Marko-

vian policies ΠM,S . On the other hand, for a CMDP whose objective function and constraints are modeled

by the risk-neutral expectation of a cumulative cost and constraint cost, i.e.,

min
π∈ΠH

E

[ ∞∑
t=0

γtC(xt, at) | x0, at ∼ πt(·|ht)
]
,

E

[ ∞∑
t=0

γtD(xt, at) | x0, at ∼ πt(·|ht)
]
≤ d0,

Altman (Theorem 3.8 in [4]) shows a similar result of optimality for which ΠM,S is called the “dominating

class of policies”. While this nice property does not hold for arbitrary objective functions and constraints in

a CMDP, we manage to show that by specifying an augmented state that keeps track of the risk evaluation in

subsequent stages, the optimal policies of the corresponding CMDPs indeed belong to the class of station-

ary Markovian policies (with respect to the augmented states), for the risk-sensitive objective functions and

constraints considered in this thesis (see Chapter 2, 3 and 5).

1.3 Overview of Risk Measures

1.3.1 Sources of Uncertainty in MDPs

Under the framework of MDPs, we hereby describe the two sources of uncertainty, i.e., inherent-uncertainty

and model-uncertainty, incurred by the cumulated cost random variable. Inherent-uncertainty describes the

uncertainty from stochastic transitions of a single, well-defined MDP. On the other hand, model-uncertainty

characterizes the inaccuracy of transition probability and immediate cost of an MDP. In general, inherent-

uncertainty accounts for the cost variability due to the stochasticity of an MDP, whereas model-uncertainty

accounts for the errors in MDP representations.

The most widely-adopted optimization criterion for MDPs is represented by the risk-neutral expectation

of a cumulative cost. This approach, while being popular and attractive from a computational standpoint,
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neither takes into account the variability of the cost (i.e., fluctuations around the mean) nor its sensitivity to

modeling errors, and it may significantly affect overall performance [81]. Risk-sensitive MDPs [61] address

the first aspect by replacing the risk-neutral expectation with a risk-measure of the total discounted cost,

such as exponential utility, a variance-related measure and percentile risk measures (namely Value-at-Risk

(VaR), or Conditional-VaR (CVaR)). Robust MDPs [92], on the other hand, address the second aspect by

defining a set of plausible MDP parameters and optimize decision with respect to the expected cost under

worst-case parameters. Indeed by using the representation theorem of coherent risk (Theorem 1.3.3), one

can also show that Robust MDPs are equivalent to risk-sensitive MDPs with dynamic coherent risk metrics.

Thus the problem of controlling cost variability and robustness in modeling errors of MDPs is equivalent

to risk shaping, i.e., to construct a “good” risk criterion in a manner that is both conceptually meaningful

and computationally tractable. While there are numerous off-the-shelf risk metrics available in the literature

(for example, see the overview of risk metrics in Section 1.3.3 to Section 1.3.5), oftentimes risk shaping still

presents a nontrivial challenge to system designers.

1.3.2 Entropic Risk and its Limitations

Although most disturbances are not normally distributed, the Markowitz mean-variance criterion [84], which

relies on the first two moments of the distribution, has dominated risk management for over 50 years.

However, solving a multi-stage stochastic optimal control problem using the mean-variance criterion is

often computationally intractable [82]. This motivates the use of more computationally feasible metrics

such as the entropic risk: ρ(X) = log
(
E[eθX ]

)
/θ, θ ∈ (0, 1) [61]. Notice that the first two terms of

the Taylor series expansion of ρ(X) form a weighted sum of mean and variance with regularizer θ, i.e.

ρ(X) ≈ E(X) + θE(X − E[X])2.

Contrary to its popularity in literature, practical applications of the entropic risk metric have proven to be

problematic [23]. The primary concerns are that the optimal control policies heavily weight a small number

of risk averse decisions [56, 59] and are extremely sensitive to errors in the distribution models. Example

1.3.1 provides a counter-example that illustrates this issue in entropic risk. While the importance of risk

aversion is clear from a financial standpoint [154, 153], a deficiency in the “exploration” characteristics of a

policy is undesirable in many engineering applications. Consider a robotic terrain-mapping mission where

the goal is to deploy a swarm of mini-drones for cost effective exploration and the actions represent the

routes chosen for each robotic agent. If one optimizes the cost of routing using the mean-variance risk, the

optimal policy would only consider a select few cost-effective routes, which defeats the purpose of a mapping

mission. Therefore, to balance exploration (discover new terrain) and exploitation (find cost effective routes),

one should consider alternative risk metrics, e.g. conditional value at risk (CVaR), which only prohibits

exploration along dangerous terrains yet is not as conservative as the worst-case approach.

Example 1.3.1. Consider the following 3-stage, finite state example where one has the following state tran-

sitions if policy π1 is executed:
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x0

x1,1 x1,2

x2,1 x2,2 x2,3 x2,6x2,5x2,4

1/2 1/2

1/3 1/3 1/3 1/3 1/3 1/3

0 0

4 6 8 10 12 14

and one has the following state transitions if policy π2 is executed:

x0

x1,1 x1,2

x2,1 x2,2 x2,3 x2,6x2,5x2,4

1/2 1/2

0 0 1 0 1 0

0 0

4 6 8 10 12 14

Now for θ = 2, the entropic risk with respect to policy π1 and π2 is 13.113 and 11.654 respectively. On the

other hand, consider the conditional value-at-risk CVaR ρ(Z) = minν ν + 1
αE[Z − ν]+. With confidence

interval α = 0.6, the corresponding risk incurred by policy π1 and π2 is 10.833 and 12 respectively. Thus one

obtains a less diversified policy π2 (which only has non-zero probabilities on x2,3 and x2,5) when entropic

risk is optimized, in comparison to the uniform policy π1 (which is optimal to the minimization of CVaR risk).

Due to these potential issues arising in entropic risk measures, several approaches differing from the

standard expectation or entropic risk, have been studied in sequential decision making. In [49], the authors

considered the maximization of a strictly concave functional of the distribution of the terminal state. In [159,

31, 55], risk-sensitive MDPs are cast as the problem of maximizing percentile performance. Variance-related

risk metrics are considered, e.g., in [137, 54]. Other mean, variance, and probabilistic criteria for risk-

sensitive MDPs are discussed in the survey [157].

In the rest of this section, we briefly describe the theory of percentile, coherent and dynamic risk metrics,

on which we will rely extensively in the later chapters. The material presented in this section summarizes

several novel results in risk theory achieved in the past ten years. Our presentation strives to present this

material in an intuitive fashion and with a notation tailored to control engineering, machine learning, and

operations research applications.
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1.3.3 Percentile Risk Metrics

Let Z be a bounded-mean random variable, i.e., E[|Z|] <∞, on a probability space (Ω, H,P), with cumula-

tive distribution function F (z) = P(Z ≤ z). In this paper we interpret Z as a cost. The value-at-risk (VaR)

at confidence level α ∈ (0, 1) is the 1− α quantile of Z, i.e., VaRα(Z) = min
{
z | F (z) ≥ 1− α

}
.

VaRα(Z) = min
{
z | F (z) ≥ α

}
. (1.1)

The minimum in (1.1) is attained because F is non-decreasing and right-continuous in z. When F is con-

tinuous and strictly increasing, VaRα(Z) is the unique z satisfying F (z) = α; otherwise, (1.1) can have no

solution or a whole range of solutions. The VaR risk measure has many fundamental engineering applications

such as motion planning, where a safety constraint is imposed to create an upper-bound of the probability of

maneuvering into dangerous regimes.

Although VaR is a popular risk measure, it suffers from being unstable and difficult to work with numer-

ically when Z is not normally distributed, which is often the case as loss distributions tend to exhibit fat tails

or empirical discreteness. Moreover, VaR is not a coherent risk measure [7] and more importantly does not

quantify the losses that might be suffered beyond its value at the α-tail of the distribution [113].

In many financial applications such as portfolio optimization where the probability of undesirable events

could be small but the cost incurred could still be significant, besides describing risk as the probability of

incurring costs, it will be more informative to study the cost in the tail of the risk distribution. An alternative

measure that addresses most of the VaR’s shortcomings is conditional value-at-risk, CVaRα(Z), which is the

mean of the α-tail distribution of Z. If there is no probability atom at VaRα(Z), CVaRα(Z) has a unique

value that is defined as

CVaRα(Z) = min
w∈R

{
w +

1

α
E
[
(Z − w)+

]}
, (1.2)

where (x)+ = max(x, 0) represents the positive part of x. If there is no probability atom at VaRα(Z), it is

well known from Theorem 6.2 in [132] that CVaRα(Z) = E
[
Z | Z ≥ VaRα(Z)

]
. Therefore, CVaRα(Z) may

be interpreted as the worst-case expected value of Z, conditioned on the α-portion of the tail distribution. It is

well known that CVaRα(Z) is decreasing in α, CVaR1(Z) equals to E(Z), and CVaRα(Z) tends to max(Z)

as α ↓ 0. CVaR is especially useful for controlling rare, but potentially disastrous events, which occur below

the 1−α quantile, and are neglected by VaR [127]. Furthermore, CVaR enjoys desirable axiomatic properties,

such as coherence [7]. We refer to [112] for further motivation with respect to CVaR and a comparison with

other risk measures such as VaR.

A useful property of CVaR, which we exploit in this paper, is its alternative dual representation [7]:

CVaRα(Z) = max
ξ∈UCVaR(α,P)

Eξ[Z], (1.3)
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where Eξ[Z] denotes the ξ-weighted expectation of Z, and the risk-envelope UCVaR is given by

UCVaR(α,P) =

{
ξ : ξ(ω) ∈

[
0,

1

α

]
,

∫
ω∈Ω

ξ(ω)P(ω)dω = 1

}
.

Thus, the CVaR of a random variable Z may be interpreted as the worst-case expectation of Z under a

perturbed distribution ξP.

Accordingly, in Chapter 2 and 3, we will focus on sequential decision making with percentile risk mea-

sures characterized by VaR and CVaR.

1.3.4 Static, Coherent Measures of Risk

Consider a probability space (Ω,F ,P), where Ω is the set of outcomes (sample space), F is a σ-algebra over

Ω representing the set of events we are interested in, and P is a probability measure over F . In this paper we

will focus on disturbance models characterized by probability mass functions, hence we restrict our attention

to finite probability spaces (i.e., Ω has a finite number of elements or, equivalently, F is a finitely generated

algebra). Denote withZ the space of random variables Z : Ω 7→ (−∞,∞) defined over the probability space

(Ω,F ,P). In this paper a random variable Z ∈ Z is interpreted as a cost, i.e., the smaller the realization of

Z, the better. For Z,W , we denote by Z ≤W the point-wise partial order, i.e., Z(ω) ≤W (ω) for all ω ∈ Ω.

By a risk measure (or risk metric, we will use these terms interchangeably) we understand a function

ρ(Z) that maps an uncertain outcome Z into the extended real line R ∪ {+∞} ∪ {−∞}. In this paper we

restrict our analysis to coherent risk measures, defined as follows:

Definition 1.3.2 (Coherent Risk Measures). A coherent risk measure is a mapping ρ : Z → R, satisfying the

following four axioms:

A1 Convexity: ρ(λZ + (1− λ)W ) ≤ λρ(Z) + (1− λ)ρ(W ), for all λ ∈ [0, 1] and Z,W ∈ Z;

A2 Monotonicity: if Z ≤W and Z,W ∈ Z , then ρ(Z) ≤ ρ(W );

A3 Translation invariance: if a ∈ R and Z ∈ Z , then ρ(Z + a) = ρ(Z) + a;

A4 Positive homogeneity: if λ ≥ 0 and Z ∈ Z , then ρ(λZ) = λρ(Z).

These axioms were originally conceived in [7] and ensure the “rationality” of single-period risk assess-

ments (we refer the reader to [7] for a detailed motivation of these axioms). One of the main properties for

coherent risk metrics is the universal representation theorem [132], which establishes the connection between

coherent risk and distributionally robust expectation.

Theorem 1.3.3. A risk measure ρ : Z → R is coherent if and only if there exists a convex bounded and

closed set U ⊂ B such that2

ρ(Z) = max
ξ:ξP∈U(P )

Eξ[Z]. (1.4)

2When we study risk in MDPs, the risk-envelope U(P ) in Eq. 1.4 also depends on the state x and action a.
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The result essentially states that any coherent risk measure is an expectation w.r.t. a worst-case density

function ξP , chosen adversarially from a suitable set of test density functions U(P ), referred to as risk

evnelop. Moreover, it means that any coherent risk measure is uniquely represented by its risk evnelop. Thus,

in the sequel, we shall interchangeably refer to coherent risk-measures either by their explicit functional

representation, or by their corresponding risk-evnelop.

1.3.5 Dynamic, Time-Consistent Measures of Risk

Having motivated the need for risk-sensitive optimal control using metrics, we now address the challenges

associated with appropriately quantifying risk in multi-period scenarios. Oftentimes, it appears to be difficult

to model risk in multi-period settings in a way that matches intuition [87]. In particular, a common strategy

to include risk-aversion in multi-period contexts is to apply a static risk metric, which assesses risk from

the perspective of a single point in time, to the total cost of the future stream of random outcomes. How-

ever, due to the inability of risk re-evaluation in subsequent stages, using static risk metrics in multi-period

decision problems can lead to an over- or under-estimation of the true dynamic risk, as well as potentially

“inconsistent” behavior (see [62] and references therein).

This section provides a multi-period generalization of the concepts presented in Section 1.3.4 and follows

closely the discussion in [119]. Consider a probability space (Ω,F ,P), a filtration F0 ⊂ F1 ⊂ F2 · · · ⊂
FN ⊂ F , and an adapted sequence of real-valued random variables Zk, k ∈ {0, . . . , N}. We assume that

F0 = {Ω, ∅}, i.e., Z0 is deterministic. The variables Zk can be interpreted as stage-wise costs. For each

k ∈ {0, . . . , N}, denote with Zk the space of random variables defined over the probability space (Ω,Fk,P);

also, let Zk,N := Zk×· · ·×ZN . Given sequences Z = {Zk, . . . , ZN} ∈ Zk,N andW = {Wk, . . . ,WN} ∈
Zk,N , we interpret Z ≤W component-wise, i.e., Zj ≤Wj for all j ∈ {k, . . . , N}.

The fundamental question in the theory of dynamic risk measures is the following: how do we evaluate

the risk of the sequence {Zk, . . . , ZN} from the perspective of stage k? The answer, within the modern theory

of risk, relies on two key intuitive facts [119]. First, in dynamic settings, the specification of risk preferences

should no longer entail constructing a single risk metric but rather a sequence of risk metrics {ρk,N}Nk=0,

each mapping a future stream of random costs into a risk metric/assessment at time k. This motivates the

following definition.

Definition 1.3.4 (Dynamic Risk Measure). A dynamic risk measure is a sequence of mappings ρk,N :

Zk,N → Zk, k ∈ {0, . . . , N}, obeying the following monotonicity property:

ρk,N (Z)≤ρk,N (W ) for all Z,W ∈Zk,N such that Z ≤W.

The above monotonicity property (analogous to axiom A2 in Definition 1.3.2) is, arguably, a natural

requirement for any meaningful dynamic risk measure.

The second intuitive fact is that the sequence of metrics {ρk,N}Nk=0 should be constructed so that the risk

preference profile is consistent over time [43, 130, 62]. A widely accepted notion of time-consistency is as
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follows [119]: if a certain outcome is considered less risky in all states of the world starting at stage k + 1,

then it should also be considered less risky starting at stage k.

The following example (adapted from [115]) shows how dynamic risk measures as defined above might

indeed result in time-inconsistent, and ultimately undesirable, behaviors.

Example 1.3.5. Consider the simple setting whereby there is a final cost Z and one seeks to evaluate such

cost from the perspective of earlier stages. Consider the three-stage scenario tree in Figure 1.1, with the

elementary events Ω = {UU,UD,DU,DD}, and the filtration F0 = {∅,Ω}, F1 =
{
∅, {U}, {D},Ω

}
, and

F2 = 2Ω. Consider the dynamic risk measure:

ρk,N (Z) := max
ξ∈U

Eξ[Z|Fk], k = 0, 1, 2

where U contains two probability measures, one corresponding to p = 0.4, and the other one to p = 0.6

Assume that the random cost is Z(UU) = Z(DD) = 0, and Z(UD) = Z(DU) = 100. Then, one has

ρ1(Z)(ω) = 60 for all ω, and ρ0(Z)(ω) = 48. Therefore, Z is deemed strictly riskier than a deterministic

cost W = 50 in all states of nature at time k = 1, but nonetheless W is deemed riskier than Z at time k = 0,

which is a paradox!

p

1� p

U UU

UD

DU

DDD

p

p

1� p

1� p
R

Figure 1.1: Scenario Tree for Example 1.3.5.

It is important to note that there is nothing special about the selection of this example, similar paradoxical

results could be obtained with other risk metrics. We refer the reader to [119, 130, 62] for further insights

into the notion of time consistency and its practical relevance. The issue then is what additional “structural”

properties are required for a dynamic risk measure to be time consistent. We first provide a rigorous version

of the previous definition of time-consistency.

Definition 1.3.6 (Time Consistency ([119])). A dynamic risk measure {ρk,N}Nk=0 is time-consistent if, for all

0 ≤ l < k ≤ N and all sequences Z,W ∈ Zl,N , the conditions

Zi = Wi, i = l, . . . , k − 1, and

ρk,N (Zk, . . . , ZN ) ≤ ρk,N (Wk, . . . ,WN ),
(1.5)
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imply that

ρl,N (Zl, . . . , ZN ) ≤ ρl,N (Wl, . . . ,WN ).

As we will see in Theorem 1.3.8, the notion of time-consistent risk measures is tightly linked to the notion

of coherent risk measures, whose generalization to the multi-period setting is given below:

Definition 1.3.7 (Coherent One-step Conditional Risk Measures ([119])). A coherent one-step conditional

risk measure is a mapping ρk : Zk+1 → Zk, k ∈ {0, . . . , N − 1} with the following four properties:

• Convexity: ρk(λZ + (1− λ)W ) ≤ λρk(Z) + (1− λ)ρk(W ), ∀λ ∈ [0, 1] and Z,W ∈ Zk+1;

• Monotonicity: if Z ≤W then ρk(Z) ≤ ρk(W ), ∀Z,W ∈ Zk+1;

• Translation invariance: ρk(Z +W ) = Z + ρk(W ), ∀Z ∈ Zk and W ∈ Zk+1;

• Positive homogeneity: ρk(λZ) = λρk(Z), ∀Z ∈ Zk+1 and λ ≥ 0.

We are now in a position to state the main result of this section.

Theorem 1.3.8 (Dynamic, Time-consistent Risk Measures [119]). Consider, for each k ∈ {0, . . . , N}, the

mappings ρk,N : Zk,N → Zk defined as

ρk,N = Zk + ρk(Zk+1 + ρk+1(Zk+2 + . . .+ ρN−2(ZN−1 + ρN−1(ZN )) . . .)), (1.6)

where the ρk’s are coherent one-step conditional risk measures. Then, the ensemble of these mappings is a

dynamic, time-consistent risk measure.

Remarkably, Theorem 1 in [119] shows (under weak assumptions) that the “multi-stage composition” in

Equation (1.6) is indeed necessary for time consistency. Accordingly, in Chapter 4 and 5, we will focus on

sequential decision making with dynamic, time-consistent risk measures characterized in Theorem 1.3.8.

With dynamic, time-consistent risk measures, the value of ρk at stage k is Fk-measurable. Therefore in

general the evaluation of risk depends on the whole past (although in a time-consistent way). On the one

hand, this appears to have little value in most practical applications, on the other hand, inclusion of this risk

metric in an optimization problem potentially leads to intractability from a computational standpoint (and, in

particular, this structure inhibits a dynamic programming solution). Therefore, in this chapter we consider

a slight refinement of the concept of dynamic, time consistent risk measures, which involves a Markovian

structure in risk evaluation [119].

Definition 1.3.9 (Markov risk measures). Consider the MDP (X ,A, C, P, γ, x0). Let V := Lp(X ,B, P ) be

the space of random variables on X with finite pth moment. Given a controlled state process {xk} generated

by the MDP, a dynamic, time-consistent risk measure is a Markov risk measure if each coherent one-step risk

measure ρk : Zk+1 → Zk in equation (1.6) can be written as

ρk(V (xk+1)) = σk(V (xk+1), xk, ak, P (xk+1|xk, ak)), (1.7)
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for all V (xk+1) ∈ V and ak ∈ A(xk), where σk is a coherent one-step risk measure on V —with the

additional technical property that for every V (xk+1) ∈ V and ak ∈ A(xk) the function

xk 7→ σk(V (xk+1), xk, ak, P (xk+1|xk, ak))

is an element of V .

In other words, the evaluation of a Markov risk measure only depends on the current state of the MDP.

Example 1.3.10. An important example of a coherent one-step risk measure satisfying the requirements

presented in the definition of Markov risk measures (Definition 1.3.9) is the mean-semideviation risk function:

ρk(V ) = E [V ] + λ
(
E
[
[V − E [V ]]p+

])1/p

, (1.8)

where p ∈ [1,∞), [z]p+ := (max(z, 0))p, and λ ∈ [0, 1].

Other important examples include the conditional average value at risk and, of course, the risk-neutral

expectation [119].

Remark 1.3.11. Notwithstanding the time dependency that occurrs in the general definition of dynamic, time

consistent risk measure, in this thesis we mainly focus on its stationary counterpart, where the dynamic, time

consistent risk is a composition of homogenous and time-independent one-step coherent risk metrics, i.e.,

ρk,N = ρ ◦ · · · ◦ ρ︸ ︷︷ ︸
N−k

for any k ≤ N and N ∈ N.

1.4 Existing Solution Approaches and Limitations

In the previous section, we reviewed several classes of risk metrics that are commonly used in risk-sensitive

decision making problems. Nevertheless, inclusion of risk-awareness in MDPs is still difficult for several

reasons. First, it appears to be difficult to model risk in multi-period settings in a way that matches our

intuition of risk awareness; in particular widely adopted constraints such as variance or probability constraints

lead to irrational behaviors. Second, MDPs involving risk metrics tend to be computationally intractable; for

example, optimization under variance constraint and percentile optimization have been shown to be NP-hard

in general [82]. Limitations of the state of the art to address such challenges are provided below.

1.4.1 Time Inconsistency in Risk-aware Planning

The most common strategy to model risk awareness in MDPs is to consider a static risk (i.e., a metric as-

sessing risk from the perspective of a single point in time) applied to the entire stream of future costs. Typ-

ical examples include variance-constrained MDPs [104, 136, 145], or problems with probability constraints

[104, 94, 2, 155, 29]. However, since static risks do not involve an incremental reassessment of uncertain-

ties at subsequent decision stages, they generally lead to irrational behaviors. For example, an agent may
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decide to incur losses or may avoid visiting states that are favorable under any uncertainty realizations. In

this subsection, we will illustrate some irregular behaviors in risk sensitive multi-period planning by two

examples.

Example 1: Variance-constrained planning — Given an MDP with time horizon T > 0, state

space X , action space A, state transition xk+1 ∼ P (·|xk, ak) where xk ∈ X and ak ∈ A for

T > k ≥ 0, initial state x0 ∈ X , cost function ck : X × A → R and constraint cost function

dk : X ×A → R for k ∈ {0, . . . , T − 1}, solve

min
π∈ΠH

E
[∑T−1

k=0 ck(xk, ak)
]

subject to var

( T−1∑
k=0

dk(xk, ak)

)
≤ r0,

where ΠH is the set of history-depender policies and r0 ∈ R is a user-provided risk threshold.

Consider the example in Figure 1.2 in which all the cost functions are homogeneous in time. When the risk

threshold r0 is below 25, policy π1 is infeasible and the optimal policy is π2. According to policy π2, if the

decision maker does not incur a cost in the first stage it seeks to incur losses in subsequent stages to keep the

variance small. This can be seen as a consequence of the fact that Bellman’s principle of optimality does not

hold for this class of problems.

As a second example, we consider MDPs with probability (chance) constraints. Intuitively, this risk-

constrained decision-making problem serves as the foundation of many safe-planning tasks in engineering

and robotics.

Example 2: Chance-constrained planning — Given an MDP with time horizon T > 0, state

space X , action space A, state transition xk+1 ∼ P (·|xk, ak) where xk ∈ X and ak ∈ A for

T > k ≥ 0, initial state x0 ∈ X , terminal cost function c : X → R and constraint cost function

d : X → R, solve

min
π

E [c(xT )]

subject to P
(
d(xT ) ≤ r0

)
≥ α,

where r0 ∈ R is a user-provided risk threshold.

Accordingly consider the example in Figure 1.3. Here we interpret the constraint costs d as acceptable if

it is negative and unacceptable otherwise. Also let the constraint cost threshold r0 be 0 and confidence level

α be 2/3. One can show that the problem (consisting of a single policy) is infeasible, since at the first stage

P( d(xT ) ≤ 0 ) < 2/3. On the other hand, the constraint costs are acceptable in every state of the world from

the perspective of the subsequent stage. In other words, the decision-maker would deem infeasible a problem

that, at the second stage, appears feasible under any possible realization of the uncertainties.
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(a) Stage-wise constraint and objective function costs and tran-
sition probabilities for policy π1.

(b) Stage-wise constraint and objective function costs and tran-
sition probabilities for policy π2.

Figure 1.2: Limitations of mean-variance optimization. Underlined numbers along the edges represent transi-
tion probabilities; non-underlined numbers represent stage-wise constraint and objective function costs (that
are equal for this example). Terminal constraint costs are zero. Under policy π1, the costs per stage are given
by d(x0, a0) = 0.5 · 0 + 0.5 · 10 = 5, d(x1, a1) = 10, and d(x2, a1) = 10; under policy π2, the costs per
stage are given by d(x0, a0) = 5, d(x1, a1) = 20, and d(x2, a1) = 10. One can verify that for policy π1 one
has var

(∑N−1
k=0 d(xk, ak)

)
= 25, while for policy π2 one has var

(∑N−1
k=0 d(xk, ak)

)
= 0. Then, if the risk

threshold is less than 25, the decision-maker would choose policy π2 and would seek to incur losses in order
to keep the variance small enough.

Notice that similar there is nothing particularly special about the aforementioned risk-constrained prob-

lems. Similar paradoxical results could be obtained from other constrained planning problems with static

risk constraints or from risk-sensitive control problems that relies on static risk metrics [119]. Subsequently,

we will refer to the aforementioned irrational behaviors as “time-inconsistency”, since the corresponding

solution policy is an inconsistent state-action mapping at different decision stages and risk levels.

1.4.2 Limitation 2: Complexity of solution approaches

Risk-aware planning falls under the category of stochastic decision-making, with the extra complexity that

Bellman’s principle of optimality does not hold in the general setting, and Markovian (and stationary) poli-

cies are no longer optimal. Moreover, as mentioned before, optimization under static risk constraints such

as variance constraints and probability constraints have been shown to be NP-hard [82]. Therefore current

approaches to risk-constrained planning are mostly limited to global search methods such as mixed-integer

linear-programming [16] and branch-and-bound techniques [140], whose applications are restricted to low-

dimensional problems with relatively simple constraints (i.e., stochastic constraints that are induced by Gaus-

sian distributions), dynamics (i.e., linear dynamics), and cost functions (i.e., quadratic cost). In contrast, by

choosing risk metrics that results in rational decision-making and enjoys a compositionally efficient structure,
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Figure 1.3: Limitations of chance-constrained optimization. The numbers along the edges represent transition
probabilities, while the numbers below the terminal nodes represent the stage-wise constraint costs. The
problem involves a single control policy (hence there is a unique transition graph). The constraint cost
appears acceptable in states x1 and x2, but unacceptable from the perspective of the first stage in state x0.

we can address a more general class of risk-aware planning problems via the dynamic programing approach,

which further leads to the development of reinforcement learning based solution algorithms that contain

provable performance guarantees and are amenable to large-scale implementations.

1.5 Risk-sensitive Decision Making Versus Reward Shaping

To motivate our research in risk-sensitive decision making, we first compare risk-sensitive decision making

with reward shaping, a standard technique that is used in literature of risk-neutral decision making, where

one imposes safety guarantees by customizing reward functions of the MDP in particular regions of state and

action spaces. While it has been shown in [61] that reward shaping is equivalent to risk-sensitive decision

making with entropic risk measures, in several occasions where one also aims at maximizing the robustness

of policies, the limitation of reward shaping can be clearly seen.

Recently it has been studied in [109] that, risk-sensitive reinforcement learning using conditional value-

at-risk (CVaR) can be used to guarantee robustness and reduce sample complexity, when one solves for a

policy using an ensemble of simulated source domains, and deploys this generalized policy to a broad range

of possible target domains, including un-modeled effects. This result is important for applying reinforcement

learning to tackle real-world tasks, especially when the policies are represented using rich function approxi-

mations like deep neural networks. Furthermore, it can be shown that risk-sensitive decision making with a

CVaR objective function articulates a special form of adversarial training in policy learning, where one also

takes the tail distribution of worst-case events into the account. Equipped with this feature, it allows addi-

tional guarantees in performance transfer in between domains, even when there are significant discrepancies

between the simulated source domain and the target domain. Contrarily, it can be challenging to apply reward

shaping in this case mostly because the uncertainties are originated from the modeling errors across domains.

It has also been shown in [100] that, using reward-shaping to solve an optimal control problem with model

uncertainties often leads to a larger sub-optimality gap.
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Another advantage of adopting risk-sensitive decision making over reward shaping is its ability to capture

sequential risk sensitivity. To illustrate this behavior, consider an example of a soccer game that is composed

of complicated strategies, such as attack and defend, based on the status of the game (see [79] for detailed

discussions). Consider a team that is one score behind, and there is only ten minutes remaining. In this case,

the team needs to play aggressively, such as making long passes and shooting from distance, to maximize

the likelihood to to score before the game ends. In the opposite way, if the team is winning by one goal with

ten minutes remaining, the team needs to play conservatively in order to prevent its opponent from scoring

goals. While both scenarios share the same cumulative objective function, which is to score more and win the

game, it is clear that by optimizing the strategy with risk-aware decision making techniques, one can generate

policies under various risk attitudes, and allow the policy to adapt to real-time changes. However, to the best

of our knowledge, it is unclear how one can design such a strategy with standard reward shaping techniques.

1.6 Thesis Contributions and Outline

To address the aforementioned limitations in risk-aware planning, at a high level this thesis investigates

several important aspects in the aforementioned risk-sensitive sequential decision-making problem by taking

into account the variability of stochastic costs and the robustness to modeling errors. In particular,

• we address decision-making problems in which the percentile (tail) risks are considered;

• we analyze a unifying planning framework with coherent risk measures, which is robust to inherent

uncertainties and modeling errors, and the resulting risk-sensitive decision-making problem outputs a

rational, time-consistent policy;

• we develop tractable algorithms for large scale risk-sensitive decision-making problems and extend

these approaches to data-driven setups.

Based on the previously reviewed background knowledge on Markov decision processes (MDPs), con-

strained Markov decision processes (CMDPs), and theories on both static and dynamic risk measures in this

chapter, we outline the content of the four chapters dedicated to each of these questions below, leaving the

literature review and the precise statement of contributions to the introduction section of each chapter.

In Chapter 2, we investigate the well-known conditional value-at-risk (CVaR) MDP problem and propose

a scalable approximate value-iteration algorithm on an augmented state space. In addition, we discover an

interesting relationship between the CVaR risk of total cost and the worst-case expected cost under adversarial

model perturbations, which leads to a robustness framework that is significantly less conservative than robust-

MDP.

In Chapter 3, we study the CMDP problem formulation whose constraints are modeled via percentile

risks, such as CVaR and tail event probability. We also propose novel policy gradient and actor-critic algo-

rithms for CVaR-constrained and chance-constrained optimization in MDPs, and illustrate the effectiveness

of our algorithms using an optimal stopping problem and a personalized ad-recommendation problem.
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In Chapter 4, we propose a framework for risk-averse model predictive control (MPC), where the risk

metric is chosen to be the time-consistent Markov risk. We also present a solution algorithm that can be

implemented using semidefinite programming techniques, study its performance in terms of sub-optimality

gap, and numerically illustrate its superiority over existing risk-neutral MPC methods.

In Chapter 5, we study a dynamic programming approach to stochastic optimal control problems with

dynamic, time-consistent (in particular Markov) risk constraints. In particular we show that the optimal

cost functions could be computed by value iteration and that the optimal control policies can be constructed

recursively. Furthermore we propose both a uniform-grid discretization algorithm and an interpolation-based

approximate dynamic programming algorithm for the solution of this stochastic optimal control problem.



Chapter 2

Risk-Sensitive Decision Making: A
CVaR Optimization Approach

2.1 Introduction
2.1.1 Risk Sensitive Decision Making with CVaR

In this work we consider risk-sensitive MDPs with a CVaR objective, referred to as CVaR MDPs. CVaR

[7, 112] is a risk-measure that is rapidly gaining popularity in various engineering applications, for instance,

finance, due to its favorable computational properties [7] and superior ability to safeguard a decision maker

from the “outcomes that hurt the most” [127]. In this work, by relating risk to robustness, we derive a

novel result that further motivates the usage of a CVaR objective in a Decision Making context. Specifically,

we show that the CVaR of a discounted cost in an MDP is equivalent to the expected value of the same

discounted cost in the presence of worst-case perturbations of the MDP parameters (specifically, transition

probabilities), provided that such perturbations are within a certain error budget. This result suggests CVaR

MDP as a method for decision making under both cost variability and model uncertainty, which in turn

suggests its usefulness as a unified framework for planning under uncertainty.

Risk-sensitive MDPs have been studied for over four decades, with earlier efforts focusing on exponen-

tial utility [61], mean-variance [137], and percentile risk criteria [55] . Recently, for the reasons explained

above, several authors have investigated CVaR MDPs [112]. Specifically, in [36], the authors propose a dy-

namic programming algorithm for finite-horizon risk-constrained MDPs where risk is measured according to

CVaR. The algorithm is proven to asymptotically converge to an optimal risk-constrained policy. However,

the algorithm involves computing integrals over continuous variables (Algorithm 1 in [36]) and, in general,

its implementation appears extraordinarily difficult. In [10], the authors investigate the structure of CVaR

optimal policies and show that a Markov policy is optimal on an augmented state space, where the additional

(continuous) state variable is represented by the running cost. In [60], the authors leverage this result to

18
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design an algorithm for CVaR MDPs that relies on discretizing occupation measures in the augmented-state

MDP. This approach, however, involves solving a non-convex program via a sequence of linear-programming

approximations, which can only be shown to converge asymptotically. A different approach is taken by [46],

[105] and [146], which consider a finite dimensional parameterization of control policies, and show that a

CVaR MDP can be optimized to a local optimum using stochastic gradient descent (policy gradient). A re-

cent result by Pflug and Pichler [102] showed that by using a state-augmentation procedure different from

the one in [10], CVaR MDPs admit a dynamic programming formulation. However in this formulation, the

augmented state is also continuous, making the design of a solution algorithm challenging.

2.1.2 Chapter Contribution

The contribution of this chapter is twofold. First, as discussed above, we provide a novel interpretation

for CVaR MDPs in terms of robustness to modeling errors. This result is of independent interest and fur-

ther motivates the usage of CVaR MDPs for decision making under uncertainty. Second, we provide a new

optimization algorithm for CVaR MDPs, which leverages the state augmentation procedure introduced by

Pflug and Pichler [102]. We overcome the aforementioned computational challenges (due to the continu-

ous augmented state) by designing an algorithm that merges approximate value iteration [17] with linear

interpolation. Remarkably, we are able to provide explicit error bounds and convergence rates based on

contraction-style arguments. In contrast to the algorithms in [36, 60, 46, 146], given the explicit MDP model

our approach leads to finite-time error guarantees with respect to the globally optimal policy. In addition,

our algorithm is significantly simpler than previous methods, and calculates the optimal policy for all CVaR

confidence intervals and initial states simultaneously. The practicality of our approach is demonstrated in

numerical experiments involving planning a path on a grid with thousands of states. To the best of our knowl-

edge, this is the first algorithm to approximate globally-optimal policies for non-trivial CVaR MDPs whose

error depends on the resolution of interpolation.

2.1.3 Chapter Organization

This chapter is structured as follows: In Section 2.2 we provide background on CVaR and MDPs. We

then state the problem we wish to solve (i.e., CVaR MDPs), and motivate the CVaR MDP formulation by

establishing a novel relation between CVaR and model perturbations. Section 2.3 provides the basis for our

solution algorithm, based on a Bellman-style equation for the CVaR. Then, in Section 2.4 we present our

algorithm and correctness analysis. In Section 2.7 we evaluate our approach via numerical experiments.

Finally, complete proofs of the technical results can be found in Section 7.1.
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2.2 Problem Formulation and Motivation

2.2.1 Problem Formulation

Let C(xt, at) denote the stage-wise costs observed along a state/control trajectory in the MDP model. The

risk-sensitive discounted-cost problem we wish to address is as follows:

min
µ∈ΠH

CVaRα

(
lim
T→∞

T∑
t=0

γtC(xt, at)

∣∣∣∣∣x0, µ

)
, (2.1)

where µ = {µ0, µ1, . . .} is the policy sequence with actions at = µt(ht) for t ∈ {0, 1, . . .}. We refer to

problem (2.1) as CVaR MDP.

The problem formulation in (2.1) directly addresses the aspect of risk sensitivity, as demonstrated by the

numerous applications of CVaR optimization in finance (see, e.g., [114, 64, 52]) and the recent approaches for

CVaR optimization in MDPs [36, 60, 46, 146]. In the following, we show a new result providing additional

motivation for CVaR MDPs, from the point of view of robustness to modeling errors.

2.2.2 Motivation - Robustness to Modeling Errors

We show a new result relating the CVaR objective in (2.1) to the expected discounted-cost in the presence

of worst-case perturbations of the MDP parameters, where the perturbations are budgeted according to the

“number of things that can go wrong.” Thus, by minimizing CVaR, the decision maker also guarantees ro-

bustness of the policy.

Consider a trajectory

(x0, a0, . . . , xT )

in a finite-horizon MDP problem with transition probability Pt(xt|xt−1, at−1). We explicitly denote the

time index of the transition matrices for reasons that will become clear shortly. The total probability of the

trajectory is

P (x0, a0, . . . , xT ) = P0(x0) · · ·PT (xT |xT−1, aT−1),

and
∑T
t=0 γ

tC(xt, at) is its discounted cost.

We consider an adversarial setting, where an adversary is allowed to change the transition probabilities

at each stage, under some budget constraints. We will show that, for a specific budget and perturbation

structure, the expected cost under the worst-case perturbation is equivalent to the CVaR of the cost. Thus,

we shall establish that, from this perspective, being risk averse is equivalent to being robust against model

perturbations.

For each stage 1 ≤ t ≤ T , consider a perturbed transition kernel P̂t = Pt ◦ δt, where δt ∈ RX×A×X is

a multiplicative probability perturbation and ◦ is the Hadamard product (a.k.a. elementwise product), under

the condition that P̂t is a stochastic matrix, i.e.,
∑
x′ P̂t(x

′|x, a) = 1 ∀x ∈ X , a ∈ A, and P̂t(x′|x, a) ≥
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0 ∀x′, x ∈ X , a ∈ A. Let ∆t denote the set of perturbation matrices that satisfy this condition, and let

∆ = ∆1 × · · · ×∆T denote the set of all possible perturbations to the trajectory distribution.

We now impose a budget constraint on the perturbations as follows. For some budget η ≥ 1, we consider

the constraint

δ1(x1|x0, a0)δ2(x2|x1, a1) · · · δT (xT |xT−1, aT−1) ≤ η, ∀x0, . . . , xT ∈ X , ∀a0, . . . , aT−1 ∈ A. (2.2)

Essentially, the product in Eq. (2.2) states that with small budget the worst cannot happen at each time.

Instead, the perturbation budget has to be split (multiplicatively) along the trajectory. We note that Eq. (2.2)

is in fact a constraint on the perturbation matrices, and we denote by ∆η ⊂ ∆ the set of perturbations that

satisfy this constraint with budget η. The following result shows an equivalence between the CVaR and the

worst-case expected loss.

Proposition 2.2.1 (Interpretation of CVaR as Robustness Measure). It holds

CVaR 1
η

(
T∑
t=0

γtC(xt, at)

)
= sup

(δ1,...,δT )∈∆η

EP̂

[
T∑
t=0

γtC(xt, at)

]
, (2.3)

where EP̂ [·] denotes expectation with respect to a Markov chain with transitions P̂t.

While the full proof of this proposition can be found in the Appendix, it is instructive to compare Propo-

sition 2.2.1 with the dual representation of CVaR in (1.3) where both results convert the CVaR risk into a

robustness measure. Note, in particular, that the perturbation budget in Proposition 2.2.1 has a temporal

structure, which constrains the adversary from choosing the worst perturbation at each time step.

Remark 2.2.2. An equivalence between robustness and risk-sensitivity was previously suggested by Osogami

[95]. In that study, the iterated (dynamic) coherent risk was shown to be equivalent to a robust MDP [63] with

a rectangular uncertainty set. The iterated risk (and, correspondingly, the rectangular uncertainty set) is very

conservative [160], in the sense that the worst can happen at each time step. In contrast, the perturbations

considered here are much less conservative. In general, solving robust MDPs without the rectangularity

assumption is NP-hard. Nevertheless, Mannor et. al. [80] showed that, for cases where the number of

perturbations to the parameters along a trajectory is upper bounded (budget-constrained perturbation), the

corresponding robust MDP problem is tractable. Analogous to the constraint set (1) in [80], the perturbation

set in Proposition 2.2.1 limits the total number of log-perturbations along a trajectory. Accordingly, we shall

later see that optimizing problem (2.1) with perturbation structure (2.2) is indeed also tractable.

The next section provides the fundamental theoretical ideas behind our approach to the solution of (2.1).
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2.3 Bellman Equation for CVaR

In this section, by leveraging a recent result from [102], we present a dynamic programming (DP) formulation

for the CVaR MDP problem in (2.1). As we shall see, the value function in this formulation depends on

both the state and the CVaR confidence level α. We then establish important properties of such a dynamic

programming formulation, which will later enable us to derive an efficient dynamic programming-based

approximate solution algorithm and provide correctness guarantees on the approximation error. As mentioned

in Section 4.1, all proofs are presented in the Appendix.

Our starting point is a recursive decomposition of CVaR, whose proof is detailed in Theorem 10 of [102].

Theorem 2.3.1 (CVaR Decomposition, Theorem 21 in [102]). For any t ≥ 0, denote byZ = (Zt+1, Zt+2, . . . )

the cost sequence from time t + 1 onwards. The conditional CVaR under policy µ, i.e., CVaRα(Z | ht, µ),

obeys the following decomposition:

CVaRα(Z | ht, µ) = max
ξ∈UCVaR(α,P (·|xt,at))

E
[
ξ(xt+1)·CVaRαξ(xt+1)(Z |ht+1, µ)

∣∣∣∣ht, µ],
where at is the action induced by policy µt(ht), and the expectation is with respect to xt+1.

Theorem 2.3.1 concerns a fixed policy µ; we now extend it to a general dynamic programming formu-

lation. Specific to our problem setup, we replace the supremum operator in Theorem 21 of [102] with the

maximum operator because the feasibility set UCVaR(α, P (·|xt, at) is a convex and compact subset of real

vectors, and by Theorem 10 of [113], the objective function E
[
ξ(xt+1) ·CVaRαξ(xt+1)(Z | ht+1, µ)

∣∣∣∣ht, µ]
is a continuous function of the real vector ξ. Note that in the recursive decomposition in Theorem 2.3.1 the

right-hand side involves CVaR terms with different confidence levels than the one in the left-hand side. Ac-

cordingly, we augment the state space X with an additional continuous state Y = (0, 1], which corresponds

to the confidence level. For any x ∈ X and y ∈ Y , the value-function V (x, y) for the augmented state (x, y)

is defined as:

V (x, y) = min
µ∈ΠH

CVaRy

(
lim
T→∞

T∑
t=0

γtC(xt, at) | x0 = x, µ

)
.

Similar to standard dynamic programming, it is convenient to work with operators defined on the space of

value functions [17]. In our case, Theorem 2.3.1 leads to the following definition of CVaR Bellman operator

T : X × Y → X × Y:

T[V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a)

]
. (2.4)

We now establish several useful properties for the Bellman operator T[V ].

Lemma 2.3.2 (Properties of CVaR Bellman Operator). The Bellman operator T[V ] has the following prop-

erties:
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1. (Contraction.) ‖T[V1]−T[V2]‖∞ ≤ γ‖V1 − V2‖∞, where ‖f‖∞=supx∈X ,y∈Y |f(x, y)|.

2. (Concavity preserving in y.) For any x ∈ X , suppose yV (x, y) is concave in y ∈ Y . Then the

maximization problem in (2.4) is concave. Furthermore, yT[V ](x, y) is concave in y.

The first property in Lemma 2.3.2 is similar to standard dynamic programming [17], and is instrumental

to the design of a converging value-iteration approach. The second property is nonstandard and specific to

our approach. It will be used to show that the computation of value-iteration updates involves concave, and

therefore tractable optimization problems. Furthermore, it will be used to show that a linear-interpolation of

V (x, y) in the augmented state y has a bounded error.

Equipped with the results in Theorem 2.3.1 and Lemma 2.3.2, we can now show that the fixed-point

solution of T[V ](x, y) = V (x, y) is unique, and equals to the solution of the CVaR MDP problem (2.1) with

x0 = x and α = y.

Theorem 2.3.3 (Optimality Condition). For any x ∈ X and y ∈ (0, 1], the solution to T[V ](x, y) = V (x, y)

is unique, and equals to

V ∗(x, y)= min
µ∈ΠH

CVaRy

(
lim
T→∞

T∑
t=0

γtC(xt, at) | x0 =x, µ

)
.

Next, we show that the optimal value of the CVaR MDP problem (2.1) can be attained by a stationary

Markov policy, defined as a greedy policy with respect to the value function V ∗(x, y). Thus, while the original

problem is defined over the intractable space of history-dependent policies, a stationary Markov policy (over

the augmented state space) is optimal, and can be readily derived from V ∗(x, y). Furthermore, an optimal

history-dependent policy can be readily obtained from an (augmented) optimal Markov policy according to

the following theorem.

Theorem 2.3.4 (Optimal Policies). Let π∗H = {µ0, µ1, . . .} ∈ ΠH be a history-dependent policy recursively

defined as:

µk(hk) = u∗(xk, yk), ∀k ≥ 0, (2.5)

with initial conditions x0 and y0 = α, and state transitions

xk ∼ P (· | xk−1, u
∗(xk−1, yk−1)), yk = yk−1ξ

∗
xk−1,yk−1,u∗

(xk), ∀k ≥ 1, (2.6)

where the stationary Markovian policy u∗(x, y) and risk factor ξ∗x,y,u∗(·) are solution to the min-max opti-

mization problem in the CVaR Bellman operator T[V ∗](x, y). Then, π∗H is an optimal policy for problem

(2.1) with initial state x0 and CVaR confidence level α.

Theorems 2.3.3 and 2.3.4 suggest that a value-iteration method [17] can be used to solve the CVaR MDP

problem (2.1). Let an initial value-function guess V0 : X × Y → R be chosen arbitrarily. Value iteration
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proceeds recursively as follows:

Vk+1(x, y) = T[Vk](x, y), ∀(x, y) ∈ X × Y, k ∈ {0, 1, . . . , }. (2.7)

Specifically, by combining the contraction property in Lemma 2.3.2 and uniqueness result of fixed point

solutions from Theorem 2.3.3, one concludes that limk→∞ Vk(x, y) = V ∗(x, y). By selecting x = x0 and

y = α, one immediately obtains

V ∗(x0, α) = min
µ∈ΠH

CVaRα

(
lim
T→∞

T∑
t=0

γtC(xt, at) | x0, µ

)
.

Furthermore, an optimal policy may be derived from V ∗(x, y) according to the policy construction procedure

given in Theorem 2.3.4.

Unfortunately, while value iteration is conceptually appealing, its direct implementation in our setting

is generally impractical since, chiefly, the state variable y is continuous. In the following, we pursue an

approximation to the value iteration algorithm (2.7), based on a linear interpolation scheme for y.

2.4 Value Iteration with Linear Interpolation

In this section we present an approximate dynamic programming algorithm for solving CVaR MDPs, based

on the theoretical results of Section 2.3. The value iteration algorithm in Eq. (2.7) presents two main im-

plementation challenges. The first is due to the fact that the augmented state y is continuous. We handle

this challenge by using interpolation, and exploit the concavity of yV (x, y) to bound the error introduced by

this procedure. The second challenge stems from the the fact that applying T involves maximizing over ξ.

Our strategy is to exploit the concavity of the maximization problem to guarantee that such optimization can

indeed be performed effectively.

As discussed, our approach relies on the fact that the Bellman operator T preserves concavity as estab-

lished in Lemma 2.3.2. Accordingly, we require the following assumption for the initial guess V0(x, y),

Assumption 2.4.1. The guess for the initial value function V0(x, y) satisfies the following properties: 1)

yV0(x, y) is concave in y ∈ Y and 2) V0(x, y) is continuous and bounded in y ∈ Y for any x ∈ X .

Assumption 2.4.1 may easily be satisfied, for example, by choosing V0(x, y) = CVaRy(Z | x0 = x),

where Z is any arbitrary bounded random variable. As stated earlier, a key difficulty in applying value

iteration (2.7) is that, for each state x ∈ X , the Bellman operator has to be calculated for each y ∈ Y , and

Y is continuous. As an approximation, we propose to calculate the Bellman operator only for a finite set of

values y, and interpolate the value function in between such interpolation points.

Formally, let N(x) denote the number of interpolation points. For every x ∈ X , denote by Y(x) ={
y1, . . . , yN(x)

}
∈ [0, 1]N(x) the set of interpolation points. We denote by Ix[V ](y) the linear interpolation
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Algorithm 1 CVaR Value Iteration with Linear Interpolation

1: Given:

• N(x) interpolation points Y(x) =
{
y1, . . . , yN(x)

}
∈ [0, 1]N(x) for every x ∈ X with yi < yi+1,

y1 = 0 and yN(x) = 1.

• Initial value function V0(x, y) that satisfies Assumption 2.4.1.

2: For t = 1, 2, . . .

• For each x ∈ X and each yi ∈ Y(x), update the value function estimate as follows:

Vt(x, yi) = TI [Vt−1](x, yi),

3: Set the converged value iteration estimate as V̂ ∗(x, yi), for any x ∈ X , and yi ∈ Y(x).

of the function yV (x, y) on these points, i.e.,

Ix[V ](y) = yiV (x, yi) +
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi
(y − yi),

where yi = max {y′ ∈ Y(x) : y′ ≤ y} and yi+1 is the closest interpolation point such that y ∈ [yi, yi+1].

The interpolation of yV (x, y) instead of V (x, y) is key to our approach. The motivation is twofold: first, it

can be shown [112] that for a discrete random variable Z, y CVaRy(Z) is piecewise linear in y. Second, one

can show that the Lipschitzness of y V (x, y) is preserved during value iteration, and exploit this fact to bound

the linear interpolation error.

We now define the interpolated Bellman operator TI as follows:

TI [V ](x, y) = min
a∈A

[
C(x, a) + γ max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a)

]
. (2.8)

Remark 2.4.2. Notice that by L’Hospital’s rule one has limy→0 Ix[V ](yξ(x))/y = V (x, 0)ξ(x). This

implies that at y = 0 the interpolated Bellman operator is equivalent to the original Bellman operator, i.e.,

T[V ](x, 0) = mina∈A
{
C(x, a) + γmaxx′∈X :P (x′|x,a)>0 V (x′, 0)

}
= TI [V ](x, 0).

Algorithm 1 presents CVaR value iteration with linear interpolation. The only difference between this

algorithm and standard value iteration (2.7) is the linear interpolation procedure described above. In the

following, we show that Algorithm 1 converges, and bound the error due to interpolation. We begin by

showing that the useful properties established in Lemma 2.3.2 for the Bellman operator T extend to the

interpolated Bellman operator TI .

Lemma 2.4.3 (Properties of interpolated Bellman operator). TI [V ] has the same properties of T[V ] as in

Lemma 2.3.2, namely 1) contraction and 2) concavity preservation.
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Lemma 2.4.3 implies several important consequences for Algorithm 1. The first one is that the maxi-

mization problem in (2.8) is concave, and thus may be solved efficiently at each step. This guarantees that

the algorithm is tractable. Second, the contraction property in Lemma 2.4.3 guarantees that Algorithm 1

converges, i.e., there exists a value function V̂ ∗ ∈ R|X |×|Y| such that limn→∞Tn
I [V0](x, yi) = V̂ ∗(x, yi).

In addition, the convergence rate is geometric and equals γ.

The following theorem provides an error bound between approximate value iteration and exact value

iteration (2.1) in terms of the interpolation resolution.

Theorem 2.4.4 (Convergence and Error Bound). Suppose the initial value function V0(x, y) satisfies As-

sumption 2.4.1 and let ε > 0 be an error tolerance parameter. For any state x ∈ X and step t ≥ 0, choose

y2 > 0 such that Vt(x, y2)− Vt(x, 0) ≥ −ε and update the interpolation points according to the logarithmic

rule: yi+1 = θyi, ∀i ≥ 2, with uniform constant θ ≥ 1. Then, Algorithm 1 has the following error bound:

0 ≥ V̂ ∗(x0, α)− min
µ∈ΠH

CVaRα

(
lim
T→∞

T∑
t=0

γtC(xt, at) | x0, µ

)
≥ −γ

1− γO ((θ − 1) + ε) ,

and the following finite time convergence error bound:∣∣∣∣∣Tn
I [V0](x0, α)− min

µ∈ΠH
CVaRα

(
lim
T→∞

T∑
t=0

γtC(xt, at) | x0, µ

)∣∣∣∣∣ ≤ O ((θ − 1) + ε)

1− γ + O(γn).

Theorem 2.4.4 shows that 1) the interpolation-based value function is a conservative estimate for the op-

timal solution to problem (2.1); 2) the interpolation procedure is consistent, i.e., when the number of interpo-

lation points is arbitrarily large (specifically, ε→ 0 and yi+1/yi → 1), the approximation error tends to zero;

and 3) the approximation error bound is O((θ− 1) + ε), where log θ is the log-difference of the interpolation

points, i.e., log θ = log yi+1 − log yi, ∀i. In the above theorem, the big-O notation implies that there exists a

real numberM > 0 such that the error bound V̂ ∗(x0, α)−minµ∈ΠH CVaRα
(

limT→∞
∑T
t=0 γ

tC(xt, at) | x0, µ
)

is lower-bounded by −γM((θ − 1) + ε)/(1− γ).

For a pre-specified ε, the condition Vt(x, y2) − Vt(x, 0) ≥ −ε may be satisfied by a simple adaptive

procedure for selecting the interpolation points Y(x). At each iteration t > 0, after calculating Vt(x, yi)

in Algorithm 1, at each state x in which the condition does not hold, add a new interpolation point y′2 =

εy2/|Vt(x, y2)−Vt(x, 0)|, and additional points between y′2 and y2 such that the condition log θ ≥ log yi+1−
log yi is maintained. Since all the additional points belong to the segment [0, y2], the linearly interpolated

Vt(x, yi) remains unchanged, and Algorithm 1 proceeds as is. For bounded costs and ε > 0, the number of

additional points required is bounded.

The full proof of Theorem 2.4.4 is detailed in the appendix; we highlight here the main ideas and chal-

lenges involved. In the first part of the proof we bound, for all t > 0, the Lipschitz constant of yVt(x, y) in y.

The key to this result is to show that the Bellman operator T preserves the Lipschitz property for yVt(x, y).

Using the Lipschitz bound and the concavity of yVt(x, y), we then bound the error Ix[Vt](y)
y − Vt(x, y) for

all y. The condition on y2 is required for this bound to hold when y → 0. Finally, we use this result to bound

‖TI [Vt](x, y)−T[Vt](x, y)‖∞. The results of Theorem 2.4.4 follow from contraction arguments, similar to

approximate dynamic programming [17].
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2.5 CVaR Q-learning with Linear Interpolation

The value iteration algorithm in Section 2.4 assumes that the transition probabilities for the underlying MDP

are known, which is oftentimes not the case. Accordingly, in this section we present a sampling-based Q-

learning counterpart for the value-iteration algorithm in Section 2.4, which approximates the solution to the

CVaR MDP problem. Before getting into the main results, we begin by introducing the state-action value

function (Q-function) for CVaR MDP,

Q∗(x, y, a) = min
µ∈ΠH

CVaRy

(
lim
T→∞

T∑
t=0

γtC(xt, at) | x0 = x, a0 = a, µ

)
,

which can be interpreted as the CVaR cost of starting at state x ∈ X , using control action a ∈ A in the first

stage, and using an optimal policy thereafter. The Q function is the unique fixed point of the state-action

Bellman operator F, defined as

F[Q](x, y, a) = C(x, a) + γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)V (yξ(x′))P (x′|x, a),

where

V (x, y) = min
a∈A

Q(x, y, a), y ∈ Y(x), x ∈ X .

We now define the state-action interpolated Bellman operator

FI [Q](x, y, a) = C(x, a) + γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a),

and the corresponding interpolated value iteration update:

Q(x, y, a) := C(x, a) + γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a).

Let Q̂∗(x, y, a) denote the fixed point of FI , i.e., the unique solution of FI [Q](x, y, a) = Q(x, y, a), ∀x ∈
X , y ∈ Y(x), a ∈ A, where the existence and uniqueness of the solution follows from contraction arguments

similar to the ones for the state value function V̂ ∗. The value Q̂∗(x, y, a) can be interpreted as the approximate

CVaR cost of starting at state x ∈ X , using control action a ∈ A in the first stage, and using a near-optimal

policy (modulo the CVaR value function interpolation error) thereafter. Without loss of generality, in this

section we assume that the set of CVaR-level interpolation points Y(x) is uniform at any state x ∈ X , i.e.,

Y(x) = Y. Notice that Y is a user-defined finite set of discretized interpolation points.

We consider both synchronous and asynchronous versions of Q-learning for CVaR MDP. In the syn-

chronous version, the Q-function estimates of all state-action pairs are updated at each step. In contrast,

in the asynchronous version, only the Q-function estimate of a sampled state-action pair is updated. Under

mild assumptions, we show that both algorithms are asymptotically optimal. While the convergence rate of
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synchronous Q-learning is higher [67], asynchronous Q-learning is more computationally efficient.

2.5.1 Synchronous CVaR Q-learning

Similar to the CVaR approximate value-iteration algorithm in Algorithm 1, in CVaR Q-value iteration (or,

generally, in CVaR Q-learning), one must repeatedly solve the following inner optimization problem:

max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))

y
P (x′|x, a).

When the transition probability P is unknown, one cannot simply apply the solution methods in Section 2.4

to solve such optimization problem. To tackle this issue, following the insights in Chapter 5 of [132] (or

in Section 3.4 of [147]), we adopt a sample average approximation (SAA) approach. Specifically, at each

state-action pair (x, a) ∈ X × A, given that we’ve seen Nk transitions {x′,1, . . . , x′,Nk} ∼ P (x′|x, a), we

calculate the empirical transition probability PNk(x′|x, a) via the following equation:

PNk(x′|x, a) =
1

Nk

Nk∑
i=1

1{x′,i = x′ | x, a}, ∀x, x′ ∈ X , a ∈ A,

and replace the aforementioned inner optimization problem with the following SAA inner optimization prob-

lem:

max
ξ∈UCVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))

y
.

As shown in [12], the solution to this optimization problem is consistent, i.e., it converges to the solution of

the original (unsampled) inner optimization problem as Nk → ∞. Details on the consistency property can

be found in Chapter 5 of [132].

Equipped with the above SAA analysis, we now turn to the main algorithm for synchronous CVaR Q-

learning. Suppose Q0(x, y, a) is an initial Q-function estimate such that Q0(x, y, a) = 0 for any x ∈ X ,

y ∈ Y, a ∈ A. At iteration k ∈ {0, 1, . . .}, the synchronous Q-learning algorithm samples Nk ≥ 1 states

(x′,1, . . . , x′,Nk) from each state x and action a, and updates the Q-function estimates for each state-action

pair (x, y, a) ∈ X ×Y ×A as follows:

Qk+1(x, y, a) = Qk(x, y, a) + ζk(x, y, a) ·
(
−Qk(x, y, a)+

C(x, a)+γ max
ξ∈UCVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))

y

)
, (2.9)

where the value function is Vk(x, y) = mina∈AQk(x, y, a), and the step size ζk(x, y, a) satisfies

∑
k

ζk(x, y, a) =∞,
∑
k

ζ2
k(x, y, a) <∞. (2.10)
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Asymptotic convergence for synchronous CVaR Q-learning is provided by the following theorem.

Theorem 2.5.1 (Convergence of Synchronous Q-learning). Suppose the step-size ζk(x, y, a) follows the

update rule in (2.10) and the sample size Nk tends to infinity at k → ∞. Then the sequence of estimates

{Qk(x, y, a)}k∈N computed via synchronous Q-learning (by iterative scheme (2.9)) converges to the fixed

point solution Q̂∗(x, y, a) component-wise with probability 1.

After the Q-function converges, a near-optimal policy can be computed as

µ̃∗(x, y) ∈ arg min
a∈A

Qk̄(x, y, a), ∀x ∈ X , ∀y ∈ Y, (2.11)

where k̄ is the iteration index when the learning is stopped.

2.5.2 Asynchronous CVaR Q-learning

Suppose Q0(x, y, a) is an initial Q-function estimate such that Q0(x, y, a) = 0 for any x ∈ X , y ∈ Y,

a ∈ A. At iteration k ∈ {0, 1, . . .}, let xk ∈ X , ak ∈ A denote the current state and action to be updated.

The asynchronous Q-learning algorithm proceeds as follows:

1. Sample Nk ≥ 1 states (x′,1, . . . , x′,Nk) from state x and action a;

2. For every y ∈ Y, update the Q-function estimate as follows:

• for x = xk and a = ak, the Q-function estimate is updated according to Equation (2.9) ,

• for all other states and actions the Q-function estimate is set equal to its previous value, i.e.,

Qk+1(x, y, a) = Qk(x, y, a).

3. Select state and action xk+1 ∈ X , ak+1 ∈ A to update in next iteration.

For step (1), note that when Nk ≥ 1 one requires a generative simulator to obtain additional transition state

samples. In order to enhance sampling efficiency, for each individual state-action pair one may implement a

buffer that stores transition state samples generated from previous Q-learning iterations.

Theorem 2.5.2 (Convergence of Asynchronous Q-learning). Suppose the step-size ζk(x, y, a) follows the

update rule in (2.10) and the sample size Nk tends to infinity at k →∞. Also, suppose each state action pair

(x, a) ∈ X × A is visited infinitely often. Then, the sequence of estimates {Qk(x, y, a)}k∈N computed via

asynchronous Q-learning converges to the fixed point solution Q∗(x, y, a) component-wise with probability

1.

Note that the convergence result relies on the assumption that each state-action pair (x, a) ∈ X × A is

visited infinitely often. This is a standard assumption in the Q-learning literature [19], and can be satisfied by

an ε-greedy exploration policy that selects next states according to the following scheme:
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• Select yk ∈ Y uniformly;

• For state xk, select action ak according to

ak ∈
{

argmina∈A Qk(xk, yk, a) w.p. 1− ε
uniformly drawn from A otherwise

, (2.12)

where ε ∈ (0, 1) controls the degree of exploration;

• Select xk+1 by sampling xk+1 ∼ P (·|xk, ak).

We remark that by following analogous arguments as in [139], the above result can be proven under milder

assumptions by using PAC analysis. We refer the interested reader to the aforementioned references for more

details. Similarly to synchronous Q-learning, a near optimal policy can be computed using (2.11) after the

Q-functions converge.

2.6 Extension to Mean-CVaR MDP

In many cases besides minimizing worst case cost, one also aims to balance between cost and risk. In particu-

lar for many applications in financial engineering, [3, 64], the objective is to minimize the expected cost while

controlling the CVaR. Analogous to the well-known mean-variance formulation proposed by Markowitz [84]

in portfolio optimization, we hereby propose the mean-CVaR MDP problem, where the users can specify

the level of risk aversion via tuning the regularization constant. While mean-CVaR MDP resembles simi-

lar trade-off between expected cost and variability as the mean-variance MDP, unlike mean-variance MDP

problem that is NP-hard, we hereby show that similar techniques derived for the CVaR MDP problem can

be extended to this formulation, thus it allows us to derive tractable solution algorithms for the mean-CVaR

MDP problem.

Recall that C(xt, at) is the stage-wise costs observed along a state/control trajectory in the MDP model,

and
∑T
t=0 γ

tC(xt, at) is the total discounted cost up to time T . For the set of all history dependent policies

ΠH , the risk-sensitive discounted-cost problem we wish to address is as follows:

min
µ∈ΠH

(1− λ)E

[
lim
T→∞

T∑
t=0

γtC(xt, at)

∣∣∣∣∣x0, µ

]
+ λCVaRα

(
lim
T→∞

T∑
t=0

γtC(xt, at)

∣∣∣∣∣x0, µ

)
, (2.13)

where µ = {µ0, µ1, . . .} is the policy sequence with actions at = µt(ht) for t ∈ {0, 1, . . .} and λ ∈ [0, 1] is

the regularizer that specifies the degree of risk aversion. We refer to formulation in (2.13) as the mean-CVaR

MDP problem. When λ = 0, problem (2.13) coincides with the conventional risk-neutral MDP problem, and

when λ = 1, it becomes the CVaR MDP problem depicted in (2.1). Now instead of solving the mean-CVaR
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MDP problem directly, consider the following general mixed risk MDP problem:

min
µ∈ΠH

ρδ,β

(
lim
T→∞

T∑
t=0

γtC(xt, at)

∣∣∣∣∣x0, µ

)
, (2.14)

where ρδ,β is a coherent risk with envelop

UMix(δ, β,P) =

{
ξ : ξ(ω) ∈ [δ, 1/β] ,

∫
ω∈Ω

ξ(ω)P(ω)dω = 1

}
and δ ∈ [0, 1], β ∈ [0, 1]. According to Example 6.16 in [132], the mixed risk MDP problem can be reduced

to the mean-CVaR MDP problem by setting the constants as

δ = 1− λ, β =

(
λ

α
+ 1− λ

)−1

.

Thus in order to solve for an optimal policy of the mean-CVaR MDP problem, in the rest of this section we

aim to derive a dynamic programming algorithm for the mixed risk MDP problem by extending the techniques

derived in Section 2.3 and set the confidence levels as (δ, β) = (1− λ, (λ/α+ 1− λ)−1).

2.6.1 Bellman Equation

By leveraging the result from Section 2.3, in this section we present a dynamic programming (DP) formu-

lation for the mixed risk MDP problem in (2.14). As we shall see, the value function in this formulation

depends on both the state xt and the risk confidence levels (δ, β). Here the first risk confidence level keeps

track of the penalty constant 1−λ, and the second risk confidence level keeps track of the CVaR level. To start

with, consider the following recursive decomposition result for the mixed risk, which is an extension to the

CVaR recursive decomposition result in Theorem 2.3.1. The proof of this theorem is given in the appendix.

Theorem 2.6.1. For any t ≥ 0, denote by Z = (Zt+1, Zt+2, . . . ) the cost sequence from time t+ 1 onwards.

The conditional mixed risk under policy µ, i.e., ρδ,β(Z | ht, µ), obeys the following decomposition:

ρδ,β(Z | ht, µ) = max
ξ∈UMix(δ,β,P (·|xt,at))

E[ξ(xt+1) · ρδ/ξ(xt+1),βξ(xt+1)(Z | ht+1, µ) | ht, µ],

where at is the action induced by policy µt(ht), and the expectation is with respect to xt+1.

Note that in the recursive decomposition in Theorem 2.6.1 the right-hand side involves mixed risk terms

with different confidence levels than that in the left-hand side. Similar to the value function for CVaR MDPs,

in order to account for the updates of risk confidence levels, we augment the state space X with additional

continuous two dimensional state space Y × Z = [0, 1]2, which corresponds to the confidence levels. Thus

for any x ∈ X and (y, z) ∈ Y × Z , the value-function V (x, y, z) for the augmented state (x, y, z) is defined
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as:

V (x, y, z) = min
µ∈ΠH

ρy,z

(
lim
T→∞

T∑
t=0

γtC(xt, at) | x0 = x, µ

)
.

This further leads to the following definition of mixed risk Bellman operator T : X ×Y ×Z → X ×Y ×Z:

T[V ](x, y, z) = min
a∈A

[
C(x, a) + γ max

ξ∈UMix(y,z,P (·|x,a))

∑
x′∈X

ξ(x′)V (x′, y/ξ(x′), zξ(x′))P (x′|x, a)

]
.

Similar to the Bellman operator for CVaR MDP, this Bellman operator T[V ] is a contraction mapping in the

infinity norm ‖ · ‖∞, and for any given non-negative constant M , zT[V ](x,M/z, z) satisfies the concave

preserving property in z for every x ∈ X . Thus enumerating this Bellman operator only requires solving a

concave inner maximization problem, which can be computed effectively using the interior point algorithm

[37].

Equipped with these results, we can also show that the fixed point solution of T[V ](x, y, z) = V (x, y, z)

is unique, and equals to the solution of the mixed risk MDP problem (2.14) with initial state x0 = x and

confidence levels (y0, z0) = (y, z). Based on this convergence result, a history-dependent policy π∗H =

{µ0, µ1, . . .} ∈ ΠH can be readily obtained from the optimal Markov policy according to the recursive

scheme:

µk(hk) = u∗(xk, yk, zk), ∀k ≥ 0, (2.15)

with initial conditions x0 and confidence levels (y0, z0) = (δ, β), and state transitions

xk ∼P (· | xk−1, u
∗(xk−1, yk−1, zk−1)),

yk =yk−1/ξ
∗
xk−1,yk−1,zk−1,u∗

(xk),

zk =zk−1ξ
∗
xk−1,yk−1,zk−1,u∗

(xk),∀k ≥ 1,

(2.16)

where the stationary Markovian policy u∗(x, y, z) and risk factor ξ∗x,y,z,u∗(·) are solution to the min-max

optimization problem in the mixed risk Bellman operator T[V ∗](x, y, z).

The above analysis suggests that a value-iteration DP method [17] can be used to solve the mixed risk

MDP problem (2.14). Unfortunately, similar to the case for CVaR MDP, its direct implementation is imprac-

tical due to the uncountable state space Y . To alleviate this issue, one resorts to the approximate dynamic

programming approach where the Bellman operator T[V ] is approximated by the 2D interpolated Bellman

operator TI [V ]. A similar approach can be found in Section 2.4 for CVaR interpolated value iteration. Fur-

thermore, similar to CVaR Q-learning with linear interpolation in Section 2.5, when the size of state space X
is large, one can extend the interpolated value iteration approach to Q-learning. Notice that such extensions

follow immediately from the same arguments from CVaR MDP, thus the details are omitted for the sake of

brevity.
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2.7 Experiments

In this section we illustrate the performance of the CVaR MDP algorithms by studying the following 2D

motion planning experiment, where states represent grid points on a 2D terrain map. An agent (e.g., a robotic

vehicle) starts in a safe region and its objective is to travel to a given destination. At each time step the agent

can move to any of its four neighboring states. Due to sensing and control noise, however, with probability δ a

move to a random neighboring state occurs. The stage-wise cost of each move until reaching the destination is

1, to account for fuel usage. In between the starting point and the destination there are a number of obstacles

that the agent should avoid. Hitting an obstacle costs M >> 1 and terminates the mission. The objective is

to compute a safe (i.e., obstacle-free) path that is fuel efficient.

For the experimental details, we choose a 64×53 grid-world (see Figure 2.1), with a total of 3,312 states.

The destination is at position (60, 2), and there are 80 obstacles plotted in yellow. By leveraging Theorem

2.4.4, we use 21 log-spaced interpolation points for Algorithm 1 in order to achieve a small value function

error. We choose δ = 0.05, and a discount factor γ = 0.95 for an effective horizon of 20 steps. Furthermore,

we set the penalty cost equal to M = 2/(1 − γ)–such choice trades off high penalty for collisions and

computational complexity (that increases as M increases).

In Figure 2.1 we plot the value function V (x, y) for three different values of the CVaR confidence pa-

rameter α, and the corresponding paths starting from the initial position (60, 50). The first three figures in

Figure 2.1 show how by decreasing the confidence parameter α the average travel distance (and hence fuel

consumption) slightly increases but the collision probability decreases, as expected. We next discuss robust-

ness to modeling errors. We conducted simulations in which with probability 0.5 each obstacle position is

perturbed in a random direction to one of the neighboring grid cells. This emulates, for example, measure-

ment errors in the terrain map. We then trained both the risk-averse (α = 0.11) and risk-neutral (α = 1)

policies on the nominal (i.e., unperturbed) terrain map, and evaluated them on 400 perturbed scenarios (20

perturbed maps with 20 Monte Carlo evaluations each). While the risk-neutral policy finds a shorter route

(with average cost equal to 18.137 on successful runs), it is vulnerable to perturbations and fails more often

(with over 120 failed runs). In contrast, the risk-averse policy chooses slightly longer routes (with average

cost equal to 18.878 on successful runs), but is much more robust to model perturbations (with only 5 failed

runs).

For the computation of Algorithm 1 we represented the concave piecewise linear maximization problem

in (2.8) as a linear program, and concatenated several problems to reduce repeated overhead stemming from

the initialization of the CPLEX linear programming solver. This resulted in a computation time on the order

of two hours. We believe there is ample room for improvement, for example by leveraging parallelization and

sampling-based methods. Overall, we believe our proposed approach is currently the most practical method

available for solving CVaR MDPs (as a comparison, the recently proposed method in [60] involves infinite

dimensional optimization).
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Figure 2.1: Grid-world simulation. First three plots show the value functions and corresponding paths for
different CVaR confidence levels. The last plot shows a cost histogram (for 400 Monte Carlo trials) for a
risk-neutral policy and a CVaR policy with confidence level α = 0.11.

2.8 Conclusion

In this chapter we presented an algorithm for CVaR MDPs, based on approximate value-iteration on an

augmented state space. We established convergence of our algorithm, and derived finite-time error bounds.

These bounds are useful to stop the algorithm at a desired error threshold. In addition, we uncovered an

interesting relationship between the CVaR of the total cost and the worst-case expected cost under adversarial

model perturbations. In this formulation, the perturbations are correlated in time, and lead to a robustness

framework significantly less conservative than the popular robust-MDP framework, where the uncertainty is

temporally independent. Collectively, our work suggests CVaR MDPs as a unifying and practical framework

for computing control policies that are robust with respect to both stochasticity and model perturbations.

In order to extend the aforementioned techniques to other engineering applications such as robotics, in

the next chapter we will investigate another class of risk-sensitive planning problems for which the objective

function is given by an expected cumulative cost, and the associated constraint function is modeled by a

percentile risk.



Chapter 3

Risk-Constrained Reinforcement
Learning with Percentile Risk

3.1 Introduction

3.1.1 Risk Sensitive Reinforcement Learning

In many applications one is interested in taking into account risk, i.e., increased awareness of events of small

probability and high consequences. Accordingly, in risk-sensitive MDPs the objective is to minimize a risk-

sensitive criterion. In order to quantify costs that might be encountered in the tail of a cost distribution,

one often considers Value-at-risk (VaR) and conditional value-at-risk (CVaR). Specifically, for continuous

cost distributions, VaRα measures risk as the maximum cost that might be incurred with respect to a given

confidence level α, and is appealing for its intuitive meaning and its relationship to chance-constraints. This

risk metric is particularly useful when there is a well-defined failure state, e.g., a state that leads a robot to

collide with an obstacle. A VaRα constraint is often referred to as a chance (probability) constraint, especially

in the engineering literature, and we will use this terminology in the remainder of the chapter. In contrast,

CVaRα measures risk as the expected cost given that such cost is greater than or equal to VaRα, and provides a

number of theoretical and computational advantages. CVaR optimization was first developed by Rockafellar

and Uryasev [112] and its numerical effectiveness has been demonstrated in several portfolio optimization

and option hedging problems. Risk-sensitive MDPs with a conditional value at risk metric were considered

in [30, 96, 10], and a mean-average-value-at-risk problem has been solved in [9] for minimizing risk in

financial markets.

The aforementioned works focus on the derivation of exact solutions, and the resulting algorithms are

only applicable to relatively small problems. This has recently motivated the application of reinforcement

learning (RL) methods to risk-sensitive MDPs to address large-scale problems. We will refer to such problems

35
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as risk-sensitive RL. Reinforcement learning [19, 142] can be viewed as a class of sampling-based methods

for solving MDPs. Popular reinforcement learning techniques include policy gradient [158, 83, 11] and

actor-critic methods [143, 69, 99, 34, 27, 25], whereby policies are parameterized in terms of a parameter

vector and policy search is performed via gradient flow approaches. One effective way to estimate gradients

in RL problems is by simultaneous perturbation stochastic approximation (SPSA) [138]. Risk-sensitive RL

with expected exponential utility has been considered in [32, 33]. More recently, the works in [145, 106]

present RL algorithms for several variance-related risk measures, while the works in [88, 146, 101] consider

CVaR-based formulations, and the works in [144, 133] consider nested CVaR-based formulations.

3.1.2 Chapter Contribution

Despite the rather large literature on risk-sensitive MDPs and RL, risk-constrained formulations have largely

gone unaddressed, with only a few exceptions, e.g., [48, 36]. Yet constrained formulations naturally arise in

several domains, including engineering, finance, and logistics, and provide a principled approach to address

multi-objective problems. The objective of this chapter is to fill this gap, by devising policy gradient and

actor-critic algorithms for risk-constrained MDPs where risk is represented via a constraint on the condi-

tional value-at-risk (CVaR) of the cumulative cost, or as a chance-constraint. Specifically, the contribution is

fourfold.

1. We formulate two risk-constrained MDP problems. The first one involves a CVaR constraint and

the second one involves a chance (probability) constraint. For the CVaR-constrained optimization

problem, we consider both discrete and continuous cost distributions. By re-writing the problems using

a Lagrangian formulation, we derive for both problems a Bellman optimality condition with respect to

an augmented MDP.

2. We devise a trajectory-based policy gradient algorithm for both CVaR-constrained and chance-constrained

MDPs. The key novelty of this algorithm lies in an unbiased gradient estimation procedure under

Monte Carlo sampling. Using an ordinary differential equation (ODE) approach, we establish conver-

gence of the algorithm to locally optimal policies.

3. Using the aforementioned Bellman optimality condition, we derive several actor-critic algorithms

to optimize policy and value function approximation parameters in an online fashion. As for the

trajectory-based policy gradient algorithm, we show that the proposed actor-critic algorithms converge

to locally optimal solutions.

4. We demonstrate the effectiveness of our algorithms in an optimal stopping problem as well as in a

realistic personalized ad recommendation problem (see [51] for more details). For the latter problem,

we empirically show that our CVaR-constrained RL algorithms successfully guarantee that the worst-

case revenue is lower-bounded by the pre-specified company yearly target.
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3.1.3 Chapter Organization

The rest of the chapter is structured as follows. In Section 3.2 we introduce our notation and rigorously

state the problem we wish to address, namely risk-constrained RL. The next two sections provide various

RL methods to approximately compute (locally) optimal policies for CVaR constrained MDPs. A trajectory-

based policy gradient algorithm is presented in Section 3.3 and its convergence analysis is provided in Ap-

pendix 7.2 (Appendix 7.2.1 provides the gradient estimates of the CVaR parameter, the policy parameter, and

the Lagrange multiplier, and Appendix 7.2.2 gives their convergence proofs). Actor-critic algorithms are pre-

sented in Section 3.4 and their convergence analysis is provided in Appendix 7.3 (Appendix 7.3.1 derives the

gradient of the Lagrange multiplier as a function of the state-action value function, Appendix 7.3.2.1 analyzes

the convergence of the critic, and Appendix 7.3.2.2 provides the multi-timescale convergence results of the

CVaR parameter, the policy parameter, and the Lagrange multiplier). Section 3.5 generalizes the above policy

gradient and actor-critic methods to the chance-constrained case. Empirical evaluation of our algorithms is

the subject of Section 3.6.

3.2 Preliminaries

We begin by defining some notation that is used throughout this chapter, as well as defining the problem

addressed herein and stating some basic assumptions.

3.2.1 Notations

We consider decision-making problems modeled as a finite MDP (an MDP with finite state and action spaces).

A finite MDP is a tuple (X ,A, C,D, P, P0) where X = {1, . . . , n, xTar} and A = {1, . . . ,m} are the state

and action spaces, xTar is a recurrent target state, and for a state x and an action a, C(x, a) is a cost function

with |C(x, a)| ≤ Cmax, D(x, a) is a constraint cost function with |D(x, a)| ≤ Dmax
1, P (·|x, a) is the

transition probability distribution, and P0(·) is the initial state distribution. For simplicity, in this paper we

assume P0 = 1{x = x0} for some given initial state x0 ∈ {1, . . . , n}. Generalizations to non-atomic initial

state distributions are straightforward, for which the details are omitted for the sake of brevity. A stationary

policy µ(·|x) for an MDP is a probability distribution over actions, conditioned on the current state. In policy

gradient methods, such policies are parameterized by a κ-dimensional vector θ, so the space of policies can

be written as
{
µ(·|x; θ), x ∈ X , θ ∈ Θ ⊆ Rκ

}
. Since in this setting a policy µ is uniquely defined by its

parameter vector θ, policy-dependent functions can be written as a function of µ or θ, and we use µ and θ

interchangeably in the paper.

Given a fixed γ ∈ (0, 1), we denote by dµγ(x|x0) = (1 − γ)
∑∞
k=0 γ

kP(xk = x|x0 = x0;µ) and

πµγ (x, a|x0) = dµγ(x|x0)µ(a|x), the γ-discounted occupation measure of state x and state-action pair (x, a)

under policy µ, respectively. This occupation measure is a γ-discounted probability distribution for visiting

1Without loss of generality, we set the cost function C(x, a) and constraint cost function D(x, a) to zero when x = xTar.
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each state and action pair, and it plays an important role in sampling states and actions from the real system

in policy gradient and actor-critic algorithms, and in guaranteeing their convergence. Because the state and

action spaces are finite, Theorem 3.1 in [4] shows that the occupation measure dµγ(x|x0) is a well-defined

probability distribution. On the other hand, when γ = 1 the occupation measure of state x and state-action

pair (x, a) under policy µ are respectively defined by dµ(x|x0) =
∑∞
t=0 P(xt = x|x0;µ) and πµ(x, a|x0) =

dµ(x|x0)µ(a|x). In this case the occupation measures characterize the total sums of visiting probabilities

(although they are not in general probability distributions themselves) of state x and state-action pair (x, a).

To study the well-posedness of the occupation measure, we define the following notion of a transient MDP.

Definition 3.2.1. Define X ′ = X \ {xTar} = {1, . . . , n} as a state space of transient states. An MDP is said

to be transient if,

1.
∑∞
k=0 P(xk = x|x0, µ) <∞ for every x ∈ X ′ and every stationary policy µ,

2. P (xTar|xTar, a) = 1 for every admissible control action a ∈ A.

Furthermore let Tµ,x be the first-hitting time of the target state xTar from an arbitrary initial state x ∈ X in

the Markov chain induced by transition probability P (·|x, a) and policy µ. Although transience implies the

first-hitting time is square integrable and finite almost surely, we will make the stronger assumption (which

implies transience) on the uniform boundedness of the first-hitting time.

Assumption 3.2.2. The first-hitting time Tµ,x is bounded almost surely over all stationary policies µ and all

initial states x ∈ X . We will refer to this upper bound as T , i.e., Tµ,x ≤ T almost surely.

The above assumption can be justified by the fact that sample trajectories collected in most reinforcement

learning algorithms (including policy gradient and actor-critic methods) consist of a finite stopping time (also

known as a time-out). If nothing else, such a bound ensures that the computation time is not unbounded.

Note that although a bounded stopping time would seem to conflict with the time-stationarity of the transition

probabilities, this can be resolved by augmenting the state space with a time-counter state, analogous to the

arguments given in Section 4.7 in [17].

Finally, we define the constraint and cost functions. Let Z be a finite-mean (E[|Z|] <∞) random variable

representing cost, with the cumulative distribution function FZ(z) = P(Z ≤ z) (e.g., one may think of Z as

the total cost of an investment strategy µ). We define the value-at-risk at confidence level α ∈ (0, 1) as

VaRα(Z) = min
{
z | FZ(z) ≥ α

}
.

Here the minimum is attained because FZ is non-decreasing and right-continuous in z. When FZ is contin-

uous and strictly increasing, VaRα(Z) is the unique z satisfying FZ(z) = α. As mentioned, we refer to a

constraint on the VaR as a chance constraint.

Although VaR is a popular risk measure, it is not a coherent risk measure [7] and does not quantify the

costs that might be suffered beyond its value in the α-tail of the distribution [112], [113]. In many financial
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applications such as portfolio optimization where the probability of undesirable events could be small but the

cost incurred could still be significant, besides describing risk as the probability of incurring costs, it will be

more interesting to study the cost in the tail of the risk distribution. In this case, an alternative measure that

addresses most of the VaR’s shortcomings is the conditional value-at-risk, defined as [112]

CVaRα(Z) := min
ν∈R

{
ν +

1

1− αE
[
(Z − ν)+

]}
, (3.1)

where (x)+ = max(x, 0) represents the positive part of x. Although this definition is somewhat opaque,

CVaR can be thought of as the average of the worst-case α-fraction of losses. Define Hα(Z, ν) := ν +
1

1−αE
[
(Z − ν)+

]
, so that CVaRα(Z) = minν∈R Hα(Z, ν).

We define the parameter γ ∈ (0, 1] as the discounting factor for the cost and constraint cost functions.

When γ < 1, we are aiming to solve the MDP problem with more focus on optimizing current costs over

future costs. For a policy µ, we define the cost of a state x (state-action pair (x, a)) as the sum of (discounted)

costs encountered by the decision-maker when it starts at state x (state-action pair (x, a)) and then follows

policy µ, i.e.,

Cθ(x) =

T−1∑
k=0

γkC(xk, ak) | x0 = x, µ(·|·, θ), Dθ(x) =

T−1∑
k=0

γkD(xk, ak) | x0 = x, µ(·|·, θ),

and

Cθ(x, a) =

T−1∑
k=0

γkC(xk, ak) | x0 = x, a0 = a, µ(·|·, θ),

Dθ(x, a) =

T−1∑
k=0

γkD(xk, ak) | x0 = x, a0 = a, µ(·|·, θ).

The expected values of the random variables Cθ(x) and Cθ(x, a) are known as the value and action-value

functions of policy µ, and are denoted by

V θ(x) = E
[
Cθ(x)

]
, Qθ(x, a) = E

[
Cθ(x, a)

]
.

3.2.2 Problem Statement

The goal for standard discounted MDPs is to find an optimal policy that solves

θ∗ = argmin
θ

V θ(x0).

For CVaR-constrained optimization in MDPs, we consider the discounted cost optimization problem with



CHAPTER 3. RISK-CONSTRAINED REINFORCEMENT LEARNING WITH PERCENTILE RISK 40

γ ∈ (0, 1), i.e., for a given confidence level α ∈ (0, 1) and cost tolerance β ∈ R,

min
θ
V θ(x0) subject to CVaRα

(
Dθ(x0)

)
≤ β. (3.2)

Using the definition of Hα(Z, ν), one can reformulate (3.2) as:

min
θ,ν

V θ(x0) subject to Hα

(
Dθ(x0), ν

)
≤ β. (3.3)

It is shown in [112] and [113] that the optimal ν actually equals VaRα, so we refer to this parameter as the

VaR parameter. Here we choose to analyze the discounted-cost CVaR-constrained optimization problem, i.e.,

with γ ∈ (0, 1), as in many financial and marketing applications where CVaR constraints are used, it is

more intuitive to put more emphasis on current costs rather than on future costs. The analysis can be easily

generalized for the case where γ = 1.

For chance-constrained optimization in MDPs, we consider the stopping cost optimization problem with

γ = 1, i.e., for a given confidence level β ∈ (0, 1) and cost tolerance α ∈ R,

min
θ
V θ(x0) subject to P

(
Dθ(x0) ≥ α

)
≤ β. (3.4)

Here we choose γ = 1 because in many engineering applications, where chance constraints are used to ensure

overall safety, there is no notion of discounting since future threats are often as important as the current one.

Similarly, the analysis can be easily extended to the case where γ ∈ (0, 1).

There are a number of mild technical and notational assumptions which we will make throughout the

paper, so we state them here:

Assumption 3.2.3 (Differentiability). For any state-action pair (x, a), µ(a|x; θ) is continuously differen-

tiable in θ and ∇θµ(a|x; θ) is a Lipschitz function in θ for every a ∈ A and x ∈ X .2

Assumption 3.2.4 (Strict Feasibility). There exists a transient policy µ(·|x; θ) such thatHα

(
Dθ(x0), ν

)
< β

in the CVaR-constrained optimization problem, andP
(
Dθ(x0) ≥ α

)
< β in the chance-constrained problem.

Note that Assumption 3.2.3 imposes smoothness on the optimal policy. Assumption 3.2.4 guarantees

the existence of a locally optimal policy for the CVaR-constrained optimization problem via the Lagrangian

analysis introduced in the next subsection.

In the remainder of the paper we first focus on studying stochastic approximation algorithms for the

CVaR-constrained optimization problem (Sections 3.3 and 3.4) and then adapt the results to the chance-

constrained optimization problem in Section 3.5. Our solution approach relies on a Lagrangian relaxation

procedure, which is discussed next.

2In actor-critic algorithms, the assumption on continuous differentiability holds for the augmented state Markovian policies
µ(a|x, s; θ).
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3.2.3 Lagrangian Approach and Reformulation

To solve (3.3), we employ a Lagrangian relaxation procedure [16], which leads to the unconstrained problem:

max
λ≥0

min
θ,ν

(
L(ν, θ, λ) := V θ(x0) + λ

(
Hα

(
Dθ(x0), ν

)
− β

))
, (3.5)

where λ is the Lagrange multiplier. Notice that L(ν, θ, λ) is a linear function in λ and Hα

(
Dθ(x0), ν

)
is

a continuous function in ν. Corollary 4 in [152] implies the existence of a locally optimal policy θ∗ for

the CVaR-constrained optimization problem, which corresponds to the existence of the local saddle point

(ν∗, θ∗, λ∗) for the minimax optimization problem maxλ≥0 minθ,ν L(ν, θ, λ), defined as follows.

Definition 3.2.5. A local saddle point of L(ν, θ, λ) is a point (ν∗, θ∗, λ∗) such that for some r > 0,

∀(θ, ν) ∈ Θ×
[
−Dmax

1−γ ,
Dmax

1−γ

]
∩ B(θ∗,ν∗)(r) and ∀λ ≥ 0, we have

L(ν, θ, λ∗) ≥ L(ν∗, θ∗, λ∗) ≥ L(ν∗, θ∗, λ), (3.6)

where B(θ∗,ν∗)(r) is a hyper-dimensional ball centered at (θ∗, ν∗) with radius r > 0.

In [96, 10] it is shown that there exists a deterministic history-dependent optimal policy for CVaR-

constrained optimization. The important point is that this policy does not depend on the complete history, but

only on the current time step k, current state of the system xk, and accumulated discounted constraint cost∑k
i=0 γ

iD(xi, ai).

In the following two sections, we present a policy gradient (PG) algorithm (Section 3.3) and several actor-

critic (AC) algorithms (Section 3.4) to optimize (3.5) (and hence find a locally optimal solution to problem

(3.3)). While the PG algorithm updates its parameters after observing several trajectories, the AC algorithms

are incremental and update their parameters at each time-step.

3.3 A Trajectory-based Policy Gradient Algorithm

In this section, we present a policy gradient algorithm to solve the optimization problem (3.5). The idea of

the algorithm is to descend in (θ, ν) and ascend in λ using the gradients of L(ν, θ, λ) w.r.t. θ, ν, and λ, i.e.,3

∇θL(ν, θ, λ) = ∇θV θ(x0) +
λ

(1− α)
∇θE

[(
Dθ(x0)− ν

)+]
, (3.7)

∂νL(ν, θ, λ) = λ

(
1 +

1

(1− α)
∂νE

[(
Dθ(x0)− ν

)+]) 3 λ(1− 1

(1− α)
P
(
Dθ(x0) ≥ ν

))
, (3.8)

∇λL(ν, θ, λ) = ν +
1

(1− α)
E
[(
Dθ(x0)− ν

)+]− β. (3.9)

3The notation 3 in (3.8) means that the right-most term is a member of the sub-gradient set ∂νL(ν, θ, λ).
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The unit of observation in this algorithm is a system trajectory generated by following the current policy.

At each iteration, the algorithm generatesN trajectories by following the current policy, uses them to estimate

the gradients in (3.7)–(3.9), and then uses these estimates to update the parameters ν, θ, λ.

Let ξ = {x0, a0, c0, x1, a1, c1, . . . , xT−1, aT−1, cT−1, xT } be a trajectory generated by following the

policy θ, where xT = xTar is the target state of the system. The cost, constraint cost, and probability of ξ are

defined as

C(ξ) =

T−1∑
k=0

γkC(xk, ak), D(ξ) =

T−1∑
k=0

γkD(xk, ak),

and

Pθ(ξ) = P0(x0)

T−1∏
k=0

µ(ak|xk; θ)P (xk+1|xk, ak),

respectively. Based on the definition of Pθ(ξ), one obtains∇θ logPθ(ξ) =
∑T−1
k=0 ∇θ logµ(ak|xk; θ).

Algorithm 2 contains the pseudo-code of our proposed policy gradient algorithm. What appears inside

the parentheses on the right-hand-side of the update equations are the estimates of the gradients of L(ν, θ, λ)

w.r.t. θ, ν, λ (estimates of (3.7)–(3.9)). Gradient estimates of the Lagrangian function can be found in Ap-

pendix 7.2.1. In the algorithm, ΓΘ is an operator that projects a vector θ ∈ Rκ to the closest point in

a compact and convex set Θ ⊂ Rκ, i.e., ΓΘ(θ) = arg minθ̂∈Θ ‖θ − θ̂‖22, ΓN is a projection operator to

[−Dmax

1−γ ,
Dmax

1−γ ], i.e., ΓN (ν) = arg minν̂∈[−Dmax
1−γ ,Dmax

1−γ ] ‖ν−ν̂‖22, and ΓΛ is a projection operator to [0, λmax],

i.e., ΓΛ(λ) = arg minλ̂∈[0,λmax] ‖λ − λ̂‖22. These projection operators are necessary to ensure the conver-

gence of the algorithm. Next we introduce the following assumptions for the step-sizes of the policy gradient

method in Algorithm 2.

Assumption 3.3.1 (Step Sizes for Policy Gradient). The step size schedules {ζ1(k)}, {ζ2(k)}, and {ζ3(k)}
satisfy

∑
k

ζ1(k) =
∑
k

ζ2(k) =
∑
k

ζ3(k) =∞, (3.10)∑
k

ζ1(k)2,
∑
k

ζ2(k)2,
∑
k

ζ3(k)2 <∞, (3.11)

ζ1(k) = o
(
ζ2(k)

)
, ζ2(i) = o

(
ζ3(k)

)
. (3.12)

These step-size schedules satisfy the standard conditions for stochastic approximation algorithms, and

ensure that the ν update is on the fastest time-scale
{
ζ3(k)

}
, the policy θ update is on the intermediate time-

scale
{
ζ2(k)

}
, and the Lagrange multiplier λ update is on the slowest time-scale

{
ζ1(k)

}
. This results in a

three time-scale stochastic approximation algorithm.

In the following theorem, we prove that our policy gradient algorithm converges to a locally optimal

policy for the CVaR-constrained optimization problem.

Theorem 3.3.2. Under Assumptions 3.2.2–3.3.1, the sequence of policy updates in Algorithm 2 converges
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almost surely to a locally optimal policy θ∗ for the CVaR-constrained optimization problem.

While we refer the reader to Appendix 7.2.2 for the technical details of this proof, a high level overview

of the proof technique is given as follows.

1. First we show that each update of the multi-time scale discrete stochastic approximation algorithm

(νi, θi, λi) converges almost surely, but at different speeds, to the stationary point (ν∗, θ∗, λ∗) of the

corresponding continuous time system.

2. Then by using Lyapunov analysis, we show that the continuous time system is locally asymptotically

stable at the stationary point (ν∗, θ∗, λ∗).

3. Since the Lyapunov function used in the above analysis is the Lagrangian function L(ν, θ, λ), we

finally conclude that the stationary point (ν∗, θ∗, λ∗) is also a local saddle point, which implies θ∗ is

the locally optimal policy for the CVaR-constrained optimization problem.

This convergence proof procedure is rather standard for stochastic approximation algorithms, see [27, 25,

106] for more details, and represents the structural backbone for the convergence analysis of the other policy

gradient and actor-critic methods provided in this paper.

Notice that the difference in convergence speeds between θi, νi, and λi is due to the step-size schedules.

Here ν converges faster than θ and θ converges faster than λ. This multi-time scale convergence property

allows us to simplify the convergence analysis by assuming that θ and λ are fixed in ν’s convergence analysis,

assuming that ν converges to ν∗(θ) and λ is fixed in θ’s convergence analysis, and finally assuming that ν

and θ have already converged to ν∗(λ) and θ∗(λ) in λ’s convergence analysis. To illustrate this idea, consider

the following two-time scale stochastic approximation algorithm for updating (xi, yi) ∈ X×Y:

xi+1 = xi + ζ1(i)
(
f(xi, yi) +Mi+1

)
, (3.13)

yi+1 = yi + ζ2(i)
(
g(xi, yi) +Ni+1

)
, (3.14)

where f(xi, yi) and g(xi, yi) are Lipschitz continuous functions, Mi+1, Ni+1 are square integrable Martin-

gale differences w.r.t. the σ-fields σ(xk, yk,Mk, k ≤ i) and σ(xk, yk, Nk, k ≤ i), and ζ1(i) and ζ2(i) are

non-summable, square summable step sizes. If ζ2(i) converges to zero faster than ζ1(i), then (3.13) is a

faster recursion than (3.14) after some iteration i0 (i.e., for i ≥ i0), which means (3.13) has uniformly larger

increments than (3.14). Since (3.14) can be written as

yi+1 = yi + ζ1(i)
(ζ2(i)

ζ1(i)

(
g(xi, yi) +Ni+1

))
,

and by the fact that ζ2(i) converges to zero faster than ζ1(i), (3.13) and (3.14) can be viewed as noisy Euler

discretizations of the ODEs ẋ = f(x, y) and ẏ = 0. Note that one can consider the ODE ẋ = f(x, y0) in

place of ẋ = f(x, y), where y0 is constant, because ẏ = 0. One can then show (see e.g., Theorem 6.2 of

Borkar 2008) the main two-timescale convergence result, i.e., under the above assumptions associated with
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Algorithm 2 Trajectory-based Policy Gradient Algorithm for CVaR Optimization
Input: parameterized policy µ(·|·; θ), confidence level α, and cost tolerance β
Initialization: policy θ = θ0, VaR parameter ν = ν0, and the Lagrangian parameter λ = λ0

while TRUE do
for i = 0, 1, 2, . . . do

for j = 1, 2, . . . do
Generate N trajectories {ξj,i}Nj=1 by starting at x0 = x0 and following the current policy θi.

end for

ν Update: νi+1 = ΓN

[
νi − ζ3(i)

(
λi −

λi
(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

})]

θ Update: θi+1 = ΓΘ

[
θi − ζ2(i)

(
1

N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θiC(ξj,i)

+
λi

(1− α)N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θi
(
D(ξj,i)− νi

)
1
{
D(ξj,i) ≥ νi

})]

λ Update: λi+1 = ΓΛ

[
λi + ζ1(i)

(
νi − β +

1

(1− α)N

N∑
j=1

(
D(ξj,i)− νi

)
1
{
D(ξj,i) ≥ νi

})]
end for
if {λi} converges to λmax, i.e., |λi∗ − λmax| ≤ ε for some tolerance parameter ε > 0 then

Set λmax ← 2λmax.
else

return parameters ν, θ, λ and break
end if

end while

(3.14), the sequence (xi, yi) converges to
(
µ(y?), y?

)
as i → ∞, with probability one, where µ(y0) is a

globally asymptotically stable equilibrium of the ODE ẋ = f(x, y0), µ is a Lipschitz continuous function,

and y? is a globally asymptotically stable equilibrium of the ODE ẏ = g
(
µ(y), y

)
.

3.4 Actor-Critic Algorithms

As mentioned in Section 3.3, the unit of observation in our policy gradient algorithm (Algorithm 2) is a

system trajectory. This may result in high variance for the gradient estimates, especially when the length

of the trajectories is long. To address this issue, in this section, we propose two actor-critic algorithms that

approximate some quantities in the gradient estimates by linear combinations of basis functions and update

the parameters (linear coefficients) incrementally (after each state-action transition). We present two actor-

critic algorithms for optimizing (3.5). These algorithms are based on the gradient estimates of Sections 3.4.1-

3.4.3. While the first algorithm (SPSA-based) is fully incremental and updates all the parameters θ, ν, λ at

each time-step, the second one updates θ at each time-step and updates ν and λ only at the end of each
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trajectory, thus is regarded as a semi-trajectory-based method. Algorithm 3 contains the pseudo-code of these

algorithms. The projection operators ΓΘ, ΓN , and ΓΛ are defined as in Section 3.3 and are necessary to

ensure the convergence of the algorithms. Next, we introduce the following assumptions for the step-sizes of

the actor-critic method in Algorithm 3.

Assumption 3.4.1 (Step Sizes). The step size schedules {ζ1(k)}, {ζ2(k)}, {ζ3(k)}, and {ζ4(k)} satisfy

∑
k

ζ1(k) =
∑
k

ζ2(k) =
∑
k

ζ3(k) =
∑
k

ζ4(k) =∞, (3.15)∑
k

ζ1(k)2,
∑
k

ζ2(k)2,
∑
k

ζ3(k)2,
∑
k

ζ4(k)2 <∞, (3.16)

ζ1(k) = o
(
ζ2(k)

)
, ζ2(i) = o

(
ζ3(k)

)
, ζ3(k) = o

(
ζ4(k)

)
. (3.17)

Furthermore, the SPSA step size {∆k} in the actor-critic algorithm satisfies ∆k → 0 as k → ∞ and∑
k(ζ2(k)/∆k)2 <∞.

These step-size schedules satisfy the standard conditions for stochastic approximation algorithms, and

ensure that the critic update is on the fastest time-scale
{
ζ4(k)

}
, the policy and VaR parameter updates are

on the intermediate time-scale, with the ν-update
{
ζ3(k)

}
being faster than the θ-update

{
ζ2(k)

}
, and finally

the Lagrange multiplier update is on the slowest time-scale
{
ζ1(k)

}
. This results in four time-scale stochastic

approximation algorithms.

3.4.1 Gradient w.r.t. the Policy Parameters θ

The gradient of the objective function w.r.t. the policy θ in (3.7) may be rewritten as

∇θL(ν, θ, λ) = ∇θ
(
E
[
Cθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+])
. (3.24)

Given the original MDP M = (X ,A, C,D, P, P0) and the parameter λ, we define the augmented MDP

M̄ = (X̄ , Ā, C̄λ, P̄ , P̄0) as X̄ = X × S, Ā = A, P̄0(x, s) = P0(x)1{s0 = s}, and

C̄λ(x, s, a) =

{
λ(−s)+/(1− α) if x = xTar,

C(x, a) otherwise,

P̄ (x′, s′|x, s, a) =

{
P (x′|x, a)1{s′ =

(
s−D(x, a)

)
/γ} if x ∈ X ′,

1{x′ = xTar, s
′ = 0} if x = xTar,

where S is the finite state space of the augmented state s, s0 is the initial state of the augmented MDP, xTar

is the target state of the original MDPM and sTar is the s part of the state when a policy θ reaches a target state

xTar, which we assume occurs before an upper-bound T number of steps , i.e., sTar = 1
γT

(
ν −∑T−1

k=0 γ
kD(xk, ak)

)
,

such that the initial state is given by s0 = ν. We will now use n to indicate the size of the augmented state
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Algorithm 3 Actor-Critic Algorithms for CVaR Optimization
Input: Parameterized policy µ(·|·; θ) and value function feature vector φ(·) (both over the augmented MDP M̄),
confidence level α, and cost tolerance β
Initialization: policy θ = θ0; VaR parameter ν = ν0; Lagrangian parameter λ = λ0; value function weight vector
v = v0 ; initial condition (x0, s0) = (x0, ν)
while TRUE do

// (1) SPSA-based Algorithm:
for k = 0, 1, 2, . . . do

Draw action ak ∼ µ(·|xk, sk; θk); Observe cost C̄λk (xk, sk, ak);
Observe next state (xk+1, sk+1) ∼ P̄ (·|xk, sk, ak); // note that sk+1 = (sk −D

(
xk, ak)

)
/γ

// AC Algorithm:
TD Error: δk(vk) = C̄λk (xk, sk, ak) + γv>k φ(xk+1, sk+1)− v>k φ(xk, sk) (3.18)

Critic Update: vk+1 = vk + ζ4(k)δk(vk)φ(xk, sk) (3.19)

ν Update: νk+1 = ΓN

(
νk−ζ3(k)

(
λk+

v>k
[
φ
(
x0, νk + ∆k

)
− φ(x0, νk −∆k)

]
2∆k

))
(3.20)

θ Update: θk+1 = ΓΘ

(
θk −

ζ2(k)

1− γ∇θ logµ(ak|xk, sk; θ) · δk(vk)
)

(3.21)

λ Update: λk+1 = ΓΛ

(
λk + ζ1(k)

(
νk−β +

1

(1− α)(1− γ)
1{xk = xTar}(−sk)+)) (3.22)

if xk = xTar (reach a target state), then set (xk+1, sk+1) = (x0, νk+1)
end for
// (2) Semi Trajectory-based Algorithm:
Initialize t = 0
for k = 0, 1, 2, . . . do

Draw action ak ∼ µ(·|xk, sk; θk), observe cost C̄λk (xk, sk, ak), and next state (xk+1, sk+1) ∼
P̄ (·|xk, sk, ak); Update (δk, vk, θk, λk) using Eqs. 3.18, 3.19, 3.21, and 3.22
if xk = xTar then

Update ν as

ν Update: νk+1 = ΓN

(
νk − ζ3(k)

(
λk −

λk
1− α1

{
xk = xTar, sk ≤ 0

}))
(3.23)

Set (xk+1, sk+1) = (x0, νk+1) and t = 0
else
t← t+ 1

end if
end for
if {λi} converges to λmax, i.e., |λi∗ − λmax| ≤ ε for some tolerance parameter ε > 0 then

Set λmax ← 2λmax.
else

return parameters v, w, ν, θ, λ, and break
end if

end while
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space X̄ instead of the size of the original state space X . It can be later seen that the augmented state s in

the MDP M̄ keeps track of the cumulative CVaR constraint cost, and allows one to reformulate the CVaR

Lagrangian problem as an MDP (with respect to M̄).

We define a class of parameterized stochastic policies
{
µ(·|x, s; θ), (x, s) ∈ X̄ , θ ∈ Θ ⊆ Rκ1

}
for this

augmented MDP. Recall that Cθ(x) is the discounted cumulative cost andDθ(x) is the discounted cumulative

constraint cost. Therefore, the total (discounted) cost of a trajectory can be written as

T∑
k=0

γkC̄λ(xk, sk, ak) | x0 = x, s0 = s, µ = Cθ(x) +
λ

(1− α)

(
Dθ(x)− s

)+
. (3.25)

From (3.25), it is clear that the quantity in the parenthesis of (3.24) is the value function of the policy θ at

state (x0, ν) in the augmented MDP M̄, i.e., V θ(x0, ν). Thus, it is easy to show that4

∇θL(ν, θ, λ) = ∇θV θ(x0, ν) =
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν) ∇ logµ(a|x, s; θ) Qθ(x, s, a), 5 (3.26)

where πθγ is the discounted occupation measure (defined in Section 3.2) andQθ is the action-value function of

policy θ in the augmented MDP M̄. We can show that 1
1−γ∇ logµ(ak|xk, sk; θ) · δk is an unbiased estimate

of ∇θL(ν, θ, λ), where

δk = C̄λ(xk, sk, ak) + γV̂ (xk+1, sk+1)− V̂ (xk, sk)

is the temporal-difference (TD) error in the MDP M̄ from (3.18), and V̂ is an unbiased estimator of V θ

(see e.g., [27]). In our actor-critic algorithms, the critic uses linear approximation for the value func-

tion V θ(x, s) ≈ v>φ(x, s) = Ṽ θ,v(x, s), where the feature vector φ(·) belongs to a low-dimensional

space Rκ1 with dimension κ1. The linear approximation Ṽ θ,v belongs to a low-dimensional subspace

SV = {Φv|v ∈ Rκ1}, where Φ is the n × κ1 matrix whose rows are the transposed feature vectors φ>(·).

To ensure that the set of feature vectors forms a well-posed linear approximation to the value function, we

impose the following assumption to the basis functions.

Assumption 3.4.2 (Independent Basis Functions). The basis functions
{
φ(i)
}κ1

i=1
are linearly independent.

In particular, κ1 ≤ n and Φ is full column rank. Moreover, for every v ∈ Rκ1 , Φv 6= e, where e is the

n-dimensional vector with all entries equal to one.

The following theorem shows that the critic update vk converges almost surely to v∗, the minimizer of

the Bellman residual. Details of the proof can be found in Appendix 7.3.2.

Theorem 3.4.3. Define v∗ ∈ arg minv ‖Bθ[Φv] − Φv‖2dθγ as the minimizer to the Bellman residual, where

4Note that the second equality in Equation (3.26) is the result of the policy gradient theorem [143, 99].
5Notice that the state and action spaces of the original MDP are finite, and there is only a finite number of outcomes in the transition

of s (due to the assumption of a bounded first hitting time). Therefore the augmented state s belongs to a finite state space as well.
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the Bellman operator is given by

Bθ[V ](x, s) =
∑
a

µ(a|x, s; θ)

C̄λ(x, s, a) +
∑
x′,s′

γP̄ (x′, s′|x, s, a)V (x′, s′)


and Ṽ ∗(x, s) = (v∗)>φ(x, s) is the projected Bellman fixed point of V θ(x, s), i.e., Ṽ ∗(x, s) = ΠBθ[Ṽ

∗](x, s).

Suppose the γ-occupation measure πθγ is used to generate samples of (xk, sk, ak) for any k ∈ {0, 1, . . . , }.
Then under Assumptions 3.4.1–3.4.2, the v-update in the actor-critic algorithm converges to v∗ almost surely.

3.4.2 Gradient w.r.t. the Lagrangian Parameter λ

We may rewrite the gradient of the objective function w.r.t. the Lagrangian parameters λ in (3.9) as

∇λL(ν, θ, λ) = ν−β+∇λ
(
E
[
Cθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+]) (a)
= ν−β+∇λV θ(x0, ν). (3.27)

Similar to Section 3.4.1, equality (a) comes from the fact that the quantity in parenthesis in (3.27) is V θ(x0, ν),

the value function of the policy θ at state (x0, ν) in the augmented MDP M̄. Note that the dependence of

V θ(x0, ν) on λ comes from the definition of the cost function C̄λ in M̄. We now derive an expression for

∇λV θ(x0, ν), which in turn will give us an expression for∇λL(ν, θ, λ).

Lemma 3.4.4. The gradient of V θ(x0, ν) w.r.t. the Lagrangian parameter λ may be written as

∇λV θ(x0, ν) =
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν)
1

(1− α)
1{x = xTar}(−s)+. (3.28)

Proof. See Appendix 7.3.1.

From Lemma 3.4.4 and (3.27), it is easy to see that ν−β+ 1
(1−γ)(1−α)1{x = xTar}(−s)+ is an unbiased

estimate of ∇λL(ν, θ, λ). An issue with this estimator is that its value is fixed to νk − β all along a system

trajectory, and only changes at the end to νk − β + 1
(1−γ)(1−α) (−sTar)

+. This may affect the incremental

nature of our actor-critic algorithm. To address this issue, [46] previously proposed a different approach to

estimate the gradients w.r.t. θ and λ which involves another value function approximation to the constraint.

However this approach is less desirable in many practical applications as it increases the approximation error

and impedes the speed of convergence.

Another important issue is that the above estimator is unbiased only if the samples are generated from the

distribution πθγ(·|x0, ν). If we just follow the policy θ, then we may use νk−β+ γk

(1−α)1{xk = xTar}(−sk)+

as an estimate for ∇λL(ν, θ, λ). Note that this is an issue for all discounted actor-critic algorithms: their

(likelihood ratio based) estimate for the gradient is unbiased only if the samples are generated from πθγ , and

not when we simply follow the policy. This might also be the reason why, to the best of our knowledge, no
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rigorous convergence analysis can be found in the literature for (likelihood ratio based) discounted actor-critic

algorithms under the sampling distribution.6

3.4.3 Sub-Gradient w.r.t. the VaR Parameter ν
We may rewrite the sub-gradient of our objective function w.r.t. the VaR parameter ν in (3.8) as

∂νL(ν, θ, λ) 3 λ
(

1− 1

(1− α)
P
( ∞∑
k=0

γkD(xk, ak) ≥ ν | x0 = x0; θ
))

. (3.29)

From the definition of the augmented MDP M̄, the probability in (3.29) may be written as P(sTar ≤ 0 | x0 =

x0, s0 = ν; θ), where sTar is the s part of the state in M̄ when we reach a target state, i.e., x = xTar (see

Section 3.4.1). Thus, we may rewrite (3.29) as

∂νL(ν, θ, λ) 3 λ
(

1− 1

(1− α)
P
(
sTar ≤ 0 | x0 = x0, s0 = ν; θ

))
. (3.30)

From (3.30), it is easy to see that λ − λ1{sTar ≤ 0}/(1 − α) is an unbiased estimate of the sub-gradient

of L(ν, θ, λ) w.r.t. ν. An issue with this (unbiased) estimator is that it can only be applied at the end of

a system trajectory (i.e., when we reach the target state xTar), and thus, using it prevents us from having a

fully incremental algorithm. In fact, this is the estimator that we use in our semi-trajectory-based actor-critic

algorithm.

One approach to estimate this sub-gradient incrementally is to use the simultaneous perturbation stochas-

tic approximation (SPSA) method [26]. The idea of SPSA is to estimate the sub-gradient g(ν) ∈ ∂νL(ν, θ, λ)

using two values of g at ν− = ν −∆ and ν+ = ν + ∆, where ∆ > 0 is a positive perturbation (see [26, 106]

for the detailed description of ∆).7 In order to see how SPSA can help us to estimate our sub-gradient

incrementally, note that

∂νL(ν, θ, λ) = λ+ ∂ν

(
E
[
Dθ(x0)

]
+

λ

(1− α)
E
[(
Dθ(x0)− ν

)+]) (a)
= λ+ ∂νV

θ(x0, ν). (3.31)

Similar to Sections 3.4.1–3.4.3, equality (a) comes from the fact that the quantity in parenthesis in (3.31)

is V θ(x0, ν), the value function of the policy θ at state (x0, ν) in the augmented MDP M̄. Since the critic

uses a linear approximation for the value function, i.e., V θ(x, s) ≈ v>φ(x, s), in our actor-critic algorithms

(see Section 3.4.1 and Algorithm 3), the SPSA estimate of the sub-gradient would be of the form g(ν) ≈
λ+ v>

[
φ(x0, ν+)− φ(x0, ν−)

]
/2∆.

6Note that the discounted actor-critic algorithm with convergence proof in [24] is based on SPSA.
7SPSA-based gradient estimate was first proposed in [138] and has been widely used in various settings, especially those involving a

high-dimensional parameter. The SPSA estimate described above is two-sided. It can also be implemented single-sided, where we use
the values of the function at ν and ν+. We refer the readers to [26] for more details on SPSA and to [106] for its application to learning
in mean-variance risk-sensitive MDPs.
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3.4.4 Convergence of Actor-Critic Methods

In this section, we will prove that the actor-critic algorithms converge to a locally optimal policy for the

CVaR-constrained optimization problem. Define

εθ(vk) = ‖Bθ[Φvk]− Φvk‖∞

as the residual of the value function approximation at step k, induced by policy µ(·|·, ·; θ). By the triangle

inequality and fixed point theorem Bθ[V
∗] = V ∗, it can be easily seen that ‖V ∗ − Φvk‖∞ ≤ εθ(vk) +

‖Bθ[Φvk] − Bθ[V
∗]‖∞ ≤ εθ(vk) + γ‖Φvk − V ∗‖∞. The last inequality follows from the contraction

property of the Bellman operator. Thus, one concludes that ‖V ∗ −Φvk‖∞ ≤ εθ(vk)/(1− γ). Now, we state

the main theorem for the convergence of actor-critic methods.

Theorem 3.4.5. Suppose εθk(vk) → 0 and the γ-occupation measure πθγ is used to generate samples of

(xk, sk, ak) for any k ∈ {0, 1, . . .}. For the SPSA-based algorithms, suppose the feature vector satisfies

the technical Assumption 7.3.2 (provided in Appendix 7.3.2.2) and suppose the SPSA step-size satisfies the

condition εθk(vk) = o(∆k), i.e., εθk(vk)/∆k → 0. Then under Assumptions 3.2.2–3.2.4 and 3.4.1–3.4.2,

the sequence of policy updates in Algorithm 3 converges almost surely to a locally optimal policy for the

CVaR-constrained optimization problem.

Details of the proof can be found in Appendix 7.3.2.

3.5 Extension to Chance-Constrained Optimization of MDPs

In many applications, in particular in engineering (see, for example, [94]), chance constraints are imposed

to ensure mission success with high probability. Accordingly, in this section we extend the analysis of

CVaR-constrained MDPs to chance-constrained MDPs (i.e., (3.4)). As for CVaR-constrained MDPs, we

employ a Lagrangian relaxation procedure [16] to convert a chance-constrained optimization problem into

the following unconstrained problem:

max
λ

min
θ,α

(
L(θ, λ) := Cθ(x0) + λ

(
P
(
Dθ(x0) ≥ α

)
− β

))
, (3.32)

where λ is the Lagrange multiplier. Recall Assumption 3.2.4 which assumed strict feasibility, i.e., there exists

a transient policy µ(·|x; θ) such that P
(
Dθ(x0) ≥ α

)
< β. This is needed to guarantee the existence of a

local saddle point.
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3.5.1 Policy Gradient Method

In this section we propose a policy gradient method for chance-constrained MDPs (similar to Algorithm 2).

Since we do not need to estimate the ν-parameter in chance-constrained optimization, the corresponding

policy gradient algorithm can be simplified and at each inner loop of Algorithm 2 we only perform the

following updates at the end of each trajectory:

θ Update: θi+1 = ΓΘ

[
θi −

ζ2(i)

N

( N∑
j=1

∇θ logP(ξj,i)C(ξj,i) + λi∇θ logP(ξj,i)1
{
D(ξj,i) ≥ α

})]

λ Update: λi+1 = ΓΛ

[
λi + ζ1(i)

(
− β +

1

N

N∑
j=1

1
{
D(ξj,i) ≥ α

})]

Considering the multi-time-scale step-size rules in Assumption 3.3.1, the θ update is on the fast time-scale{
ζ2(i)

}
and the Lagrange multiplier λ update is on the slow time-scale

{
ζ1(i)

}
. This results in a two

time-scale stochastic approximation algorithm. In the following theorem, we prove that our policy gradient

algorithm converges to a locally optimal policy for the chance-constrained problem.

Theorem 3.5.1. Under Assumptions 3.2.2–3.3.1, the sequence of policy updates in Algorithm 2 converges to

a locally optimal policy θ∗ for the chance-constrained optimization problem almost surely.

Sketch. By taking the gradient of L(θ, λ) w.r.t. θ, we have

∇θL(θ, λ) = ∇θCθ(x0) + λ∇θP
(
Dθ(x0) ≥ α

)
=
∑
ξ

∇θPθ(ξ)C(ξ) + λ
∑
ξ

∇θPθ(ξ)1
{
D(ξ) ≥ α

}
.

On the other hand, the gradient of L(θ, λ) w.r.t. λ is given by

∇λL(θ, λ) = P
(
Dθ(x0) ≥ α

)
− β.

One can easily verify that the θ and λ updates are therefore unbiased estimates of∇θL(θ, λ) and∇λL(θ, λ),

respectively. Then the rest of the proof follows analogously from the convergence proof of Algorithm 2 in

steps 2 and 3 of Theorem 3.3.2.

3.5.2 Actor-Critic Method

In this section, we present an actor-critic algorithm for the chance-constrained optimization. Given the origi-

nal MDPM = (X ,A, C,D, P, P0) and parameter λ, we define the augmented MDP M̄ = (X̄ , Ā, C̄λ, P̄ , P̄0)

as in the CVaR counterpart, except that P̄0(x, s) = P0(x)1{s = α} and

C̄λ(x, s, a) =

{
λ1{s ≤ 0} if x = xTar,

C(x, a) otherwise.
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Thus, the total cost of a trajectory can be written as

T∑
k=0

C̄λ(xk, sk, ak) | x0 = x, s0 = β, µ = Cθ(x) + λP(Dθ(x) ≥ β). (3.33)

Unlike the actor-critic algorithms for CVaR-constrained optimization, here the value function approximation

parameter v, policy θ, and Lagrange multiplier estimate λ are updated episodically, i.e., after each episode

ends by time T when (xk, sk) = (xTar, sTar)
8, as follows:

Critic Update: vk+1 = vk + ζ3(k)

T∑
h=0

φ(xh, sh)δh(vk) (3.34)

Actor Updates: θk+1 = ΓΘ

(
θk − ζ2(k)

T∑
h=0

∇θ logµ(ah|xh, sh; θ)|θ=θk · δh(vk)
)

(3.35)

λk+1 = ΓΛ

(
λk + ζ1(k)

(
− β + 1{sTar ≤ 0}

))
(3.36)

From analogous analysis as for the CVaR actor-critic method, the following theorem shows that the critic

update vk converges almost surely to v∗.

Theorem 3.5.2. Let v∗ ∈ arg minv ‖Bθ[Φv] − Φv‖2dθ be a minimizer of the Bellman residual, where the

undiscounted Bellman operator at every (x, s) ∈ X̄ ′ is given by

Bθ[V ](x, s) =
∑
a∈A

µ(a|x, s; θ)
{
C̄λ(x, s, a) +

∑
(x′,s′)∈X̄ ′

P̄ (x′, s′|x, s, a)V (x′, s′)
}

and Ṽ ∗(x, s) = φ>(x, s)v∗ is the projected Bellman fixed point of V θ(x, s), i.e., Ṽ ∗(x, s) = ΠBθ[Ṽ
∗](x, s)

for (x, s) ∈ X̄ ′. Then under Assumptions 3.4.1–3.4.2, the v-update in the actor-critic algorithm converges to

v∗ almost surely.

Sketch. The proof of this theorem follows the same steps as those in the proof of Theorem 3.4.3, except

replacing the γ-occupation measure dθγ with the occupation measure dθ (the total visiting probability). Similar

analysis can also be found in the proof of Theorem 10 in [145]. Under Assumption 3.2.2, the occupation

measure of any transient states x ∈ X ′ (starting at an arbitrary initial transient state x0 ∈ X ′) can be written

as dµ(x|x0) =
∑Tµ,x
t=0 P(xt = x|x0;µ) when γ = 1. This further implies the total visiting probabilities

are bounded as follows: dµ(x|x0) ≤ Tµ,x and πµ(x, a|x0) ≤ Tµ,x for any x, x0 ∈ X ′. Therefore, when

the sequence of states {(xh, sh)}Th=0 is sampled by the h-step transition distribution P(xh, sh | x0, s0, θ),

∀h ≤ T , the unbiased estimators of

A :=
∑

(y,s′)∈X̄ ′,a′∈A

πθ(y, s′, a′|x, s)φ(y, s′)
(
φ>(y, s′)−

∑
(z,s′′)∈X̄ ′

P̄ (z, s′′|y, s′, a)φ>(z, s′′)
)

8Note that sTar is the state of st when xt hits the (recurrent) target state xTar.
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and

b :=
∑

(y,s′)∈X̄ ′,a′∈A

πθ(y, s′, a′|x, s)φ(y, s′)C̄λ(y, s′, a′)

are given by
∑T
h=0 φ(xh, sh)(φ>(xh, sh) − φ>(xh+1, sh+1)) and

∑T
h=0 φ(xh, sh)C̄λ(xh, sh, ah), respec-

tively. Note that in this theorem, we directly use the results from Theorem 7.1 in [17] to show that every

eigenvalue of matrix A has positive real part, instead of using the technical result in Lemma 7.3.1.

Recall that εθ(vk) = ‖Bθ[Φvk] − Φvk‖∞ is the residual of the value function approximation at step

k induced by policy µ(·|·, ·; θ). By the triangle inequality and fixed-point theorem of stochastic stopping

problems, i.e., Bθ[V ∗] = V ∗ from Theorem 3.1 in [17], it can be easily seen that ‖V ∗ −Φvk‖∞ ≤ εθ(vk) +

‖Bθ[Φvk]−Bθ[V ∗]‖∞ ≤ εθ(vk)+κ‖Φvk−V ∗‖∞ for some κ ∈ (0, 1). Similar to the actor-critic algorithm

for CVaR-constrained optimization, the last inequality also follows from the contraction mapping property of

Bθ from Theorem 3.2 in [17]. Now, we state the main theorem for the convergence of the actor-critic method.

Theorem 3.5.3. Under Assumptions 3.2.2–3.4.2, if εθk(vk) → 0, then the sequence of policy updates con-

verges almost surely to a locally optimal policy θ∗ for the chance-constrained optimization problem.

Sketch . From Theorem 3.5.2, the critic update converges to the minimizer of the Bellman residual. Since the

critic update converges on the fastest scale, as in the proof of Theorem 3.4.5, one can replace vk by v∗(θk) in

the convergence proof of the actor update. Furthermore, by sampling the sequence of states {(xh, sh)}Th=0

with the h-step transition distribution P(xh, sh | x0, s0, θ), ∀h ≤ T , the unbiased estimator of the gradient of

the linear approximation to the Lagrangian function is given by

∇θL̃v(θ, λ) :=
∑

(x,s)∈X̄ ′,a∈A

πθ(x, s, a|x0 = x0, s0 = ν)∇θ logµ(a|x, s; θ)Ãθ,v(x, s, a),

where Q̃θ,v(x, s, a)− v>φ(x, s) is given by
∑T
h=0∇θ logµ(ah|xh, sh; θ)|θ=θk · δh(v∗) and the unbiased es-

timator of∇λL(θ, λ) = −β+P(sTar ≤ 0) is given by−β+1{sTar ≤ 0}. Analogous to equation (7.52) in the

proof of Theorem 7.3.5, by convexity of quadratic functions, we have for any value function approximation

v, ∑
(y,s′)∈X̄ ′,a′∈A

πθ(y, s′, a′|x, s)(Aθ(y, s′, a′)− Ãvθ(y, s′, a′)) ≤ 2T
εθ(v)

1− κ,

which further implies that ∇θL(θ, λ) − ∇θL̃v(θ, λ) → 0 when εθ(v) → 0 at v = v∗(θk). The rest of the

proof follows identical arguments as in steps 3 to 5 of the proof of Theorem 3.4.5.

3.6 Experiments

In this section we illustrate the effectiveness of our risk-constrained policy gradient and actor-critic algorithms

by testing them on an American option stopping problem and on a long-term personalized advertisement-

recommendation (ad-recommendation) problem.



CHAPTER 3. RISK-CONSTRAINED REINFORCEMENT LEARNING WITH PERCENTILE RISK 54

3.6.1 The Optimal Stopping Problem

We consider an optimal stopping problem in which the state at each time step k ≤ T consists of the cost ck
and time k, i.e., x = (ck, k), where T is the stopping time. The agent (buyer) should decide either to accept

the present cost (uk = 1) or wait (uk = 0). If he/she accepts or when k = T , the system reaches a terminal

state and the cost max(K, ck) is received (K is the maximum cost threshold), otherwise, she receives a

holding cost ph and the new state is (ck+1, k + 1), where ck+1 is fuck w.p. p and fdck w.p. 1 − p (fu > 1

and fd < 1 are constants). Moreover, there is a discount factor γ ∈ (0, 1) to account for the increase in the

buyer’s affordability. Note that if we change cost to reward and minimization to maximization, this is exactly

the American option pricing problem, a standard testbed to evaluate risk-sensitive algorithms (e.g., see [145]).

Since the state space size n is exponential in T , finding an exact solution via dynamic programming (DP)

quickly becomes infeasible, and thus the problem requires approximation and sampling techniques.

The optimal stopping problem can be reformulated as follows

min
θ

E
[
Cθ(x0)

]
subject to CVaRα

(
Cθ(x0)

)
≤ β or P

(
Cθ(x0) ≥ α

)
≤ β, (3.37)

where the discounted cost and constraint cost functions are identical (Cθ(x) = Dθ(x)) and are both given

by Cθ(x) =
∑T
k=0 γ

k (1{uk = 1}max(K, ck) + 1{uk = 0}ph) | x0 = x, µ. We set the parameters of the

MDP as follows: x0 = [1; 0], ph = 0.1, T = 20,K = 5, γ = 0.95, fu = 2, fd = 0.5, and p = 0.65. The con-

fidence interval and constraint threshold are given by α = 0.95 and β = 3. The number of sample trajectories

N is set to 500, 000 and the parameter bounds are λmax = 5, 000 and Θ = [−20, 20]κ1 , where the dimension

of the basis functions is κ1 = 1024. We implement radial basis functions (RBFs) as feature functions and

search over the class of Boltzmann policies
{
θ : θ = {θx,a}x∈X ,a∈A, µθ(a|x) =

exp(θ>x,ax)∑
a∈A exp(θ>x,ax)

}
.

We consider the following trajectory-based algorithms:

1. PG: This is a policy gradient algorithm that minimizes the expected discounted cost function without

considering any risk criteria.

2. PG-CVaR/PG-CC: These are the CVaR/chance-constrained simulated trajectory-based policy gradi-

ent algorithms given in Section 3.3.

The experiments for each algorithm comprise the following two phases:

1. Tuning phase: We run the algorithm and update the policy until (ν, θ, λ) converges.

2. Converged run: Having obtained a converged policy θ∗ in the tuning phase, in the converged run

phase, we perform a Monte Carlo simulation of 10, 000 trajectories and report the results as averages

over these trials.

We also consider the following incremental algorithms:
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1. AC: This is an actor-critic algorithm that minimizes the expected discounted cost function without

considering any risk criteria. This is similar to Algorithm 1 in [24].

2. AC-CVaR/AC-VaR: These are the CVaR/chance-constrained semi-trajectory actor-critic algorithms

given in Section 3.4.

3. AC-CVaR-SPSA: This is the CVaR-constrained SPSA actor-critic algorithm given in Section 3.4.

Similar to the trajectory-based algorithms, we use RBF features for [x; s] and consider the family of

augmented state Boltzmann policies. Similarly, the experiments comprise two phases: 1) the tuning phase,

where the set of parameters (v, ν, θ, λ) is obtained after the algorithm converges, and 2) the converged run,

where the policy is simulated with 10, 000 trajectories.

We compare the performance of PG-CVaR and PG-CC (given in Algorithm 2), and AC-CVaR-SPSA,

AC-CVaR, and AC-VaR (given in Algorithm 3), with PG and AC, their risk-neutral counterparts. Figures 3.1

and 3.2 show the distribution of the discounted cumulative cost Cθ(x0) for the policy θ learned by each of

these algorithms. The results indicate that the risk-constrained algorithms yield a higher expected cost, but

less worst-case variability, compared to the risk-neutral methods. More precisely, the cost distributions of the

risk-constrained algorithms have lower right-tail (worst-case) distribution than their risk-neutral counterparts.

Table 3.1 summarizes the performance of these algorithms. The numbers reiterate what we concluded from

Figures 3.1 and 3.2.

Notice that while the risk averse policy satisfies the CVaR constraint, it is not tight (i.e., the constraint is

not matched). In fact this is a problem of local optimality, and other experiments in the literature (for example

see the numerical results in [106] and in [25]) have the same problem of producing solutions which obey the

constraints but not tightly. However, since both the expectation and CVaR risk metrics are sub-additive and

convex, one can always construct a policy that is a linear combination of the risk neutral optimal policy and

the risk averse policy, such that it matches the constraint threshold and has a lower cost compared to the risk

averse policy.

E
(
Cθ(x0)

)
σ
(
Cθ(x0)

)
CVaR

(
Cθ(x0)

)
VaR

(
Cθ(x0)

)
PG 1.177 1.065 4.464 4.005

PG-CVaR 1.997 0.060 2.000 2.000
PG-CC 1.994 0.121 2.058 2.000

AC 1.113 0.607 3.331 3.220
AC-CVaR-SPSA 1.326 0.322 2.145 1.283

AC-CVaR 1.343 0.346 2.208 1.290
AC-VaR 1.817 0.753 4.006 2.300

Table 3.1: Performance comparison of the policies learned by the risk-constrained and risk-neutral algorithms. In this
table σ

(
Cθ(x0)

)
stands for the standard deviation of the total cost.
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Figure 3.1: Cost distributions for the policies learned by the CVaR-constrained and risk-neutral policy gradi-
ent and actor-critic algorithms. The left figure corresponds to the PG methods and the right figure corresponds
to the AC algorithms.
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Figure 3.2: Cost distributions for the policies learned by the chance-constrained and risk-neutral policy gradi-
ent and actor-critic algorithms. The left figure corresponds to the PG methods and the right figure corresponds
to the AC algorithms.

3.6.2 A Personalized Ad-Recommendation System

Many companies such as banks and retailers use user-specific targeting of advertisements to attract more cus-

tomers and increase their revenue. When a user requests a webpage that contains a box for an advertisement,

the system should decide which advertisement (among those in the current campaign) to show to this particu-

lar user based on a vector containing all her features, often collected by a cookie. Our goal here is to generate
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a strategy that for each user of the website selects an ad that when it is presented to her has the highest prob-

ability to be clicked on. These days, almost all the industrial personalized ad recommendation systems use

supervised learning or contextual bandits algorithms. These methods are based on the i.i.d. assumption of

the visits (to the website) and do not discriminate between a visit and a visitor, i.e., each visit is considered

as a new visitor that has been sampled i.i.d. from the population of the visitors. As a result, these algorithms

are myopic and do not try to optimize for the long-term performance. Despite their success, these methods

seem to be insufficient as users establish longer-term relationship with the websites they visit, i.e., the ad rec-

ommendation systems should deal with more and more returning visitors. The increase in returning visitors

violates (more) the main assumption underlying the supervised learning and bandit algorithms, i.e., there is

no difference between a visit and a visitor, and thus, shows the need for a new class of solutions.

The reinforcement learning (RL) algorithms that have been designed to optimize the long-term perfor-

mance of the system (expected sum of rewards/costs) seem to be suitable candidates for ad recommendation

systems [128]. The nature of these algorithms allows them to take into account all the available knowledge

about the user at the current visit, and then selects an offer to maximize the total number of times she will

click over multiple visits, also known as the user’s life-time value (LTV). Unlike myopic approaches, RL

algorithms differentiate between a visit and a visitor, and consider all the visits of a user (in chronological

order) as a system trajectory generated by her. In this approach, while the visitors are i.i.d. samples from

the population of the users, their visits are not. This long-term approach to the ad recommendation problem

allows us to make decisions that are not usually possible with myopic techniques, such as to propose an offer

to a user that might be a loss to the company in the short term, but has the effect that makes the user engaged

with the website/company and brings her back to spend more money in the future.

For our second case study, we use an Adobe personalized ad-recommendation [148] simulator that has

been trained based on real data captured with permission from the website of a Fortune 50 company that

receives hundreds of visitors per day. The simulator produces a vector of 31 real-valued features that provide

a compressed representation of all of the available information about a user. The advertisements are clustered

into four high-level classes that the agent must select between. After the agent selects an advertisement, the

user either clicks (reward of +1) or does not click (reward of 0) and the feature vector describing the user is

updated. In this case, we test our algorithm by maximizing the customers’ life-time value in 15 time steps

subject to a bounded tail risk.

Instead of using the cost-minimization framework from the main paper, by defining the return random

variable (under a fixed policy θ) Rθ(x0) as the (discounted) total number of clicks along a user’s trajectory,

here we formulate the personalized ad-recommendation problem as a return maximization problem where the

tail risk corresponds to the worst case return distribution:

max
θ

E
[
Rθ(x0)

]
subject to CVaR1−α

(
−Rθ(x0)

)
≤ β. (3.38)

We set the parameters of the MDP as T = 15 and γ = 0.98, the confidence interval and constraint threshold

as α = 0.05 and β = 0.12, the number of sample trajectories N to 1, 000, 000, and the parameter bounds
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as λmax = 5, 000 and Θ = [−60, 60]κ1 , where the dimension of the basis functions is κ1 = 4096. Similar

to the optimal stopping problem, we implement both the trajectory based algorithm (PG, PG-CVaR) and

the actor-critic algorithms (AC, AC-CVaR) for risk-neutral and risk sensitive optimal control. Here we used

the 3rd order Fourier basis with cross-products in [70] as features and search over the family of Boltzmann

policies. We compared the performance of PG-CVaR and AC-CVaR, our risk-constrained policy gradient

(Algorithm 2) and actor-critic (Algorithms 3) algorithms, with their risk-neutral counterparts (PG and AC).

Figure 3.3 shows the distribution of the discounted cumulative return Rθ(x0) for the policy θ learned by

each of these algorithms. The results indicate that the risk-constrained algorithms yield a lower expected

reward, but have higher left tail (worst-case) reward distributions. Table 3.2 summarizes the findings of this

experiment.
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Figure 3.3: Reward distributions for the policies learned by the CVaR-constrained and risk-neutral policy
gradient and actor-critic algorithms. The left figure corresponds to the PG methods and the right figure
corresponds to the AC algorithms.

E
(
Rθ(x0)

)
σ
(
Rθ(x0)

)
CVaR

(
Rθ(x0)

)
VaR

(
Rθ(x0)

)
PG 0.396 1.898 0.037 1.000

PG-CVaR 0.287 0.914 0.126 1.795
AC 0.581 2.778 0 0

AC-CVaR 0.253 0.634 0.137 1.890

Table 3.2: Performance comparison of the policies learned by the CVaR-constrained and risk-neutral algorithms. In this
table σ

(
Rθ(x0)

)
stands for the standard deviation of the total reward.

3.7 Conclusion

In this chapter we proposed several policy gradient and actor-critic algorithms for CVaR-constrained and

chance-constrained optimization in MDPs, and proved their convergence. Using an optimal stopping problem
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and a personalized ad-recommendation problem, we showed that our algorithms resulted in policies whose

cost distributions have lower right-tail compared to their risk-neutral counterparts. This is important for a

risk-averse decision-maker, especially if the right-tail contains catastrophic costs.

In the next chapter we will study the model predictive control approach for risk-sensitive decision-making,

where the objective function is characterized by the a general class of time-consistent coherent risk measures.

As discussed in Chapter 1, the main advantage of adopting these objective functions in planning is that the

resultant policies are always guaranteed to be rational and time-consistent.



Chapter 4

Risk Sensitive Model Predictive Control

4.1 Introduction

4.1.1 Model Predictive Control

Model Predictive Control (MPC) is one of the most popular methods to address optimal control problems in

an online setting [108, 156]. The key idea behind MPC is to obtain the control action by repeatedly solving,

at each sampling instant, a finite horizon open-loop optimal control problem, using the current state of the

plant as the initial state; the result of the optimization is an (open-loop) control sequence, whose first element

is applied to control the system [85].

The classic MPC framework does not provide a systematic way to address model uncertainties and dis-

turbances [15]. Accordingly, one of the main research thrusts for MPC is to find techniques to guarantee

persistent feasibility and stability in the presence of disturbances. Essentially, current techniques fall into two

categories: (1) min-max (or worst-case) formulations, where the performance indices to be minimized are

computed with respect to the worst possible disturbance realization [72, 50, 98], and (2) stochastic formu-

lations, where risk-neutral expected values of performance indices (and possibly constraints) are considered

[15, 107].

The main drawback of the worst-case approach is that the control law may be too conservative, since

the MPC law is required to guarantee stability and constraint fulfillment under the worst-case scenario. On

the other hand, stochastic formulations, whereby the assessment of future random outcomes is accomplished

through a risk-neutral expectation, may be unsuitable in scenarios where one takes risk-aversion into account

and desires to protect the system from large deviations.

4.1.2 MPC with Time Consistent Risk Measures

In this chapter, as a radical departure from traditional approaches, we leverage recent strides in the theory of

dynamic risk metrics developed by the operations research community [122, 119] to include risk-aversion in

60
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MPC. The key property of dynamic risk metrics is that, by assessing risk at multiple points in time, one can

guarantee time-consistency of risk preferences over time [122, 119]. In particular, the essential requirement

for time consistency is that if a certain outcome is considered less risky in all states of the world at stage

k + 1, then it should also be considered less risky at stage k. Remarkably, in [119], it is proven that any risk

measure that is time consistent can be represented as a composition of one-step risk metrics. In other words,

in multi-period settings, risk (as expected) should be compounded over time.

4.1.3 Chapter Contribution

The contribution of this chapter is threefold. First, we introduce a notion of dynamic risk metric, referred to as

Markov dynamic polytopic risk metric, that captures a full range of risk assessments and enjoys a geometrical

structure that is particularly favorable from a computational standpoint. Second, we present and analyze a

risk-averse MPC algorithm that minimizes in a receding-horizon fashion a Markov dynamic polytopic risk

metric, under the assumption that the system’s model is linear and is affected by multiplicative uncertainty.

Finally, by exploring the “geometrical” structure of Markov dynamic polytopic risk metrics, we present a

convex programming formulation for risk-averse MPC that is amenable to a real-time implementation (for

moderate horizon lengths). Our framework has three main advantages: (1) it is axiomatically justified, in the

sense that risk, by construction, is assessed in a time-consistent fashion; (2) it is amenable to dynamic and

convex optimization, primarily due to the compositional form of Markov dynamic polytopic risk metrics and

their geometry; and (3) it is general, in that it captures a full range of risk assessments from risk-neutral to

worst-case. In this respect, our formulation represents a unifying approach for risk-averse MPC.

4.1.4 Chapter Organization

The rest of the chapter is organized as follows. In Section 4.2 we discuss the stochastic model we address in

this chapter. In Section 4.3 we introduce and discuss the notion of Markov dynamic polytopic risk metrics.

In Section 4.4 we state the infinite horizon optimal control problem we wish to address and in Section 4.5 we

derive conditions for risk-averse closed-loop stability. From Section 4.6 to 4.8 we present a risk-averse model

predictive control law, its performance analysis and various approaches for its computation, respectively.

Numerical experiments are presented and discussed in Section 4.9. Finally, complete proofs of the technical

results and further extensions can be found in Section 7.4.

4.2 Model Description

Consider the discrete time system:

xk+1 = A(wk)xk +B(wk)ak, (4.1)
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where k ∈ N is the time index, xk ∈ RNx is the state, ak ∈ RNa is the (unconstrained) control input,

and wk ∈ W is the process disturbance. We assume that the initial condition x0 is deterministic. We

assume thatW is a finite set of cardinality L, i.e.,W = {w[1], . . . , w[L]}. For each stage k and state-control

pair (xk, ak), the process disturbance wk is drawn from set W according to the probability mass function

p = [p(1), p(2), . . . , p(L)]>, where p(j) = P(wk = w[j]), j ∈ {1, . . . , L}. Without loss of generality,

we assume that p(j) > 0 for all j. Note that the probability mass function for the process disturbance is

time-invariant, and that the process disturbance is independent of the process history and of the state-control

pair (xk, ak). Under these assumptions, the stochastic process {xk} is clearly a Markov process.1

By enumerating all L realizations of the process disturbance wk, system (4.1) can be rewritten as:

xk+1 =


A1xk +B1ak if wk = w[1],

...
...

ALxk +BLak if wk = w[L],

where Aj := A(w[j]) and Bj := B(w[j]), j ∈ {1, . . . , L}.
The results presented in this chapter can be immediately extended to the time-varying case (i.e., where

the probability mass function for the process disturbance is time-varying). To simplify notation, however, we

prefer to focus this chapter on the time-invariant case.

4.3 Markov Polytopic Risk Measures

In this section we refine the notion of Markov (dynamic and time-consistent) risk metrics (as defined in

Theorem 1.3.8) by adding a polytopic structure to the dual representation of coherent risk metrics. This

will lead to the definition of Markov dynamic polytopic risk metrics, which enjoy favorable computational

properties and, at the same time, maintain most of the generality of dynamic time-consistent risk metrics.

4.3.1 Polytopic Risk Measures

According to the discussion in Section 4.2, the probability space for the process disturbance has a finite

number of elements. Accordingly, consider Theorem 1.3.3; by definition of expectation, one has Eζ [Z] =∑L
j=1 Z(j)p(j)ζ(j). In our framework (inspired by [53]), we consider coherent risk measures where the

risk envelope U is a polytope, i.e., there exist matrices SI , SE and vectors T I , TE of appropriate dimensions

such that

Upoly =
{
ζ ∈ B | SI ζ ≤ T I , SEζ = TE

}
.

1In the context of MDPs (Section 1.2), in this problem the state space X is RNx , the action spaceA is RNa , and the state evolution
follows from (4.1). According to the problem formulation in Section 4.4, the discounting factor γ equals to 1, and the immediate cost
c(x, a) is given by x>Qx+ u>Ru, where (Q,R) is a set of state and control weighting matrices.
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We will refer to coherent risk measures representable with a polytopic risk envelope as polytopic risk mea-

sures. Consider the bijective map q(j) := p(j)ζ(j) (recall that, in our model, p(j) > 0). Then, by applying

such map, one can easily rewrite a polytopic risk measure as

ρ(Z) = max
q∈Upoly

Eq[Z],

where q is a probability mass function belonging to a polytopic subset of the standard simplex, i.e.:

Upoly =
{
q ∈ ∆L | SIq ≤ T I , SEq = TE

}
, (4.2)

where ∆L :=
{
q ∈ RL :

∑L
j=1 q(j) = 1, q ≥ 0

}
. Accordingly, one has Eq[Z] =

∑L
j=1 Z(j)q(j) (note

that, with a slight abuse of notation, we are using the same symbols as before for Upoly, SI , and SE).

The class of polytopic risk measures is large: we give below some examples (also note that any comono-

tonic risk measure is a polytopic risk measure [62]).

Example 4.3.1 (Examples of Polytopic Risk Measures). As a first example, the expected value of a random

variable Z can be represented according to equation (4.2) with polytopic risk envelope

Upoly =
{
q ∈ ∆L | q(j) = p(j) for all j ∈ {1, . . . , L}

}
.

A second example is represented by the average upper semi-deviation risk metric, defined as

ρAUS(Z) := E [Z] + cE
[
(Z − E [Z])+

]
,

where 0 ≤ c ≤ 1 and (x)+ := max(0, x). This metric can be represented according to equation (4.2) with

polytopic risk envelope ([93, 132]):

Upoly =

q ∈ ∆L | q(j) = p(j)

1 + h(j)−
L∑
j=1

h(j)p(j)

 , 0 ≤ h(j) ≤ c, j ∈ {1, . . . , L}

 .

A related risk metric is the mean absolute semi-deviation risk metric, defined as

ρAUS(Z) = E [Z] + cE
[∣∣∣Z − E [Z]

∣∣∣],
where 0 ≤ c ≤ 1. This metric can be represented according to equation (4.2) with polytopic risk envelope

([93]):

Upoly =

{
q ∈ ∆L | ql = pl

(
1 + hl −

L∑
l=1

hlpl

)
,−c ≤ hl ≤ c, l ∈ {1, . . . , L}

}
.
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A risk metric that is very popular in the finance industry is the Conditional Value-at-Risk (CVaR), defined

as ([112])

CVaRα(Z) := inf
y∈R

[
y +

1

α
E [(Z − y)+]

]
, (4.3)

where α ∈ (0, 1]. CVaRα can be represented according to equation (4.2) with the polytopic risk envelope

(see [132]):

Upoly =
{
q ∈ ∆L | 0 ≤ q(j) ≤ p(j)

α
for all j ∈ {1, . . . , L}

}
.

As a special case of the Conditional Value-at-Risk, by setting α = 0, the worst case risk defined as

WCR(Z) = max
{
Z(j) : j ∈ {1, . . . , L}

}
, (4.4)

can be trivially represented according to (4.2) with polytopic risk envelope Upoly = ∆L.

Other important examples include the spectral risk measures [21], the optimized certainty equivalent

and expected utility [13, 132], and the distributionally-robust risk [15]. The key point is that the notion of

polytopic risk metric covers a full gamut of risk assessments, ranging from risk-neutral to worst case.

4.3.2 Markov Dynamic Polytopic Risk Metrics

Note that in the definition of dynamic, time-consistent risk measures, since at stage k the value of ρk is Fk-

measurable, the evaluation of risk can depend on the whole past, see [119, Section IV]. For example, the

weight c in the definition of the average upper mean semi-deviation risk metric can be an Fk-measurable

random variable (see [119, Example 2]). This generality, which appears of little practical value in many

cases, leads to optimization problems that are intractable. This motivates us to add a Markovian structure to

dynamic, time-consistent risk measures (similarly as in [119]). We start by introducing the notion of Markov

polytopic risk measure (similar to [119, Definition 6]).

Definition 4.3.2 (Markov Polytopic Risk Measures). Consider the Markov process {xk} that evolves accord-

ing to equation (4.1). A coherent one-step conditional risk measure ρk(·) is a Markov polytopic risk measure

with respect to {xk} if it can be written as

ρk(Z(xk+1)) = max
q∈Upoly

k (xk,p)
Eq[Z(xk+1)]

where Upoly
k (xk, p) =

{
q ∈ ∆L | SIk(xk, p)q ≤ T Ik (xk, p), S

E
k (xk, p)q = TEk (xk, p)

}
is the polytopic risk

envelope.

In other words, a Markov polytopic risk measure is a coherent one-step conditional risk measure where

the evaluation of risk is not allowed to depend on the whole past (for example, the weight c in the definition

of the average upper mean semi-deviation risk metric can depend on the past only through xk), and the risk

envelope is a polytope. Correspondingly, we define a Markov dynamic polytopic risk metric as follows.
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Definition 4.3.3 (Markov Dynamic Polytopic Risk Measures). Consider the Markov process {xk} that

evolves according to equation (4.1). A Markov dynamic polytopic risk measure is a set of mappings ρk,N :

Zk,N → Zk defined as

ρk,N =Z(xk) + ρk(Z(xk+1) + . . .+ ρN−2(Z(xN−1) + ρN−1(Z(xN ))) . . .)),

for k ∈ {0, . . . , N}, where ρk are single-period Markov polytopic risk measures.

Clearly, a Markov dynamic polytopic risk metric is time consistent. Definition 4.3.3 can be extended to

the case where the probability distribution for the disturbance depends on the current state and control action.

We avoid this generalization to keep the exposition simple and consistent with model (4.1).

4.3.3 Computational Aspects of Markov Dynamic Polytopic Risk Metrics

According to Definition 4.3.3, Markov dynamic polytopic risk measures are obtained by compounding coher-

ent one-step conditional risk measures, whose risk envelope is a polytope. Some of the algorithms presented

in Section 4.8 require a vertex representation of such polytopes (rather then the hyperplane representation in

Definition 4.3.2). Several methods are available to enumerate the vertices of a polytope, such as the Fourier-

Motzkin elimination method, the simplex method, and the iterative linear programming method, see [89,

Section 5] and references therein. In our implementation, we use the vertex enumeration function included

in the MPT toolbox [75], which relies on the simplex method.

4.4 Problem Formulation

In light of Sections 4.2 and 4.3, we are now in a position to state the risk-averse optimization problem we

wish to solve in this chapter. Our problem formulation relies on Markov dynamic polytopic risk metrics that

satisfy the following stationarity assumption.

Assumption 4.4.1 (Time-invariance of Risk Assessments). The polytopic risk envelopes Upoly
k are indepen-

dent of time k and state xk, i.e. Upoly
k (xk, p) = Upoly(p) for all k.

This assumption is crucial for the well-posedness of our formulation and to devise a tractable MPC

algorithm that relies on linear matrix inequalities. We next introduce a notion of stability tailored to our

risk-averse context.

Definition 4.4.2 (Uniform Global Risk-Sensitive Exponential Stabilty). System (4.1) is said to be Uniformly

Globally Risk-Sensitive Exponentially Stable (UGRSES) if there exist constants c ≥ 0 and λ ∈ [0, 1) such

that for all initial conditions x0 ∈ RNx ,

ρ0,k(0, . . . , 0, x>k xk) ≤ c λk x>0 x0, for all k ∈ N, (4.5)
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where {ρ0,k} is a Markov dynamic polytopic risk measure satisfying Assumption 4.4.1. If condition (4.5)

only holds for initial conditions within some bounded neighborhood Ω of the origin, the system is said to be

Uniformly Locally Risk-Sensitive Exponentially Stable (ULRSES) with domain Ω.

Note that, in general, UGRSES is a more restrictive stability condition than mean-square stability, as

clarified by the following example.

Example 4.4.3 (Mean-Square Stability versus Risk-Sensitive Stability). System (4.1) is said to be Uniformly

Globally Mean-Square Exponentially Stable (UGMSES) if there exist constants c ≥ 0 and λ ∈ [0, 1) such

that for all initial conditions x0 ∈ RNx ,

E
[
x>k xk

]
≤ c λk x>0 x0, for all k ∈ N,

see [123, Definition 1] and [15, Definition 1]. Consider the discrete time system

xk+1 =

{ √
0.5xk with probability 0.2,√
1.1xk with probability 0.8.

(4.6)

A sufficient condition for system (4.6) to be UGMSES is that there exist positive definite matricesP = P> � 0

and L = L> � 0 such that

E
[
x>k+1Pxk+1

]
− x>k Pxk ≤ −x>k Lxk,

for all k ∈ N, see [15, Lemma 1]. One can easily check that with P = 100 and L = 1 the above inequality

is satisfied, and, hence system (4.6) is UGMSES.

Assuming risk is assessed according to the Markov dynamic polytopic risk metric ρ0,k = CV aR0.5 ◦
. . . ◦ CV aR0.5, we next show that system (4.6) is not UGRSES. In fact, using the dual representation given

in Example 4.3.1, one can write

CVaR0.5(Z(xk+1)) = max
q∈Upoly

Eq[Z(xk+1)], where Upoly =
{
q ∈ ∆2 | 0 ≤ q1 ≤ 0.4, 0 ≤ q2 ≤ 1.6

}
.

Consider the probability mass function q = [0.1/1.1, 1/1.1]>. Since q ∈ Upoly, one has

CVaR0.5(x2
k+1) ≥ 0.5x2

k

0.1

1.1
+ 1.1x2

k

1

1.1
= 1.0455x2

k.

By repeating this argument, one can then show that

ρ0,k(x2
k+1) = CVaR0.5 ◦ . . . ◦ CVaR0.5(x2

k+1) ≥ ak+1 x>0 x0,

where a = 1.0455. Hence, one cannot find constants c and λ that satisfy equation (4.5). Consequently,

system (4.6) is UGMSES but not UGRSES.

Consider the MDP described in Section 4.2 and let Π be the set of all stationary feedback control policies,
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i.e., Π :=
{
π : RNx → RNa}. Consider the quadratic cost function C : RNx × RNa → R≥0 defined as

C(x, a) := x>Qx + u>Ru, where Q = Q> � 0 and R = R> � 0 are given state and control penalties.

Define the multi-stage cost function:

J0,k(x0, π) := ρ0,k

(
C(x0, π(x0)), . . . , C(xk, π(xk))

)
,

where {ρ0,k} is a Markov dynamic polytopic risk measure satisfying Assumption 4.4.1. The problem we

wish to address is as follows.

Optimization problem OPT RS — Given an initial state x0 ∈ RNx , solve

inf
π∈Π

lim sup
k→∞

J0,k(x0, π)

such that xk+1 = A(wk)xk +B(wk)π(xk)

‖Taπ(xk)‖2 ≤ amax, ‖Txxk‖2 ≤ xmax

System is UGRSES

where (Ta, amax) and (Tx, xmax) describe the second order cone constraints for the control and

state, respectively.

We denote the optimal cost function as J∗0,∞(x0). Note that the risk measure in the definition of UGRSES is

assumed to be identical to the risk measure used to evaluate the cost of a policy. Also, by Assumption 4.4.1,

the single-period risk metrics are time-invariant, hence one can write

ρ0,k

(
C(x0, π(x0)), . . . , C(xk, π(xk))

)
= C(x0, π(x0)) + ρ(C(x1, π(x1)) + . . .+ ρ(C(xk, π(xk))) . . .),

(4.7)

where ρ is a given Markov polytopic risk metric that models the “amount” of risk aversion. This chapter

addresses problem OPT RS along three main dimensions:

1. Find lower bounds for the optimal cost of problem OPT RS.

2. Find sufficient conditions for risk-sensitive stability (i.e., for UGRSES).

3. Design a model predictive control algorithm to efficiently compute a suboptimal state-feedback control

policy.

In the next section, we provide sufficient conditions for (4.1) to be UGRSES, thereby leading to the

discussion on the MPC adaption of problem OPT RS.
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4.5 Risk-Sensitive Stability

In this section we provide a sufficient condition for system (4.1) to be UGRSES, under the assumptions of

Section 4.4. This condition relies on Lyapunov techniques and is inspired by [15] (Lemma 4.5.1 indeed

reduces to Lemma 1 in [15] when the risk measure is simply an expectation).

Lemma 4.5.1 (Sufficient Conditions for UGRSES). Consider a policy π ∈ Π and the corresponding closed-

loop dynamics for system (4.1), denoted by xk+1 = f(xk, wk). The closed-loop system is UGRSES if there

exists a function V (x) : RNx → R and scalars b1, b2, b3 > 0, such that for all x ∈ RNx ,

b1 ‖x‖2 ≤ V (x) ≤ b2‖x‖2, and

ρ(V (f(x,w)))− V (x) ≤ −b3‖x‖2.
(4.8)

Remark 4.5.2 (Sufficient Conditions for ULRSES). The closed-loop system is ULRSES with domain Ω if the

conditions in (4.8) only hold within the bounded set Ω.

4.6 Model Predictive Control Problem

4.6.1 The Unconstrained Case

In this section we set up the receding horizon version of problem OPT RS, under the assumption that there

are no constraints. This will lead to a model predictive control algorithm for the (suboptimal) solution of

problem OPT RS. Consider the following receding-horizon cost function for N ≥ 1:

J(xk|k, πk|k, . . . , πk+N−1|k, P )

:=ρk,k+N

(
C(xk|k, πk|k(xk|k)), . . . , C(xk+N−1|k, πk+N−1|k(xk+N−1|k), x>k+NPxk+N

)
,

(4.9)

where xh|k is the state at time h predicted at stage k (a discrete random variable), πh|k is the control policy

to be applied at time h as determined at stage k (i.e., πh|k : RNx → RNa ), and P = P> � 0 is a terminal

weight matrix. We are now in a position to state the model predictive control problem.

Optimization problem MPC — Given an initial state xk|k ∈ RNx and a prediction horizon

N ≥ 1, solve

min
πk|k,...,πk+N−1|k

J
(
xk|k, πk|k, . . . , πk+N−1|k, P

)
such that xk+h+1|k = A(wk+h)xk+h|k +B(wk+h)πk+h|k(xk+h|k)

for h ∈ {0, . . . , N − 1}.

Note that a Markov policy is guaranteed to be optimal for problem MPC (see [119, Theorem 2]). The

optimal cost function for problem MPC is denoted by J∗k (xk|k), and a minimizing policy is denoted by
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{π∗k|k, . . . , π∗k+N−1|k} (if multiple minimizing policies exist, then one of the minimizing policies is selected

arbitrarily). For each state xk, we set xk|k = xk and the (time-invariant) model predictive control law is then

defined as

πMPC(xk) =π∗k|k(xk|k). (4.10)

Note that the model predictive control problemMPC involves an optimization over time-varying closed-loop

policies, as opposed to the classical deterministic case where the optimization is over open-loop sequences.

A similar approach is taken in [107, 15]. We will show in Section 4.8 how to solve problemMPC efficiently.

The following theorem shows that the model predictive control law (4.18), with a proper choice of the

terminal weight P , is risk-sensitive stabilizing, i.e., the closed-loop system (4.1) is UGRSES.

Theorem 4.6.1 (Stochastic Stability for Model Predictive Control Law, Unconstrained Case). Consider the

model predictive control law in equation (4.18) and the corresponding closed-loop dynamics for system (4.1)

with initial condition x0 ∈ RNx . Suppose that P = P> � 0, and there exists a matrix F such that:

L∑
j=1

ql(j) (Aj +BjF )>P (Aj +BjF )− P +Q+ F>RF ≺ 0, (4.11)

for all l ∈ {1, . . . , cardinality(Upoly,V (p))}, where Upoly,V (p) is the set of vertices of polytope Upoly(p), ql
is the lth element in set Upoly,V (p), and ql(j) denotes the jth component of vector ql, j ∈ {1 . . . , L}. Then,

the closed loop system (4.1) is UGRSES.

4.6.2 The Constrained Case

We now enforce the state and control constraints introduced in problem OPT RS within the receding horizon

framework. Consider the time-invariant ellipsoids:

A := {a ∈ RNa | ‖Ta a‖2 ≤ amax}, X := {x ∈ RNx | ‖Tx x‖2 ≤ xmax}.

While we focus on ellipsoidal state and control constraints in this chapter, our methodology can readily

accommodate component-wise and polytopic constraints via suitable LMI representations, for example, see

[125, 44, 6] for detailed derivations.

Our receding horizon framework may be decomposed into two steps. First, offline, we search for an

ellipsoidal set Emax and a local feedback control law a(x) = Fx that renders Emax control invariant and

ensures satisfaction of state and control constraints. Additionally, within the offline step, we search for a

terminal cost matrix P (for the online MPC problem) to ensure that the closed-loop dynamics under the model

predictive controller are risk-sensitive exponentially stable. The online MPC optimization then constitutes
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the second step of our framework. Consider first, the offline step. We parameterize Emax as follows:

Emax(W ) := {x ∈ RNx | x>W−1x ≤ 1}, (4.12)

where W (and hence W−1) is a positive definite matrix. The (offline) optimization problem to solve for W ,

F , and P is presented below.

Optimization problem PE — Solve

max
W=W>�0,F,P=P>�0

logdet(W )

such that F>
T>a Ta
a2

max

F −W−1 � 0, (4.13)

(Aj +BjF )>
T>x Tx
x2

max

(Aj +BjF )−W−1 � 0, ∀j ∈ {1, . . . , L},

(4.14)

(Aj +BjF )>W−1(Aj +BjF )−W−1 � 0,∀j ∈ {1, . . . , L},
(4.15)

L∑
j=1

ql(j) (Aj +BjF )>P (Aj +BjF )− P + (F>RF +Q) ≺ 0

∀l ∈ {1, . . . , cardinality(Upoly,V (p))}. (4.16)

The objective in problem PE is to maximize the volume of the control invariant ellipsoid Emax(W ). Note

that Emax(W ) may contain states outside of X, however, we restrict our domain of interest to the intersection

X∩Emax(W ). The bi-linear semi-definite inequality in (7.73) defines the terminal cost matrix P , and will be

instrumental in proving risk-sensitive stability for system (4.1) under the model predictive control law. We

first analyze the properties of the state feedback control law a(x) = Fx within the set Emax(W ).

Lemma 4.6.2 (Properties of Emax). Suppose problem PE is feasible and x ∈ X∩Emax(W ). Let a(x) = Fx.

Then, the following statements are true:

1. ‖Taa‖2 ≤ amax, i.e., the control constraint is satisfied.

2. ‖Tx (A(w)x+B(w)a) ‖2 ≤ xmax surely, i.e., the state constraint is satisfied at the next step surely.

3. A(w)x+B(w)a ∈ Emax(W ) surely, i.e., the set Emax(W ) is robust control invariant under the control

law a(x) = Fx.

Thus, a(x) ∈ A and A(w)x+B(w)a ∈ X ∩ Emax(W ) surely.

Lemma 4.6.2 establishes X ∩ Emax(W ) as a robust control invariant set under the feasible local feedback

control law a(x) = Fx. This result will be crucial to ascertain the persistent feasibility properties of the

online optimization algorithm and the resulting closed-loop stability.
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We are now ready to formalize the MPC problem. Suppose the feasible set of solutions in problem PE is

non-empty and define W = W ∗ and P = P ∗, where W ∗, P ∗ are the maximizers for problem PE . Consider

the following online optimization problem:

Optimization problem MPC — Given an initial state xk|k ∈ X and a prediction horizon

N ≥ 1, solve

min
πk|k,...,πk+N−1|k

J
(
xk|k, πk|k, . . . , πk+N−1|k, P

)
such that xk+h+1|k = A(wk+h)xk+h|k +B(wk+h)πk+h|k(xk+h|k),

‖Taπk+h|k(xk+h|k)‖2 ≤ amax, ‖Txxk+h+1|k‖2 ≤ xmax, h ∈ {0, . . . , N − 1},
xk+N |k ∈ Emax(W ) surely. (4.17)

Note that a Markov policy is guaranteed to be optimal for problemMPC (see [119, Theorem 2]). The

optimal cost function for problem MPC is denoted by J∗k (xk|k), and a minimizing policy is denoted by

{π∗k|k, . . . , π∗k+N−1|k}. For each state xk, we set xk|k = xk and the (time-invariant) model predictive control

law is then defined as

πMPC(xk) =π∗k|k(xk|k). (4.18)

Remark 4.6.3. While the problem formulation in this chapter considers hard state and control constraints,

the approach may be readily adapted to accommodate probabilistic constraints using the method described

in [38, 39]. The key idea is to consider control laws of the form a(x) = Fx+ c, where F is fixed and solved

offline and c is computed online within the MPC algorithm. Additionally, the offline step solves for a set in

which state and control constraints are satisfied surely, and the set is probabilistically control invariant with

some desired confidence level. The online MPC problem then tries to either retain the state within this set, or

return the state back to this set. State and control constraint satisfaction can then be assured with the desired

probabilistic confidence.

Note that problemMPC involves an optimization over time-varying closed-loop policies, as opposed to

the classical deterministic case where the optimization is over open-loop control inputs. A similar approach

is taken in [107, 15]. We will show in Section 4.8 how to solve problemMPC efficiently. We now address

the persistent feasibility and stability properties for problemMPC.

4.6.2.1 Persistent Feasibility for problemMPC

The following theorem proves that problemMPC is persistently feasible:

Theorem 4.6.4 (Persistent Feasibility). Define XN to be the set of initial states for which problemMPC is

feasible. Assume xk|k ∈ XN and the control law is given by (4.18). Then, it follows that xk+1|k+1 ∈ XN
surely.
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Remark 4.6.5 (Compactness of XN ). By leveraging the finite cardinality of the disturbance setW and the

set closure preservation property attributed to the inverse of continuous functions, it is possible to show that

XN is closed. Then, since XN is necessarily a subset of the bounded set X, it follows that XN is compact.

4.6.2.2 ULRSES Stability for ProblemMPC

The following theorem demonstrates that the closed-loop system under the MPC control law is ULRSES:

Theorem 4.6.6 (Stochastic Stability with MPC). Suppose the initial state x0 lies within XN . Then, under the

model predictive control law given in (4.18), the closed-loop system is ULRSES with domain XN .

Remark 4.6.7 (Performance Comparisons). The two-step optimization methodology proposed via Problems

PE andMPC is similar to the approach described in [15] in that both the control invariant ellipsoid (Emax)

and the conditions to ensure stability are computed offline, while problem MPC is solved online. This

hybrid procedure is more computationally efficient than the online algorithm given in [98], and boasts better

performance as compared with the offline algorithm in [72]. On the other hand, the stability analysis here

differs from [15] since we use J∗k as the Lyapunov function instead of the fixed quadratic form described in

[15]. This allows us to explicitly characterize the cost function performance of the closed-loop dynamics

under the model predictive control law with respect to J∗0,∞ and J∗k . To gain additional insight into this

comparison, we present an alternative formulation of problems PE andMPC in Section 7.4.12, analogous

to the approach in [15].

Having proven persistent feasibility for the online MPC algorithm and ULRSES stability for the resulting

closed-loop dynamics, we now present both lower and upper bounds for the infinite horizon cost function

associated with the MPC algorithm. This in-turn allows us to quantify the sub-optimality of the receding

horizon adaptation of problem OPT RS.

4.7 Bounds on Optimal Cost

In this section, by leveraging semi-definite programming, we provide a lower bound for the optimal cost of

problem OPT RS and an upper bound for the optimal cost using the MPC algorithm. These bounds will be

used in Section 4.9 to bound the factor of sub-optimality for our MPC control algorithm. On top of these

results, a complete theoretical analysis of MPC sub-optimality performance can be found in Section 7.4.13.

4.7.1 Lower Bound

In the following, let

A :=
[
A>1 . . . A>L

]>
, and B :=

[
B>1 . . . B>L

]>
.
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Furthermore, let

Σl := diag(ql(1), . . . , ql(L)) � 0,

for all l ∈ {1, . . . , cardinality(Upoly,V (p))}, where Upoly,V (p) is the set of vertices of polytope Upoly(p), ql
is the lth element in set Upoly,V (p), and ql(j) denotes the jth component of vector ql, j ∈ {1 . . . , L}.

Theorem 4.7.1 (Lower Bound for Problem OPT RS). Suppose there exists a symmetric matrix X � 0 such

that the following Linear Matrix Inequality holds:[
R+B

>
(Σl ⊗X)B B

>
(Σl ⊗X)A

∗ A
>

(Σl ⊗X)A− (X −Q)

]
� 0, ∀l ∈ {1, . . . , cardinality(Upoly,V (p))}.

(4.19)

Then, the optimal cost of problem OPT RS can be lower bounded as

J∗0,∞(x0) ≥ max{x>0 Xx0 : X satisfies LMI in equation (4.19)}.

4.7.2 Upper Bound

The following theorem presents an upper bound for the infinite horizon cost incurred when executing the

MPC policy.

Theorem 4.7.2 (Upper Bound on MPC Performance). Suppose problem PE is feasible. Recall our definition

for XN as the set of initial states for which problem MPC is feasible. Then for all x0 ∈ XN , the value

J∗0 (x0) provides an upper bound for the infinite horizon cost under the MPC policy, that is

J∗0 (x0) ≥ lim sup
k→∞

ρ0,k

(
C(x0, π

MPC(x0)), . . . , C(xk, π
MPC(xk)

)
= lim sup

k→∞
J0,k(x0, π

MPC).

4.8 Solution Algorithms

In this section we discuss two solution approaches, the first via dynamic programming, the second via convex

programming.

4.8.1 Dynamic Programming Approach

While problemMPC can be solved via dynamic programming (see [119, Theorem 2]), one would first need

to find a matrix P that satisfies (7.73). Expression (7.73) is a bilinear semi-definite inequality in (P, F ). It

is well known that feasibility checks in bilinear semi-definite inequality constraints is an NP-hard problem

[150]. Nonetheless, one can transform this bilinear semi-definite inequality constraint into a linear matrix

inequality by applying the Projection Lemma [135]. The next theorem presents a linear matrix inequality

characterization of condition (7.73). Due to space limits, the proof of this theorem is included in Section 7.1

7.4.9.
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Theorem 4.8.1 (LMI Characterization of Stability Constraint). DefineA =
[
A>1 . . . A>L

]>
,B =

[
B>1 . . . B>L

]>
and for each ql ∈ Upoly,V (p) define Σl = diag(ql(1)I, . . . , ql(L)I) � 0. Consider the following set of LMIs

with decision variables Y , G, Q = Q
> � 0:

IL×L ⊗Q 0 0 −Σ
1
2

l (AG+BY )

∗ R−1 0 −Y
∗ ∗ I −Q 1

2G

∗ ∗ ∗ −Q+G+G>

 � 0, ∀l ∈ {1, . . . , cardinality(Upoly,V (p))}. (4.20)

The expression in (7.73) is equivalent to the set of LMIs in (4.20) by setting F = Y G−1 and P = Q
−1

.

Furthermore, by the application of the Projection Lemma to the expressions in (7.70), (7.71) and (7.72),

we obtain the following corollary:

Corollary 4.8.2. Let Y and G be the decision variables in the set of LMIs in (4.20). Suppose the following

set of LMIs with decision variables Y , G, and W = W> � 0 are satisfied:[
x2

maxI −Tx(AjG+BjY )

∗ −W +G+G>

]
� 0,[

a2
maxI −TaY
∗ −W +G+G>

]
� 0,[

W −(AjG+BjY )

∗ −W +G+G>

]
� 0.

(4.21)

Then, the LMIs in (7.70), (7.71) and (7.72) with F = Y G−1 are also satisfied. That is, by setting F = Y G−1,

the inequalities above represent sufficient conditions for the LMIs in (7.70), (7.71) and (7.72).

Remark 4.8.3 (Projection Lemma with Non-strict Inequalities). The LMIs in Corollary 4.8.2 represent suffi-

cient conditions for the invariance of the set X ∩ Emax(W ) under the feasible local control law a(x) = Fx.

In these LMIs, strict inequalities are imposed only for the sake of analytical simplicity when applying the

Projection Lemma (Lemma 7.4.1). Using similar arguments as in [72], non-strict versions of the above LMIs

may also be derived, for example, leveraging some additional technicalities, [124] presents conditions that

extend the Projection Lemma to encompass non-strict inequalities.

A solution approach for the receding horizon adaptation of problem OPT RS is to first solve the LMIs

in Theorem 4.8.1 and Corollary 4.8.2. If a solution for (P, Y,G,W ) is found, apply dynamic programming

(after state and action discretization, see, e.g., [47, 45]). Note that the discretization process might yield

a large-scale dynamic programming problem for which the computational complexity scales exponentially

with the resolution of discretization. This motivates the convex programing approach presented next.
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4.8.2 Convex Programming Approach

Consider the following parameterization of history-dependent control policies. Let j0, . . . , jh ∈ {1, . . . , L}
be the realized indices for the disturbances in the first h + 1 steps of the MPC problem, where h ∈
{1, . . . , N − 1}. The control to be exerted at stage h is denoted by ah(j0, . . . , jh−1). Similarly, we refer

to the state at stage h as xh(j0, . . . , jh−1). The quantities xh(j0, . . . , jh−1) and ah(j0, . . . , jh−1) enable us

to keep track of the growth of the scenario tree. In terms of this new notation, the system dynamics (4.1) can

be rewritten as:

x0 := xk|k, a0 ∈ A, x1(j0) = Aj0x0 +Bj0a0, for h = 1,

xh(j0, . . . , jh−1) = Ajh−1
xh−1(j0, . . . , jh−2) +Bjh−1

ah−1(j0, . . . , jh−2), for h ≥ 2.
(4.22)

While problemMPC is defined as an optimization over Markov control policies, in the convex program-

ming approach, we re-define the problem as an optimization over history-dependent policies. One can show

(with a virtually identical proof, see Section 7.4.11 for more details) that the stability Theorem 4.6.6 still holds

when history-dependent policies are considered. Furthermore, since Markov policies are optimal in our setup

(see [119, Theorem 2]), the value of the optimal cost stays the same. The key advantage of history-dependent

policies is that their additional flexibility leads to a convex optimization problem for the determination of the

model predictive control law. This is illustrated by the following solution algorithm:

AlgorithmMPC — Given an initial state x0 ∈ X and a prediction horizon N ≥ 1, solve

• Offline step: Solve

max
W=W>�0,G,Y,Q=Q

>�0

logdet(W )

subjected to the LMIs in expressions (4.20) and (4.21).

• Online Step: Suppose the feasible set of solutions in the offline step is non-empty. Define:

W = W ∗ and P = (Q
∗
)−1 where W ∗ and Q

∗
are the maximizers for the offline step.

Now at each step k ∈ {0, 1, . . . , }, solve:

min
γ2(j0, . . . , jN−1), xh(j0, . . . , jh−1), a0, ah(j0, . . . , jh−1),

h ∈ {1, . . . , N}, j0, . . . , jN−1 ∈ {1, . . . , L}

ρk,k+N (C(xk|k, a0), . . . , C(xN−1, aN−1), γ2)

(4.23)

subject to

– the LMIs [
1 xN (j0, . . . , jN−1)>

∗ W

]
� 0; (4.24)[

γ2(j0, . . . , jN−1)I xN (j0, . . . , jN−1)>

∗ P−1

]
� 0; (4.25)
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– the system dynamics in equation (4.22);

– the control constraints for h ∈ {1, . . . , N}:

‖Taa0‖2 ≤ amax, ‖Taah(j0, . . . , jh−1)‖2 ≤ amax; (4.26)

– the state constraints for h ∈ {1, . . . , N}:

‖Txxh(j0, . . . , jh−1)‖2 ≤ xmax; (4.27)

Then, set πMPC(xk|k) = a0.

Note that the terminal cost has been equivalently reformulated via the epigraph constraint in (4.25) using

the variable γ2. Details of this analysis can be found in Section 7.4.10. This algorithm is clearly suitable

only for “moderate” values of N , given the combinatorial explosion of the scenario tree. As a degenerate

case, when we exclude all lookahead steps, problemMPC is reduced to an offline optimization. By trading

off performance, one can compute the control policy offline and implement it directly online without further

optimization:

AlgorithmMPC0 — Given an initial state x0 ∈ X, solve:

min
γ2,W = W> � 0, G, Y,Q = Q

> � 0

γ2

subjected to the LMIs in expressions (4.20), (4.21) and[
1 x>0

∗ W

]
� 0 ,

[
γ2I x>0

∗ Q

]
� 0.

Then, set πMPC(xk) = Y G−1xk.

Note that the domain of feasibility forMPC0 is the original control invariant set X ∩ Emax(W ). Showing

ULRSES for algorithmMPC0 is more straightforward than the corresponding analysis for problemMPC
and is summarized within the following corollary.

Corollary 4.8.4 (Quadratic Lyapunov Function). Suppose problem MPC0 is feasible. Then, system (4.1)

under the offline MPC policy: πMPC(xk) = Y G−1xk is ULRSES with domain X ∩ Emax(W ).

4.9 Numerical Experiments

In this section we present several numerical experiments that were run on a 2.3 GHz Intel Core i5, Mac-

Book Pro laptop, using the MATLAB YALMIP Toolbox (version 2.6.3 [77]) with the SDPT3 solver. All

measurements of computation time are given in seconds.
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4.9.1 Effects due to Risk Aversion

Consider the stochastic system: xk+1 = A(wk)xk +B(wk)uk, where wk ∈ {1, 2, 3} and

A1 =

[
2 0.5

−0.5 2

]
, A2 =

[
0.01 0.1

0.05 0.01

]
, A3 =

[
1.5 −0.3

0.2 1.5

]
,

B1 =

[
3 0.1

0.1 3

]
, B2 =

[
1 0.5

0.5 1

]
, B3 =

[
2 0.3

0.3 2

]
.

Figure 4.1: Effect of semi-deviation parameter c

The probability mass function for the process disturbance is uniformly distributed, i.e., P(wk = i) = 1/3,

for i ∈ {1, 2, 3}. In this example, the goal is to explore the risk aversion capability of the risk-averse MPC

algorithm presented in Section 4.6 (the solution relies on the convex programming approach). We consider as

risk-aversion metric, the mean upper semi-deviation metric, where c ranges in the set {0, 0.25, 0.5, 0.75, 1}.
The initial condition is x0(1) = x0(2) = 1 and the number of lookahead steps is 3. We do not impose

additional state and control constraints and set Q = I2×2, R = 10−4I2×2.

We performed 100 Monte Carlo simulations for each value of c. When c = 0, the problem reduces to

risk-neutral minimization. On the other hand, one enforces maximum emphasis on regulating semi-deviation

(dispersion) by setting c = 1. Table 4.1 and Figure 4.1 summarize our results. When c ≈ 0 (risk neutral

formulation), the average cost is the lowest (with respect to the different choices for c), but the dispersion is

the largest. Conversely, when c = 1, the dispersion is the lowest, but the average cost is the largest. In the

figure, it can be noted that the dispersion above the mean (given by the red curve) decreases as the value of c

increases, as expected.
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Table 4.1: Statistics for Risk-Averse MPC.
Level of Risk Empirical Risk Cost Dispersion Standard Deviation Mean (Variance) of Time per Itr.
c=0.001 2.5908 0.2813 0.6758 Offline: 0.3291 (0.0038)

Online: 0.0699 (0.0033)
c=0.25 2.6910 0.2667 0.5210 Offline: 0.3761 (0.0073)

Online: 0.0801 (0.0031)
c=0.5 2.8911 0.2271 0.4579 Offline: 0.4199 (0.0045)

Online: 0.0865 (0.0029)
c=0.75 2.9310 0.1683 0.3877 Offline: 0.4249 (0.0071)

Online: 0.0891 (0.0030)
c=1 3.0317 0.1145 0.2305 Offline: 0.4003 (0.0082)

Online: 0.0903 (0.0034)

4.9.2 A 2-state, 2-input Stochastic System

Consider the following stochastic system with 6 scenarios: xk+1 = A(w)xk+B(w)uk wherew ∈ {1, 2, 3, 4, 5, 6}
and

A1 =

[
2.0000 0.5000

−0.5000 2.0000

]
, A2 =

[
−0.1564 −0.0504

−0.0504 −0.1904

]
, A3 =

[
1.5000 −0.3000

0.2000 1.5000

]
,

A4 =

[
0.5768 0.2859

0.2859 0.7499

]
, A5 =

[
1.8000 0.3000

−0.2000 1.8000

]
, A6 =

[
0.2434 0.3611

0.3611 0.3630

]
,

B1 =

[
3 0

0 3

]
, B2 =

[
−0.9540 0

−0.7773 0.1852

]
, B3 =

[
2 0

0 2

]
,

B4 =

[
−0.2587 −0.9364

0.4721 0

]
, B5 =

[
4 0

0 4

]
, B6 =

[
−1.6915 0

1.0249 −0.3834

]
.

The transition probabilities between the scenarios are uniformly distributed, i.e., P(w = i) = 1/6, i ∈
{1, 2, 3, 4, 5, 6}. Clearly there exists a switching sequence such that this open loop stochastic system is

unstable. The objectives of the model predictive controller are to 1) guarantee closed-loop ULRSES, 2)

satisfy the control input constraints, with Tu = I2×2, umax = 2.5, and 3) satisfy the state constraints, with

Tx = I2×2, xmax = 5. The initial state is x0(1) = x0(2) = 2.5. The objective cost function follows

expression (4.9), with Q = R = 0.01× I2×2 and the one-step Markov polytopic risk metric is CVaR0.75.

We simulated the state trajectories with 100 Monte Carlo samples, varying the number of lookahead steps

N from 1 to 6, and compared the closed-loop performance from algorithms MPC and MPC0. Since at

every time step we can only access the realizations of the stochastic system in the current simulation, we

cannot compare the performance of the model predictive controller with Problem OPT exactly. Instead, for

each simulation, the MPC algorithm was run until a stage k′ such that ‖xk′‖2 ≤ xmax. We then computed

the empirical risk from all Monte Carlo simulations for a given horizon length using the cost function J0,k′ .

Additionally, Theorem 4.7.2 shows that the MPC cost function evaluated at the first time step (i.e., J∗0 (x0)

for AlgorithmMPC, and x>0 P
∗x0 for AlgorithmMPC0) is an upper bound for the infinite horizon cost for
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Table 4.2: Performance of Different Algorithms.
Algorithms Empirical Risk Cost (Cost Upper Bound) Mean (Variance) of Time per Itr.
C −MPC0 4.016 (4.983) Offline: 0.3574 (0.0091)

Online: 0 (0)
C −MPC, N = 1 2.882 (3.481) Offline: 0.3252 (0.0023)

Online: 0.1312 (0.0032)
C −MPC, N = 2 1.686 (2.288) Offline: 0.3241 (0.0042)

Online: 0.8214 (0.0256)
C −MPC, N = 3 1.105 (1.525) Offline: 0.3380 (0.0133)

Online: 2.9984 (0.3410)
C −MPC, N = 4 0.898 (1.063) Offline: 0.3421 (0.0117)

Online: 40.9214 (2.4053)
C −MPC, N = 5 0.676 (0.794) Offline: 0.3989 (0.0091)

Online: 498.9214 (15.4921)
C −MPC, N = 6 0.440 (0.487) Offline: 0.4011 (0.0154)

Online: 7502.90075 (98.4104)

Problem OPT under the MPC policy. Thus, the performances of the MPC algorithms are evaluated based

on the empirical risk and the upper bounds, summarized in Table 4.2.

Solving the MPC problem with more lookahead steps decreases the performance index (J∗0 (x0)), i.e., the

sub-optimality gap of the MPC controller decreases. However, since the size of the online MPC problem

scales exponentially with the number of lookahead steps, we can see that the online computation time scales

exponentially from about 4 seconds at N = 3 to over 7300 seconds at N = 6. Due to this drastic increase

in computation complexity, we are only able to run 5 Monte Carlo trials for each case at N ∈ {4, 5, 6}
for illustration. Note that the offline computation time is almost constant in all cases as the complexity

of the offline problem is independent of the number of lookahead steps. Finally, using Lemma 4.7.1 we

obtain a lower bound value of 0.1276 for the optimal solution of problem OPT . The looseness in the sub-

optimality gap may be attributed to neglecting stability and state/control constraint guarantees in the lower

bound derivation.

4.9.3 Comparison with Bernadini and Bemporad’s Algorithm [15]

In this experiment we compare the performance of algorithmMPC with the risk-sensitive MPC algorithm

in [15] (the problem formulation is given in Appendix 7.4.12). Define the following stochastic system

A1 =

[
−0.8 1

0 0.8

]
, A2 =

[
−0.8 1

0 1.2

]
, A3 =

[
−0.8 1

0 −0.4

]
, B1 = B2 = B3 =

[
0

1

]
,
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Table 4.3: Statistics for Risk-Averse MPC.
Method Empirical Risk Cost Standard Deviation Mean (Variance) of Time per Itr.
AlgorithmMPC 82.9913 78.0537 Offline: 0.1448 (0.0299)

Online: 10.8312 (2.3914)
MPC algorithm in [15] 90.3348 98.0748 Offline: 0.1309 (0.0099)

Online: 13.5374 (4.0046)

where the initial state is x0 = [5, 5]>, and uncertainty wk is governed by an unknown probability mass

function (different at each time step k), which belongs to the set of distributions

M = {m = δ1[0.5, 0.3, 0.2] + δ2[0.1, 0.6, 0.3] + δ3[0.2, 0.1, 0.7] : [δ1, δ2, δ3] ∈ B} .

The cost matrices used in this test are Q =

[
1 0

0 5

]
and R = 1. The state constraint matrix and threshold

are given by Tx = I2×2, xmax = 12, and the control constraint matrix and threshold are given by Tu = 1,

umax = 2. While the MPC algorithm in [15] implemented scenario tree optimization techniques to reduce

numerical complexity (to less than 20 nodes in their example), it is beyond the scope of this paper. For this

reason, we choose N = 3 (giving 27 leaves in the scenario tree) to ensure that the above problems have

similar online complexity. Table 4.3 shows the results from 100 Monte Carlo trials. Due to the additional

complexity of the LMI conditions in algorithm MPC, the offline computation time for our algorithm is

slightly longer. Nevertheless, the resulting policy yields a lower empirical risk (the one-step dynamic coherent

risk in this example is defined as a distributionally robust expectation operator over the set distributionsM,

i.e. ρ(Z) = maxm∈M Em[Z]), lower standard deviation, and has a shorter online computation time as

compared with its counterpart in [15]. This clearly demonstrates the advantages of using our risk averse

approach to MPC.

4.9.4 Safety Brake in Adaptive Cruise Control

Adaptive cruise control (ACC) [76, 28] extends the functionalities of conventional cruise control. In addition

to tracking the reference velocity of the driver, ACC also enforces a separation distance between the leading

vehicle (the host) and the follower (the vehicle that is equipped with the ACC system) to improve passenger

comfort and safety. This crucial safety feature prevents a car crash when the host stops abruptly due to

unforeseeable hazards.

In this experiment, we design a risk-sensitive controller for the ACC system that guarantees a safe separa-

tion distance between vehicles even when the host stops abruptly. As a prediction model for the MPC control

problem, we define vk and ak to be the speed and the acceleration of the follower respectively, and vl,k, al,k
as the velocity and acceleration of the leader. The acceleration ak is modeled as the integrator

ak+1 = ak + Tsuk,
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where Ts is the sampling period, and the control input uk is the rate of change of acceleration (jerk) which is

assumed to be constant over the sampling interval. The leader and follower velocities are given by

vk+1 = vk + Tsak, vl,k+1 = wkvl,k,

where wk is the leader’s geometric deceleration rate. Since this rate captures the degree of abrupt stopping,

its evolution has a stochastic nature. Here we assume wk belongs to the sample spaceW = {0.5, 0.7, 0.9}
whose transition follows a uniform distribution. Furthermore, the distance dk between the leader and the

follower evolves as

dk+1 = dk + Ts(vl,k − vk).

In order to ensure safety, we also set the reference distance to be velocity dependent, which can be modeled

as dref,k = δref + γrefvk with δref = 4m and γref = 3s. Together, the system dynamics are modeled by

xk+1 = A(wk)xk +B(wk)uk, where wk ∈ {1, 2, 3}, xk = [dk − dref,k, vk, ak, vl,k], and

A(wk) =


1 −Ts −γrefTs Ts

0 1 Ts 0

0 0 1 0

0 0 0 wk

 , B(wk) =


0

0

Ts

0

 .

In order to guarantee comfort and safety, we assume the constraints |uk| ≤ 3ms−3 (bounded jerk), and

|vk| ≤ 12ms−1 (bounded speed), and the state and control weighting matrices within the quadratic cost are

Q = diag(Qd, Qv, 0, 0), R = Qu, where Qd, Qv , Qu are the weights on the separation distance tracking

error, velocity, and jerk, respectively. To study the risk-averse behavior of the safety brake mechanism, we

design a risk-sensitive MPC controller based on the dynamic risk compounded by the mean absolute semi-

deviation with c = 1. For demonstrative purposes, the MPC lookahead step is simply set to one (N = 1).

The performance of the risk sensitive ACC system is illustrated by the state trajectories in Figure ??. It can

be seen that the controller is able to stabilize the stochastic error dk − dref,k (in the risk-sensitive sense) such

that the speed of the follower vehicle gradually vanishes, and the separation distance dk between the two

cars converges to the constant δref. Notice that besides error tracking, the dynamic mean semi-deviation risk

sensitive objective function also regulates the variability of distance separation of the follower vehicle, as

shown in Table 4.4. Compared with the risk-neutral MPC approach, this risk-sensitive ACC system results in

a lower variance in jerk and separation distance, suggesting a more comfortable passenger experience.

4.10 Conclusion

In this chapter we presented a framework for risk-averse MPC. Advantages of this framework include: (1) it

is axiomatically justified; (2) it is amenable to dynamic and convex optimization; and (3) it is general, in that

it captures a full range of risk assessments from risk-neutral to worst case (given the generality of Markov
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Table 4.4: Statistics for Risk-Sensitive ACC System (with Mean Absolute Semi-deviation Risk).
Method Mean Cost Standard Deviation Mean (Variance) of Time per Itr.
c = 1 451.3442 9.5854 Offline: 0.3944 (0.0036)

Online: 0.0727 (0.0054)
c = 0 (Risk Neutral) 423.8701 12.7447 Offline: 0.4011 (0.0024)

Online: 0.0450 (0.0067)

polytopic risk metrics).

In the next chapter we will further extend the risk-constrained optimal control framework to include

multi-stage constraints that are induced by time-consistent, Markov coherent risk measures.



Chapter 5

Stochastic Optimal Control with
Dynamic Risk Constraints

5.1 Introduction

5.1.1 An Overview on Constrained Stochastic Optimal Control

Constrained stochastic optimal control problems naturally arise in several domains, including engineering,

finance, and logistics. For example, in a telecommunication setting, one is often interested in the maxi-

mization of the throughput of some traffic subject to constraints on delays [4, 71], or seeks to minimize the

average delays of some traffic types, while keeping the delays of other traffic types within a given bound

[97]. Arguably, the most common setup is the optimization of a risk-neutral expectation criterion subject to

a risk-neutral constraint [40, 104, 41]. This model, however, is not suitable in scenarios where risk-aversion

is a key feature of the problem setup. For example, financial institutions are interested in trading assets while

keeping the riskiness of their portfolios below a threshold; or, in the optimization of rover planetary missions,

one seeks to find a sequence of divert and driving maneuvers so that the rover drive is minimized and the risk

of a mission failure (e.g., due to a failed landing) is below a user-specified bound [74].

A common strategy to include risk-aversion in constrained problems is to have constraints where a

static, single-period risk metric is applied to the future stream of costs; typical examples include variance-

constrained stochastic optimal control problems (see, e.g., [104, 136, 82]), or problems with probability

constraints [40, 104]. However, using static, single-period risk metrics in multi-period decision processes

can lead to an over or under-estimation of the true dynamic risk, as well as to a potentially “inconsistent”

behavior (whereby risk preferences change in a seemingly irrational fashion between consecutive assessment

periods), see Section 1.3 and references therein. In [118], the authors provide an example of a portfolio

selection problem where the application of a static risk metric in a multi-period context leads a risk-averse

83
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decision maker to (erroneously) show risk neutral preferences at intermediate stages.

Indeed, in the recent past, the topic of time-consistent risk assessment in multi-period decision processes

has been heavily investigated [120, 122, 121, 119, 129, 131, 130, 42, 1]. The key idea behind time consistency

is that if a certain outcome is considered less risky in all states of the world at stage k, then it should also

be considered less risky at stage k [62]. Remarkably, in [119], it is proven that any risk measure that is

time consistent can be represented as a composition of one-step conditional risk mappings, in other words, in

multi-period settings, risk (as expected) should be compounded over time.

5.1.2 Chapter Contribution

Despite the widespread usage of constrained stochastic optimal control and the significant strides in the

theory of dynamic, time-consistent risk metrics, their integration within constrained stochastic optimal control

problems has received little attention. The purpose of this chapter is to bridge this gap. Specifically, the

contribution is threefold. First, equipped with the notion of dynamic, time-consistent risk metrics in Section

1.3, we formulate a risk constrained MDP problem whose constraint is modeled by such risk metric. Second,

we develop a dynamic programming approach for the solution, which allows efficient computation of the

optimal costs by value iteration. There are two main reasons behind our choice of a dynamic programming

approach: (a) the dynamic programming approach can be used as an analytical tool in special cases and as

the basis for the development of either exact or approximate solution algorithms; and (b) in the risk-neutral

setting (i.e., both objective and constraints given as expectations of the sum of stage-wise costs) the dynamic

programming approach appears numerical convenient with respect to other approaches (e.g., with respect to

the convex analytic approach [4]) and allows to build all (Markov) optimal control strategies [104]. While the

dynamic programming algorithm provides a theoretically sound methodology to tackle the risk constrained

MDP problem, its implementation presents several computation challenges. Thus third, we present two

approximate dynamic programming solution approaches to (approximately) solve the risk constrained MDP

problems for medium to large scale systems.

5.1.3 Chapter Organization

The rest of the chapter is structured as follows. In Section 5.2 we formulate the problem we wish to solve

as a risk constrained MDP problem, while in Section 5.3 we propose a dynamic programming approach for

computing the solution (the value function of the risk constrained MDP problem) and a procedure to construct

optimal policies. In Section 5.4, we develop two novel approximate dynamic programming approaches to

solve for the value function and provide the corresponding error bound guarantees. All technical results of

this chapter will be given in Section 7.5.
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5.2 Problem Formulation

In this section we formally state the problem we wish to solve. According to Section 1.2, consider the CMDP

framework (a CMDP with finite state and action spaces) (X ,A, C,D, P, γ, x0, d0). Given a policy π ∈ ΠH ,

an initial state x0 ∈ X , the cost function is defined as

Cπ(x0) := lim
N→∞

E
[∑N−1

t=0 γtC(xt, at) | x0, π
]

and the risk constraint is defined as

Dπ(x0) := lim
N→∞

ρ0,N−1

(
D(x0, a0), . . . , γN−1D(xN−1, aN−1)

)
| x0, π,

where for N ∈ N, ρ0,N−1(·) = ρ ◦ ρ ◦ · · · ◦ ρ︸ ︷︷ ︸
N

(·) is a Markov risk measure (see Section 1.3 for more details).

The problem we wish to solve is then as follows:

Optimization problem OPT RC — Given an initial state x0 ∈ X and a risk threshold d0 ∈ R,

solve

min
π∈ΠH

Cπ(x0)

subject to Dπ(x0) ≤ d0.

If problem OPT RC is not feasible, we say that its value is ∞. Note that, when the problem is feasible, an

optimal policy always exists since the state and control spaces are finite. When ρ is replaced by an expectation,

we recover the usual risk-neutral constrained stochastic optimal control problem studied, e.g., in [40, 104].

In the next section we present a dynamic programming approach to solve problem OPT RC.

To characterize the value function of problem OPT RC, we first define the (non-empty) set of feasible

constraint thresholds at state x ∈ X as Φ(x) := [d(x), d]. Here the minimum risk-to-go for each state x ∈ X
is given by d(x) := minπ∈ΠH Dπ(x). Since {ρk,N−1}N−1

k=0 is a Markov risk measure for all N ∈ N, d(x)

can be computed by using a dynamic programming recursion (see Theorem 2 in [119]). The function d(x)

is clearly the lowest value for a feasible constraint threshold. On the other hand, to characterize the upper

bound, let:

ρmax := max
(x,a)∈X×A

ρ(D(x, a)).

By the monotonicity and translation invariance of Markov risk measures, one can easily show that

max
π∈ΠH

Dπ(x) ≤ ρmax

1− γ := d, ∀x ∈ X .

Therefore, the value functions are then defined as follows:
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• If d ∈ Φ(x):

V ∗(x, d) = min
π∈ΠH

Cπ(x)

subject to Dπ(x) ≤ d;

the minimum is well-defined since the state and control spaces are finite.

• If d /∈ Φ(x): V ∗(x, d) =∞.

For (x, d) = (x0, d0), we recover the definition of problem OPT RC. Notice that the size of the feasi-

bility region of the above optimization problem is inversely proportional to the constraint threshold d. One

immediate observation to the value function V ∗(x, d) is its non-increasing property in d ∈ R for any given

initial state x ∈ X .

5.3 A Dynamic Programming Algorithm for Risk-Constrained Multi-
Stage Decision-Making

In this section we present the Bellman optimality condition of problem OPT RC and discuss a dynamic

programming approach to solve problem OPT RC.

5.3.1 Dynamic Programming Recursion

In this section we prove that the value functions can be computed by dynamic programming. Let B(X )

denote the Borel space of real-valued bounded functions on X , and B(X × R) denote the space of real-

valued bounded functions onX×R. Now we define the dynamic programming operator T[V ] : B(X×R) 7→
B(X × R) according to the equation:

T[V ](x, d) := inf
(a,d′)∈F (x,d)

{
C(x, a) + γ

∑
x′∈X

P (x′|x, a)V (x′, d′(x′))

}
, (5.1)

where F ⊂ R×B(X ) is the set of control/threshold functions:

F (x, d) :=

{
(a, d′)

∣∣∣a ∈ A(x), d′(x′) ∈ Φ(x′) forall x′ ∈ X , and D(x, a) + γρ(d′(x′)) ≤ d
}
.

If F (x, d) = ∅ we set T[V ](x, d) = ∞. Note that d ∈ Φ(x) implies that F (x, d) is non-empty; likewise,

d /∈ Φ(x) implies that F (x, d) is empty (these facts can be easily proven by contradiction).

For a given state and threshold constraint, set F characterizes the set of feasible pairs of actions and

subsequent constraint thresholds. Feasible subsequent constraint thresholds are thresholds which if satisfied

at the next stage ensure that the current state satisfies the given constraint threshold.Note that equation (5.1)
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involves a functional minimization over the space B(X ). Indeed, since X is finite, B(X ) is isomorphic

with R|X |, hence the minimization in equation (5.1) can be re-casted as a regular (although possibly large)

optimization problem in the Euclidean space. Computational aspects are further discussed at the end of

this section. Also note that the value functions are defined on an augmented state space, which combines

the original (discrete) states x with the real-valued threshold states d. We will refer to the MDP problem

associated with such augmented state space as augmented MDP (AMDP). We start by stating a number of

useful properties for the dynamic programming operator in equation (5.1).

Lemma 5.3.1. Let V and Ṽ be functions belonging to B(X × R), and T[V ] : B(X × R) 7→ B(X × R) be

the dynamic programming operator in equation (5.1). Then, the following statements hold:

1. Monotonicity: For any (x, d) ∈ X × R, if V ≤ Ṽ , then T[V ](x, d) ≤ T[Ṽ ](x, d).

2. Constant shift: For any real number L and (x, d) ∈ X × R, T[V + K](x, d) = T[V ](x, d) + K,

where (V +K)(x, d) := V (x, d) +K, ∀ (x, d) ∈ X × R.

3. Contraction: For all V, Ṽ ∈ B(X ×R), ‖T[V ]−T[Ṽ ]‖∞ ≤ γ‖V − Ṽ ‖∞, where ‖ · ‖∞ denotes the

infinity norm.

The proof of these properties is standard in the dynamic programming literature and we refer interesting

readers to [17] for more details. We are now in a position to state the first main result of this chapter on

Bellman’s equation.

Theorem 5.3.2 (Bellman’s equation with risk constraints). Assume that, when the optimization problem in

equation (5.1) is feasible (i.e., F (x, d) 6= ∅), the infimum is attained. Then, the value function V ∗ is the

unique solution of the Bellman’s equation:

V (x, d) = T[V ](x, d), ∀(x, d) ∈ X × R.

Remark 5.3.3 (On the assumption in Theorem 5.3.2). In Theorem 5.3.2 we assume that the infimum in

equation (5.1) is attained. This is indeed always true in our setup, where, in particular, we assume a finite

state space and a finite control space. The proof of this result would be almost identical to the proof of Lemma

5 in [41] and is omitted in the interest of brevity.

Remark 5.3.4 (On alternative solution approaches). In principle, problem OPT RC could also be solved by

transforming it into an unconstrained optimization problem via, for example, logarithmic barrier functions.

However, the cost function in the unconstrained problem would not have any obvious “compositional” struc-

ture, and its minimization would be particularly challenging (e.g., a direct dynamic programming approach

would not be, in general, applicable).

Remark 5.3.5 (Computational issues). In our approach, the solution of problemOPT RC entails the solution

of two dynamic programming problems, the first one to find the lower bound for the set of feasible constraint
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thresholds (i.e., the function d(x)), and the second one to compute the value functions V (x, d). The latter

problem is the most challenging one since it involves a functional minimization. However, as already noted,

since X is finite, B(X ) is isomorphic with |X |, and the functional minimization in the Bellman’s operator

(5.1) can be re-casted as an optimization problem in the Euclidean space.

5.3.2 Construction of optimal policies

In this section we present a procedure to construct optimal policies. Under the assumptions of Theorem 5.3.2,

for any given x ∈ X and d ∈ Φ(x) (which implies that F (x, d) is non-empty), let u∗(x, d) and d′,∗(x, d)(·)
be the minimizers in equation (5.1). By letting (x, d) as an augmented state (in state space X × R), here

we notice that u∗ is an augmented Markovian stationary policy. Furthermore d′,∗(x, d)(·) is the ”optimal”

constraint threshold in the next stage (starting at state x with constraint threshold d), and is therefore denoted

as the risk-to-go. Next theorem shows how to construct optimal policies.

Theorem 5.3.6 (Optimal policies). Let π∗H = {µ0, µ1, . . .} ∈ ΠH be a history-dependent policy recursively

defined as:

µk(hk) = u∗(xk, dk), ∀k ≥ 0, (5.2)

with initial conditions x0 and y0 = α, and state transitions

xk ∼ P (· | xk−1, u
∗(xk−1, dk−1)),

dk = d′,∗(xk−1, dk−1)(xk),∀k ≥ 1,
(5.3)

Then, π∗H is an optimal policy for problemOPT RC with initial state x0 and constraint threshold d0 ∈ Φ(x0).

Interestingly, if one views the constraint thresholds as state variables (whose dynamics are given in the

statement of Theorem 5.3.6), the optimal (history-dependant) policies of problemOPT RC have a Markovian

structure with respect to the augmented control problem.

5.4 Discretization/Interpolation Algorithms for AMDP

According to Theorem 5.3.2, problem OPT can be (formally) solved using value iteration on an augmented

state space. However, the “threshold state” d appearing in the value function V (x, d) is a continuous, real-

valued variable. This requires the design of discretization/sampling algorithms in order to carry out such value

iteration in practice. Our approach is to extend the uniform-grid discretization approximation developed in

[45] and the linear interpolation approach developed in Section 2.4.

5.4.1 Discretization Algorithm

For any state x ∈ X , we partition Φ(x) with a discretization step ∆ into Θ + 1 intervals using Θ grid

points {d(1), . . . , d(Θ)} (clearly, Θ depends on x, we omit this dependency for notational simplicity). For
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θ ∈ {0, . . . ,Θ}, define the discretized region Φ(θ)(x) = [d(θ), d(θ+1)), where d(0) = R(x) and d(Θ+1) =

d+ ε, for arbitrarily small ε > 0. We also define Φ(x) := {d(0), . . . , d(Θ+1)}. Let θ ∈ {0, . . . ,Θ} such that

d ∈ Φ(θ)(x). Now, define the approximation operator TD for x ∈ X , d ∈ Φ(θ)(x) according to:

TD[V ](x, d) := TD[V ](x, d(θ)), (5.4)

where

TD[V ](x, d) := min
(a,d′D)∈FD(x,d)

{
C(x, a) + γ

∑
x′∈X

P (x′|x, a)V (x′, d′D(x′))

}
, (5.5)

and where FD is the set of control/threshold functions:

FD(x, d) :=

{
(a, d′D)

∣∣∣a ∈ A(x), d′D(x′) ∈ Φ(x′) forall x′ ∈ X , and D(x, a) + γρ(d′D(x′)) ≤ d
}
.

If FD(x, d) = ∅, then TD[V ∗](x, d) =∞.

By construction, any optimal solution of TD[V ](x, d) is a feasible solution for the the dynamic program-

ming equation in T[V ](x, d) (since FD(x, d) ⊆ F (x, d) and d(θ) ≤ d). Because FD(x, d) is a finite set,

the minimization in TD[V ](x, d) is always attained. One can also readily show that the dynamic program-

ming operator TD[V ] also satisfies the properties in Lemma 5.3.1. In the next subsection we will derive a

bound for ‖T[V ](x, d) − TD[V ](x, d)‖∞; in particular, we will show that this bound converges to zero as

the discretization step converges to zero, and that the convergence is linear in the step size.

5.4.1.1 Error bound analysis

The error bound analysis for the above discretization algorithm relies on two Lipschitz-like assumptions.

Assumption 5.4.1. For any x ∈ X , a, ã ∈ A(x), there exists MC ,MD > 0 such that

|C(x, a)− C(x, ã)| ≤MC |a− ã|, |D(x, a)−D(x, ã)| ≤MD|a− ã|.

Assumption 5.4.2. For any a, ã ∈ A(x), there exists MP > 0 such that

∑
x′∈X

|P (x′|x, a)− P (x′|x, ã)| ≤MP |a− ã|.

The first assumption is rather mild, while the second assumption is more restrictive. Note, however, that

this is a typical “regularity” assumption for discretization algorithms for stochastic optimal control [45].

First, we have the following technical lemma on the Lipschitz-ness of of set-valued mapping F (x, d).

Lemma 5.4.3. For every given x ∈ X and d̃, d ∈ Φ(x), suppose Assumptions (7.3.2) to (5.4.2) hold. Also,

define d′ := {d′(x′)}x′∈X ∈ R|X | and d̂′ := {d̂′(x′)}x′∈X ∈ R|X |. If F (x, d) and F (x, d̃) are non-empty
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sets, then for any (a, d′) ∈ F (x, d), there exists (â, d̂′) ∈ F (x, d̃) such that for some MR > 0,

|a− â|+
∑
x′∈X

|d′(x′)− d̂′(x′)| ≤MR|d− d̃|. (5.6)

The following theorem is the main result of this paper. It provides an error bound between the value

function V ∗(x, d) and the discretized value function V ∗D(x, d), defined as the unique fixed point solution of

discretized bellman’s equation:

V ∗D(x, d):=TD[V ∗D](x, d), ∀x, d.

Theorem 5.4.4. Suppose Assumptions (7.3.2) and (5.4.2) hold. Then,

‖V ∗D − V ∗‖∞ ≤
1 + γ

1− γ

(
MC

1− γ +
MPCmax

(1− γ)2

)
MR∆,

where MR is the constant defined in inequality (5.6) and ∆ is the discretization step size.

Clearly, Theorem 5.4.4 implies that, as the step size ∆ → 0, for any x ∈ X and d ∈ Φ(x) one has

V ∗D(x, d) → V ∗(x, d). Note that the convergence is linear in the step size, which is the same convergence

rate for discretization algorithms for unconstrained dynamic programming operators [45].

Remark 5.4.5. Similar to the multi-grid discretization approaches discussed in [45, 151, 58], the discretiza-

tion algorithm in this paper suffers from the curse of dimensionality. In fact, suppose the number of dis-

cretization intervals is T . For each time horizon, the size of the state space for AMDP is |X |T , and the size

of the action space is |A|T |X |, which is exponential in the size of the original state space. To alleviate this

issue, one could use methods such as Branch and Bound or rollout algorithms to find the minimizers at each

step, if upper/lower bounds for the value functions can be efficiently calculated.

5.4.2 Interpolation Algorithm

In the last section we explored a discretization approach that approximates the dynamic programming algo-

rithm given in Theorem 5.3.2. While this method is simple and intuitive, Theorem 5.4.4 shows that, in order

to obtain an accurate estimate of the value function, one requires a high resolution grid space for the risk-to-

go state. This potentially leads to an exponential increase in the size of state space (of the AMDP), and results

in computational intractability. To circumvent this issue, in this section we propose an interpolation approach

to approximate the dynamic programming algorithm. Indeed it can be showed that approximation by dis-

cretization is a special case of the approximation by linear interpolation with an integral constraint. Although

theoretically the approximation error still grows linearly with the decrease of grid points, we later show that

numerically the interpolation approach is way more efficient compared to the discretization approach.

Formally, letN(x) denote the number of interpolation points. For every x ∈ X , denote by Φ(x) the set of

interpolation points. We denote by Ix[V ](d) the linear interpolation of the function V (x, d) on these points,
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Algorithm 4 Value Iteration with Linear Interpolation

1: Given:

• Set of interpolation points Φ(x) at every state x ∈ X .

• Initial value function V0(x, d).

2: For k = 1, 2, . . .

• For each x ∈ X and each d ∈ Φ(x), update the value function estimate as follows:

Vk+1(x, d) = TI [Vk](x, d), ∀k ≥ 0

3: Set the converged value iteration estimate as V ∗I (x, d), for any x ∈ X , and d ∈ Φ(x).

i.e.,

Ix[V ](d) = V (x, d(θ)) +
V (x, d(θ+1))− V (x, d(θ))

d(θ+1) − d(θ)
(d− d(θ)),

where d(θ) = max
{
d′ ∈ Φ(x) : d′ ≤ d

}
and d(θ+1) is the closest interpolation point such that d ∈ [d(θ), d(θ+1)].

We now define the interpolated Bellman operator TI as follows:

TI [V ](x, y) = min
(a,d′I)∈F (x,d)

{
C(x, a) + γ

∑
x′∈X

P (x′|x, a) Ix′ [V ](d′I(x′))

}
, (5.7)

Algorithm 1 presents value iteration with linear interpolation for problem OPT RC. The only difference

between this algorithm and standard value iteration Vk+1(x, d) = T[Vk](x, d) is the linear interpolation

procedure described above. In the following, we show that Algorithm 4 converges by first showing that the

useful properties such as contraction also hold for interpolated Bellman operator TI .

Lemma 5.4.6 (Properties of interpolated Bellman operator). TI [V ] has the same properties of T[V ] as in

Lemma 2.3.2, namely 1) monotonicity, 2) constant shift, and 3) contraction.

The proof of this technical result is straightforward, and thus we refer interested readers to similar ar-

guments in the proof of Lemma 5.3.1 for more details. Consequently, the contraction property in Lemma

5.4.6 guarantees that Algorithm 4 converges, i.e., there exists a value function V ∗I ∈ R|X |×R such that

limN→∞TN
I [V0](x, d) = V ∗I (x, d), ∀d ∈ Φ(x). In addition, the convergence rate is geometric and equals to

γ.

The following theorem provides an error bound between approximate value iteration and exact value

iteration problem OPT RC in terms of the interpolation resolution.

Theorem 5.4.7 (Convergence and Error Bound). Suppose Assumptions (7.3.2) and (5.4.2) hold. Then,

V ∗I (x, d) ≤ V ∗D(x, d), ∀d ∈ Φ(x), x ∈ X , and ‖V ∗I − V ∗‖∞ ≤
1 + γ

1− γ

(
MC

1− γ +
MPCmax

(1− γ)2

)
MR∆,

where MR is the constant defined in inequality (5.6) and ∆ is the discretization step size.
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Theorem 5.4.7 shows that 1) the interpolation procedure is consistent, i.e., when the ∆ is the discretization

step size is arbitrarily small, the approximation error tends to zero; and 2) the approximation error converges

linearly with ∆, which is similar to error of the discretization approach in Section 5.4.1. While we cur-

rently have no further proofs showing that the interpolation approach converges faster than the discretization

approach, its superiority in error convergence rate will be later illustrated in the experiments.

5.5 Experiments

5.5.1 Curse of Dimensionality with Discretization Approach

Consider an MDP with 3 states (x ∈ {1, 2, 3}), 2 available actions (u ∈ {1, 2}), and discounting factor

γ = 0.667. The costs for the objective and constraint functions are respectively given by:
C(1, 1) C(1, 2)

C(2, 1) C(2, 2)

C(3, 1) C(3, 2)

 =


1 3

2 4

5 6

 ,

D(1, 1) D(1, 2)

D(2, 1) D(2, 2)

D(3, 1) D(3, 2)

 =
1

10


5 4

6 3

5 1

 .
The transition probabilities are given by:

P (x′|x, 1) =


0.2 0.5 0.3

0.4 0.3 0.3

0.3 0.3 0.4

 , P (x′|x, 2) =


0.3 0.5 0.2

0.2 0.3 0.5

0.3 0.4 0.3

 .
For any x0 ∈ X and d0 ∈ Φ(x0), the risk-constrained stochastic optimal control problem we wish to

solve is as follows:

min
π∈ΠH

lim
N→∞

E
[∑N−1

t=0 γtC(xt, at)
]

subject to lim
N→∞

ρ0,N−1

(
D(x0, a0), γD(x1, a1), . . . , γN−1D(xN−1, aN−1)

)
≤ d0,

where uk = πk(h0,k) for k ∈ N, ρ0,N−1(Z0, Z1, . . . , ZN−1) = Z0 + ρ(Z1 + ρ(Z2 + . . .+ ρ(ZN−1))), and

the one-step conditional risk measures are given by the mean upper semi-deviation risk metric:

ρ(V ) = E [V ] + 0.2
(
E
[
[V − E [V ]]2+

])1/2

.

As discussed in Section 5.3, this problem can be cast as an AMDP. In light of Theorem 5.4.4, one can

use equations (5.4) and (5.5) to approximate the value functions via value iteration. In this example, we

discretize the risk threshold sets (that, for simplicity, are suitably adjusted to have the same length - this is

always possible given their definition) into M regions, where
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Table 5.1: Computation Times with Different Discretization Step Sizes.
M Computation time for each horizon (in seconds)
5 20.5542

10 58.4712
20 104.0001
40 353.9901
60 900.5084
80 1751.7630
100 3306.3002
150 14572.6631

M = {5, 10, 20, 40, 60, 80, 100, 150}.

For the different step sizes, we obtain approximations of the value functions with various degrees of ac-

curacies. Figure 5.1 shows the approximations of the value functions for the different step sizes. As expected

(Therem 5.4.4), when the number of M increases, the approximated value functions converge towards the

“true” value functions. Table 5.1 provides the computation times for our numerical experiments; one can note

the exponential increase of computation time with respect to the discretization step size.
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Figure 5.1: Convergence of Approximated Value Functions using Different Discretization Step Sizes.
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5.6 Conclusion

In this chapter we have presented and analyzed both the uniform-grid discretization algorithm and the ap-

proximate value iteration algorithm for the solution of stochastic optimal control problems with dynamic,

time-consistent risk constraints. Although the current uniform-grid discretization algorithm suffers from

curse of dimensionality, it is the one of the simplest algorithms to practically solve this class of problems. On

the other hand, based on approximate value-iteration on an augmented state space, we presented a tractable

algorithm for solving the aforementioned risk-constrained control problem, whose convergence analysis and

finite-time error bounds were explicitly studied. Furthermore, we concluded the algorithmic analysis of this

section by drawing a connection between the uniform-grid discretization algorithm and approximate value

iteration, where the former algorithm is indeed a special case (step-wise interpolation) of the general interpo-

lation based method.

In the next chapter, we will summarize all the algorithms developed in this thesis and will discuss several

interesting future research directions.



Chapter 6

Conclusion

In this thesis, we studied four important aspects regarding to the control of MDPs where risk modeling of the

inherent uncertainty and model uncertainty was taken into account.

In the first part of this thesis, we investigated the well-known CVaR MDP problem and proposed a scal-

able approximate value-iteration algorithm on an augmented state space. We also established convergence

guarantees and finite time error bounds, which led to a robust algorithmic stopping criterion with a specific

error threshold. In addition, we discovered an interesting relationship between the CVaR risk of total cost and

the worst-case expected cost under adversarial model perturbations. In this formulation, the perturbations

were correlated in time, and led to a robustness framework significantly less conservative than the popu-

lar robust-MDP framework, where the uncertainty was temporally independent. Together, our work provided

crucial theoretical underpinnings in CVaR MDPs that guaranteed efficient computation of robust control poli-

cies, with respect to cost stochasticity and model perturbations. Furthermore, to increase the practicality of

our methodologies, we also proposed extensions such as the sampling based CVaR Q−learning algorithm

and approximate value iteration for Mean-CVaR MDPs.

In the second part of this thesis, we studied the CMDP problem formulation whose constraints were

modeled using percentile risks, such as CVaR and tail probabilities. We proposed novel policy gradient

and actor-critic algorithms for CVaR-constrained and chance-constrained optimization in MDPs, and proved

their convergence. These methodologies circumvented the curse-of-dimensionally issue and made real time

computations of large scale risk sensitive CMDPs (whose state and action spaces are large or even contin-

uous) possible. Using an optimal stopping problem and a personalized ad-recommendation problem, we

showed that our algorithms resulted in policies whose cost distributions have lower right-tail compared to

their risk-neutral counterparts. This was extremely important for a risk-averse decision-maker, especially if

the right-tail contained catastrophic costs. Furthermore we also provided insights to the convergence of our

AC algorithms when the samples were generated by following the policy and not from its discounted visiting

distribution, and extensions via importance sampling [8, 146] where gradient estimates in the right-tail of the

cost distribution (worst-case events that are observed with low probability) could significantly be improved.

95
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In the third part of this thesis, we presented a framework for risk-averse MPC. Here the risk metric is

chosen to be the time consistent, Markov risk. Advantages of this framework include: (1) it is axiomatically

justified; (2) it is amenable to dynamic and convex optimization; and (3) it is general, in that it captures

a full gamut of risk assessments from risk-neutral to worst case (given the generality of Markov polytopic

risk metrics). For the solution algorithm, we have shown that the risk averse MPC framework can be posed

as a hybrid (offline-online) convex optimization problem, which can be implemented using semi-definite

programming techniques. We have also rigorously derived the performance of this MPC algorithm, in terms

of sub-optimality gap, and numerically illustrated its superiority over its risk neutral counterpart given in [15].

In the final part of this thesis, we presented a dynamic programming approach to stochastic optimal con-

trol problems with dynamic, time-consistent (in particular Markov) risk constraints. In particular we showed

that the optimal cost functions could be computed by value iteration and that the optimal control policies

could be constructed recursively. Furthermore we proposed and analyzed a uniform-grid discretization al-

gorithm for the solution of this stochastic optimal control problem. Although the current algorithm suffered

from curse of dimensionality, it was by far the simplest approximation algorithm that practically solved this

class of problems. As an improvement to the present approach, we also derived an interpolation based approx-

imate dynamic programming algorithm which further simplified the risk-to-go estimation and led to lower

approximation errors.

We hereby summarize the major conclusions of our work in this thesis, and discuss several important

future extensions.

6.1 Inherent Uncertainty Versus Model Uncertainty

In this thesis, we have studied sequential planning problems in the presence of inherent uncertainty and

model uncertainty and proposed algorithms to tackle scenarios with different sources of uncertainty. This

was mainly motivated by the representation theorem of Markov coherent risk [119] that drew an equivalence

between the dynamic risk measure and conditional worst-case expectation over model-perturbations. Earlier

work that addressed model uncertainties in the context of risk-sensitive sequential decision making could be

found in [95], in which the author related dynamic Markov coherent-risk to model uncertainties. In Chapter

2, we further extended this equivalence to connect model uncertainty to static CVaR risk, and we showed that

such a risk metric represented a particular robust MDP with a coupled uncertainty structure (that could not be

solved by conventional robust dynamic programming approaches). This suggested that many risk-sensitive

reinforcement learning algorithms developed in this thesis were also applicable to tackle a more general class

of robust MDP problems with coupled uncertainty structures.
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6.2 Time Consistency in Risk-aware Planning

In this thesis, we have investigated the important aspect of time-consistency in risk-aware sequential decision

making. While a common strategy to include risk-aversion is to have the objective function or constraints

where a static risk metric is applied to the future stream of costs, it is also well-known that using static, single-

period risk metrics in multi-period decision processes can lead to an inconsistent behavior where risk pref-

erences change in a seemingly irrational fashion between consecutive assessment periods [62]. On the other

hand, it has been shown in [119] that in order to guarantee time-consistent risk assessment in multi-period de-

cision processes, risk must be compounded over time. Therefore, one major contribution of this thesis was to

integrate time-consistent risk measures in sequential decision making. By exploiting the Markovian structure

in the dynamic risk metrics, we successfully developed dynamic programming approaches for risk-sensitive

and risk-constrained decision making problems. Not only did this dynamic programming approach effec-

tively analyze risk-assessment across multiple decision-making time steps, it also led to the development of

data-driven algorithms that effectively solves for (Markov) optimal control policies in large-scale problems.

6.3 Risk-shaping

In this thesis we have showed that by extending the studies of risk-neutral MDPs to include other risk-sensitive

objective functions, one might effectively utilize the principle of dynamic programming to accomplish risk-

sensitive planning. Furthermore by combining the aforementioned framework with data-driven decision mak-

ing theories, we have also derived a family of risk-sensitive reinforcement learning algorithms that balances

exploration, exploitation and safety. The main objectives of our work were to provide a theoretically sound

formulation for risk-aware sequential decision making and to derive a set of computationally tractable tools

for solving these MDP problems. Recall that the algorithms studied in this thesis were based on the class

of (static and dynamic) coherent risk measures. This feature provided decision-makers with great flexibil-

ity to select objective functions that served multiple purposes in cost variability management. Evidently,

this important phenomenon of selecting appropriate problem-specific risk measures to achieve effective risk

aversion was corroborated by several numerical experiments in this thesis.

Moreover, through the connections of inherent uncertainty and model uncertainty, the decision-maker can

easily handle uncertainties in model mis-specification by specifying the risk objective function in the MDP

problem of interest. This suggests the potential application of risk-shaping —a technique that customizes

risk measures to control variability —to model both systematic and cost uncertainties. While risk-shaping

was not our major focus, the primary contribution of this thesis was to show that with appropriately chosen

risk measures, the resultant risk-sensitive planning problem could be handled efficiently.
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6.4 Future Work

We finally conclude this thesis with several additional important future research directions.

6.4.1 Exploration Versus Exploitation in Risk-sensitive Reinforcement Learning

In this thesis we have not explicitly studied the issue of balancing exploration and exploitation in reinforce-

ment learning (RL) with a risk-sensitive objective. In risk-sensitive Q−learning and in CVaR constrained

policy-gradient, exploration was inherently defined in the policy definition, which was not explicitly adapted

during learning. On the other hand, in risk-sensitive MPC one assumed that the stochastic model was explic-

itly provided, in which MPC merely solved a planning problem without exploration. In general, the issue of

balancing exploration-exploitation in RL has been the focus of many studies. In the literature of multi-armed

bandit problems, several studies have considered exploration-exploitation tradeoffs with risk-sensitive objec-

tives. However, to the best of our knowledge this line of work has not been detailedly studied in risk-sensitive

RL. Interestingly, risk-sensitivity may be used as a metric to quantify the level of exploration in standard

risk-neutral MDPs. In particular, in an unknown environment the learner should behave in a risk-seeking

fashion in order to retrieve more information from potentially interesting regions. Once the environment

is sufficiently explored, one may utilize risk-averse planning to guarantee safety while optimizing the cu-

mulative return. This intuition is formalized in the UCRL2 algorithm [65], in which exploration policy is

determined by solving an optimistic-MDP (the risk-seeking MDP counterpart compared to robust MDP). We

speculate that the technical results presented in this thesis can be used as the theoretical underpinnings to

further develop a principle strategy that trades-off exploration and exploitation in risk-sensitive RL.

6.4.2 Risk Sensitive Importance Sampling

Recall that in risk-sensitive policy-gradient one relies on sampled trajectories to estimate the risk-sensitive

gradients. However for risk-measures such as CVaR that are sensitive to rare events, this method requires a

large number of samples for an effective gradient estimation. To alleviate this issue, importance-sampling

based approaches can be applied to estimate the (sampling-based) gradients with lower variance. For exam-

ple in [141], by assuming the knowledge of the transition probability, the authors proposed an importance-

sampling method for CVaR risk-sensitive policy gradient method and showed that this method significantly

improved the sampling efficiency of the policy gradient algorithm. Therefore we believe that similar impor-

tance sampling based approaches can be applied to a wider range of risk-sensitive RL problems (for example

to risk-sensitive RL problems whose objective functions are characterized by other coherent risk measures

besides CVaR) to bolster their performances. Furthermore, designing an effective importance-sampling ap-

proach that is model-free is another important direction for future research.
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6.4.3 Relationship to Safe Policy Improvement

Most data-driven risk-sensitive sequential decision making (risk-sensitive RL) algorithms presented in this

thesis balance exploration versus exploitation and guarantee safety at the same time. These characteristics

can also be found in the recently popular work on safe policy improvement [126, 66, 117]. Either by formu-

lating the objective function with a regret metric (instead of a expected cumulative return) or by imposing

extra constraints using the Kullback-Leibler divergence metric, in these studies the corresponding reinforce-

ment learning algorithms always return safe policies, i.e., policies that are guaranteed to outperform certain

baselines. Since providing safety guarantees in data-driven policy optimization is crucial to many real-world

applications such as robotic path planning [57] and online marketing [149], we conjecture that by construct-

ing appropriate risk metrics via shaping techniques (analogous to reward-shaping in reinforcement learning

[90]), one can equivalently transform the risk-sensitive RL algorithms in this thesis to incorporate safe policy

improvement.



Chapter 7

Supplementary Materials

7.1 Technical Results in Chapter 2

In this section we present the detailed proofs to the technical results in Chapter 2.

7.1.1 Proof of Proposition 2.2.1

By definition, we have that

EP̂

[
T∑
t=0

γtC(xt, at)

]

=
∑

(x0,a0,...,xT )

P0(x0)δ1(x1|x0, a0) · · ·PT (xT |xT−1, aT−1)δT (xT |xT−1, aT−1)

T∑
t=0

γtC(xt, at)

=
∑

(x0,a0,...,xT )

P (x0, a0, . . . , xT )δ1(x1|x0, a0)δ2(x2|x1, a1) · · · δT (xT |xT−1, aT−1)

T∑
t=0

γtC(xt, at)

.
=

∑
(x0,a0,...,xT )

P (x0, a0, . . . , xT )δ(x0, a0, . . . , xT )

T∑
t=0

γtC(xt, at).

Note that by definition of the set ∆, for any (δ1, . . . , δT ) ∈ ∆ we have that

P (x0, a0, . . . , xT ) > 0→ δ(x0, a0, . . . , xT ) ≥ 0,

and

E [δ(x0, a0, . . . , xT )]
.
=

∑
(x0,a0,...,xT )

P (x0, a0, . . . , xT )δ(x0, a0, . . . , xT ) = 1.

100
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Thus,

sup
(δ1,...,δT )∈∆η

EP̂

[
T∑
t=0

γtC(xt, at)

]

= sup
0≤δ(x0,a0,...,xT )≤η,
E[δ(x0,a0,...,xT )]=1

∑
(x0,a0,...,xT )

P (x0, a0, . . . , xT )δ(x0, a0, . . . , xT )

T∑
t=0

γtC(xt, at)

=CVaR 1
η

(
T∑
t=0

γtC(xt, at)

)
,

where the last equality is by the representation theorem for CVaR [132].

7.1.2 Proof of Lemma 2.3.2

The proof of monotonicity and constant shift properties follow directly from the definitions of the Bellman

operator, by noting that ξ(x′)P (x′|x, a) is non-negative and

∑
x′∈X

ξ(x′)P (x′|x, a)] = 1

for any ξ ∈ UCVaR(y, P (·|x, a)). For the contraction property, denote c = ‖V1 − V2‖∞. Since

V2(x, y)− ‖V1 − V2‖∞ ≤ V1(x, y) ≤ V2(x, y) + ‖V1 − V2‖∞, ∀x ∈ X , y ∈ Y,

by monotonicity and constant shift property,

T[V2](x, y)− γ‖V1 − V2‖∞ ≤ T[V1](x, y) ≤ T[V2](x, y) + γ‖V1 − V2‖∞ ∀x ∈ X , y ∈ Y.

This further implies that

|T[V1](x, y)−T[V2](x, y)| ≤ γ‖V1 − V2‖∞ ∀x ∈ X , y ∈ Y

and the contraction property follows.

Now, we prove the concavity preserving property. Assume that yV (x, y) is concave in y for any x ∈ X .
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Let y1, y2 ∈ Y , and λ ∈ [0, 1], and define yλ = (1− λ)y1 + λy2. We have

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

=(1− λ)y1 min
a1∈A

[
C(x, a1) + γ max

ξ1∈UCVaR(y1,P (·|x,a1))

∑
x′∈X

ξ1(x′)V (x′, y1ξ1(x′))P (x′|x, a1)

]

+ λy2 min
a2∈A

[
C(x, a2) + γ max

ξ2∈UCVaR(y2,P (·|x,a2))

∑
x′∈X

ξ2(x′)V (x′, y2ξ2(x′))P (x′|x, a2)

]

= min
a1∈A

[
(1− λ)y1C(x, a1) + γ max

ξ1∈UCVaR(y1,P (·|x,a1))

∑
x′∈X

ξ1(x′)V (x′, y1ξ1(x′))P (x′|x, a1)(1− λ)y1

]

+ min
a2∈A

[
λy2C(x, a2) + γ max

ξ2∈UCVaR(y2,P (·|x,a2))

∑
x′∈X

ξ2(x′)V (x′, y2ξ2(x′))P (x′|x, a2)λy2

]

≤min
a∈A

yλC(x, a) + γ max
ξ1∈UCVaR(y1,P (·|x,a))
ξ2∈UCVaR(y2,P (·|x,a))

∑
x′∈X

P (x′|x, a) ((1−λ)y1ξ1(x′)V (x′, y1ξ1(x′)) + λy2ξ2(x′)V (x′, y2ξ2(x′)))


≤min
a∈A

yλC(x, a) + γ max
ξ1∈UCVaR(y1,P (·|x,a))
ξ2∈UCVaR(y2,P (·|x,a))

∑
x′∈X

P (x′|x, a) ((1−λ)y1ξ1(x′)+λy2ξ2(x′))V (x′, ((1−λ)y1ξ1(x′) + λy2ξ2(x′)))


where the first inequality is by concavity of the min, and the second is by the concavity assumption. Now,

define

ξ =
(1−λ)y1ξ1 + λy2ξ2

yλ
.

When ξ1 ∈ UCVaR(y1, P (·|x, a)) and ξ2 ∈ UCVaR(y2, P (·|x, a)), we have that ξ ∈
[
0, 1

yλ

]
and

∑
x′∈X

ξ(x′)P (x′|x, a) = 1.

We thus have

(1− λ)y1T[V ](x, y1) + λy2T[V ](x, y2)

≤min
a∈A

[
yλC(x, a) + γ max

ξ∈UCVaR(yλ,P (·|x,a))

∑
x′∈X

P (x′|x, a)yλξ(x
′)V (x′, yλξ(x

′))

]

=yλ min
a∈A

[
C(x, a) + γ max

ξ∈UCVaR(yλ,P (·|x,a))

∑
x′∈X

P (x′|x, a)ξ(x′)V (x′, yλξ(x
′))

]
= yλT[V ](x, yλ).
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Finally, to show that the inner problem in (2.4) is a concave maximization, we need to show that

Λx,y,a(z) :=

{
zV (x′, z)P (x′|x, a)/y if y 6= 0

0 otherwise

is a concave function in z ∈ R for any given x ∈ X , y ∈ Y and a ∈ A. Suppose zV (x, z) is a concave

function in z. Immediately we can see that Λx,y,a(z) is concave in z when y = 0. Also notice that when

y ∈ Y \ {0}, since the transition probability P (x′|x, a) is non-negative, we have the result that Λx,y,a(z) is

concave in z. This further implies

∑
x′∈X

P (x′|x, a)

y
Λx,y,a(yξ(x′)) =

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, a)

is concave in ξ. Furthermore by combining the result with the fact that the feasible set of ξ is a polytope, we

complete the proof of this claim.

7.1.3 Proof of Theorem 2.3.3

Let C0,T =
∑T
t=0 γ

tC(xt, at) denote the total discounted cost from time 0 up to time T . The first part of the

proof is to show that for any (x, y) ∈ X × Y ,

Vn(x, y) := Tn[V0](x, y)= min
µ∈ΠS

CVaRy (C0,n + γnV0(xn, yn) | x0 = x, µ) , (7.1)

by induction, where the initial condition is (x0, y0) = (x, y) and control action at is induced by µ(xt, yt).

For n = 1, we have that

V1(x, y) =T[V0](x, y)

= min
µ∈ΠS

C(x0, a0) + γCVaRy (C(x1, a1) + V0(x1, y1) | x0 = x, µ)

from definition. By induction hypothesis, assume the above expression holds at n = k. For n = k + 1,

Vk+1(x, y) := Tk+1[V0](x, y) = T[Vk](x, y)

= min
a∈A

C(x, a) + γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)Vk

(
x′, yξ(x′)︸ ︷︷ ︸

y′

)
P (x′|x, a)


= min
a∈A

[
C(x, a) + γ max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

ξ(x′)P (x′|x, a) min
µ∈ΠS

CVaRy′
(
C0,k + γkV0 | x0 = x′, µ

)]

= min
a∈A

[
C(x, a) + max

ξ∈UCVaR(y,P (·|x,a))
Eξ
[

min
µ∈ΠS

CVaRy1
(
C1,k+1 + γk+1V0 | x1, µ

)]]
= min
µ∈ΠS

CVaRy
(
C0,k+1 + γk+1V0 | x0 = x, µ

)
,

(7.2)
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where the initial state condition is given by (x0, y0) = (x, y). Thus, the equality in (7.1) is proved by

induction.

The second part of the proof is to show that V ∗(x0, y0) = minµ∈ΠS CVaRy0 (limn→∞ C0,n | x0, µ).

Recall T[V ](x, y) = mina∈A C(x, a) + γmaxξ∈UCVaR(y,P (·|x,a)) Eξ[V |x, y, a]. Since T is a contraction and

V0 is bounded, one obtains

V ∗(x, y) = T[V ∗](x, y) = lim
n→∞

Tn[V0](x, y) = lim
n→∞

Vn(x, y)

for any (x, y) ∈ X×Y . The first and the second equality follow directly from Proposition 2.1 and Proposition

2.2 in [17] and the third equality follows from the definition of Vn. Furthermore since V0(x, y) is bounded

for any (x, y) ∈ X × Y , the result in (7.2) implies

− lim
n→∞

γn‖V0‖∞ ≤ V ∗(x0, y0)− min
µ∈ΠS

CVaRy0
(

lim
n→∞

C0,n | x0, µ
)
≤ lim
n→∞

γn‖V0‖∞.

Therefore, by taking n→∞, we have just shown that for any (x0, y0) ∈ X × Y ,

V ∗(x0, y0) = min
µ∈ΠS

CVaRy0
(

lim
n→∞

C0,n | x0, µ
)
.

The third part of the proof is to show that for the initial state x0 and confidence interval y0, we have that

V ∗(x0, y0) = min
π∈ΠH

CVaRy0
(

lim
n→∞

C0,n | x0, π
)
.

At any (xt, yt) ∈ X × Y , we first define the tth tail-subproblem of problem OPT CM as follows:

V(xt, yt)= min
π∈ΠH

CVaRyt
(

lim
n→∞

Ct,n | xt, π
)

where the tail policy sequence is equal to π = {µt, µt+1, . . .} and the action is given by aj = µj(hj)

for j ≥ t. For any history depend policy π̃ ∈ ΠH , we also define the π̃−induced value function as

CVaRyt (limn→∞ Ct,n | xt, π̃) where π̃ = {µ̃t, µ̃t+1, . . .} and aj = µ̃j(hj) for j ≥ t.
Now let π∗ be the optimal policy of the above tth tail-subproblem. Clearly, the truncated policy π̃ =

{µ∗t+1, µ
∗
t+2, . . .} is a feasible policy for the (t + 1)th tail subproblem at any state xt+1 and confidence

interval yt+1:

min
π∈ΠH

CVaRyt+1

(
lim
n→∞

Ct+1,n | xt+1, π
)
.
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Collecting the above results, for any pair (xt, yt) ∈ X × Y and with at = µ∗t (xt) we can write

V(xt, yt) =C(xt, at) + γ max
ξ∈UCVaR(yt,P (·|xt,at))

E

ξ(xt+1) · CVaRyt+1

(
lim
n→∞

Ct+1,n | xt+1, π̃
)

︸ ︷︷ ︸
Vµ̃(xt+1,yt+1),yt+1=ytξ(xt+1)


≥C(xt, at)+γ max

ξ∈UCVaR(yt,P (·|xt,at))
Eξ[V(xt+1, ytξ(xt+1)) |xt, yt, at]≥T[V](xt, yt).

The first equality follows from the definition of V(xt, yt) and the decomposition of CVaRs (Theorem 2.3.1).

The first inequality uses the inequality: Vπ̃(x, y) ≥ V(x, y), ∀(x, y) ∈ X ×Y . The second inequality follows

from the definition of Bellman operator T.

On the other hand, starting at any state xt+1 and confidence interval yt+1, let π∗ = {µ∗t+1, µ
∗
t+2, . . .} ∈

ΠH be an optimal policy for the tail subproblem:

min
π∈ΠH

CVaRyt+1

(
lim
n→∞

Ct+1,n | xt+1, π
)
.

For a given pair of (xt, yt) ∈ X × Y , construct the “extended” policy π̃ = {µ̃t, µ̃t+1, . . .} ∈ ΠH as follows:

µ̃t(xt) = u∗(xt, yt), and µ̃j(hj) = µ∗j (hj) for j ≥ t+ 1,

where u∗(xt, yt) is the minimizer of the fixed-point equation

u∗(xt, yt) ∈ argmin
a∈A

C(xt, a) + γ max
ξ∈UCVaR(yt,P (·|xt,a))

Eξ[V(xt+1, ytξ(xt+1)) |xt, yt, a],

with yt is the given confidence interval to the tth tail-subproblem and the transition from yt to yt+1 is given

by yt+1 = ytξ
∗(xt+1) where

ξ∗ ∈ arg max
ξ∈UCVaR(yt,P (·|xt,a∗))

E
[
ξ(xt+1) · CVaRytξ(xt+1)

(
lim
n→∞

Ct+1,n | xt+1, π̃
)]

Since π∗ is an optimal, and a fortiori feasible policy for the tail subproblem (from time t + 1), the policy

π̃ ∈ ΠH is a feasible policy for the tail subproblem (from time t): minπ∈ΠH CVaRyt (limn→∞ Ct,n | xt, π).

Hence, we can write

V(xt, yt) ≤ C(xt, µ̃t(xt)) + γCVaRyt
(

lim
n→∞

Ct+1,n | xt, π̃
)
.
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Hence from the definition of π∗, one easily obtains:

V(xt, yt)

≤C(xt, u
∗(xt, yt)) + γ max

ξ∈UCVaR(yt,P (·|xt,u∗(xt,yt)))
E
[
ξ(xt+1) · CVaRytξ(xt+1)

(
lim
n→∞

Ct+1,n | xt+1, π̃
)
|xt, yt, u∗(xt, yt)

]
=C(xt, u

∗(xt, yt)) + γ max
ξ∈UCVaR(yt,P (·|xt,u∗(xt,yt)))

Eξ[V(xt+1, ytξ(xt+1)) |xt, yt, u∗(xt, yt)]

=T[V](xt, yt).

Collecting the above results, we have shown that V is a fixed-point solution to V (x, y) = T[V ](x, y) for

any (x, y) ∈ X × Y . Since the fixed-point solution is unique, combining both of these arguments implies

V ∗(x, y) = V(x, y) for any (x, y) ∈ X × Y . Therefore, it follows that with initial state (x, y), we have

V ∗(x, y) = V(x, y) = minπ∈ΠH CVaRy (limT→∞ C0,T | x0 = x, π).

Combining the above three parts of the proof, the claims of this theorem follows.

7.1.4 Proof of Theorem 2.3.4

Similar to the definition of the optimal Bellman operator T, for any augmented stationary Markovin policy

u : X × Y → A, we define the policy induced Bellman operator Tu as

Tu[V ](x, y) = C(x, u(x, y)) + γ max
ξ∈UCVaR(y,P (·|x,u(x,y)))

∑
x′∈X

ξ(x′)V (x′, yξ(x′))P (x′|x, u(x, y)).

Analogous to Theorem 2.3.3, we can easily show that the fixed-point solution to Tu[V ](x, y) = V (x, y) is

unique and the CVaR decomposition theorem (Theorem 2.3.1) further implies this solution is equal to

CVaRy
(

lim
T→∞

C0,T | x0 = x, πH

)
,

where the history dependent policy πH = {µ0, µ1, . . .} is given by µk(hk) = u(xk, yk) for any k ≥ 0, with

initial states x0, y0 = α, state transitions (2.6), but with augmented stationary Markovian policy u∗ replaced

by u.

To complete the proof of this theorem, we need to show that the augmented stationary Markovian policy

u∗ is optimal if and only if

T[V ∗](x, y) = Tu∗ [V
∗](x, y), ∀x ∈ X , y ∈ Y, (7.3)

where V ∗(x, y) is the unique fixed-point solution of T[V ](x, y) = V (x, y). Here an augmented stationary

Markovian policy u∗ is optimal if and only if the induced history dependent policy π∗H in (2.5) is optimal to

problem OPT CM.

First suppose u∗ is an optimal augmented stationary Markvoian policy. Then using the definition of u∗



CHAPTER 7. SUPPLEMENTARY MATERIALS 107

and the result from Theorem 2.3.3 that

V ∗(x, y) = min
π∈ΠH

CVaRy
(

lim
T→∞

C0,T | x0 = x, π
)
,

we immediately show that V ∗(x, y) = Vu∗(x, y), where Vu∗ is the fixed-point solution to V (x, y) =

Tu∗ [V ](x, y) for any x, y. By the fixed-point equation T[V ∗](x, y) = V ∗(x, y) and Tu∗ [Vu∗ ](x, y) =

Vu∗(x, y), this further implies (7.3) holds.

Second suppose u∗ satisfies the equality in (7.3). Then by the fixed-point equality T[V ∗](x, y) =

V ∗(x, y), we immediately obtain the equation V ∗(x, y) = Tu∗ [V
∗](x, y) for any x ∈ X and y ∈ Y .

since the fixed-point solution to Tu∗ [V ](x, y) = V (x, y) is unique, we further show that T[V ∗](x, y) =

V ∗(x, y) = Vu∗(x, y) and Vu∗(x, y) = minπ∈ΠH CVaRy (limT→∞ C0,T | x0 = x, π) from Theorem 2.3.3.

By using the policy construction formula in (2.5) to obtain the history dependent policy π∗H and following

the above arguments at which the augmented Markovian stationary policy u is replaced by u∗, this further

implies

min
π∈ΠH

CVaRy
(

lim
T→∞

C0,T | x0 = x, π
)

= CVaRy
(

lim
T→∞

C0,T | x0 = x, π∗H

)
,

i.e., u∗ is an optimal augmented stationary Markovian policy.

7.1.5 Proof of Lemma 2.4.3

We first proof the monotonicity property. Based on the definition of Ix[V ](y), if V1(x, y) ≥ V2(x, y) ∀x ∈ X
and y ∈ Y , we have that

Ix[V1](y) =
yi+1V1(x, yi+1)(y − yi) + yiV1(x, yi)(yi+1 − y)

yi+1 − yi
, if y ∈ Ii(x).

Since yi, yi+1 ∈ Y and (yi+1 − y), (y − yi) ≥ 0 (because y ∈ Ii(x)), we can easily see that Ix[V1](y) ≥
Ix[V2](y). As y ∈ Y and ξ(·)P (·|x, a) ≥ 0 for any ξ ∈ UCVaR(y, P (·|x, a), this further implies TI [V1](x, y) ≥
TI [V2](x, y).

Next we prove the constant shift property. Note from the definition of Ix[V ](y) that

Ix[V +K](y)

=yi(V (x, yi) +K) +
yi+1(V (x, yi+1) +K)− yi(V (x, yi) +K)

yi+1 − yi
(y − yi), if y ∈ Ii(x),

=yK + yiV (x, yi) +
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi
(y − yi), if y ∈ Ii(x)

=Ix[V ](y) + yK.

Therefore by definition of TI [V ](x, y), the constant shift property: TI [V +K](x, y) = TI [V ](x, y) + γK

for any x ∈ X , y ∈ Y , follows directly from the above arguments.

Equipped with both properties in monotonicity and constant shift, the proof of contraction of TI directly
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follows from the analogous proof in Lemma 2.3.2.

Finally we prove the concavity preserving property. Assume yV (x, y) is concave in y ∈ Y for any x ∈ X .

Then for yi+2 > yi+1 > yi, ∀i ∈ {1, . . . , N(x)− 2} the following inequality immediately follows from the

definition of a concave function:

dIx[V ](y)

dy

∣∣∣∣
y∈Ii+1(x)

=
yi+1V (x, yi+1)− yiV (x, yi)

yi+1 − yi

≥yi+2V (x, yi+2)− yi+1V (x, yi+1)

yi+2 − yi+1
=
dIx[V ](y)

dy

∣∣∣∣
y∈Ii+2(x)

.

(7.4)

We then show that the following inequality in each of the following cases, whenever the slope exists:

Ix[V ](z1) ≤ Ix[V ](z2) +
dIx[V ](y)

dy

∣∣∣∣
y=z2

(z1 − z2), ∀z1, z2 ∈ Y \ {0}.

(1) There exists i ∈ {1, . . . , N(x)− 1} such that z1, z2 ∈ Ii+1(x). In this case we have that

dIx[V ](y)

dy

∣∣∣∣
y=z1

=
dIx[V ](y)

dy

∣∣∣∣
y=z2

,

and this further implies

Ix[V ](z1) = Ix[V ](z2) +
dIx[V ](y)

dy

∣∣∣∣
y=z2

(z1 − z2).

(2) There exists i, j ∈ {1, . . . , N(x) − 2}, i + 1 < j such that z1 ∈ Ii+1(x) and z2 ∈ Ij(x). In this case,

without loss of generality we assume j = i + 1. The proof for case: j > i + 2 is omitted for the sake

of brevity, as it can be completed by iteratively applying the same arguments from case: j = i + 2. Since

z1 ∈ Ii(x), z2 ∈ Ij(x), we have z2 − z1 ≥ 0 and

dIx[V ](y)

dy

∣∣∣∣
y=z1

≥ dIx[V ](y)

dy

∣∣∣∣
y=z2

.

Based on the definition of the linear interpolation function, we have that

Ix[V ](yi+1) = yi+1V (x, yi+1) = Ix[V ](yi) +
dIx[V ](y)

dy

∣∣∣∣
y∈Ii+1(x)

(yi+1 − yi).

Furthermore, combining previous arguments with the definitions of Ix[V ](z1), Ix[V ](z2) implies that for

(z2 − yi+1) ≥ 0,
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we have that

Ix[V ](z2) =Ix[V ](yi+1) +
dIx[V ](y)

dy

∣∣∣∣
y=z2

(z2 − yi+1)

≤Ix[V ](yi+1) +
dIx[V ](y)

dy

∣∣∣∣
y=z1

(z2 − yi+1)

=Ix[V ](yi) +
dIx[V ](y)

dy

∣∣∣∣
y∈Ii+1(x)

(z2 − yi)

=Ix[V ](z1) +
dIx[V ](y)

dy

∣∣∣∣
y=z1

(z2 − z1).

(3) There exists i, j ∈ {1, . . . , N(x) − 2}, i + 1 < j such that z2 ∈ Ii+1(x) and z1 ∈ Ij(x). In this case,

without loss of generality we assume j = i + 1. The proof for case: j > i + 2 is omitted for the sake

of brevity, as it can be completed by iteratively applying the same arguments from case: j = i + 2. Since

z2 ∈ Ii+1(x), z1 ∈ Ij(x), we have z1 − z2 ≥ 0 and

dIx[V ](y)

dy

∣∣∣∣
y=z1

≤ dIx[V ](y)

dy

∣∣∣∣
y=z2

.

Similar to the analysis in the previous case, we have that

Ix[V ](yi) = yiV (x, yi) = Ix[V ](yi+1) +
dIx[V ](y)

dy

∣∣∣∣
y∈Ii+1(x)

(yi − yi+1)

Furthermore, combining previous arguments with the definitions of Ix[V ](z1), Ix[V ](z2) implies that for

(z2 − z1) ≤ 0,

Ix[V ](z2) =Ix[V ](yi) +
dIx[V ](y)

dy

∣∣∣∣
y=z2

(z2 − yi)

=Ix[V ](yi+1) +
dIx[V ](y)

dy

∣∣∣∣
y=z2

(z2 − yi+1)

=Ix[V ](z1) +
dIx[V ](y)

dy

∣∣∣∣
y=z2

(z2 − z1)

≤Ix[V ](z1) +
dIx[V ](y)

dy

∣∣∣∣
y=z1

(z2 − z1).

Thus we have just shown that the first order sufficient condition for concave functions, corresponding to

Ix[V ](y), holds, i.e., Ix[V ](y) is concave in y ∈ Y \ {0} for any given x ∈ X . Now since Ix[V ](y) is

a continuous piecewise linear function in y ∈ Y and a concave function when the domain is restricted to

Y \ {0}. By continuity this immediately implies that Ix[V ](y) is concave in y ∈ Y as well. Then following

the identical arguments in the proof of Lemma 2.3.2 for the concavity preserving property, we can thereby
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show that

yTI [V ](x, y) = min
a∈A

{
yC(x, a) + max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))P (x′|x, a)

}

is concave in y ∈ Y for any given x ∈ X .

7.1.6 Useful Intermediate Results

Lemma 7.1.1. Let f(y) : [0, 1]→ R be a concave function, differentiable almost everywhere, with Lipschitz

constant M . Then the linear interpolation I[f ](y) is also concave, and with Lipschitz constant MI ≤M .

Proof For every segment [yj , yj+1] in the linear interpolation, f(y) is concave, and with Lipschitz constant

M , and I[f ](y) is linear. Also, f(yj) = I[f ](yj), and f(yj+1) = I[f ](yj+1), by definition of the linear

interpolation. Denote by cj the magnitude of the slope of I[f ](y) at y ∈ [yj , yj+1].

Assume by contradiction that cj > maxy∈[yj ,yj+1] |f ′(y)| whenever f ′(y) exists. Consider the case when

f(yj+1) ≥ f(yj). This implies cj is the slope of the interpolation function I[f ](y) at y ∈ [yj , yj+1]. Then

by the fundamental theorem of calculus, we have

f(yj+1)− f(yj) =

∫ yj+1

yj

f ′(y)dy ≤
∫ yj+1

yj

|f ′(y)|dy <
∫ yj+1

yj

cjdy = (I[f ](yj+1)− I[f ](yj)),

contradicting f(yj+1) = I[f ](yj+1) and f(yj) = I[f ](yj).

On the other hand, consider the case when f(yj+1) ≤ f(yj). This implies −cj is the slope of the

interpolation function I[f ](y) at y ∈ [yj , yj+1]. Again by fundamental theorem of calculus,

0 ≤ f(yj+1)− f(yj) =

∫ yj+1

yj

f ′(y)dy ≥
∫ yj+1

yj

−|f ′(y)|dy >
∫ yj+1

yj

−cjdy = I[f ](yj)− I[f ](yj+1).

Since f(yj+1) = I[f ](yj+1) and f(yj) = I[f ](yj), which implies I[f ](yj) − I[f ](yj+1) ≥ 0, the above

expression clearly leads to a contradiction.

We finally have that maxy∈[yj ,yj+1] |f ′(y)| ≥ cj for segment j ∈ {1, . . . , N(x) − 1}. As this argument

holds for each segment, by maximizing over j over {1, . . . , N(x)− 1}, we have that

M ≥ max
j∈{1,...,N(x)−1}

max
y∈[yj ,yj+1]

|f ′(y)| ≥ max
j∈{1,...,N(x)−1}

cj = MI .

The concavity property (thus differentiability almost everywhere) are well-known results of linear inter-

polation [103].

Lemma 7.1.2. Let yV (x, y) be Lipschitz with constant M , concave, and differentiable almost everywhere,

for every x ∈ X and y ∈ [0, 1]. Then yT[V ](x, y) is also Lipschitz with constant Cmax + γM .
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Proof For any given state-action pair x ∈ X , and a ∈ A, let P (x′) = P (x′|x, a) be the transition kernel.

Consider the function

H(y)
.
= max
ξ∈UCVaR(y,P (·))

∑
x′∈X

yξ(x′)V (x′, yξ(x′))P (x′).

Note that, by definition of UCVaR, and a change of variables z(x′) = yξ(x′), we can write H(y) as follows:

H(y) = max
0≤z(x′)≤1,∑
x′ P (x′)z(x′)=y

∑
x′∈X

z(x′)V (x′, z(x′))P (x′). (7.5)

The Lagrangian of the above maximization problem is

L(z, λ; y) =
∑
x′∈X

z(x′)V (x′, z(x′))P (x′)− λ(
∑
x′

P (x′)z(x′)− y).

Since yV (x, y) is concave, the maximum is attained. By first order optimality condition the following ex-

pression holds:
∂L(z, λ; y)

∂z(x′)
= P (x′)

∂ [z(x′)V (x′, z(x′))]

∂z(x′)
− λP (x′) = 0.

Summing the last expression over x′, we obtain:

∑
x′∈X

P (x′)
∂ [z(x′)V (x′, z(x′))]

∂z(x′)
=
∑
x′∈X

λP (x′) = λ.

Now, from the Lipschitz property of yV (x, y), we have∣∣∣∣∣∑
x′∈X

λP (x′)

∣∣∣∣∣ ≤ ∑
x′∈X

P (x′)

∣∣∣∣∂ [z(x′)V (x′, z(x′))]

∂z(x′)

∣∣∣∣ ≤ ∑
x′∈X

P (x′)M = M.

Thus,

|λ| ≤
∑
x′∈X

P (x′)

∣∣∣∣∂ [z(x′)V (x′, z(x′))]

∂z(x′)

∣∣∣∣ ≤M.

Note that the objective in (7.5) does not depend on y. From the envelope theorem [86], it follows that

dH(y)

dy
= λ,

therefore, H(y) is Lipschitz, with constant M .

Now, by definition,

yT[V ](x, y) = min
a∈A

[
yC(x, a) + γ max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

yξ(x′)V (x′, yξ(x′))P (x′|x, a)

]
.
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Using our Lipschitz result for H(y), we have that for any a ∈ A, the function

yC(x, a) + γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

yξ(x′)V (x′, yξ(x′))P (x′|x, a)

is Lipschitz in y, with constant C(x, a) + γM . Using again the envelope theorem [86], we obtain that

yT[V ](x, y) is Lipschitz, with constant Cmax + γM .

Lemma 7.1.3. Consider Algorithm 1. Assume that for any x ∈ X , the initial value function satisfies that

yV0(x, y) is Lipschitz (in y), with uniform constant M0. We have that for any t ∈ {0, 1, . . . , }, the function

yVt(x, y) is Lipschitz in y for any x ∈ X , with Lipschitz constant

Mt =
1− γt
1− γ Cmax + γtM0 ≤

Cmax

1− γ +M0, ∀t.

Proof Let TI [V ] denote the application of the Bellman operator T to the linearly-interpolated version of

yV (x, y). We have, by definition, that

V1(x, y) = TI [V0](x, y).

Using Lemma 7.1.1 and Lemma 7.1.2, we have that V1(x, y) is Lipschitz, with M1 ≤ Cmax + γM0.

Note now, that V2(x, y) = TI [V1](x, y). Thus, by induction, we have

Mt ≤
1− γt
1− γ Cmax + γtM0,

and the result follows.

7.1.7 Proof of Theorem 2.4.4

The proof of this theorem is split into three parts. In the first part, we bound the difference Ix[Vt](y)/y −
Vt(x, y) at each state (x, y) ∈ X × Y using the previous technical lemmas and Lipschitz property.

In the second part, we bound the difference of TI [Vt](x, y)−T[Vt](x, y).

In the third part we bound the interpolation error using contraction properties of Bellman recursions.

First we analyze the bounds for Ix[Vt](y)/y − Vt(x, y) in the following four cases. Notice that from

Lemma 7.1.3, we have that |dIx[Vt](y)/dy| ≤M := Cmax/(1− γ) +M0.

(1) When y = 0 (for which y ∈ I1(x)).

Using previous analysis and L’Hospital’s rule we have that limy→0 Ix[Vt](y)/y = Vt(x, 0). This further

implies limy→0 Ix[Vt](y)/y − Vt(x, 0) = 0.

(2) When y ∈ Ii+1(x), 2 ≤ i < N(x)− 1.
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Similar to the inequality in (7.4), by concavity of yVt(x, y) in y ∈ Y , we have that

dIx[Vt](y)

dy

∣∣∣∣
y∈Ii+1(x)

=
yi+1Vt(x, yi+1)− yiVt(x, yi)

yi+1 − yi
≤ yVt(x, y)− yiVt(x, yi)

y − yi
,

and

dIx[Vt](y)

dy

∣∣∣∣
y∈Ii+2(x)

=
yi+2Vt(x, yi+2)− yi+1Vt(x, yi+1)

yi+2 − yi+1
≤ yi+1Vt(x, yi+1)− yVt(x, y)

yi+1 − y
.

From the first inequality, for each (x, y) ∈ X × Y we get,

Ix[Vt](y)

y
−Vt(x, y) ≤ 1

y

(
yiVt(x, yi) +

yi+1Vt(x, yi+1)− yiVt(x, yi)
yi+1 − yi

(y − yi)− yVt(x, y)

)
≤ 0. (7.6)

On the other hand, rearranging the second inequality gives

1

y
(Ix[Vt](y)− yVt(x, y))

≥1

y

(
yiVt(x, yi) +

dIx[Vt](y)

dy

∣∣∣∣
y∈Ii+1(x)

(y − yi)− yi+1Vt(x, yi+1)− dIx[Vt](y)

dy

∣∣∣∣
y∈Ii+2(x)

(y − yi+1)

)

=

(
dIx[Vt](y)

dy

∣∣∣∣
y∈Ii+1(x)

− dIx[Vt](y)

dy

∣∣∣∣
y∈Ii+2(x)

)
y − yi+1

y
≥ −2M

(
yi+1

y
− 1

)
.

(7.7)

Furthermore by the Lipschitz property, we also have the following inequality as well:

1

y
(Ix[Vt](y)− yVt(x, y))

=
yi+1Vt(x, yi+1)(y − yi) + yiVt(x, yi)(yi+1 − y)

(yi+1 − yi)y
− Vt(x, y)

≥yiVt(x, yi)(y − yi) + yiVt(x, yi)(yi+1 − y)−M(yi+1 − yi)(y − yi)
(yi+1 − yi)y

− Vt(x, y)

=
yiVt(x, yi)−M(y − yi)

y
− Vt(x, y) ≥ −2M

(
1− yi

y

)
.

(7.8)

Combining the inequalities (7.7) and (7.8), the following lower bound for Ix[Vt](y)/y − Vt(x, y) holds:

1

y
(Ix[Vt](y)− yVt(x, y)) ≥ δ := −2M min

{
1− yi

y
,
yi+1

y
− 1

}
, ∀y ∈ Ii+1(x), i ≥ 2.

From the above definition, when yi ≤ y ≤ (yi + yi+1)/2, the lower bound becomes δ = −2M(1 − yi/y)

and when (yi + yi+1)/2 ≤ y ≤ yi+1, the corresponding lower bound is δ = −2M(yi+1/y − 1). In both

cases, δ is minimized when y = (yi + yi+1)/2. Therefore, the above analysis implies the following lower
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bound:
1

y
(Ix[Vt](y)− yVt(x, y)) ≥ −2M

yi+1 − yi
yi+1 + yi

, ∀y ∈ Ii+1(x), i ≥ 2.

When yi+1 = θyi for i ∈ {2, . . . , N(x)− 1} for some constant θ ≥ 1, this further implies that

1

y
(Ix[Vt](y)− yVt(x, y)) ≥ −2M

θ − 1

θ + 1
≥ −M(θ − 1), ∀y ∈ Y \ [0, ε].

Then combining the results, here we get the following bound for Ix[Vt](y)/y − Vt(x, y):

−M(θ − 1) ≤ Ix[Vt](y)

y
− Vt(x, y) ≤ 0, ∀y ∈ Ii+1(x), i ≥ 2.

(3) When y ∈ IN(x)(x), i.e., y ∈ (yN(x)−1, 1].

Similar to the proof of case (2), we can show that for any x ∈ X and y ∈ IN(x)(x), the same lines of

arguments in inequality (7.6) and (7.8) hold, which implies

−2M
(
1− yN(x)−1

)
≤ −2M

(
1− yN(x)−1

y

)
≤ 1

y
(Ix[Vt](y)− yVt(x, y)) ≤ 0.

When yN(x) = 1 = θyN(x)−1, this further shows that

−2MyN(x)−1(θ − 1) = −2M
(
yN(x) − yN(x)−1

)
≤ 1

y
(Ix[Vt](y)− yVt(x, y)) ≤ 0,

and

−2M(θ − 1) ≤ −2

θ
M(θ − 1) ≤ 1

y
(Ix[Vt](y)− yVt(x, y)) ≤ 0.

(4) When y ∈ I2(x), i.e., y ∈ (0, y2].

From inequality (7.6), the definition of Ix[Vt](y), we have that

0 ≥ Ix[Vt](y)− yVt(x, y)

y
=
y(Vt(x, y2)− Vt(x, y))

y
= Vt(x, y2)− Vt(x, y) ≥ Vt(x, y2)− Vt(x, 0).

The first inequality is due to the fact that yVt(x, y) is concave in y ∈ Y for any x ∈ X , thus the first order

condition implies

y2Vn(x, y2)− y1Vn(x, y1)

y2 − y1
≤ yVn(x, y)− y1Vn(x, y1)

y − y1
, ∀y ∈ I2(x),

and the last inequality is due to the similar fact that

Vt(x,w) =
wVt(x,w)− 0 · Vt(x, 0)

w − 0
≤ zVt(x, z)− 0 · Vt(x, 0)

z − 0
= Vt(x, z), ∀z, w ∈ Y, z ≤ w.
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Therefore the condition of this theorem implies

0 ≥ Ix[Vt](y)− yVt(x, y)

y
≥ −ε, ∀t ≥ 0, x ∈ X , y ∈ Y.

Combining the above four cases, we have that for each state (x, y) ∈ X × Y ,

0 ≥ Ix[Vt](y)

y
− Vt(x, y) ≥ −2M(θ − 1)− ε, ∀t.

Second, we bound the difference of TI [Vt](x, y) − T[Vt](x, y). By recalling that ξ(·)P (·|x, a) is a

probability distribution for any ξ ∈ UCVaR(y, P (·|x, a)), we then combine all previous arguments and show

that at any t ∈ {0, 1, . . . , } and any x ∈ X , a ∈ A, y ∈ Y(x),

max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X ,ξ(x′)6=0

(Ix′ [Vt](yξ(x′))
yξ(x′)

− Vt(x′, yξ(x′))
)
ξ(x′)P (x′|x, a) ≥ −2M(θ − 1)− ε.

This further implies

T[Vt](x, y)− γ(2M(θ − 1) + ε) ≤ TI [Vt](x, y) ≤ T[Vt](x, y). (7.9)

Third, we prove the error bound of interpolated value iteration using the above properties. By putting

t = 0 in (7.9), we have that

−γ(2M(θ − 1) + ε) ≤ TI [V0](x, y)−T[V0](x, y) ≤ 0.

Applying the Bellman operator T on all sides of the above inequality and noting that T is a translational

invariant mapping, the above expression implies

T2[V0](x, y)− γ2(2M(θ − 1) + ε) ≤ T[TI [V0]](x, y) = T[V1](x, y) ≤ T2[V0](x, y).

By adding the inequality: −γ(2M(θ − 1) + ε) ≤ TI [V1](x, y) −T[V1](x, y) ≤ 0 to the above expression,

this further implies the following expression:

T2[V0](x, y)− γ(1 + γ)(2M(θ − 1) + ε) ≤ TI [V1](x, y) = T2
I [V0](x, y) ≤ T2[V0](x, y).

Then, by repeating this process, we can show that for any n ∈ N, the following inequality holds:

Tn[V0](x, y)− γ 1− γn
1− γ (2M(θ − 1) + ε) ≤ Tn

I [V0](x, y) ≤ Tn[V0](x, y).

Note that when n→∞, we have that γn converges to 0, Tn[V0](x, y) converges to minπ∈ΠH CVaRy (limT→∞ C0,T | x, µ)

(follow from Theorem 2.3.3) and Tn
I [V0](x, y) converges to V̂ ∗(x, y) (follow from the contraction property
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in Lemma 2.4.3).

Furthermore, from Proposition 1.6.4 in [17], the contraction property of Bellman operator T implies that

for any x ∈ X , y ∈ Y , the following expression holds:

|Tn[V0](x, y)− V ∗(x, y)| ≤ γn

1− γ (Cmax + ‖Z‖∞)

where Z is the bounded random variable of the initial value function V0(x, y) = CVaRy(Z | x0 = x) such

that ‖V0‖∞ ≤ ‖Z‖∞, and V ∗(x, y) = minπ∈ΠH CVaRy (limT→∞ C0,T | x, µ). This further implies for any

x ∈ X , y ∈ Y ,

|Tn
I [V0](x, y)− V ∗(x, y)| ≤ γ 1− γn

1− γ (2M(θ − 1) + ε) +
γn

1− γ (Cmax + ‖Z‖∞).

Then, by combining all the above arguments, we prove the claim of this theorem.

7.1.8 Proof of Theorem 2.5.1

The convergence proof of Q−learning is mainly based on stochastic approximation theories. Recall that the

state-action Bellman operator F is given as follows:

FI [Q](x, y, a)=C(x, a) + γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))

y
P (x′|x, a).

where V (x, y) = mina∈AQ(x, y, a). Therefore, the Q−update can be re-written as

Qk+1(x, y, a) =(1− ζk(x, y, a))Qk(x, y, a)

+ γζk(x, y, a)

(
max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))

y
P (x′|x, a) +Mk(x, y, a)

)
,

where the noise term is given by

Mk(x, y, a) = max
ξ∈UCVaR(y,PNk (·|x,a))

1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))

y
− max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))

y
P (x′|x, a),

(7.10)

for whichMk(x, y, a)→ 0 almost surely as k →∞ (consistency property whose proof follows from Section

7.1 D of [146] using the law of large numbers) and for any k ∈ N,

M2
k (x, y, a) ≤

∣∣∣∣∣ 1

Nk

Nk∑
i=1

Ix′,i [Vk](yξ(x′,i))

y
−
∑
x′∈X

Ix′ [Vk](yξ(x′))

y

∣∣∣∣∣
2

≤ 2 max
x,y,a

Q2
k(x, y, a).
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Then the assumptions in Proposition 4.5 in [19] on the noise term Mk(x, y, a) are verified. Furthermore,

following the same analysis from Lemma 2.4.3 that TI is a contraction operator with respect to the∞−norm,

for any two state-action value functionsQ1(x, y, a) andQ2(x, y, a) such that V1(x, y) = mina∈AQ1(x, y, a)

and V2(x, y) = mina∈AQ2(x, y, a), we have that∣∣∣∣∣C(x, a) + γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V1](yξ(x′))

y
P (x′|x, a)− C(x, a)

−γ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V2](yξ(x′))

y
P (x′|x, a)

∣∣∣∣∣
≤γ

∣∣∣∣∣ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V1](yξ(x′))

y
P (x′|x, a)− max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V2](yξ(x′))

y
P (x′|x, a)

∣∣∣∣∣
≤γ

∣∣∣∣∣ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

[
Ix′ [V1](yξ(x′))

y
− Ix

′ [V2](yξ(x′))

y

]
P (x′|x, a)

∣∣∣∣∣
≤γmax

x,y
|V1(x, y)− V2(x, y)| ≤ γ ‖Q1 −Q2‖∞ .

(7.11)

The second inequality follows from sub-additivity of max−operator:∣∣∣∣∣ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V1](yξ(x′))

y
P (x′|x, a)− max

ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V2](yξ(x′))

y
P (x′|x, a)

∣∣∣∣∣
≤
∣∣∣∣∣ max
ξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

[Ix′ [V1](yξ(x′))

y
− Ix′ [V2](yξ(x′))

y

]
P (x′|x, a)

∣∣∣∣∣ .
The third inequality is due to the same lines of arguments in Lemma 2.4.3. Therefore the above expression

implies that ‖FI [Q1]− FI [Q2]‖∞ ≤ γ ‖Q1 −Q2‖∞, i.e., FI is a contraction mapping.

By combining these arguments, all assumptions in Proposition 4.5 in [19] are justified. This in turns

implies the convergence of {Qk(x, y, a)}k∈N to Q∗(x, y, a) component-wise, where Q∗ is the unique fixed-

point solution of FI [Q](x, y, a) = Q(x, y, a).

7.1.9 Proof of Theorem 2.5.2

Similar to the proof of Theorem 2.5.1, the Q−update in asynchronous Q−learning can be written as:

Qk+1(x, y, a) = (1− ζk(x, y, a))Qk(x, y, a) + ζk(x, y, a)(Θk(x, y, a) + Ψk(x, y, a)),

where

Θk(x, y, a) =

{
C(x, a) + γmaxξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [Vk](yξ(x′))
y P (x′|x, a) if (x, y, a) = (xk(y), y, ak(y))

Qk(x, y, a) otherwise
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with Vk(x, y) = mina∈AQk(x, y, a) and the noise term is given by

Ψk(x, y, a) =

{
Mk(x, y, a) if (x, y, a) = (xk(y), y, ak(y))

0 otherwise

with Mk defined in (7.10). Since Mk(x, y, a) → 0 as k → ∞, it can also be seen that Ψk(x, y, a) → 0 as

k →∞. Furthermore, for any k ∈ N, we also have that Ψ2
k(x, y, a) ≤M2

k (x, y, a) ≤ 2 maxx,y,aQ
2
k(x, y, a).

Then the assumptions in Proposition 4.5 in [19] on the noise term Mk(x, y, a) are verified. Now we define

the asynchronous Bellman operator

F̂I [Q](x, y, a) =

{
C(x, a) + γmaxξ∈UCVaR(y,P (·|x,a))

∑
x′∈X

Ix′ [V ](yξ(x′))
y P (x′|x, a) if (x, y, a) = (xk(y), y, ak(y))

Q(x, y, a) otherwise
,

where V (x, y) = mina∈AQ(x, y, a). It can easily checked that the fixed-point solution of FI [Q](x, y, a) =

Q(x, y, a), i.e., Q∗, is also a fixed-point solution of F̂I [Q](x, y, a) = Q(x, y, a). Next we want to show

that F̂I [Q] is a contraction operator with respect to ∞−norm. Let {`k} be a strictly increasing sequence

(`k < `k+1 for all k) such that `0 = 0, and at every CVaR confidence level y ∈ Y every state-action pair

(x, a) in X ×A is being updated at least once during this time period. Since every state action pair is visited

infinitely often, Borel-Cantelli lemma [116] implies that for each finite k, both `k and `k+1 are finite. For any

` ∈ [`k, `k+1], the result in (7.11) implies the following expression:

|F̂`+1
I [Q](x, y, a)−Q∗(x, y, a)| ≤ γ

∥∥∥F̂`I [Q]−Q∗
∥∥∥
∞

if (x, y, a) = (xk(y), y, ak(y))

|F̂`+1
I [Q](x, y, a)−Q∗(x, y, a)| = |F̂`I [Q](x, y, a)−Q∗(x, y, a)| otherwise

From this result, one can first conclude that F̂I [Q] is a non-expansive operator, i.e.,

|F̂`+1
I [Q](x, y, a)−Q∗(x, y, a)| ≤

∥∥∥F̂`I [Q]−Q∗
∥∥∥
∞
.

Let l(x, y, a) be the last index strictly between `k and `k+1 where the state-action pair (x, y, a) is updated.

Then

|F̂`k+1

I [Q](x, y, a)−Q∗(x, y, a)| ≤ γ
∥∥∥F̂l(x,y,a)
I [Q]−Q∗

∥∥∥
∞

From the definition of `k+1, it is obvious that `k < maxx,y,a l(x, y, a) < `k+1. The non-expansive property

of F̂I also implies that ∥∥∥F̂l(x,y,a)
I [Q]−Q∗

∥∥∥
∞
≤
∥∥∥F̂`kI [Q]−Q∗

∥∥∥
∞
.

Therefore we have that

|F̂`k+1

I [Q](x, y, a)−Q∗(x, y, a)| ≤ γ
∥∥∥F̂`kI [Q]−Q∗

∥∥∥
∞
.
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Combining these arguments implies that ‖F̂`k+1

I [Q]−Q∗‖∞ ≤ γ
∥∥∥F̂`kI [Q]−Q∗

∥∥∥
∞

. Thus for δk = `k+1 −
`k > 1 and Qk(x, y, a) = F̂`kI [Q](x, y, a), the following contraction property holds:

‖F̂δkI [Qk]−Q∗‖∞ ≤ γ ‖Qk −Q∗‖∞ , (7.12)

where the following fixed-point equation holds: F̂δkI [Q∗](x, u) = Q∗(x, u). Then by Proposition 4.5 in [19],

the sequence {Qk(x, y, a)}k∈N converges toQ∗(x, y, a) component-wise, whereQ∗ is the unique fixed-point

solution of both FI [Q](x, y, a) = Q(x, y, a) and F̂I [Q](x, y, a) = Q(x, y, a).

7.1.10 Proof of Theorem 2.6.1

First we want to show that

ρδ,β(Z | ht, π) ≥ max
ξ∈UMix(δ,β,P (·|xt,at))

E[ξ(xt+1) · ρδ/ξ(xt+1),βξ(xt+1)(Z | ht+1, π) | ht, π], (7.13)

where the risk envelop is given by

UMix(δ, β, P (·|xt, at))=

ξ : ξi(xt+1)∈
[
δ, β−1

]
,
∑

xt+1∈X
ξi(xt+1)P (xt+1|xt, at) = 1, ∀i

 .

Recall that at is the control input induced by µt(ht) for any t ≥ 0. From the dual representation theorem of

coherent risk [132], one obtains

ρδξ(xt+1),βξ(xt+1)(Z | ht+1, π) = max
ξ′∈UMix(δ/ξ(xt+1),βξ(xt+1),P (·|xt+1,at+1))

EP [ξ′Z | ht+1, π]. (7.14)

For any feasible ξ′ in UMix(δ/ξ(xt+1), βξ(xt+1), P (·|xt+1, at+1)) where at+1 is the control input induced

by µt+1(ht+1) and any feasible ξ in UMix(δ, β, P (·|xt, at)), we have that

δ ≤ ξ′(xt+2)ξ(xt+1) ≤ 1

β
, ∀xt+2 ∈ X ,

∑
xt+2∈X

ξ′j(xt+2)P (xt+2|xt+1, at+1) = 1.

Now since the following equality holds:

E [ξξ′|ht, π] =
∑

xt+1∈X
ξ(xt+1)

∑
xt+2∈X

ξ′(xt+2)P (xt+2|xt+1, at+1)P (xt+1|xt, at) = 1,

we can then show that ξξ′ is in UMix(δ, β,P(·|xt, at)). Furthermore based on the dual representation theorem

of ρδ/ξ(xt+1),βξ(xt+1)(Z | ht+1, π) from (7.14), for any ε > 0 there exists

ξ̃′ ∈ UMix(δ/ξ(xt+1), βξ(xt+1), P (·|xt+1, at+1))



CHAPTER 7. SUPPLEMENTARY MATERIALS 120

such that

ρδ/ξ(xt+1),βξ(xt+1)(Z | ht+1, π) ≤ EP [ξ̃′Z | ht+1, π] + ε.

This immediately implies the following inequality for any ξ ∈ UMix(δ, β, P (·|xt, at)):

max
ξ∈UMix(δ,β,P(·|xt,at))

EP[ξZ|ht, π] ≥ EP

[
ξξ̃′Z|ht, π

]
≥E[ξ(xt+1) · ρδ/ξ(xt+1),βξ(xt+1)(Z | ht+1, π) | ht, π]− ε.

By taking the supremum on the right side of the above inequality over ξ ∈ UMix(δ, β, P (·|xt, at)), using the

dual representation theorem (7.14) and letting ε→ 0, one obtains the inequality in (7.13).

Second we want to show that

ρδ,β(Z | ht, π) ≤ max
ξ∈UMix(δ,β,P (·|xt,at))

E[ξ(xt+1) · ρδ/ξ(xt+1),βξ(xt+1)(Z | ht+1, π) | ht, π]. (7.15)

We first choose some ξ∗ ∈ UMix(δ, β,P(·|xt, at)) such that E[ξ∗Z|ht, π] = ρδ,β(Z | ht, π). Furthermore

define ξ̃i(xt+1) =
∑
xt+2∈X ξ

∗
i (xt+1, xt+2)P (xt+2|xt+1, at+1), where one immediately sees that the fol-

lowing properties hold:

δ ≤ ξ̃i(xt+1) ≤ 1

β
,
∑

xt+1∈X
ξ̃i(xt+1)P (xt+1|xt, at) = 1.

On the other hand, by defining

ξ(xt+1, xt+2) =


ξ∗(xt+1,xt+2)

ξ̃(xt+1)
if ξ̃(xt+1) > 0

1 otherwise
,

the following properties hold as well:

δ

ξ̃(xt+1)
≤ ξ(xt+1, xt+2) ≤ 1

βξ̃(xt+1)
, ∀i,

∑
xt+2∈X

ξi(xt+1, xt+2)P (xt+2|xt+1, at+1) = 1.

Utilizing the above construction of ξ̃, we have the following chain of inequalities:

ρδ,β(Z | ht, π) =E[ξ∗Z | ht, π] = EP

[
ξ̃ξZ | ht, π

]
=E [ξ(xt+1)E [ξZ | Ft+1] | ht, π]

≤E[ξ̃(xt+1) · ρδ/ξ̃(xt+1),βξ̃(xt+1)(Z | ht+1, π) | ht, π]

≤ max
ξ∈UMix(δ,β,P (·|xt,at))

E[ξ(xt+1) · ρδ/ξ(xt+1),βξ(xt+1)(Z | ht+1, π) | ht, π].

Therefore the claim of this theorem is concluded by combining both arguments in (7.13) and (7.15).
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7.2 Technical Results in Chapter 3: Policy Gradient Methods

In this section we present the convergence proof to the risk constrained policy gradient method.

7.2.1 Computing the Gradients

i) ∇θL(ν, θ, λ): Gradient of L(ν, θ, λ) w.r.t. θ By expanding the expectations in the definition of the objec-

tive function L(ν, θ, λ) in (3.5), we obtain

L(ν, θ, λ) =
∑
ξ

Pθ(ξ)C(ξ) + λν +
λ

1− α
∑
ξ

Pθ(ξ)
(
D(ξ)− ν

)+ − λβ.
By taking the gradient with respect to θ, we have

∇θL(ν, θ, λ) =
∑
ξ

∇θPθ(ξ)C(ξ) +
λ

1− α
∑
ξ

∇θPθ(ξ)
(
D(ξ)− ν

)+
.

This gradient can be rewritten as

∇θL(ν, θ, λ) =
∑

ξ:Pθ(ξ) 6=0

Pθ(ξ) · ∇θ logPθ(ξ)
(
C(ξ) +

λ

1− α
(
D(ξ)− ν

)
1
{
D(ξ) ≥ ν

})
, (7.16)

where in the case of Pθ(ξ) 6= 0, the term∇θ logPθ(ξ) is given by:

∇θ logPθ(ξ) =∇θ
{
T−1∑
k=0

logP (xk+1|xk, ak) + log µ(ak|xk; θ) + log 1{x0 = x0}
}

=

T−1∑
k=0

∇θ logµ(ak|xk; θ) =

T−1∑
k=0

1

µ(ak|xk; θ)
∇θµ(ak|xk; θ).

ii) ∂νL(ν, θ, λ): Sub-differential of L(ν, θ, λ) w.r.t. ν From the definition of L(ν, θ, λ), we can easily see

that L(ν, θ, λ) is a convex function in ν for any fixed θ ∈ Θ. Note that for every fixed ν and any ν′, we have

(
D(ξ)− ν′

)+ − (D(ξ)− ν
)+ ≥ g · (ν′ − ν),

where g is any element in the set of sub-derivatives:

g ∈ ∂ν
(
D(ξ)− ν

)+
:=


−1 if ν < D(ξ),

−q : q ∈ [0, 1] if ν = D(ξ),

0 otherwise.
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Since L(ν, θ, λ) is finite-valued for any ν ∈ R, by the additive rule of sub-derivatives, we have

∂νL(ν, θ, λ) =

− λ

1− α
∑
ξ

Pθ(ξ)1
{
D(ξ) > ν

}
− λq

1− α
∑
ξ

Pθ(ξ)1
{
D(ξ) = ν

}
+ λ | q ∈ [0, 1]

 .

(7.17)

In particular for q = 1, we may write the sub-gradient of L(ν, θ, λ) w.r.t. ν as

∂νL(ν, θ, λ)|q=0 = λ− λ

1− α
∑
ξ

Pθ(ξ) · 1
{
D(ξ) ≥ ν

}
or

λ− λ

1− α
∑
ξ

Pθ(ξ) · 1
{
D(ξ) ≥ ν

}
∈ ∂νL(ν, θ, λ).

iii) ∇λL(ν, θ, λ): Gradient of L(ν, θ, λ) w.r.t. λ Since L(ν, θ, λ) is a linear function in λ, one can express

the gradient of L(ν, θ, λ) w.r.t. λ as follows:

∇λL(ν, θ, λ) = ν − β +
1

1− α
∑
ξ

Pθ(ξ) ·
(
D(ξ)− ν

)
1
{
D(ξ) ≥ ν

}
. (7.18)

7.2.2 Proof of Convergence of the Policy Gradient Algorithm

In this section, we prove the convergence of the policy gradient algorithm (Algorithm 2).

Since ν converges on the faster timescale than θ and λ, the ν-update can be rewritten by assuming (θ, λ)

as invariant quantities, i.e.,

νi+1 = ΓN

[
νi − ζ3(i)

(
λ− λ

(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

})]
. (7.19)

Consider the continuous time dynamics of ν defined using differential inclusion

ν̇ ∈ Υν [−g(ν)] , ∀g(ν) ∈ ∂νL(ν, θ, λ), (7.20)

where

Υν [K(ν)] := lim
0<η→0

ΓN (ν + ηK(ν))− ΓN (ν)

η
.

Here Υν [K(ν)] is the left directional derivative of the function ΓN (ν) in the direction of K(ν). By using the

left directional derivative Υν [−g(ν)] in the sub-gradient descent algorithm for ν, the gradient will point in

the descent direction along the boundary of ν whenever the ν-update hits its boundary.

Furthermore, since ν converges on a faster timescale than θ, and λ is on the slowest time-scale, the

θ-update can be rewritten using the converged ν∗(θ), assuming λ as an invariant quantity, i.e.,
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θi+1 =ΓΘ

[
θi − ζ2(i)

(
1

N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θiC(ξj,i)

+
λ

(1− α)N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θi
(
D(ξj,i)− ν

)
1
{
D(ξj,i) ≥ ν∗(θi)

})]
.

Consider the continuous time dynamics of θ ∈ Θ:

θ̇ = Υθ [−∇θL(ν, θ, λ)] |ν=ν∗(θ), (7.21)

where

Υθ[K(θ)] := lim
0<η→0

ΓΘ(θ + ηK(θ))− ΓΘ(θ)

η
.

Similar to the analysis of ν, Υθ[K(θ)] is the left directional derivative of the function ΓΘ(θ) in the direction

of K(θ). By using the left directional derivative Υθ [−∇θL(ν, θ, λ)] in the gradient descent algorithm for

θ, the gradient will point in the descent direction along the boundary of Θ whenever the θ-update hits its

boundary.

Finally, since the λ-update converges in the slowest time-scale, the λ-update can be rewritten using the

converged θ∗(λ) and ν∗(λ), i.e.,

λi+1 = ΓΛ

λi + ζ1(i)

(
ν∗(λi) +

1

1− α
1

N

N∑
j=1

(
D(ξj,i)− ν∗(λi)

)+ − β)
 . (7.22)

Consider the continuous time system

λ̇(t) = Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

]
, λ(t) ≥ 0, (7.23)

where

Υλ[K(λ)] := lim
0<η→0

ΓΛ

(
λ+ ηK(λ)

)
− ΓΛ(λ)

η
.

Again, similar to the analysis of (ν, θ), Υλ[K(λ)] is the left directional derivative of the function ΓΛ(λ) in the

direction of K(λ). By using the left directional derivative Υλ [∇λL(ν, θ, λ)] in the gradient ascent algorithm

for λ, the gradient will point in the ascent direction along the boundary of [0, λmax] whenever the λ-update

hits its boundary.

Define

L∗(λ) = L(ν∗(λ), θ∗(λ), λ),

for λ ≥ 0 where (θ∗(λ), ν∗(λ)) ∈ Θ× [−Dmax

1−γ ,
Dmax

1−γ ] is a local minimum of L(ν, θ, λ) for fixed λ ≥ 0, i.e.,
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L(ν, θ, λ) ≥ L(ν∗(λ), θ∗(λ), λ) for any (θ, ν) ∈ Θ× [−Dmax

1−γ ,
Dmax

1−γ ] ∩ B(θ∗(λ),ν∗(λ))(r) for some r > 0.

Next, we want to show that the ODE (7.23) is actually a gradient ascent of the Lagrangian function

using the envelope theorem from mathematical economics [86]. The envelope theorem describes sufficient

conditions for the derivative of L∗ with respect to λ to equal the partial derivative of the objective function L

with respect to λ, holding (θ, ν) at its local optimum (θ, ν) = (θ∗(λ), ν∗(λ)). We will show that ∇λL∗(λ)

coincides with∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ) as follows.

Theorem 7.2.1. The value function L∗ is absolutely continuous. Furthermore,

L∗(λ) = L∗(0) +

∫ λ

0

∇λ′L(ν, θ, λ′)
∣∣∣
θ=θ∗(s),ν=ν∗(s),λ′=s

ds, λ ≥ 0. (7.24)

Proof. The proof follows from analogous arguments to Lemma 4.3 in [34]. From the definition ofL∗, observe

that for any λ′, λ′′ ≥ 0 with λ′ < λ′′,

|L∗(λ′′)− L∗(λ′)| ≤ sup
θ∈Θ,ν∈[−Dmax

1−γ ,Dmax
1−γ ]

|L(ν, θ, λ′′)− L(ν, θ, λ′)|

= sup
θ∈Θ,ν∈[−Dmax

1−γ ,Dmax
1−γ ]

∣∣∣∣∣
∫ λ′′

λ′
∇λL(ν, θ, s)ds

∣∣∣∣∣
≤
∫ λ′′

λ′
sup

θ∈Θ,ν∈[−Dmax
1−γ ,Dmax

1−γ ]

|∇λL(ν, θ, s)| ds ≤ 3Dmax

(1− α)(1− γ)
(λ′′ − λ′).

This implies that L∗ is absolutely continuous. Therefore, L∗ is continuous everywhere and differentiable

almost everywhere.

By the Milgrom–Segal envelope theorem in mathematical economics (Theorem 1 of [86]), one concludes

that the derivative of L∗(λ) coincides with the derivative of L(ν, θ, λ) at the point of differentiability λ and

θ = θ∗(λ), ν = ν∗(λ). Also since L∗ is absolutely continuous, the limit of (L∗(λ) − L∗(λ′))/(λ − λ′) at

λ ↑ λ′ (or λ ↓ λ′) coincides with the lower/upper directional derivatives if λ′ is a point of non-differentiability.

Thus, there is only a countable number of non-differentiable points in L∗ and the set of non-differentiable

points of L∗ has measure zero. Therefore, expression (7.24) holds and one concludes that∇λL∗(λ) coincides

with∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ).

Before getting into the main result, we have the following technical proposition whose proof directly

follows from the definition of logPθ(ξ) and Assumption 3.2.3 that ∇θµ(ak|xk; θ) is Lipschitz in θ.

Proposition 7.2.2. ∇θL(ν, θ, λ) is Lipschitz in θ.

Remark 7.2.3. The fact that∇θL(ν, θ, λ) is Lipschitz in θ implies that ‖∇θL(ν, θ, λ)‖2 ≤ 2(‖∇θL(ν, θ0, λ)‖+
‖θ0‖)2 + 2‖θ‖2 which further implies that

‖∇θL(ν, θ, λ)‖2 ≤ K1(1 + ‖θ‖2).
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forK1 = 2 max(1, (‖∇θL(ν, θ0, λ)‖+‖θ0‖)2) > 0. Similarly, the fact that∇θ logPθ(ξ) is Lipschitz implies

that

‖∇θ logPθ(ξ)‖2 ≤ K2(ξ)(1 + ‖θ‖2)

for a positive random variable K2(ξ). Furthermore, since T < ∞ w.p. 1, µ(ak|xk; θ) ∈ (0, 1] and

∇θµ(ak|xk; θ) is Lipschitz for any k < T , K2(ξ) <∞ w.p. 1.

Remark 7.2.4. For any given θ ∈ Θ, λ ≥ 0, and g(ν) ∈ ∂νL(ν, θ, λ), we have

|g(ν)| ≤ 3λ(1 + |ν|)/(1− α). (7.25)

To see this, recall that the set of g(ν) ∈ ∂νL(ν, θ, λ) can be parameterized by q ∈ [0, 1] as

g(ν; q) = − λ

(1− α)

∑
ξ

Pθ(ξ)1 {D(ξ) > ν} − λq

1− α
∑
ξ

Pθ(ξ)1 {D(ξ) = ν}+ λ.

It is obvious that |1 {D(ξ) = ν}| , |1 {D(ξ) > ν}| ≤ 1+|ν|. Thus,
∣∣∣∑ξ Pθ(ξ)1 {D(ξ) > ν}

∣∣∣ ≤ supξ |1 {D(ξ) > ν}| ≤
1 + |ν|, and

∣∣∣∑ξ Pθ(ξ)1 {D(ξ) = ν}
∣∣∣ ≤ 1 + |ν|. Recalling that 0 < (1− q), (1− α) < 1, these arguments

imply the claim of (7.25).

We are now in a position to prove the convergence analysis of Theorem 3.3.2.

Proof of Theorem 3.3.2. We split the proof into the following four steps:

Step 1 (Convergence of ν-update) Since ν converges on a faster time scale than θ and λ, one can take both

θ and λ as fixed quantities in the ν-update, i.e.,

νi+1 = ΓN

νi + ζ3(i)

 λ

(1− α)N

N∑
j=1

1
{
D(ξj,i) ≥ νi

}
− λ+ δνi+1

 , (7.26)

and the Martingale difference term with respect to ν is given by

δνi+1 =
λ

1− α

− 1

N

N∑
j=1

1
{
D(ξj,i) ≥ νi

}
+
∑
ξ

Pθ(ξ)1{D(ξ) ≥ νi}

 . (7.27)

First, one can show that δνi+1 is square integrable, i.e.,

E[‖δνi+1‖2 | Fν,i] ≤ 4

(
λmax

1− α

)2

where Fν,i = σ
(
νm, δνm, m ≤ i

)
is the filtration of νi generated by different independent trajectories.
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Second, since the history trajectories are generated based on the sampling probability mass function

Pθ(ξ), expression (7.17) implies that E [δνi+1 | Fν,i] = 0. Therefore, the ν-update is a stochastic approxi-

mation of the ODE (7.20) with a Martingale difference error term, i.e.,

λ

1− α
∑
ξ

Pθ(ξ)1{D(ξ) ≥ νi} − λ ∈ −∂νL(ν, θ, λ)|ν=νi .

Then one can invoke Corollary 4 in Chapter 5 of [35] (stochastic approximation theory for non-differentiable

systems) to show that the sequence {νi}, νi ∈ [−Dmax

1−γ ,
Dmax

1−γ ] converges almost surely to a fixed point

ν∗ ∈ [−Dmax

1−γ ,
Dmax

1−γ ] of the differential inclusion (7.20), where

ν∗ ∈ Nc :=

{
ν ∈

[
−Dmax

1− γ ,
Dmax

1− γ

]
: Υν [−g(ν)] = 0, g(ν) ∈ ∂νL(ν, θ, λ)

}
.

To justify the assumptions of this corollary, 1) from Remark 7.2.4, the Lipschitz property is satisfied, i.e.,

supg(ν)∈∂νL(ν,θ,λ) |g(ν)| ≤ 3λ(1 + |ν|)/(1 − α), 2) [−Dmax

1−γ ,
Dmax

1−γ ] and ∂νL(ν, θ, λ) are convex compact

sets by definition, which implies {(ν, g(ν)) | g(ν) ∈ ∂νL(ν, θ, λ)} is a closed set, and further implies

∂νL(ν, θ, λ) is an upper semi-continuous set valued mapping, 3) the step-size rule follows from Assump-

tion 3.3.1, 4) the Martingale difference assumption follows from (7.27), and 5) νi ∈ [−Dmax

1−γ ,
Dmax

1−γ ], ∀i
implies that supi ‖νi‖ <∞ almost surely.

Consider the ODE for ν ∈ R in (7.20), we define the set-valued derivative of L as follows:

DtL(ν, θ, λ) =
{
g(ν)Υν

[
− g(ν)

]
| ∀g(ν) ∈ ∂νL(ν, θ, λ)

}
.

One can conclude that

max
g(ν)

DtL(ν, θ, λ) = max
{
g(ν)Υν

[
− g(ν)

]
| g(ν) ∈ ∂νL(ν, θ, λ)

}
.

We now show that maxg(ν)DtL(ν, θ, λ) ≤ 0 and this quantity is non-zero if Υν

[
− g(ν)

]
6= 0 for every

g(ν) ∈ ∂νL(ν, θ, λ) by considering three cases. To distinguish the latter two cases, we need to define,

G(ν) :=

{
g(ν) ∈ ∂Lν(ν, θ, λ)

∣∣∣∀η0 > 0, ∃η ∈ (0, η0] such that θ − ηg(ν) 6∈
[
−Dmax

1− γ ,
Dmax

1− γ

]}
.

Case 1: ν ∈ (−Dmax

1−γ ,
Dmax

1−γ ).

For every g(ν) ∈ ∂νL(ν, θ, λ), there exists a sufficiently small η0 > 0 such that ν−η0g(ν) ∈ [−Dmax

1−γ ,
Dmax

1−γ ]

and

ΓN
(
θ − η0g(ν)

)
− θ = −η0g(ν).
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Therefore, the definition of Υθ[−g(ν)] implies

max
g(ν)

DtL(ν, θ, λ) = max
{
− g2(ν) | g(ν) ∈ ∂νL(ν, θ, λ)

}
≤ 0. (7.28)

The maximum is attained because ∂νL(ν, θ, λ) is a convex compact set and g(ν)Υν

[
− g(ν)

]
is a continuous

function. At the same time, we have maxg(ν)DtL(ν, θ, λ) < 0 whenever 0 6∈ ∂νL(ν, θ, λ).

Case 2: ν ∈ {−Dmax

1−γ ,
Dmax

1−γ } and G(ν) is empty.

The condition ν − ηg(ν) ∈ [−Dmax

1−γ ,
Dmax

1−γ ] implies that

Υν

[
− g(ν)

]
= −g(ν).

Then we obtain

max
g(ν)

DtL(ν, θ, λ) = max
{
− g2(ν) | g(ν) ∈ ∂νL(ν, θ, λ)

}
≤ 0. (7.29)

Furthermore, we have maxg(ν)DtL(ν, θ, λ) < 0 whenever 0 6∈ ∂νL(ν, θ, λ).

Case 3: ν ∈ {−Dmax

1−γ ,
Dmax

1−γ } and G(ν) is nonempty.

First, consider any g(ν) ∈ G(ν). For any η > 0, define νη := ν − ηg(ν). The above condition implies that

when 0 < η → 0, ΓN
[
νη
]

is the projection of νη to the tangent space of [−Dmax

1−γ ,
Dmax

1−γ ]. For any element

ν̂ ∈ [−Dmax

1−γ ,
Dmax

1−γ ], since the set {ν ∈ [−Dmax

1−γ ,
Dmax

1−γ ] : ‖ν− νη‖2 ≤ ‖ν̂− νη‖2} is compact, the projection

of νη on [−Dmax

1−γ ,
Dmax

1−γ ] exists. Furthermore, since f(ν) := 1
2 (ν − νη)2 is a strongly convex function and

∇f(ν) = ν − νη , by the first order optimality condition, one obtains

∇f(ν∗η)(ν − ν∗η) = (ν∗η − νη)(ν − ν∗η) ≥ 0, ∀ν ∈
[
−Dmax

1− γ ,
Dmax

1− γ

]
where ν∗η is the unique projection of νη (the projection is unique because f(ν) is strongly convex and

[−Dmax

1−γ ,
Dmax

1−γ ] is a convex compact set). Since the projection (minimizer) is unique, the above equality

holds if and only if ν = ν∗η .

Therefore, for any ν ∈ [−Dmax

1−γ ,
Dmax

1−γ ] and η > 0,

g(ν)Υν

[
− g(ν)

]
= g(ν)

(
lim

0<η→0

ν∗η − ν
η

)
=

(
lim

0<η→0

ν − νη
η

)(
lim

0<η→0

ν∗η − ν
η

)
= lim

0<η→0

−‖ν∗η − ν‖2
η2

+ lim
0<η→0

(
ν∗η − νη

)(ν∗η − ν
η2

)
≤ 0.

Second, for any g(ν) ∈ ∂νL(ν, θ, λ) ∩ G(ν)c, one obtains ν − ηg(ν) ∈ [−Dmax

1−γ ,
Dmax

1−γ ], for any η ∈ (0, η0]

and some η0 > 0. In this case, the arguments follow from case 2 and the following expression holds:

Υν

[
− g(ν)

]
= −g(ν).
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Combining these arguments, one concludes that

max
g(ν)

DtL(ν, θ, λ)

≤max
{

max
{
g(ν) Υν

[
− g(ν)

]
| g(ν) ∈ G(ν)

}
,max

{
− g2(ν) | g(ν) ∈ ∂νL(ν, θ, λ) ∩ G(ν)c

}}
≤ 0.

(7.30)

This quantity is non-zero whenever 0 6∈ {g(ν) Υν

[
− g(ν)

]
| ∀g(ν) ∈ ∂νL(ν, θ, λ)} (this is because, for any

g(ν) ∈ ∂νL(ν, θ, λ)∩G(ν)c, one obtains g(ν) Υν

[
−g(ν)

]
= −g(ν)2). Thus, by similar arguments one may

conclude that maxg(ν)DtL(ν, θ, λ) ≤ 0 and it is non-zero if Υν

[
−g(ν)

]
6= 0 for every g(ν) ∈ ∂νL(ν, θ, λ).

Now for any given θ and λ, define the following Lyapunov function

Lθ,λ(ν) = L(ν, θ, λ)− L(ν∗, θ, λ)

where ν∗ is a minimum point (for any given (θ, λ), L is a convex function in ν). Then Lθ,λ(ν) is a positive

definite function, i.e., Lθ,λ(ν) ≥ 0. On the other hand, by the definition of a minimum point, one easily

obtains 0 ∈ {g(ν∗) Υν

[
− g(ν∗)

]
|ν=ν∗ | ∀g(ν∗) ∈ ∂νL(ν, θ, λ)|ν=ν∗} which means that ν∗ is also a

stationary point, i.e., ν∗ ∈ Nc.
Note that maxg(ν)DtLθ,λ(ν) = maxg(ν)DtL(ν, θ, λ) ≤ 0 and this quantity is non-zero if Υν

[
−g(ν)

]
6=

0 for every g(ν) ∈ ∂νL(ν, θ, λ). Therefore, by the Lyapunov theory for asymptotically stable differential

inclusions (see Theorem 3.10 and Corollary 3.11 in [14], where the Lyapunov function Lθ,λ(ν) satisfies

Hypothesis 3.1 and the property in (7.30) is equivalent to Hypothesis 3.9 in the reference), the above ar-

guments imply that with any initial condition ν(0), the state trajectory ν(t) of (7.20) converges to ν∗, i.e.,

L(ν∗, θ, λ) ≤ L(ν(t), θ, λ) ≤ L(ν(0), θ, λ) for any t ≥ 0.

As stated earlier, the sequence {νi}, νi ∈ [−Dmax

1−γ ,
Dmax

1−γ ] constitutes a stochastic approximation to the

differential inclusion (7.20), and thus converges almost surely its solution [35], which further converges

almost surely to ν∗ ∈ Nc. Also, it can be easily seen that Nc is a closed subset of the compact set

[−Dmax

1−γ ,
Dmax

1−γ ], and therefore a compact set itself.

Step 2 (Convergence of θ-update) Since θ converges on a faster time scale than λ and ν converges faster

than θ, one can take λ as a fixed quantity and ν as a converged quantity ν∗(θ) in the θ-update. The θ-update

can be rewritten as a stochastic approximation, i.e.,

θi+1 = ΓΘ

(
θi + ζ2(i)

(
−∇θL(ν, θ, λ)|θ=θi,ν=ν∗(θi) + δθi+1

))
, (7.31)

where

δθi+1 =∇θL(ν, θ, λ)|θ=θi,ν=ν∗(θi)−
1

N

N∑
j=1

∇θ logPθ(ξj,i) |θ=θi C(ξj,i)

− λ

(1− α)N

N∑
j=1

∇θ logPθ(ξj,i)|θ=θi
(
D(ξj,i)− ν∗(θi)

)
1
{
D(ξj,i) ≥ ν∗(θi)

}
.

(7.32)



CHAPTER 7. SUPPLEMENTARY MATERIALS 129

First, one can show that δθi+1 is square integrable, i.e., E[‖δθi+1‖2 | Fθ,i] ≤ Ki(1 + ‖θi‖2) for some

Ki > 0, where Fθ,i = σ
(
θm, δθm, m ≤ i

)
is the filtration of θi generated by different independent trajecto-

ries. To see this, notice that

‖δθi+1‖2

≤2
(
∇θL(ν, θ, λ)|θ=θi,ν=ν∗(θi)

)2
+

2

N2

(
Cmax

1− γ +
2λDmax

(1− α)(1− γ)

)2
 N∑
j=1

∇θ logPθ(ξj,i) |θ=θi

2

≤2K1,i(1 + ‖θi‖2) +
2N

N2

(
Cmax

1− γ +
2λmaxDmax

(1− α)(1− γ)

)2
 N∑
j=1

‖∇θ logPθ(ξj,i) |θ=θi‖2


≤2K1,i(1 + ‖θi‖2) +
2N

N2

(
Cmax

1− γ +
2λmaxDmax

(1− α)(1− γ)

)2
 N∑
j=1

K2(ξj,i)(1 + ‖θi‖2)


≤2

(
K1,i+

2N−1

N

(
Cmax

1− γ +
2λmaxDmax

(1− α)(1− γ)

)2

max
1≤j≤N

K2(ξj,i)

)
(1+‖θi‖2).

The Lipschitz upper bounds are due to the results in Remark 7.2.3. Since K2(ξj,i) < ∞ w.p. 1, there

exists K2,i < ∞ such that max1≤j≤N K2(ξj,i) ≤ K2,i. By combining these results, one concludes that

E[‖δθi+1‖2 | Fθ,i] ≤ Ki(1+‖θi‖2) where

Ki = 2

(
K1,i+

2N−1K2,i

N

(
Cmax

1− γ +
2λmaxDmax

(1− α)(1− γ)

)2
)
<∞.

Second, since the history trajectories are generated based on the sampling probability mass function

Pθi(ξ), expression (7.16) implies that E [δθi+1 | Fθ,i] = 0. Therefore, the θ-update is a stochastic approxi-

mation of the ODE (7.21) with a Martingale difference error term. In addition, from the convergence analysis

of the ν-update, ν∗(θ) is an asymptotically stable equilibrium point for the sequence {νi}. From (7.17),

∂νL(ν, θ, λ) is a Lipschitz set-valued mapping in θ (since Pθ(ξ) is Lipschitz in θ), and thus it can be easily

seen that ν∗(θ) is a Lipschitz continuous mapping of θ.

Now consider the continuous time dynamics for θ ∈ Θ, given in (7.21). We may write

dL(ν, θ, λ)

dt

∣∣∣∣
ν=ν∗(θ)

=
(
∇θL(ν, θ, λ)|ν=ν∗(θ)

)>
Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
. (7.33)

By considering the following cases, we now show that dL(ν, θ, λ)/dt|ν=ν∗(θ) ≤ 0 and this quantity is non-

zero whenever
∥∥Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]∥∥ 6= 0.

Case 1: When θ ∈ Θ◦ = Θ \ ∂Θ.

Since Θ◦ is the interior of the set Θ and Θ is a convex compact set, there exists a sufficiently small η0 > 0
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such that θ − η0∇θL(ν, θ, λ)|ν=ν∗(θ) ∈ Θ and

ΓΘ

(
θ − η0∇θL(ν, θ, λ)|ν=ν∗(θ)

)
− θ = −η0∇θL(ν, θ, λ)|ν=ν∗(θ).

Therefore, the definition of Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
implies

dL(ν, θ, λ)

dt

∣∣∣∣
ν=ν∗(θ)

= −
∥∥∇θL(ν, θ, λ)|ν=ν∗(θ)

∥∥2 ≤ 0. (7.34)

At the same time, we have dL(ν, θ, λ)/dt|ν=ν∗(θ) < 0 whenever ‖∇θL(ν, θ, λ)|ν=ν∗(θ)‖ 6= 0.

Case 2: When θ ∈ ∂Θ and θ − η∇θL(ν, θ, λ)|ν=ν∗(θ) ∈ Θ for any η ∈ (0, η0] and some η0 > 0.

The condition θ − η∇θL(ν, θ, λ)|ν=ν∗(θ) ∈ Θ implies that

Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
= −∇θL(ν, θ, λ)|ν=ν∗(θ).

Then we obtain

dL(ν, θ, λ)

dt

∣∣∣∣
ν=ν∗(θ)

= −
∥∥∇θL(ν, θ, λ)|ν=ν∗(θ)

∥∥2 ≤ 0. (7.35)

Furthermore, dL(ν, θ, λ)/dt|ν=ν∗(θ) < 0 when ‖∇θL(ν, θ, λ)|ν=ν∗(θ)‖ 6= 0.

Case 3: When θ ∈ ∂Θ and θ − η∇θL(ν, θ, λ)|ν=ν∗(θ) 6∈ Θ for some η ∈ (0, η0] and any η0 > 0.

For any η > 0, define θη := θ − η∇θL(ν, θ, λ)|ν=ν∗(θ). The above condition implies that when 0 < η → 0,

ΓΘ

[
θη
]

is the projection of θη to the tangent space of Θ. For any element θ̂ ∈ Θ, since the set {θ ∈ Θ :

‖θ−θη‖2 ≤ ‖θ̂−θη‖2} is compact, the projection of θη on Θ exists. Furthermore, since f(θ) := 1
2‖θ−θη‖22

is a strongly convex function and∇f(θ) = θ − θη , by the first order optimality condition, one obtains

∇f(θ∗η)>(θ − θ∗η) = (θ∗η − θη)>(θ − θ∗η) ≥ 0, ∀θ ∈ Θ,

where θ∗η is the unique projection of θη (the projection is unique because f(θ) is strongly convex and Θ is

a convex compact set). Since the projection (minimizer) is unique, the above equality holds if and only if

θ = θ∗η .

Therefore, for any θ ∈ Θ and η > 0,

(
∇θL(ν, θ, λ)|ν=ν∗(θ)

)>
Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
=
(
∇θL(ν, θ, λ)|ν=ν∗(θ)

)>(
lim

0<η→0

θ∗η − θ
η

)
=

(
lim

0<η→0

θ − θη
η

)>(
lim

0<η→0

θ∗η − θ
η

)
= lim

0<η→0

−‖θ∗η − θ‖2
η2

+ lim
0<η→0

(
θ∗η − θη

)>(θ∗η − θ
η2

)
≤ 0.
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By combining these arguments, one concludes that dL(ν, θ, λ)/dt|ν=ν∗(θ) ≤ 0 and this quantity is non-zero

whenever
∥∥Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]∥∥ 6= 0.

Now, for any given λ, define the Lyapunov function

Lλ(θ) = L(ν∗(θ), θ, λ)− L(ν∗(θ∗), θ∗, λ),

where θ∗ is a local minimum point. Then there exists a ball centered at θ∗ with radius r such that for any

θ ∈ Bθ∗(r), Lλ(θ) is a locally positive definite function, i.e., Lλ(θ) ≥ 0. On the other hand, by the definition

of a local minimum point, one obtains Υθ[−∇θL(θ∗, ν, λ)|ν=ν∗(θ∗)]|θ=θ∗ = 0 which means that θ∗ is a

stationary point, i.e., θ∗ ∈ Θc.

Note that dLλ(θ(t))/dt = dL(θ(t), ν∗(θ(t)), λ)/dt ≤ 0 and the time-derivative is non-zero whenever

∥∥Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]∥∥ 6= 0.

Therefore, by the Lyapunov theory for asymptotically stable systems [68], the above arguments imply that

with any initial condition θ(0) ∈ Bθ∗(r), the state trajectory θ(t) of (7.21) converges to θ∗, i.e.,

L(θ∗, ν∗(θ∗), λ) ≤ L(θ(t), ν∗(θ(t)), λ) ≤ L(θ(0), ν∗(θ(0)), λ)

for any t ≥ 0.

Based on the above properties and noting that 1) from Proposition 7.2.2, ∇θL(ν, θ, λ) is a Lipschitz

function in θ, 2) the step-size rule follows from Assumption 3.3.1, 3) expression (7.37) implies that δθi+1 is a

square integrable Martingale difference, and 4) θi ∈ Θ, ∀i implies that supi ‖θi‖ <∞ almost surely, one can

invoke Theorem 2 in Chapter 6 of [35] (multi-time scale stochastic approximation theory) to show that the

sequence {θi}, θi ∈ Θ converges almost surely to the solution of the ODE (7.21), which further converges

almost surely to θ∗ ∈ Θ.

Step 3 (Local Minimum) Now, we want to show that the sequence {θi, νi} converges to a local minimum

of L(ν, θ, λ) for any fixed λ. Recall that {θi, νi} converges to (θ∗, ν∗) := (θ∗, ν∗(θ∗)). Previous arguments

on the (ν, θ)-convergence imply that with any initial condition (θ(0), ν(0)), the state trajectories θ(t) and

ν(t) of (7.20) and (7.21) converge to the set of stationary points (θ∗, ν∗) in the positive invariant set Θc×Nc
and

L(θ∗, ν∗, λ) ≤ L(θ(t), ν∗(θ(t)), λ) ≤ L(θ(0), ν∗(θ(0)), λ) ≤ L(θ(0), ν(t), λ) ≤ L(θ(0), ν(0), λ)

for any t ≥ 0.

By contradiction, suppose (θ∗, ν∗) is not a local minimum. Then there exists (θ̄, ν̄) ∈ Θ×[−Dmax

1−γ ,
Dmax

1−γ ]∩
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B(θ∗,ν∗)(r) such that

L(θ̄, ν̄, λ) = min
(θ,ν)∈Θ×[−Dmax

1−γ ,Dmax
1−γ ]∩B(θ∗,ν∗)(r)

L(ν, θ, λ).

The minimum is attained by the Weierstrass extreme value theorem. By putting θ(0) = θ̄, the above argu-

ments imply that

L(θ̄, ν̄, λ) = min
(θ,ν)∈Θ×[−Dmax

1−γ ,Dmax
1−γ ]∩B(θ∗,ν∗)(r)

L(ν, θ, λ) < L(θ∗, ν∗, λ) ≤ L(θ̄, ν̄, λ)

which is a contradiction. Therefore, the stationary point (θ∗, ν∗) is a local minimum of L(ν, θ, λ) as well.

Step 4 (Convergence of λ-update) Since the λ-update converges in the slowest time scale, it can be rewrit-

ten using the converged θ∗(λ) = θ∗(ν∗(λ), λ) and ν∗(λ), i.e.,

λi+1 = ΓΛ

(
λi + ζ1(i)

(
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λi),ν=ν∗(λi),λ=λi

+ δλi+1

))
(7.36)

where

δλi+1 = −∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λi

+

(
ν∗(λi) +

1

1− α
1

N

N∑
j=1

(
D(ξj,i)− ν∗(λi)

)+ − β).
(7.37)

From (7.18), we see that ∇λL(ν, θ, λ) is a constant function of λ. Similar to the θ-update, one can easily

show that δλi+1 is square integrable, i.e.,

E[‖δλi+1‖2 | Fλ,i] ≤ 2

(
β +

3Dmax

(1− γ)(1− α)

)2

,

where Fλ,i = σ
(
λm, δλm, m ≤ i

)
is the filtration of λ generated by different independent trajectories.

Furthermore, expression (7.18) implies that E [δλi+1 | Fλ,i] = 0. Therefore, the λ-update is a stochastic

approximation of the ODE (7.23) with a Martingale difference error term. In addition, from the convergence

analysis of the (θ, ν)-update, (θ∗(λ), ν∗(λ)) is an asymptotically stable equilibrium point for the sequence

{θi, νi}. From (7.16), ∇θL(ν, θ, λ) is a linear mapping in λ, and (θ∗(λ), ν∗(λ)) is a Lipschitz continuous

mapping of λ.

Consider the ODE for λ ∈ [0, λmax] in (7.23). Analogous to the arguments for the θ-update, we can write

d(−L(ν, θ, λ))

dt

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

= −∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

]
,
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and show that −dL(ν, θ, λ)/dt|θ=θ∗(λ),ν=ν∗(λ) ≤ 0. This quantity is non-zero whenever

∥∥Υλ

[
dL(ν, θ, λ)/dλ|θ=θ∗(λ),ν=ν∗(λ)

]∥∥ 6= 0.

Consider the Lyapunov function

L(λ) = −L(θ∗(λ), ν∗(λ), λ) + L(θ∗(λ∗), ν∗(λ∗), λ∗)

where λ∗ is a local maximum point. Then there exists a ball centered at λ∗ with radius r such that for any

λ ∈ Bλ∗(r), L(λ) is a locally positive definite function, i.e., L(λ) ≥ 0. On the other hand, by the definition

of a local maximum point, one obtains

Υλ

[
dL(ν, θ, λ)/dλ|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0

which means that λ∗ is also a stationary point, i.e., λ∗ ∈ Λc. Since

dL(λ(t))

dt
= −dL(θ∗(λ(t)), ν∗(λ(t)), λ(t))

dt
≤ 0

and the time-derivative is non-zero whenever
∥∥Υλ[∇λL(ν, θ, λ) |ν=ν∗(λ),θ=θ∗(λ)]

∥∥ 6= 0, the Lyapunov the-

ory for asymptotically stable systems implies that λ(t) converges to λ∗.

Given the above results and noting that the step size rule is selected according to Assumption 3.3.1, one

can apply the multi-time scale stochastic approximation theory (Theorem 2 in Chapter 6 of [35]) to show

that the sequence {λi} converges almost surely to the solution of the ODE (7.23), which further converges

almost surely to λ∗ ∈ [0, λmax]. Since [0, λmax] is a compact set, following the same lines of arguments

and recalling the envelope theorem (Theorem 7.2.1) for local optima, one further concludes that λ∗ is a local

maximum of L(θ∗(λ), ν∗(λ), λ) = L∗(λ).

Step 5 (Local Optima) By letting θ∗ = θ∗
(
ν∗(λ∗), λ∗

)
and ν∗ = ν∗(λ∗), we will show that θ∗ is a

locally optimal policy for the CVaR-constrained optimization problem, which constitutes a (local) saddle

point (θ∗, ν∗, λ∗) of the Lagrangian function L(ν, θ, λ) if λ∗ ∈ [0, λmax).

Suppose the sequence {λi} generated from (7.36) converges to a stationary point λ∗ ∈ [0, λmax). Since

step 3 implies that (θ∗, ν∗) is a local minimum ofL(ν, θ, λ∗) over the feasible set (θ, ν) ∈ Θ×[−Dmax

1−γ ,
Dmax

1−γ ],

there exists a r > 0 such that

L(θ∗, ν∗, λ∗) ≤ L(ν, θ, λ∗), ∀(θ, ν) ∈ Θ×
[
−Dmax

1− γ ,
Dmax

1− γ

]
∩ B(θ∗,ν∗)(r).

In order to complete the proof, we must show

ν∗ +
1

1− αE
[(
Dθ∗(x0)− ν∗

)+] ≤ β, (7.38)
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and

λ∗
(
ν∗ +

1

1− αE
[(
Dθ∗(x0)− ν∗

)+]− β) = 0. (7.39)

These two equations imply

L(θ∗, ν∗, λ∗) =V θ
∗
(x0)+λ∗

(
ν∗ +

1

1− αE
[(
Dθ∗(x0)− ν∗

)+]− β)
=V θ

∗
(x0)

≥V θ∗(x0)+λ

(
ν∗ +

1

1− αE
[(
Dθ∗(x0)− ν∗

)+]− β) = L(θ∗, ν∗, λ),

which further implies that (θ∗, ν∗, λ∗) is a saddle point of L(ν, θ, λ). We now show that (7.38) and (7.39)

hold.

Recall that

Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0.

We show (7.38) by contradiction. Suppose

ν∗ +
1

1− αE
[(
Dθ∗(x0)− ν∗

)+]
> β.

This implies that for λ∗ ∈ [0, λmax), we have

ΓΛ

(
λ∗ − η

(
β −

(
ν∗ +

1

1− αE
[(
Dθ∗(x0)− ν∗

)+])))
= λ∗−η

(
β−
(
ν∗+

1

1− αE
[(
Dθ∗(x0)−ν∗

)+]))
for any η ∈ (0, ηmax], for some sufficiently small ηmax > 0. Therefore,

Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

] ∣∣∣∣∣
λ=λ∗

= ν∗ +
1

1− αE
[(
Dθ∗(x0)− ν∗

)+]− β > 0.

This is in contradiction with the fact that Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0. Therefore, (7.38)

holds.

To show that (7.39) holds, we only need to show that λ∗ = 0 if

ν∗ +
1

1− αE
[(
Dθ∗(x0)− ν∗

)+]
< β.

Suppose λ∗ ∈ (0, λmax), then there exists a sufficiently small η0 > 0 such that

1

η0

(
ΓΛ

(
λ∗ − η0

(
β −

(
ν∗ +

1

1− αE
[(
Dθ∗(x0)− ν∗

)+])))− ΓΛ(λ∗)

)
= ν∗ +

1

1− αE
[(
Dθ∗(x0)− ν∗

)+]− β < 0.
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This again contradicts the assumption Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗ = 0. Therefore (7.39)

holds.

When λ∗ = λmax and ν∗ + 1
1−αE

[(
Dθ∗(x0)− ν∗

)+]
> β,

ΓΛ

(
λ∗ − η

(
β −

(
ν∗ +

1

1− αE
[(
Dθ∗(x0)− ν∗

)+])))
= λmax

for any η > 0 and

Υλ

[
∇λL(ν, θ, λ)|θ=θ∗(λ),ν=ν∗(λ),λ=λ∗

]
|λ=λ∗= 0.

In this case one cannot guarantee feasibility using the above analysis, and (θ∗, ν∗, λ∗) is not a local saddle

point. Such a λ∗ is referred to as a spurious fixed point [73]. Notice that λ∗ is bounded (otherwise we can

conclude that the problem is infeasible), so that by incrementally increasing λmax in Algorithm 2, we can

always prevent ourselves from obtaining a spurious fixed point solution.

Combining the above arguments, we finally conclude that θ∗ is a locally optimal policy.
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7.3 Technical Results in Chapter 3: Actor-Critic Algorithms

In this section we present the convergence proof to the risk constrained actor-critic method. Recall from

Assumption 3.3.1 that the SPSA step size {∆k} satisfies ∆k → 0 as k →∞ and
∑
k(ζ2(k)/∆k)2 <∞.

7.3.1 Gradient with Respect to λ (Proof of Lemma 3.4.4)

By taking the gradient of V θ(x0, ν) w.r.t. λ (recall that both V and Q depend on λ through the cost function

C̄ of the augmented MDP M̄), we obtain

∇λV θ(x0, ν) =
∑
a∈Ā

µ(a|x0, ν; θ)∇λQθ(x0, ν, a)

=
∑
a∈Ā

µ(a|x0, ν; θ)∇λ
[
C̄(x0, ν, a) +

∑
(x′,s′)∈X̄

γP̄ (x′, s′|x0, ν, a)V θ(x′, s′)
]

=
∑
a

µ(a|x0, ν; θ)∇λC̄(x0, ν, a)︸ ︷︷ ︸
h(x0,ν)

+γ
∑
a,x′,s′

µ(a|x0, ν; θ)P̄ (x′, s′|x0, ν, a)∇λV θ(x′, s′)

= h(x0, ν) + γ
∑
a,x′,s′

µ(a|x0, ν; θ)P̄ (x′, s′|x0, ν, a)∇λV θ(x′, s′) (7.40)

= h(x0, ν) + γ
∑
a,x′,s′

µ(a|x0, ν; θ)P̄ (x′, s′|x0, ν, a)
[
h(x′, s′)

+ γ
∑

a′,x′′,s′′

µ(a′|x′, s′; θ)P̄ (x′′, s′′|x′, s′, a′)∇λV θ(x′′, s′′)
]
.

By unrolling the last equation using the definition of∇λV θ(x, s) from (7.40), we obtain

∇λV θ(x0, ν) =

∞∑
k=0

γk
∑
x,s

P(xk = x, sk = s | x0 = x0, s0 = ν; θ)h(x, s)

=
1

1− γ
∑
x,s

dθγ(x, s|x0, ν)h(x, s) =
1

1− γ
∑
x,s,a

dθγ(x, s|x0, ν)µ(a|x, s)∇λC̄(x, s, a)

=
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν)∇λC̄(x, s, a)

=
1

1− γ
∑
x,s,a

πθγ(x, s, a|x0, ν)
1

1− α1{x = xTar}(−s)+.

This completes the proof.
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7.3.2 Proof of Convergence of the Actor-Critic Algorithms

7.3.2.1 Proof of Theorem 3.4.3: Critic Update (v-update)

By the step size conditions, one notices that {vk} converges on a faster time scale than {νk}, {θk}, and {λk}.
Thus, one can take (ν, θ, λ) in the v-update as fixed quantities. The critic update can be re-written as follows:

vk+1 = vk + ζ4(k)φ(xk, sk)δk(vk), (7.41)

where the scalar

δk (vk) = −v>k φ(xk, sk) + γv>k φ (xk+1, sk+1) + C̄λ(xk, sk, ak)

is the temporal difference (TD) from (3.18). Define

A :=
∑
y,a′,s′

πθγ(y, s′, a′|x, s)φ(y, s′)

φ>(y, s′)− γ
∑
z,s′′

P̄ (z, s′′|y, s′, a)φ> (z, s′′)

 , (7.42)

and

b :=
∑
y,a′,s′

πθγ(y, s′, a′|x, s)φ(y, s′)C̄λ(y, s′, a′). (7.43)

It is easy to see that the critic update vk in (7.41) can be re-written as the following stochastic approximation

scheme:

vk+1 = vk + ζ4(k)(b−Avk + δAk+1), (7.44)

where the noise term δAk+1 is a square integrable Martingale difference, i.e., E[δAk+1 | Fk] = 0 if the

γ-occupation measure πθγ is used to generate samples of (xk, sk, ak)—with Fk being the filtration generated

by different independent trajectories. By writing

δAk+1 = −(b−Avk) + φ(xk, sk)δk(vk)

and noting Eπθγ [φ(xk, sk)δk(vk) | Fk] = −Avk + b, one can easily verify that the stochastic approximation

scheme in (7.44) is equivalent to the critic iterates in (7.41) and δAk+1 is a Martingale difference, i.e.,

Eπθγ [δAk+1 | Fk] = 0. Let

h (v) := −Av + b.

Before getting into the convergence analysis, we present a technical lemma whose proof can be found in [20,

Lemma 6.10].

Lemma 7.3.1. Every eigenvalue of the matrix A has positive real part.

We now turn to the analysis of the critic iteration. Note that the following properties hold for the critic

update scheme in (7.41): 1) h (v) is Lipschitz, 2) the step size satisfies the properties in Assumption 3.4.1, 3)

the noise term δAk+1 is a square integrable Martingale difference, 4) the function hc (v) := h (cv) /c, c ≥ 1



CHAPTER 7. SUPPLEMENTARY MATERIALS 138

converges uniformly to a continuous function h∞ (v) for any v in a compact set, i.e., hc (v) → h∞ (v) as

c → ∞, and 5) the ordinary differential equation (ODE) v̇ = h∞ (v) has the origin as its unique globally

asymptotically stable equilibrium. The fourth property can be easily verified from the fact that the magnitude

of b is finite and h∞ (v) = −Av. The fifth property follows directly from the facts that h∞ (v) = −Av and

all eigenvalues of A have positive real parts.

By Theorem 3.1 in [35], these five properties imply:

The critic iterates {vk} are bounded almost surely, i.e., sup
k
‖vk‖ <∞ almost surely.

The convergence of the critic iterates in (7.41) can be related to the asymptotic behavior of the ODE

v̇ = h (v) = b−Av. (7.45)

Specifically, Theorem 2 in Chapter 2 of [35] and the above conditions imply vk → v∗ with probability 1,

where the limit v∗ depends on (ν, θ, λ) and is the unique solution satisfying h (v∗) = 0, i.e., Av∗ = b.

Therefore, the critic iterates converge to the unique fixed point v∗ almost surely, as k →∞.

7.3.2.2 Proof of Theorem 3.4.5

Step 1 (Convergence of v-update) The proof of convergence for the critic parameter follows directly from

Theorem 3.4.3.

Step 2 (Convergence of SPSA based ν-update) In this section, we analyze the ν-update for the incre-

mental actor-critic method. This update is based on the SPSA perturbation method. The idea of this method

is to estimate the sub-gradient g(ν) ∈ ∂νL(ν, θ, λ) using two simulated value functions corresponding to

ν− = ν −∆ and ν+ = ν + ∆. Here ∆ ≥ 0 is a positive random perturbation that vanishes asymptotically.

The SPSA-based estimate for a sub-gradient g(ν) ∈ ∂νL(ν, θ, λ) is given by

g(ν) ≈ λ+
1

2∆

(
φ>
(
x0, ν + ∆

)
− φ>

(
x0, ν −∆

))
v.

We turn to the convergence analysis of the sub-gradient estimation and ν-update. Since v converges faster

than ν, and ν converges faster than θ and λ, the ν-update in (3.20) can be rewritten using the converged critic

parameter v∗(ν), i.e.,

νk+1 = ΓN

(
νk − ζ3(k)

(
λ+

1

2∆k

(
φ>
(
x0, νk + ∆k

)
− φ>

(
x0, νk −∆k

))
v∗(νk)

))
, (7.46)

where (θ, λ) in this expression are viewed as constant quantities.
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First, we consider the following assumption on the feature functions in order to prove that the SPSA

approximation is asymptotically unbiased.

Assumption 7.3.2. For any v ∈ Rκ1 , the feature functions satisfy the following conditions

|φ>V
(
x0, ν + ∆

)
v − φ>V

(
x0, ν −∆

)
v| ≤ K1(v)(1 + ∆).

Furthermore, the Lipschitz constants are uniformly bounded, i.e., supv∈Rκ1 K
2
1 (v) <∞.

This assumption is mild as the expected utility objective function implies that L(ν, θ, λ) is Lipschitz in ν,

and φ>V
(
x0, ν

)
v is just a linear function approximation of V θ(x0, ν).

Next, we establish the bias and convergence of the stochastic sub-gradient estimate. Let

g(νk) ∈ arg max {g : g ∈ ∂νL(ν, θ, λ)|ν=νk} ,

and

Λ1,k+1 =

((
φ>
(
x0, νk + ∆k

)
− φ>

(
x0, νk −∆k

))
v∗(νk)

2∆k
− EM (k)

)
,

Λ2,k =λk + ELM (k)− g(νk),

Λ3,k =EM (k)− ELM (k),

where

EM (k) :=E
[

1

2∆k

(
φ>
(
x0, νk + ∆k

)
− φ>

(
x0, νk −∆k

))
v∗(νk) | ∆k

]
,

ELM (k) :=E
[

1

2∆k

(
V θ
(
x0, νk + ∆k

)
− V θ

(
x0, νk −∆k

))
| ∆k

]
.

Note that (7.46) is equivalent to

νk+1 = ΓN (νk − ζ3(k) (g(νk) + Λ1,k+1 + Λ2,k + Λ3,k)) . (7.47)

First, it is clear that Λ1,k+1 is a Martingale difference as E[Λ1,k+1 | Fk] = 0, which implies that

Mk+1 =

k∑
j=0

ζ3(j)Λ1,j+1

is a Martingale w.r.t. the filtrationFk. By the Martingale convergence theorem, we can show that if supk≥0 E[M2
k ] <

∞, when k → ∞, Mk converges almost surely and ζ3(k)Λ1,k+1 → 0 almost surely. To show that
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supk≥0 E[M2
k ] <∞, for any t ≥ 0 one observes that

E[M2
k+1] =

k∑
j=0

(ζ3(j))
2 E[E[Λ2

1,j+1 | ∆j ]]

≤ 2

k∑
j=0

E
[(

ζ3(j)

2∆j

)2{
E
[((

φ>
(
x0, νj + ∆j

)
− φ>

(
x0, νj −∆j

) )
v∗(νj)

)2

| ∆j

]

+E
[(
φ>
(
x0, νj + ∆j

)
− φ>

(
x0, νj −∆j

) )
v∗(νj) | ∆j

]2}]
.

Now based on Assumption 7.3.2, the above expression implies

E[M2
k+1] ≤2

k∑
j=0

E

[(
ζ3(j)

2∆j

)2

2K2
1 (1 + ∆j)

2

]
.

Combining the above results with the step size conditions, there exists K = 4K2
1 > 0 such that

sup
k≥0

E[M2
k+1] ≤ K

∞∑
j=0

E

[(
ζ3(j)

2∆j

)2
]

+ (ζ3(j))
2
<∞.

Second, by the Min Common/Max Crossing theorem in [18], one can show that ∂νL(ν, θ, λ)|ν=νk is a

non-empty, convex, and compact set. Therefore, by duality of directional directives and sub-differentials, i.e.,

max {g : g ∈ ∂νL(ν, θ, λ)|ν=νk} = lim
ξ↓0

L(νk + ξ, θ, λ)− L(νk − ξ, θ, λ)

2ξ
,

one concludes that for λk = λ (we can treat λk as a constant because it converges on a slower time scale than

νk),

λ+ ELM (k) = g(νk) +O(∆k),

almost surely. This further implies that

Λ2,k = O(∆k), i.e., Λ2,k → 0 as k →∞,

almost surely.

Third, since dθγ(x0, ν|x0, ν) = 1, from the definition of εθ(v∗(νk)),

|Λ3,k| ≤ 2εθ(v
∗(νk))/∆k.

As t goes to infinity, εθ(v∗(νk))/∆k → 0 by assumption and Λ3,k → 0.

Finally, since ζ3(k)Λ1,k+1 → 0, Λ2,k → 0, and Λ3,k → 0 almost surely, the ν-update in (7.47) is a noisy

sub-gradient descent update with vanishing disturbance bias. Thus, the ν-update in (3.20) can be viewed as
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an Euler discretization of an element of the following differential inclusion,

ν̇ ∈ Υν [−g(ν)] , ∀g(ν) ∈ ∂νL(ν, θ, λ), (7.48)

and the ν-convergence analysis is analogous to Step 1 of the proof of Theorem 3.3.2.

Step 2′ (Convergence of semi-trajectory ν-update) Since ν converges on a faster timescale than θ and λ,

the ν-update in (3.23) can be rewritten using a fixed pair (θ, λ), i.e.,

νk+1 = ΓN

(
νi − ζ3(k)

(
λ− λ

1− α
(
P
(
sTar ≤ 0 | x0 = x0, s0 = νk, µ

)
+ δνM,k+1

)))
, (7.49)

where

δνM,k+1 = −P
(
sTar ≤ 0 | x0 = x0, s0 = νi, µ

)
+ 1 {xk = xTar, sk ≤ 0} (7.50)

is a square integrable stochastic term, specifically,

E[(δνM,k+1)2 | Fν,k] ≤ 2,

where Fν,k = σ(νm, δνm, m ≤ k) is the filtration generated by ν. Since E [δνM,k+1 | Fν,k] = 0, δνM,k+1

is a Martingale difference and the ν-update in (7.49) is a stochastic approximation of an element of the

differential inclusion

λ

1− αP
(
sTar ≤ 0 | x0 = x0, s0 = νk, µ

)
− λ ∈ −∂νL(ν, θ, λ)|ν=νk .

Thus, the ν-update in (3.23) can be viewed as an Euler discretization of the differential inclusion in (7.48),

and the ν-convergence analysis is analogous to Step 1 of the proof of Theorem 3.3.2.

Step 3 (Convergence of θ-update) We first analyze the actor update (θ-update). Since θ converges on

a faster time scale than λ, one can take λ in the θ-update as a fixed quantity. Furthermore, since v and

ν converge on a faster scale than θ, one can also replace v and ν with their limits v∗(θ) and ν∗(θ) in the

convergence analysis. In the following analysis, we assume that the initial state x0 ∈ X is given. Then the

θ-update in (3.21) can be rewritten as follows:

θk+1 = ΓΘ

(
θk − ζ2(k)

(
∇θ logµ(ak|xk, sk; θ)|θ=θk

δk(v∗(θk))

1− γ

))
. (7.51)

Consider the case in which the value function for a fixed policy µ is approximated by a learned function

approximator, φ>(x, s)v∗. If the approximation is sufficiently good, we might hope to use it in place of

V θ(x, s) and still point roughly in the direction of the true gradient. Recall the temporal difference error
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(random variable) for a given pair (xk, sk) ∈ X × R:

δk (v) = −v>φ(xk, sk) + γv>φ (xk+1, sk+1) + C̄λ(xk, sk, ak).

Define the v-dependent approximated advantage function

Ãθ,v(x, s, a) := Q̃θ,v(x, s, a)− v>φ(x, s),

where

Q̃θ,v(x, s, a) = γ
∑
x′,s′

P̄ (x′, s′|x, s, a)v>φ(x′, s′) + C̄λ(x, s, a).

The following lemma, whose proof follows from the proof of Lemma 3 in [27], shows that δk(v) is an

unbiased estimator of Ãθ,v .

Lemma 7.3.3. For any given policy µ and v ∈ Rκ1 , we have

Ãθ,v(x, s, a) = E[δk(v) | xk = x, sk = s, ak = a].

Define

∇θL̃v(ν, θ, λ) :=
1

1− γ
∑
x,a,s

πθγ(x, s, a|x0 = x0, s0 = ν)∇θ logµ(a|x, s; θ)Ãθ,v(x, s, a)

as the linear function approximation of ∇θL̃(ν, θ, λ). Similar to Proposition 7.2.2, we present the following

technical lemma on the Lipschitz property of∇θL̃v(ν, θ, λ).

Proposition 7.3.4. ∇θL̃v(ν, θ, λ) is a Lipschitz function in θ.

Proof. Consider the feature vector v. Recall that the feature vector satisfies the linear equationAv = b, where

A and b are given by (7.42) and (7.43), respectively. from Lemma 1 in [25], by exploiting the inverse of A

using Cramer’s rule, one may show that v is continuously differentiable in θ. Now consider the γ-occupation

measure πθγ . By applying Theorem 2 in [5] (or Theorem 3.1 in [134]), it can be seen that the occupation

measure πθγ of the process (xk, sk) is continuously differentiable in θ. Recall from Assumption 3.2.3 in

Section 3.2.2 that ∇θµ(ak|xk, sk; θ) is a Lipschitz function in θ for any a ∈ A and k ∈ {0, . . . , T − 1}, and

µ(ak|xk, sk; θ) is differentiable in θ. By combining these arguments and noting that the sum of products of

Lipschitz functions is Lipschitz, one concludes that∇θL̃v(ν, θ, λ) is Lipschitz in θ. �

We turn to the convergence proof of θ.

Theorem 7.3.5. The sequence of θ-updates in (3.21) converges almost surely to an equilibrium point θ̂∗

that satisfies Υθ

[
−∇θL̃v∗(θ)(ν∗(θ), θ, λ)

]
= 0, for a given λ ∈ [0, λmax]. Furthermore, if the function

approximation error εθ(vk) vanishes as the feature vector vk converges to v∗, then the sequence of θ-updates

converges to θ∗ almost surely, where θ∗ is a local minimum point of L(ν∗(θ), θ, λ) for a given λ ∈ [0, λmax].
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Proof. We will mainly focus on proving the convergence of θk → θ∗ (second part of the theorem). Since

we just showed in Proposition 7.3.4 that ∇θL̃v∗(θ)(ν∗(θ), θ, λ) is Lipschitz in θ, the convergence proof of

θk → θ̂∗ (first part of the theorem) follows from identical arguments.

Note that the θ-update in (7.51) can be rewritten as:

θk+1 = ΓΘ

(
θk + ζ2(k)

(
−∇θL(ν, θ, λ)|ν=ν∗(θ),θ=θk + δθk+1 + δθε

))
,

where

δθk+1 =
∑

x′,a′,s′

πθkγ (x′, s′, a′|x0 = x0, s0 = ν∗(θk))∇θ logµ(a′|x′, s′; θ)|θ=θk
Ãθk,v

∗(θk)(x′, s′, a′)

1− γ

−∇θ logµ(ak|xk, sk; θ)|θ=θk
δk(v∗(θk))

1− γ .

and

δθε =
∑

x′,a′,s′

πθkγ (x′, s′, a′|x0 = x0, s0 = ν∗(θk))·

∇θ logµ(a′|x′, s′; θ)|θ=θk
1− γ (Aθk(x′, s′, a′)− Ãθk,v∗(θk)(x′, s′, a′))

First, one can show that δθk+1 is square integrable, specifically,

E[‖δθk+1‖2 | Fθ,k]

≤ 2

1− γ ‖∇θ logµ(u|x, s; θ)|θ=θk 1 {µ(u|x, s; θk) > 0} ‖2∞
(
‖Ãθk,v∗(θk)(x, s, a)‖2∞ + |δk(v∗(θk))|2

)
≤ 2

1− γ ·
‖∇θµ(u|x, s; θ)|θ=θk‖2∞

min{µ(u|x, s; θk) | µ(u|x, s; θk) > 0}2
(
‖Ãθk,v∗(θk)(x, s, a)‖2∞ + |δk(v∗(θk))|2

)
≤ 64

K2‖θk‖2
1− γ

(
max
x,s,a
|C̄λ(x, s, a)|2 + 2 max

x,s
‖φ(x, s)‖2 sup

k
‖vk‖2

)
≤ 64

K2‖θk‖2
1− γ

(∣∣∣∣max

{
Cmax,

2λDmax

γT (1− α)(1− γ)

}∣∣∣∣2 + 2 max
x,s
‖φ(x, s)‖2 sup

k
‖vk‖2

)
,

for some Lipschitz constant K, where the indicator function in the second line can be explained by the fact

that πθkγ (x, s, u) = 0 whenever µ(u | x, s; θk) = 0 and because the expectation is taken with respect to πθkγ .

The third inequality uses Assumption 3.2.3 and the fact that µ takes on finitely-many values (and thus its

nonzero values are bounded away from zero). Finally, supk ‖vk‖ < ∞ follows from the Lyapunov analysis

in the critic update.

Second, note that

δθε ≤
(1 + γ)‖ψθk‖∞

(1− γ)2
εθk(v∗(θk)), (7.52)
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where ψθ(x, s, a) = ∇θ logµ(a|x, s; θ) is the “compatible feature.” The last inequality is due to the fact that

since πθγ is a probability measure, convexity of quadratic functions implies

∑
x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))(Aθ(x′, s′, a′)− Ãθ,v(x′, s′, a′))

≤
∑

x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))(Qθ(x′, s′, a′)− Q̃θ,v(x′, s′, a′))

+
∑
x′,s′

dθγ(x′, s′|x0 = x0, s0 = ν∗(θ))(V θ(x′, s′)− Ṽ θ,v(x′, s′))

=γ
∑

x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))
∑
x′′,s′′

P̄ (x′′, s′′|x′, s′, a′)(V θ(x′′, s′′)− φ>(x′′, s′′)v)

+

√∑
x′,s′

dθγ(x′, s′|x0 = x0, s0 = ν∗(θ))(V θ(x′, s′)− Ṽ θ,v(x′, s′))2

≤γ
√ ∑
x′,a′,s′

πθγ(x′, s′, a′|x0 = x0, s0 = ν∗(θ))
∑
x′′,s′′

P̄ (x′′, s′′|x′, s′, a′)(V θ(x′′, s′′)− φ>(x′′, s′′)v)2

+
εθ(v)

1− γ

≤
√∑
x′′,s′′

(
dθγ(x′′, s′′|x0, ν∗(θ))− (1− γ)1{x0 = x′′, ν = s′′}

)
(V θ(x′′, s′′)− φ>(x′′, s′′)v)2 +

εθ(v)

1− γ

≤
(

1 + γ

1− γ

)
εθ(v).

Then by Lemma 7.3.3, if the γ-occupation measure πθγ is used to generate samples (xk, sk, ak), one

obtains

E [δθk+1 | Fθ,k] = 0,

where Fθ,k = σ(θm, δθm, m ≤ k) is the filtration generated by different independent trajectories. On the

other hand, we have that

|δθε| → 0 as εθk(v∗(θk))→ 0.

Therefore, the θ-update in (7.51) is a stochastic approximation of the continuous system θ(t), described by

the ODE

θ̇ = Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
,

with an error term that is a sum of a vanishing bias and a Martingale difference. Thus, the convergence

analysis of θ follows analogously from Step 2 in the proof of Theorem 3.3.2, i.e., the sequence of θ-updates

in (3.21) converges to θ∗ almost surely, where θ∗ is the equilibrium point of the continuous system θ satisfying

Υθ

[
−∇θL(ν, θ, λ)|ν=ν∗(θ)

]
= 0. (7.53)
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�

Step 4 (Local minimum) The proof that (θ∗, ν∗) is a local minimum follows directly from the arguments

in Step 3 in the proof of Theorem 3.3.2.

Step 5 (λ-update and convergence to saddle point) Note that the λ-update converges on the slowest time

scale, thus, (3.20) may be rewritten using the converged v∗(λ), θ∗(λ), and ν∗(λ) as

λk+1 = ΓΛ

(
λk + ζ1(k)

(
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λk

+ δλk+1

))
, (7.54)

where

δλk+1 = −∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ),λ=λk

+

(
ν∗(λk) +

(−sk)+

(1− α)(1− γ)
1{xk = xTar} − β

)
. (7.55)

From (7.18), ∇λL(ν, θ, λ) does not depend on λ. Similar to the θ-update, one can easily show that δλk+1 is

square integrable, specifically,

E[‖δλk+1‖2 | Fλ,k] ≤ 8

(
β2 +

(
Dmax

1− γ

)2

+

(
2Dmax

(1− γ)2(1− α)

)2
)
,

where Fλ,k = σ
(
λm, δλm, m ≤ k

)
is the filtration of λ generated by different independent trajectories.

Similar to the θ-update, using the γ-occupation measure πθγ , one obtains E [δλk+1 | Fλ,k] = 0. As above,

the λ-update is a stochastic approximation for the continuous system λ(t) described by the ODE

λ̇ = Υλ

[
∇λL(ν, θ, λ)

∣∣∣∣
θ=θ∗(λ),ν=ν∗(λ)

]
,

with an error term that is a Martingale difference. Then the λ-convergence and the analysis of local optima

follow from analogous arguments in Steps 4 and 5 in the proof of Theorem 3.3.2.
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7.4 Technical Results in Chapter 4

In this section we present the detailed proofs to the technical results in Chapter 4.

7.4.1 Proof of Lemma 4.5.1

From the time consistency, monotonicity, translational invariance, and positive homogeneity of Markov dy-

namic polytopic risk measures, condition (4.8) implies

ρ0,k+1(0, . . . , 0, b1‖xk+1‖2) ≤ρ0,k+1(0, . . . , 0, V (xk+1)) = ρ0,k(0, . . . , 0, V (xk) + ρ(V (xk+1)− V (xk)))

≤ρ0,k(0, . . . , 0, V (xk)− b3‖xk‖2) ≤ ρ0,k(0, . . . , 0, (b2 − b3)‖xk‖2).

Also, since ρ0,k+1 is monotonic, one has b1ρ0,k+1(0, . . . , 0, ‖xk+1‖2) ≥ 0, which implies b2 ≥ b3 and in

turn (1− b3/b2) ∈ [0, 1). Since V (xk)/b2 ≤ ‖xk‖2, by using the previous inequalities one can write:

ρ0,k+1(0, . . . , 0, V (xk+1)) ≤ ρ0,k(0, . . . , 0, V (xk)− b3‖xk‖2) ≤
(

1− b3
b2

)
ρ0,k (0, . . . , 0, V (xk)) .

Repeating this bounding process, one obtains:

ρ0,k+1(0, . . . , 0,V (xk+1)) ≤
(

1− b3
b2

)k
ρ0,1 (V (x1))

=

(
1− b3

b2

)k
ρ (V (x1)) ≤

(
1− b3

b2

)k (
V (x0)− b3‖x0‖2

)
≤ b2

(
1− b3

b2

)k+1

‖x0‖2.

Again, by monotonicity, the above result implies

ρ0,k+1(0, . . . , 0, x>k+1xk+1) ≤ b2
b1

(
1− b3

b2

)k+1

x>0 x0.

By setting c = b2/b1 and λ = (1− b3/b2) ∈ [0, 1), the claim is proven.

7.4.2 Proof of Theorem 4.6.1

The strategy of this proof is to show that J∗k is a valid Lyapunov function in the sense of Lemma 4.5.1.

Specifically, we want to show that J∗k satisfies the two inequalities in equation (4.8); the claim then follows

by simply noting that, in our time-invariant setup, J∗k does not depend on k.

We start by focusing on the bottom inequality in equation (4.8). Consider a time k and an initial condition

xk|k ∈ RNx for problemMPC. The sequence of optimal control policies is given by {π∗k+h|k}N−1
h=0 . Let us
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define a sequence of control policies from time k + 1 to N according to

πk+h|k+1(xk+h|k) :=

{
π∗k+h|k(xk+h|k) if h ∈ [1, N − 1],

F xk+N |k if h = N.
(7.56)

This sequence of control policies is essentially the concatenation of the sequence {π∗k+h|k}N−1
h=1 with a linear

feedback control law for stage N (the reason why we refer to this policy with the subscript “k + h|k + 1” is

that we will use this policy as a feasible policy for problemMPC starting at stage k + 1).

Consider the MPC problem at stage k + 1 with initial condition given by xk+1|k+1 = A(wk)xk|k +

B(wk)π∗k|k(xk|k), and denote with Jk+1(xk+1|k+1) the cost of the objective function for theMPC problem

assuming that the sequence of control policies is given by {πk+h|k+1}Nh=1. Note that xk+1|k+1 (and therefore

Jk+1(xk+1|k+1)) is a random variable with L realizations, given xk|k. Define

Zk+N := −x>k+N |kPxk+N |k + x>k+N |kQxk+N |k + (F xk+N |k)>RF xk+N |k

Zk+N+1 :=
(
(A(wk+N |k) +B(wk+N |k)F )xk+N |k

)>
P
(
(A(wk+N |k) +B(wk+N |k)F )xk+N |k

)
.

By exploiting the dual representation of Markov polytopic risk metrics, one can write

Zk+N+ρk+N (Zk+N+1) = x>k+N |k
(
−P +Q+ F>RF

)
xk+N |k+

max
q∈Upoly(p)

L∑
j=1

q(j)x>k+N |k (Aj +BjF )
>
P (Aj +BjF )xk+N |k.

Combining the equation above with equation (4.11), one readily obtains the inequality

Zk+N + ρk+N (Zk+N+1) ≤ 0. (7.57)

One can then write the following chain of inequalities:

J∗k (xk|k) = x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k) + ρk

(
ρk+1,N

(
c(xk+1|k, π

∗
k+1(xk+1|k)), . . . , x>k+N |kQxk+N |k+

(Fxk+N |k)>RFxk+N |k+ρk+N (Zk+N+1)−Zk+N−ρk+N (Zk+N+1)
))

≥ x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k) + ρk

(
ρk+1,N

(
c(xk+1|k, π

∗
k+1(xk+1|k)), . . . ,

x>k+N |kQxk+N |k + (F xk+N |k)>RF xk+N |k + ρk+N (Zk+N+1)
))

= x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k)+ρk

(
Jk+1(xk+1|k+1)

)
≥ x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k) + ρk

(
J∗k+1(xk+1|k+1)

)
, (7.58)
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where the first equality follows from the definitions of Zk+N and of dynamic, time-consistent risk measures,

the second inequality follows from equation (7.57) and the monotonicity property of Markov polytopic risk

metrics (see also [119, Page 242]), the third equality follows from the fact that the sequence of control policies

{πk+h|k+1}Nh=1 is a feasible sequence for the MPC problem starting at stage k + 1 with initial condition

xk+1|k+1 = A(wk)xk|k + B(wk)π∗k|k(xk|k), and the fourth inequality follows from the definition of J∗k+1

and the monotonicity of Markov polytopic risk metrics.

We now turn our focus to the top inequality in equation (4.8). One can easily bound J∗k (xk|k) from below

according to:

J∗k (xk|k) ≥ x>k|kQxk|k ≥ λmin(Q)‖xk|k‖2, (7.59)

where λmin(Q) > 0 by assumption. To bound J∗k (xk|k) from above, define:

MA := max
r∈{0,...,N−1}

max
j0,...,jr∈{1,...,L}

‖Ajr . . . Aj1Aj0‖2.

Since the problem is unconstrained (and, hence, zero is a feasible control input) and by exploiting the mono-

tonicity property, one can write:

J∗k (xk|k) ≤ c(xk|k, 0) + ρk

(
C(xk+1|k, 0) + ρk+1

(
C(xk+2|k, 0) + . . .+ ρk+N−1

(
x>k+N |kPxk+N |k

)
. . .
))

≤ ‖Q‖2‖xk|k‖22 + ρk

(
‖Q‖2‖xk+1|k‖22 + ρk+1

(
‖Q‖2‖xk+2|k‖22 + . . .+ ρk+N−1

(
‖P‖2‖xk+N‖22

)
. . .
))
.

Therefore, by using the translational invariance and monotonicity property of Markov polytopic risk mea-

sures, one obtains the upper bound:

J∗k (xk|k) ≤ (N ‖Q‖2 + ‖P‖2)MA‖xk|k‖22. (7.60)

Combining the results in equations (7.58), (7.59), (7.60), and given the time-invariance of our problem setup,

one concludes that J∗k (xk|k) is a “risk-sensitive” Lyapunov function for the closed-loop system (4.1), in the

sense of Lemma 4.5.1. This concludes the proof.

7.4.3 Proof of Lemma 4.6.2

We first prove statements 1) and 2) and thereby establish a(x) = Fx as a feasible control law within the set

Emax(W ). Notice that the condition ‖TaFx‖2 ≤ amax holds if and only if:

‖TaFW
1
2 (W−

1
2x)‖2 ≤ amax.
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From (4.12), and by applying the Schur complement, we know that ‖W− 1
2x‖2 ≤ 1 for any x ∈ Emax(W ).

Thus, by the Cauchy Schwarz inequality, a sufficient condition for the control constraint is given by

‖TaFW
1
2 ‖2 ≤ amax,

which can be written as

(FW
1
2 )>T>a Ta(FW

1
2 ) � a2

maxI ⇐⇒ F>T>a TaF � a2
maxW

−1.

Re-arranging the inequality above yields the expression given in (7.70). The state constraint can be proved in

an identical fashion by leveraging conditions (4.12) and (7.71). It is omitted for brevity.

We now prove the third statement. By definition of a robust control invariant set, we are required to show

that for any x ∈ Emax(W ), that is, for all x that satsify the inequality: x>W−1x ≤ 1, application of the

control law a(x) = Fx yields the following inequality:

(Ajx+BjFx)>W−1(Ajx+BjFx) ≤ 1, ∀j ∈ {1, . . . , L}.

Using the S-procedure [161], it is equivalent to show that there exists λ ≥ 0 such that the following condition

holds: [
λW−1 − (Aj +BjF )>W−1(Aj +BjF ) 0

∗ 1− λ

]
� 0, ∀j ∈ {1, . . . , L}.

By setting λ = 1, one obtains the largest feasibility set for W and F . The expression in (7.72) corresponds

to the (1,1) block in the matrix above.

7.4.4 Proof of Theorem 4.6.4

Given xk|k ∈ XN , problemMPC may be solved to yield a closed-loop optimal control policy:

{π∗k|k(xk|k), . . . , π∗k+N−1|k(xk+N−1|k)},

such that xk+N |k ∈ X ∩ Emax(W ). Consider problemMPC at stage k + 1 with initial condition xk+1|k+1.

From Lemma 4.6.2, we know that the set X∩Emax(W ) is robust control invariant under the feasible feedback

control law a(x) = Fx. Thus,

{π∗k+1|k(xk+1|k), . . . , π∗k+N−1|k(xk+N−1|k), Fxk+N |k}, (7.61)

is a feasible control policy at stage k + 1. Note that this is simply a concatenation of the optimal tail policy

from the previous iteration {π∗k+h|k(xk+h|k)}N−1
h=1 , with the state feedback law Fxk+N |k for the final step.

Since a feasible control policy exists at stage k + 1, xk+1|k+1 = Ajxk|k + Bjπ
∗
k|k(xk|k) ∈ XN for any
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j ∈ {1, . . . , L}, completing the proof.

7.4.5 Proof of Theorem 4.6.6

The first part of the proof is identical to the reasoning presented in the proof for Theorem 4.6.1. In particular,

we leverage the policy given in (7.61) as a feasible policy for problemMPC at stage k + 1 and inequality

(7.73) to show:

J∗k (xk|k) ≥ C
(
xk|k, π

∗
k|k(xk|k)

)
+ ρk(J∗k+1(xk+1|k+1), (7.62)

for all xk|k ∈ XN . Additionally, we retain the same lower bound for J∗k (xk|k) as given in (7.59). The upper

bound for J∗k (xk|k) is derived in two steps. First, define

MA := max
r∈{0,...,N−1}

max
j0,...,jr∈{1,...,L}

αjr . . . αj1αj0 ,

where αj := ‖Aj +BjF‖2, θf := ‖Q+ F>RF‖2.

Suppose xk|k ∈ X ∩ Emax(W ). From Lemma 4.6.2, we know that the control policy πk+h|k(xk+h|k) =

{Fxk+h|k}N−1
h=0 is feasible and consequently, X ∩ Emax(W ) ⊆ XN . Thus,

J∗k (xk|k) ≤C
(
xk|k, Fxk|k

)
+ ρk

(
C
(
xk+1|k, Fxk+1|k

)
+ . . .+ ρk+N−1

(
x>k+N |kPxk+N |k

)
. . .
)

≤θf‖xk|k‖22 + ρk

(
θf‖xk+1|k‖22 + . . .+ ρk+N−1

(
‖P‖2‖xk+N‖22

)
. . .
)
,

for all xk|k ∈ X ∩ Emax(W ). Exploiting the translational invariance and monotonicity property of Markov

polytopic risk metrics, one obtains the upper bound:

J∗k (xk|k) ≤ (N θf + ‖P‖2)MA︸ ︷︷ ︸
:=β>0

‖xk|k‖22, ∀xk|k ∈ X ∩ Emax(W ). (7.63)

In order to derive an upper bound for J∗k (xk|k) with the above structure for all xk|k ∈ XN , we draw inspiration

from a similar proof in [110]. Notice that there exists some constant Γ > 0 such that J∗k (xk|k) ≤ Γ for all

xk|k ∈ XN . That Γ is finite follows from the fact that {‖xk+h|k‖2}Nh=0 and {‖πk+h|k(xk+h|k)‖2}N−1
h=0 are

finitely bounded for all xk|k ∈ XN . Now since Emax(W ) is compact and non-empty, there exists a d > 0

such that Ed := {x ∈ RNx | ‖x‖2 ≤ d} ⊂ Emax(W ). Let β̂ = max{β‖x‖22 | ‖x‖2 ≤ d}. Consider now, the

function: (Γ/β̂)β‖x‖22. Then since β‖x‖22 > β̂ for all x ∈ XN \ Ed and Γ ≥ β̂, it follows that

J∗k (xk|k) ≤
(

Γβ

β̂

)
‖xk|k‖22, ∀xk|k ∈ XN , (7.64)

as desired. Combining the results in equations (7.62), (7.59), (7.64), and given the time-invariance of our

problem setup, one concludes that J∗k (xk|k) is a “risk-sensitive” Lyapunov function for the closed-loop sys-

tem (4.1), in the sense of Lemma 4.5.1. This concludes the proof.
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7.4.6 Proof of Theorem 4.7.1

Consider a symmetric matrix X such that the LMI in equation (4.19) is satisfied. Also, let π be a stationary

feedback control policy that is feasible for problemOPT RS. At stage k, consider a state xk (reachable under

policy π) and the corresponding control action ak = π(xk) (since π is a feasible policy, the pair (xk, ak)

clearly satisfies the state-control constraints). By pre- and post-multiplying the LMI (4.19) with [a>k , x
>
k ] and

its transpose, one obtains the inequality

a>k Rak + a>k B
>

(Σl ⊗X)Bak + 2a>k B
>

(Σl ⊗X)Axk + x>k (A
>

(Σl ⊗X)A− (X −Q))xk ≥ 0,

which implies

x>k Xxk −
L∑
j=1

ql(j)(Ajxk +Bjak)>X(Ajxk +Bjak) ≤ a>k Rak + x>k Qxk,

for all l ∈ {1, . . . , cardinality(Upoly,V (p))}. Since Upoly(p) is a convex polytope of probability vectors q

(with vertex set Upoly,V (p)), then for any q ∈ Upoly(p) one has the inequality

x>k Xxk −
L∑
j=1

q(j)(Ajxk +Bjak)>X(Ajxk +Bjak) ≤ a>k Rak + x>k Qxk.

Exploiting the dual representation of Markov polytopic risk measures, one has

ρk(x>k+1Xxk+1) = max
q∈Upoly(p)

Eq[x
>
k+1Xxk+1],

which leads to the inequality

x>k Xxk − ρk(x>k+1Xxk+1) ≤ a>k Rak + x>k Qxk.

As the above inequality holds for all k ∈ N, one can write, for all k ∈ N,

k∑
h=0

(
x>hXxh − ρh(x>h+1Xxh+1)

)
≤

k∑
h=0

(
u>hRuh + x>hQxh

)
.

Since each single-period risk measure is monotone, their composition ρ0 ◦ . . . ◦ ρk−1 is monotone as well.

Hence by applying ρ0 ◦ . . . ◦ ρk−1 to both sides one obtains

ρ0 ◦ . . . ◦ ρk−1

(
k∑
h=0

(
x>hXxh − ρh(x>h+1Xxh+1)

))
≤ ρ0 ◦ . . . ◦ ρk−1

(
k∑
h=0

(
u>hRuh + x>hQxh

))
.
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By repeatedly applying the translational invariance property (see Definition 1.3.7), the right-hand side can be

written as

ρ0 ◦ . . . ◦ ρk−1

(
k∑
h=0

u>hRuh + x>hQxh

)
= a>0 Ra0 + x>0 Qx0 + ρ0(u>1 Ru1 + x>1 Qx1 + . . .+ ρk−1(a>k Rak + x>k Qxk) . . .)

= ρ0,k

(
a>0 Ra0 + x>0 Qx0, . . . , a

>
k Rak + x>k Qxk

)
= J0,k(x0, π),

where the last equality follows from the definition of dynamic, time-consistent risk measures (Theorem

1.3.8). As for the left-hand side, note that the translation invariance and positive homogeneity property

imply that a coherent one-step conditional risk measure is subadditive, i.e., ρh(Z +W ) ≤ ρh(Z) + ρh(W ),

where Z,W ∈ Zh+1. In turn, subadditivity implies that ρh(Z − W ) ≥ ρh(Z) − ρh(W ). Hence, by

repeatedly applying the translation invariance and monotonicity property and the inequality ρh(Z −W ) ≥
ρh(Z)− ρh(W ), one obtains

ρ0 ◦ . . . ◦ ρk−1

(
k∑
h=0

(
x>hXxh − ρh(x>h+1Xxh+1)

))
= x>0 Xx0 − ρ0(x>1 Xx1)+

ρ0(x>1 Xx1 − ρ1(x>2 Xx2) + ρ1(x>2 Xx2 − ρ2(x>3 Xx3) + . . . ρk−1(x>k Xxk − ρk(x>k+1Xxk+1) . . .)) ≥
x>0 Xx0 − ρ0 ◦ . . . ◦ ρk−1 ◦ ρk(x>k+1Xxk+1) = x>0 Xx0 − ρ0,k+1(0, . . . , x>k+1Xxk+1).

Since π is a feasible policy, limk→∞ ρ0,k(0, . . . , x>k+1xk+1) = 0 almost surely. Hence, one readily

obtains (using the monotonicity and positve homogeneity property)

lim
k→∞

ρ0,k+1(0, . . . , 0, x>k+1Xxk+1)) ≤ λmax(X) lim
k→∞

ρ0,k+1(0, . . . , x>k+1xk+1) = 0,

almost surely. Collecting all results so far, one has the inequality

x>0 Xx0 ≤ lim
k→∞

J0,k(x0, π),

for all symmetric matrices satisfying the LMI (4.19) and all feasible policies π. By maximizing the left-hand

side and minimizing the right-hand side one obtains the claim.

7.4.7 Proof of Theorem 4.7.2

For all k ∈ N, inequality (7.62) in the proof of Theorem 4.6.6 provides the relation

J∗k (xk|k) ≥ C(xk|k, π
MPC(xk|k)) + ρk

(
J∗k+1(xk+1|k+1)

)
.
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Since x0 ∈ XN and problemMPC is recursively feasible, we obtain the following sequence of state-control

pairs: {(xk|k, πMPC(xk|k))}∞k=0. Applying inequality (7.62) recursively and using the monotonicity prop-

erty of coherent one-step risk measures, we deduce the following:

J∗0 (x0|0)

≥ C(x0|0, π
MPC(x0|0)) + ρ0(J∗1 (x1|1))

≥ C(x0|0, π
MPC(x0|0)) + ρ0(C(x1|1, π

MPC(x1|1)) + ρ1(J∗2 (x2|2)))

≥ . . . ≥ C(x0|0, π
MPC(x0|0)) + ρ0(C(x1|1, π

MPC(x1|1)) + . . .+ ρk−1(C(xk|k, π
MPC(xk|k)) + J∗k+1(xk+1|k+1)) . . .)

≥ C(x0|0, π
MPC(x0|0)) + ρ0(C(x1|1, π

MPC(x1|1)) + . . .+ ρk−1(C(xk|k, π
MPC(xk|k))) . . .)

= ρ0,k(C(x0|0, π
MPC(x0|0)), . . . , C(xk|k, π

MPC(xk|k))) ∀k ∈ N,

where the second to last inequality follows from the fact that J∗k+1(xk+1|k+1) ≥ 0, and the equality follows

from the definition of dynamic, time-consistent risk metrics. Noting that xk|k = xk for all k ∈ N and by

taking the limit k →∞ on both sides, one obtains the claim.

7.4.8 Proof of Corollary 4.8.4

From Theorem 4.8.1, we know that the set of LMIs in (4.20) is equivalent to the expression in (7.73) when

F = Y G−1. Then since x0 ∈ X ∩ Emax(W ), a robust control invariant set under the local feedback con-

trol law a(x) = Y G−1x, exploiting the dual representation of Markov polytopic risk measures yields the

inequality

ρk(x>k+1Pxk+1)− x>k Pxk ≤ −x>k Lxk ∀k ∈ N, (7.65)

where L = Q +
(
Y G−1

)>
R
(
Y G−1

)
= L> � 0. Define the Lyapunov function V (x) = x>Px. Set

b1 = λmin(P ) > 0, b2 = λmax(P ) > 0 and b3 = λmin(L) > 0. Then by Lemma 4.5.1, this stochastic

system is ULRSES with domain X ∩ Emax(W ).

7.4.9 Proof of Theorem 4.8.1 and Corollary 4.8.2

We first present the Projection Lemma:

Lemma 7.4.1 (Projection Lemma). For matrices Ω(X), U(x), V (X) of appropriate dimensions, where X

is a matrix variable, the following statements are equivalent:

1. There exists a matrix W such that

Ω(X) + U(x)WV (X) + V (X)>W>U(x)> ≺ 0.
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2. The following inequalities hold:

U(x)⊥Ω(X)(U(x)⊥))> ≺ 0, (V (X)>)⊥Ω(X)((V (X)>)⊥)> ≺ 0,

where A⊥ is the orthogonal complement of A.

Proof. See Chapter 2 in [135].

We now give the proof for Theorem 4.8.1 by leveraging the Projection lemma:

Proof. (Proof of Theorem 4.8.1) Using simple algebraic factorizations, ∀l ∈ {1, . . . , cardinality
(
Upoly,V (p)

)
},

inequality (7.73) can be be rewritten as


I

Σ
1
2

l (A+BF )

F

Q
1
2


>
P 0 0 0

0 −IL×L ⊗ P 0 0

0 0 −R 0

0 0 0 −I




I

Σ
1
2

l (A+BF )

F

Q
1
2

 � 0.

By Schur complement, the above expression is equivalent to

I 0 0 Σ
1
2

l (A+BF )

0 I 0 F

0 0 I Q
1
2



IL×L ⊗Q 0 0 0

0 R−1 0 0

0 0 I 0

0 0 0 −Q




I 0 0

0 I 0

0 0 I

(A+BF )>Σ
1
2

l F> Q
1
2

 � 0,

where Q = P−1. Now since Q = Q
> � 0 and R = R> � 0, we also have the following identity:


I 0 0 0

0 I 0 0

0 0 I 0



IL×L ⊗Q 0 0 0

0 R−1 0 0

0 0 I 0

0 0 0 −Q



I 0 0

0 I 0

0 0 I

0 0 0

 � 0.

Next, notice that


−Σ

1
2

l (A+BF )

−F
−Q 1

2

I


⊥

=

I 0 0 Σ
1
2

l (A+BF )

0 I 0 F

0 0 I Q
1
2

 ,


0

0

0

I


⊥

=


I 0 0 0

0 I 0 0

0 0 I 0

 .
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Now, set:

Ω = −


IL×L ⊗Q 0 0 0

0 R−1 0 0

0 0 I 0

0 0 0 −Q

 , U =


−Σ

1
2

l (A+BF )

−F
−Q 1

2

I

 , V T =


0

0

0

I

 .

Then by Lemma 7.4.1, it is equivalent to find a matrixG that satisfies the following inequality ∀l ∈ {1, . . . , cardinality
(
Upoly,V (p)

)
}:


IL×L ⊗Q 0 0 0

0 R−1 0 0

0 0 I 0

0 0 0 −Q

+


−Σ

1
2

l (A+BF )

−F
−Q 1

2

I

G


0

0

0

I


>

+


0

0

0

I

G>

−Σ

1
2

l (A+BF )

−F
−Q 1

2

I


>

� 0.

(7.66)

Setting F = Y G−1 and pre-and post-multiplying the above inequality by diag(I,R
1
2 , I, I) yields the LMI

given in (4.20). Furthermore, from the inequality−Q+G+G> � 0 whereQ � 0, we know thatG+G> � 0.

Thus, by the Lyapunov stability theorem, the linear time-invariant system ẋ = −Gx with Lyapunov function

x>x is asymptotically stable (i.e. all eigenvalues of G have positive real part). Therefore, G is an invertible

matrix and F = Y G−1 is well defined.

Proof. (Proof of Corollary 4.8.2) We will prove that the third inequality in (4.21) implies inequality (7.72).

Details of the proofs on the implications of the first two inequalities in (4.21) follow from identical arguments

and will be omitted for the sake of brevity. Using simple algebraic factorizations, inequality (7.72) may be

rewritten (in strict form) as:

[
I

Aj +BjF

]>[
W−1 0

0 −W−1

][
I

Aj +BjF

]
� 0, ∀j ∈ {1, . . . , L}.

By Schur complement, the above expression is equivalent to

[
I Aj +BjF

] [W 0

0 −W

][
I

(Aj +BjF )>

]
� 0, ∀j ∈ {1, . . . , L}.

Furthermore since W � 0, we also have the identity

[
I 0

] [W 0

0 −W

][
I

0

]
� 0.
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Now, notice that: [
−(Aj +BjF )

I

]⊥
=
[
I Aj +BjF

]
,

[
0

I

]⊥
=
[
I 0

]
.

Then by Lemma 7.4.1, it is equivalent to find a matrix G such that the following inequality holds ∀j ∈
{1, . . . , L}:

[
W 0

0 −W

]
+

[
−(Aj +BjF )

I

]
G

[
0

I

]>
+

[
0

I

]
G>

[
−(Aj +BjF )

I

]>
� 0. (7.67)

Note that Lemma 7.4.1 provides an equivalence (necessary and sufficient) condition between (7.67) and (7.72)

if G is allowed to be any arbitrary LMI variable. However, in order to restrict G to be the same variable as

in Theorem 4.8.1, the equivalence relation reduces to sufficiency only. Setting F = Y G−1 in the above

expression gives the claim.

7.4.10 Convex Programming Formulation of ProblemMPC
Next, we provide a technical Lemma that transforms the multi-period risk sensitive objective function of

ProblemMPC using its epigraph form. The major reasons behind this transformation is to obtain a tractable

formulation via convex programming.

Lemma 7.4.2. The solution of ProblemMPC equals to the solution of following optimization problem:

min
γ1,W = W> � 0, G, Y,Q = Q

> � 0, γ2(j0, . . . , jN−1), a0, ah(j0, . . . , jh−1),

xh(j0, . . . , jh−1), h ∈ {1, . . . , N}, j0, . . . , jN−1 ∈ {1, . . . , L}

γ1 (7.68)

subjected to the following constraints:

• the LMIs in expression (4.24) and (4.25);

• the system dynamics in equation (4.22);

• the control constraints in expression (4.26);

• the state constraints in expression (4.27);

• the objective epigraph constraint:

ρk,k+N (c(xk|k, a0), . . . , c(xN−1(j0, . . . , jN−2), aN−1(j0, . . . , jN−2)), γ2(j0, . . . , jN−1))≤γ1.

Proof. First, let γ∗1 be the optimal value for the above problem in expression (7.68), corresponding to the min-

imizers: γ∗2(j0, . . . , jN−1), a∗0, W ∗, G∗, Y ∗, Q
∗
, x∗h(j0, . . . , jh−1), a∗h(j0, . . . , jh−1), for j0, . . . , jN−1 ∈
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{1, . . . , L} and h ∈ {1, . . . , N}. Now let

{W fs, Gfs, Y fs, afs
0 , {xfs

h(j0, . . . , jh)}Nh=1, {afs
h(j0, . . . , jh)}Nh=1, P

fs}

be a set of arbitrary feasible solutions for ProblemMPC such that

J(xk|k, a
fs
0 , . . . , a

fs
N−1(j0, . . . , jN−1), P fs) < γ∗1 .

Then there exists γfs1 such that

J(xk|k, a
fs
0 , . . . , a

fs
N−1(j0, . . . , jN−1), P fs) ≤ γfs1 < γ∗1 .

By setting
(
Q

fs
i

)−1

= P fs and

γfs
2 (j0, . . . , jN−1) = xfs

N (j0, . . . , jN−1)>P fsxfs
N (j0, . . . , jN−1),

it implies {W fs, Gfs, Y fs, afs
0 , {xfs

h(j0, . . . , jh)}Nh=1, {afs
h(j0, . . . , jh)}Nh=1, Q

fs
, γfs1 , γfs

2 (j0, . . . , jN−1)} is a

feasible solution of problem (7.68). But this contradicts with the fact that γfs < γ∗1 . Thus, for any fea-

sible solutions in ProblemMPC,

J(xk|k, a
fs
0 , . . . , a

fs
N−1(j0, . . . , jN−1), P fs) ≥ γ∗1 .

Now we want to prove the equality when an optimal solution is substituted to the left side. Let

{W opt, Gopt, Y opt, aopt
0 , {xopt

h (j0, . . . , jh)}Nh=1, {aopt
h (j0, . . . , jh)}Nh=1, Q

opt}

be a set of optimal solutions in ProblemMPC. This implies for
(
Q

opt
)−1

= P opt,

J∗k (xk|k) = J(xk|k, a
opt
0 (j0), . . . , aopt

N−1(j0, . . . , jN−1), P opt) ≤ J(xk|k, a
∗
0(j0), . . . , a∗N−1(j0, . . . , jN−1), P ∗)

where
(
Q
∗)−1

= P ∗. But by the nature of the optimization problem in (7.68), the objective epigraph

constraint implies

J∗k (xk|k) ≤ J(xk|k, a
∗
0(j0), . . . , a∗N−1(j0, . . . , jN−1), P ∗) ≤ γ∗1 .

Thus, by combining all arguments, we conclude that γ∗1 = J∗k (xk|k), which completes the proof of this

Lemma.
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7.4.11 A Generalized Stability Condition

In this section, we want to extend the stability analysis of ProblemMPC to history dependent policies. At

time k, define truncated history as Hk+h = {xk|k, wk, . . . , wk+h−1|k} for h ∈ {0, . . . , N − 1} and the

truncated history dependent policy π = {πk|k, . . . , πk+N−1|k} as

πk+h|k(Hk+h) =

{
πk|k(xk|k) if h = 0

πk+h|k(xk|k, wk, . . . , wk+h−1|k) otherwise

In order to introduce extra freedom the constraints, we will modify model predictive control problem as

follows. Define scenario dependent terminal cost function, control gain and the MPC cost function as follows:

P (w = w[i]) = Pi, F (w = w[i]) = Fi, i ∈ {1, . . . , L},
J(xk|k, πk|k, . . . , πk+N−1|k, {Pi}Li=1) :=

ρk,k+N

(
C(xk|k, πk|k(Hk|k), . . . , C(xk+N−1|k, πk+N−1|k(Hk+N−1|k), x>k+N |kP (wk+N−1)xk+N |k

)
.

Now, we modify optimization problem PE as follows:

Optimization problem PE — Given an initial state x0 ∈ RNx such that ‖Txx0‖2 ≤ xmax,

solve

max
Wi=W>i �0,Fi,Pi=P>i �0,∀i

L∑
i=1

logdet(Wi)

such that Wi � x0x
>
0 , (7.69)

F>i
T>a Ta
a2

max

Fi −W−1
i � 0, (7.70)

(Ai +BiFi)
>T
>
x Tx
x2

max

(Ai +BiFi)−W−1
i � 0, (7.71)

(Ai +BiFi)
>W−1

i (Ai +BiFi)−W−1
i � 0, (7.72)

L∑
j=1

ql(j) (Aj +BjFj)
>Pj(Aj +BjFj)− Pi + (F>i RFi +Q) ≺ 0

∀l ∈ {1, . . . , cardinality(Upoly,V (p))}, ∀i ∈ {1, . . . , L}. (7.73)

We are now in position to modify Theorem 4.6.6 to prove stochastic stability for history dependent policies

and terminal cost matrix.

Theorem 7.4.3. (Stochastic Stability for Model Predictive Control Law) Consider the model predictive con-

trol law in equation (4.18) and the corresponding closed-loop dynamics for system (4.1) with initial condition

x0 ∈ RNx . By implementing the MPC control law, the closed loop system (4.1) is UGRSES.
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Proof. The strategy of this proof is to show that J∗k is a valid Lyapunov function in the sense of Lemma 4.5.1.

Specifically, we want to show that J∗k satisfies the two inequalities in equation (4.8); the claim then follows

by simply noting that, in our time-invariant setup, J∗k does not depend on k.

We start by focusing on the bottom inequality in equation (4.8). Consider a time k and an initial con-

dition xk|k ∈ RNx for problem MPC. The sequence of optimal randomized control policies is given by

{π∗k+h|k}N−1
h=0 . Define the following control policy sequence from time k + 1 to N :

π̃k+h|k(xk|k, wk, . . . , wk+h−1|k) :=

{
π∗k+h|k(xk|k, wk, . . . , wk+h−1|k) if h ∈ [1, N − 1],∑L
i=1 Fi xk+N |k1{wk+N−1|k = w[i]} if h = N.

This control policy is essentially the concatenation of the sequence {π∗k+h|k}N−1
h=1 with a linear feedback

control law for stage N . Since

xk+N |k = A(wk+N−1|k)xk+N−1|k +B(wk+N−1|k)π∗k+N−1|k(xk|k, wk, . . . , wk+N−2|k)

we can easily justify
L∑
i=1

Fi xk+N |k1{wk+N−1|k = w[i]}

is a function of (xk|k, wk, . . . , wk+N−1|k) by induction.

Consider theMPC problem at stage k + 1 with initial condition given by

xk+1|k+1 = xk+1|k = A(wk)xk|k +B(wk)π∗k|k(xk|k).

At stage k + 1, the disturbance wk is realized and xk+1|k+1 is updated based on the information of xk|k and

wk. Accordingly, we can define a sequence of control policies from time k + 1 to N using the following

surjective mapping:

πk+1|k+1(xk+1|k+1) := π̃k+1|k(xk|k, wk),

πk+h|k+1(xk+1|k+1, wk+1|k, . . . , wk+h−1|k) := π̃k+h|k(xk|k, wk, . . . , wk+h−1|k), h ∈ {2, . . . , N}.

Denote with Jk+1(xk+1|k+1) the cost of the objective function assuming that the sequence of control policies

is given by {πk+h|k+1}Nh=1. Note that xk+1|k+1 (and therefore Jk+1(xk+1|k+1)) is a random variable with

L possible realizations. For any i, j ∈ {1, . . . , L}, define:

Zk+N (wk+N−1|k = w[i]) :=− x>k+N |kPixk+N |k + x>k+N |kQxk+N |k + (Fi xk+N |k)>RFi xk+N |k,

Zk+N+1(wk+N |k = w[j]) :=
((
A(wk+N |k = w[j]) +B(wk+N |k = w[j])Fj

)
xk+N |k

)>
· Pj((

A(wk+N |k = w[j]) +B(wk+N |k = w[j])Fj

)
xk+N |k

)
.
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By the dual representation of Markov polytopic risk, the condition in S({Yi}Li=1, {Gi}Li=1) implies

Zk+N (wk+N−1|k = w[i]) + ρ(Zk+N+1(wk+N |k)) ≤ 0, surely, ∀i ∈ {1, . . . , L}. (7.74)

Similar to the arguments in expression (7.62), one can then write the following chain of inequalities:

J∗k (xk|k)

=x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k)

+ ρ

(
ρk+1,N

(
C(xk+1|k, π

∗
k+1(xk|k, wk)), . . . , x>k+N |kP (wk+N−1|k)xk+N |k

))

≥x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k) + ρ

(
ρk+1,N

(
C(xk+1|k, π

∗
k+1(xk|k, wk)), . . . , x>k+N |kQxk+N |k+

(F (wk+N−1|k)xk+N |k)>RF (wk+N−1|k)xk+N |k + ρ(Zk+N+1(wk+N |k))
))

=x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k)+ρ
(
Jk+1(xk+1|k+1)

)
≥x>k|kQxk|k+(π∗k|k(xk|k))>Rπ∗k|k(xk|k) + ρ

(
J∗k+1(xk+1|k+1)

)
.

(7.75)

Notice that the analysis of the top inequality in equation (4.8) follows analogously to the arguments in The-

orem 4.6.6. Combining the above results and given the time-invariance of our problem setup, one concludes

that J∗k (xk|k) is a risk-sensitive Lyapunov function for the closed-loop system (4.1), in the sense of Lemma

4.5.1. This concludes the proof.

Furthermore, corresponding to the inequality in S({Yi}Li=1, {Gi}Li=1) and based on Projection Lemma,

one can derive the following semi-definite feasibility condition for Yi, Gi, Qi = Q
>
i � 0, i ∈ {1, . . . , L}:

Q =


Q1 . . . 0
...

. . .
...

0 . . . QL

 ,

Q 0 0 −Σ

1
2

l (AGi +BYi)

∗ R−1 0 −Yi
∗ ∗ I −Q

1
2
i Gi

∗ ∗ ∗ −Qi +Gi +G>i

 � 0, i ∈ {1, . . . , L} (7.76)

where l ∈ {1, . . . , cardinality(Upoly,V (p))}, Qi = P−1
i and Fi = YiG

−1
i . Thus, based on the new problem

formulation, one can also slightly modify Lemma 7.4.2 to get a modified MPC solution algorithm for history

dependent policies with scenario dependent terminal cost functions.
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7.4.12 Alternative Formulation of Problem PE andMPC
In this section we present alternative formulations of problems PE and MPC inspired by the approach

in [15]. The methodology here is to design (offline) an equivalent control invariant set Emax and a robust

Lyapunov function such that ULRSES and constraint fulfillment are guaranteed using a local state feedback

control law a(x) = Fx. Let P = P> � 0 and L = L> � 0. Define V (xk) = x>k Pxk. If

V (xk+1)− V (xk) ≤ −x>k Lxk , surely, ∀k ∈ N, (7.77)

then V (xk) is a robust Lyapunov function for system (4.1). In the online problem, the inequality above is

relaxed to its stochastic counterpart as shown in (4.8). We first formalize the offline optimization problem:

Optimization problem PE — Given an initial state x0 ∈ X, and a matrix L = L> � 0, solve

max
W=W>�0,Y,γ>0

logdet(W )

such that x>0 W
−1x0 ≤ 1,

Y >
T>a Ta
a2

max

Y �W,

(AjW +BjY )>
T>x Tx
x2

max

(AjW +BjY ) �W, ∀j ∈ {1, . . . , L},
W (L1/2W )> (AjW +BjY )>

∗ γINx 0

∗ 0 W

 � 0,∀j ∈ {1, . . . , L}. (7.78)

Suppose problem PE above is feasible. Set P = γW−1. The control invariant set is then defined to be the

intersection X ∩ Emax, where

Emax(W ) :=
{
x ∈ RNx | x>W−1x ≤ 1

}
=
{
x ∈ RNx | x>Px ≤ γ

}
.

Note that X ∩ Emax is a robust control invariant set under the feasible local feedback control law a(x) =

YW−1x. The constraint in (7.78) is an equivalent reformulation of the robust Lyapunov condition given in

(7.77) where xk+1 =
(
A(w) +B(w)Y G−1

)
x. That is, the closed-loop dynamics are ULRSES with domain

X ∩ Emax under the feedback control law a(x) = Y G−1x. In an attempt to improve the stability properties

of the system beyond what is achievable via this feedback control law, the online MPC problem is formalized

as follows:
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Optimization problemMPC— Given an initial state xk|k ∈ X∩Emax and a prediction horizon

N ≥ 1, solve

min
πk|k,...,πk+N−1|k

J
(
xk|k, πk|k, . . . , πk+N−1|k, P

)
such that xk+h+1|k = A(wk+h)xk+h|k +B(wk+h)πk+h|k(xk+h|k),

‖Taπk+h|k(xk+h|k)‖2 ≤ amax, ‖Txxk+h+1|k‖2 ≤ xmax, h ∈ {0, . . . , N − 1},
xk+1|k ∈ Emax(W ) surely, (7.79)

ρ
(
(Axk|k +Bπk|k(xk|k))>P (Axk|k +Bπk|k(xk|k))

)
− x>k Pxk ≤ −x>k|kLxk|k.

(7.80)

where the final constraint may be enforced by evaluating the expectation form of the one-step

conditional risk measure at each vertex of the polytope: Upoly,V (p).

Provided problemMPC is recursively feasible, ULRSES with domain X ∩ Emax is enforced automatically

via the constraint in (7.80) which leverages the risk-sensitive Lyapunov function x>k Pxk, where P is the

solution to the offline problem. Persistent feasibility however, is guaranteed by the constraint in (7.79).

7.4.13 Suboptimality Performance of πMPC

For k ≥ 0 consider the N−step optimal cost function with terminal cost x>k+N |kPxk+N |k:

J(xk|k, N, P ) :=

min
πk|k,...,πk+N−1|k

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
N

(
C(xk|k, πk|k(xk|k)), . . . , C(xk+N−1|k, πk+N−1|k(xk+N−1|k), x>k+N |kPxk+N |k

)
.

The theory of solving this optimal control problem by dynamic programming can be found in [119]. Before

getting to the main result, we have the following technical lemma.

Lemma 7.4.4. Let . For any initial state xk|k ∈ RNx , we have that J(xk|k, N, P ) ≤ (γ+1)C(xk|k, π
∗
k(xk|k)),

where the constant γ is given by:

γ =
c

σ(Q+ F>RF)

(
σ(Q+ F>RF )

1

1− λ + σ(λNP )

)
− 1. (7.81)

with F = Y G−1 is the state-feedback control gain that satisfies (7.70), (7.71), (7.72), (4.20).

Proof. First, consider the following inequalities for each j ≥ 0:

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
j

(0, . . . , C(xk+j|k, Fxk+j|k)) ≤ ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
j

(0, . . . , x>k+j|k(Q+ F>RF )xk+j|k)

≤σ(Q+ F>RF ) ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
j

(0, . . . , x>k+j|kxk+j|k) ≤ cλjσ(Q+ F>RF )x>k|kxk|k
(7.82)
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for some c > 0 and λ ∈ (0, 1). The first inequality is due to monotonicity of time consistent Markov risk

measures and the second inequality is based on the UGRSES condition of {xk|k} induced by the closed loop

control sequence πk|k(xk|k) = Fxk|k. The proof of UGRSES when πk|k(xk|k) = Fxk|k follows from the

stochastic stability analysis of AlgorithmMPC0 using stochastic Lyapunov function x>Px, P = P> � 0.

Then, for any i ≥ 0, we have the following inequalities:

J(xk|k, N, P ) := ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
N

(C(xk|k, π
∗
k|k(xk|k)), . . . , C(xN−1+k|kπ

∗
k+N−1|k(xN−1+k|k)), P )

≤ ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
N

(C(xk|k, Fxk|k)), . . . , C(xN−1+k|k, FxN−1+k|k), P )

≤ lim
M→∞

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
M

(C(xk|k, Fxk|k), . . . , C(xM+k|k, FxM+k|k)) + ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
N

(x>k+N−1|kPxk+N−1|k)

≤ lim
M→∞

M∑
j=0

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
j

(0, . . . , C(xk+j|k, Fxk+j|k)) + ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
N

(x>k+N−1|kPxk+N−1|k)

≤ lim
M→∞

M∑
j=0

cλjσ(Q+ F>RF )x>k|kxk|k + cλNσ(P )x>k|kxk|k

=

(
σ(Q+ F>RF )

c

1− λ + cσ(λNP )

)
x>k|kxk|k

≤ c

σ(Q+ F>RF)

(
σ(Q+ F>RF )

1

1− λ + σ(λNP )

)
C(xk|k, πk|k(xk|k)).

(7.83)

The first inequality is due to the fact that Fxk+j|k is a feasible solution to the N step MPC problem. The sec-

ond inequality is due to monotonicity and sub-additivity of Markov risk measures, and the third inequality is

due to sub-additivity (convexity) of Markov risk measures. The fourth inequality follows from the expression

in (7.82), and the last inequality is due to the fact that

C(xk|k, Fxk|k)) ≥ σ(Q+ F>RF)x>k|kxk|k.

Substituting the definition of γ to the above expression completes the proof of this Lemma.

Recall that the MPC control law πMPC is the optimal policy corresponds to the current initial state xk|k
in the finite horizon problem. That is, πMPC(xk|k) = π∗k|k(xk|k) at stage k where {π∗k, . . . , π∗k+N−1} is the

sequence of optimal policies. From Lemma 7.4.4 and the Bellman optimality of value function J(xk|k, N, 0),

it can be easily seen that

ρ(J(xk+1|k, N − 1, P )) = J(xk|k, N, P )− C(xk|k, π
MPC(xk|k)) ≤ γC(xk|k, π

MPC(xk|k)). (7.84)
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Recall the realization constant γ in Lemma 7.4.4. Define the following constant:

ηN =
(γ + 1)N−2

(γ + 1)N−2 + γN−1
∈ (0, 1). (7.85)

Again by Bellman optimality of J(xk|k, N, 0) and the state update xk+1|k+1 = xk+1|k, above expression

immediately implies that

J(xk|k, N, P ) =ρ(J(xk+1|k, N − 1, P )) + C(xk|k, π
MPC(xk|k))

≥
(

1− γ 1− ηN
γ + ηN

)
C(xk|k, π

MPC(xk|k)) +

(
1 +

1− ηN
γ + ηN

)
ρ(J(xk+1|k, N − 1, P ))

=

(
1− γ 1− ηN

γ + ηN

)
C(xk|k, π

MPC(xk|k)) +

(
1 +

1− ηN
γ + ηN

)
ρ(J(xk+1|k+1, N − 1, P ))

Recall the result in Lemma 7.4.4 and the definition of ηN . Starting at state xk+1|k+1 = xk+1|k the following

expression holds

J(xk+1|k+1, 0, P ) ≥ 1

1 + γ
J(xk+1|k+1, 1, P ).

Thus for N = 2, from the definition of ηN in (7.85),

J(xk+1|k+1, N − 1, P ) ≥ ηNJ(xk+1|k+1, N − 2, P ).

Followed by inductive arguments, the following expression holds for any xk|k ∈ RNx and N > 2:

J(xk|k, N, P ) ≥
(

1− γ 1− ηN
γ + ηN

)
C(xk|k, π

MPC(xk|k)) + ηN

(
1 +

1− ηN
γ + ηN

)
ρ(J(xk+1|k+1, N − 2, P ))

=

(
1− γ 1− ηN

γ + ηN

)
C(xk|k, π

MPC(xk|k)) + ηN

(
1 +

1− ηN
γ + ηN

)
ρ(J(xk+1|k, N − 2, P ))

=ηN
γ + 1

γ + ηN
J(xk|k, N − 1, P ) = ηN+1J(xk|k, N − 1, P )

(7.86)

The last equality is due to the fact that

ηN+1 =
(γ + 1)N−1

(γ + 1)N−1 + γN
=

(γ + 1)N−2

(γ + 1)N−2 + γN−1

 γ + 1

γ + (γ+1)N−2

(γ+1)N−2+γN−1

 = ηN

(
1 +

1− ηN
γ + ηN

)
.

Notice that inequality (7.86) is still be valid if xk|k is replaced by xk+1|k+1 for any fixed xk+1|k+1 ∈ RNx .
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Then the above expression implies

J(xk+1|k+1, N, P )− J(xk+1|k+1, N − 1, P ) ≤
(

1

ηN+1
− 1

)
J(xk+1|k+1, N, P )

=

(
1

ηN+1
− 1

)
J(xk+1|k, N, P ) ≤

(
1

ηN+1
− 1

)
γC(xk|k, π

MPC(xk|k))

where the second inequality is due to expression (7.84). By re-arranging this inequality, one obtains

J(xk+1|k+1, N, P ) ≤
(

1

ηN+1
− 1

)
γC(xk|k, π

MPC(xk|k)) + J(xk+1|k+1, N − 1, P ),

=(1− βN )C(xk|k, π
MPC(xk|k)) + J(xk+1|k+1, N − 1, P )

=(1− βN )C(xk|k, π
MPC(xk|k)) + J(xk+1|k, N − 1, P )

where the constant βN is defined as

βN = 1−
(

(γ + 1)N−2 + γN−1

(γ + 1)N−2
− 1

)
γ = 1− γN

(γ + 1)N−2
=

(γ + 1)N−2 − γN
(γ + 1)N−2

∈ (0, 1). (7.87)

Notice that by applying the risk measure ρ on both sides, the above expression becomes

βNC(xk|k, π
MPC(xk|k)) + ρ(J(xk+1|k+1, N, P )) ≤ J(xk|k, N, P ).

Therefore, one obtains the following expression by recursively expanding J(xk+1|k+1, N, 0) with the above

arguments:

βNC(xk|k, π
MPC(xk|k)) + ρ(βNC(xk+1|k+1, π

MPC(xk+1|k+1)) + ρ(J(xk+2|k+2, N, P ))

≤βNC(xk|k, π
MPC(xk|k)) + ρ(J(xk+1|k+1, N, P )) ≤ J(xk|k, N, P ).

Furthermore, for any M ∈ Z, by repeating the above analysis from k to k + M − 1 and noticing that

J(xk+M |k+M , N, P ) ≥ 0, monotonicity and positive homogeneity of risk measure ρ imply

βN ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
M

(C(xk|k, π
MPC(xk|k)), . . . , C(xk+M−1|k+M−1, π

MPC(xk+M−1|k+M−1)))

≤ ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
M

(
βNC(xk|k, π

MPC(xk|k)), . . . , βNC(xk+M−1|k+M−1, π
MPC(xk+M−1|k+M−1))

+ J(xk+M |k+M , N, P )

)
≤ J(xk|k, N, P ).
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Finally, when M goes to infinity, the above expression implies

βNJ
∗
0,∞(xk|k)

≤βN lim
M→∞

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
M

(C(xk|k, π
MPC(xk|k)), . . . , C(xk+M−1|k+M−1, π

MPC(xk+M−1|k+M−1)))

≤J(xk|k, N, P ) ≤ J∗0,∞(xk|k).

The first inequality is based on the fact that MPC control policies are feasible, thus the induced cost function

is larger than the optimal value function J∗0,∞(xk|k). The second inequality is by the recursive analysis given

above. The third inequality is from the fact that with nonnegative stage-wise cost C(x, a), monotonicity of

risk measure ρ implies

J(xk|k, N, P )

= min
πk|k,...,πk+N−1|k

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
N

(
C(xk|k, πk|k(xk|k)), . . . , C(xk+N−1|k, πk+N−1|k(xk+N−1|k)), P

)
≤ min
πk|k,...,πk+N|k

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
N+1

(
C(xk|k, πk|k(xk|k)), . . . , C(xk+N |k, πk+N |k(xk+N |k)), P

)
≤ . . . ≤ lim

N→∞
min

πk|k,...,πk+N|k
ρ ◦ . . . ◦ ρ︸ ︷︷ ︸

N+1

(
C(xk|k, ak), . . . , C(xk+N |k, πk+N |k(xk+N |k)), P

)
=J∗0,∞(xk|k).

The equality follows from the analysis in (7.83) with λN → 0 as N → ∞. The result of the sub-optimality

performance bound is summarized in the following theorem.

Theorem 7.4.5. Let xk|k ∈ RNx be the initial state at stage k and N be the MPC lookahead horizon.

The infinite horizon cost function induced by the MPC control policy πMPC has the following sub-optimal

performance bound:

J∗0,∞(xk|k)

≤ lim
M→∞

ρ ◦ . . . ◦ ρ︸ ︷︷ ︸
M

(C(xk|k, π
MPC(xk|k)), . . . , C(xk+M−1|k+M−1, π

MPC(xk+M−1|k+M−1)))

≤J
∗
0,∞(xk|k)

βN
.

where J∗0,∞(xk|k) is the optimal solution of problem OPT RS with xk|k being the initial state and the perfor-

mance coefficient βN is given in (7.87).

The above theorem shows that the MPC solution is 1/βN−optimal for βN ∈ (0, 1). When N tends to

infinity, the definition of βN implies that βN goes to 1, which means that the MPC solution is optimal.
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7.5 Technical Results in Chapter 5

7.5.1 Proof of Theorem 5.3.2

The proof style is similar to that of Theorem 3.1 in [40]. The proof consists of two steps. First, we show that

V ∗(x, d) ≥ T[V ∗](x, d) for all pairs (x, d) ∈ X ×R. Second, we show V ∗(x, d) ≤ T[V ∗](x, d) for all pairs

(x, d) ∈ X × R. These two results will prove the claim that V ∗ is a fixed point solution to the Bellman’s

equation.

Step (1). If d /∈ Φ(x), then, by definition, V ∗(x, d) =∞. Also, d /∈ Φ(x) implies that F (x, d) is empty.

Hence, T[V ∗](x, d) =∞. Therefore, if d /∈ Φ(xk),

V ∗(x, d) =∞ = T[V ∗](x, d), (7.88)

i.e., V ∗(x, d) ≥ T[V ∗](x, d).

Now assume x0 = x and d0 = d such that d ∈ Φ(x). Let π∗ ∈ ΠH be an optimal policy that yields the

optimal cost V ∗(x, d). Construct the “truncated” policy π̄ = {µ̄1, µ̄2, . . . , } according to:

µ̄j(h1,j) := µ∗j (x0, µ
∗
0(x0), h1,j), for j ≥ 1.

In other words, π̄ is a tail policy prescribed by π∗. By applying the law of total expectation, we can write:

V ∗(x, d) = lim
N→∞

E
[∑N−1

t=0 γtC(xt, µ
∗
t (h0,t))

]
= C(x, µ∗0(x)) + lim

N→∞
γE
[∑N−1

t=1 γtC(xt, µ
∗
j (h0,t))

]
= C(x, µ∗0(x)) + γE

[
limN→∞ E

[∑N−1
t=1 γtC(xt, µ

∗
j (h0,t))

∣∣∣h0,1

]]
.

Note that limN→∞ E
[∑N−1

t=1 γtC(xt, π
∗
j (h0,t))

∣∣∣h0,1

]
= Cπ̄(x1). Clearly, the truncated policy π̄ is a feasi-

ble policy for the tail subproblem

min
π∈ΠH

Cπ(x1)

subject to Dπ(x1) ≤ Dπ̄(x1).

Collecting the above results, we can write

V (x, d) = C(x0, π
∗
0(x0)) + γE [Cπ̄(x1)] ≥ C(x0, π

∗
0(x0)) + γE [V1(x1,Dπ̄(x1))] ≥ T[V ∗](x, d),

where the last inequality follows from the fact that Dπ̄(·) can be viewed as a valid threshold function in the

minimization in equation (5.1).

Step (2). If d /∈ Φ(x), equation (7.88) holds and, therefore, V (x, d) ≤ T[V ∗](x, d).

Assume d ∈ Φ(x) (which implies that F (x, d) is non-empty). For a given pair (x, d), where d ∈ Φ(x),

let a∗ and d′,∗ be minimizers in equation (5.1) (here we are exploiting the assumption that the minimization
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problem in equation (5.1) admits a minimizer). By definition, d′,∗(x′) ∈ Φ(x′) for all x′ ∈ X . Also, let

π∗ ∈ ΠH be an optimal policy for the tail subproblem:

min
π∈ΠH

Cπ(x′)

subject to Dπ(x′) ≤ d′,∗(x′).

Construct the “extended” policy π̄ ∈ ΠH as follows:

π̄0(x) = a∗, and π̄j(h0,j) = π∗j (h1,j) for j ≥ 1.

Since π∗ is an optimal, and a fortiori feasible, policy for the tail subproblem (from stage 1, starting at state

x1 = x′ and constraint threshold d1 = d′,∗(x′)) with threshold function d′,∗, the policy π̄ ∈ ΠH is a feasible

policy for the tail subproblem (from stage 0, starting at state x0 = x and constraint threshold d0 = d):

min
π∈ΠH

Cπ(x)

subject to Dπ(x) ≤ d.

Hence, we can write

V ∗(x, d) ≤ Cπ̄(x) = C(x, µ̄0(x)) + lim
N→∞

E
[
E
[∑N−1

t=1 γtC(xt, µ̄t(h0,t))
∣∣∣h0,1

]]
.

Note that

lim
N→∞

E
[∑N−1

t=1 γt−1C(xt, µ̄t(h0,t))
∣∣∣h0,1

]
= Cπ∗(x′).

Hence, from the definition of π∗, one easily obtains:

V ∗(x, d) ≤ C(x, π̄0(x)) + γE
[
Cπ∗(x′)

]
= C(x, a∗) + γ

∑
x′∈X

P (x′|x, a∗)V ∗(x′, d′,∗(x′)) = T[V ∗](x, d).

Collecting the above results, we have shown that V ∗ is a fixed point solution to Bellman’s equation

V (x, d) = T[V ](x, d), ∀x, d. To show that V ∗ is the unique solution to the fixed point equation, according

to Lemma 5.3.1, T is a contraction mapping. Therefore Proposition 2.2 of [17] immediately implies that the

fixed point equation T[V ](x, d) = V (x, d), ∀x, d, has a unique solution, which is V ∗. This completes the

proof of this theorem.
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7.5.2 Proof of Theorem 5.3.6

Similar to the definition of the optimal Bellman operator T, for any augmented stationary Markovin policy

u : X × R→ A and any risk-to-go function d′(x, d)(·) such that

D(x, u(x, d)) + γρ(d′(x, d)(x′)) ≤ d, (7.89)

we define the policy induced Bellman operator Tu as

Tu[V ](x, d) = C(x, u(x, d)) + γ
∑
x′∈X

P (x′|x, u(x, d))V (x′, d′(x′)).

Analogous to Theorem 5.3.2, we can easily show that the fixed point solution to Tu[V ](x, d) = V (x, d) is

uniquely equal to the value function

Vu(x, d) = lim
N→∞

E
[∑N−1

t=0 γtC(xt, at) | x0 = x, πH

]
,

where the history dependent policy πH = {µ0, µ1, . . .} is given by µk(hk) = u(xk, dk) for any k ≥ 0 with

initial state x0 = x, constraint threshold d0 = d, and the state transitions are given by expression (5.3),

but with augmented stationary Markovian policy u∗ replaced by u and the risk-to-go d′,∗(x, d)(·) replaced

by d′(x, d)(·). On the other hand, by recursively applying (7.89) at state (xk, dk), for k ∈ {0, 1, . . . , }, we

immediately show that policy πH is feasible to problem OPT RC, i.e.,

lim
N→∞

ρ0,N−1

(
D(x0, a0), . . . , γN−1D(xN−1, aN−1)

)
| x0 = x, πH ≤ d.

To complete the proof of this theorem, we need to show that the augmented stationary Markovian policy

u∗ is optimal if and only if

T[V ∗](x, d) = Tu∗ [V
∗](x, d), ∀x ∈ X , d ∈ R, (7.90)

where V ∗(x, d) is the unique fixed point solution of T[V ](x, d) = V (x, d). Here an augmented stationary

Markovian policy u∗ is optimal if and only if the induced history dependent policy π∗H in (5.2) is optimal to

problem OPT RC.

First suppose u∗ is an optimal augmented stationary Markvoian policy. Then using the definition of u∗

and the result from Theorem 5.3.2, we immediately show that V ∗(x, d) = Vu∗(x, d), where by definition Vu∗

is the fixed point solution to V (x, d) = Tu∗ [V ](x, d) for any x, d. By the fixed point equation T[V ∗](x, d) =

V ∗(x, d) and Tu∗ [Vu∗ ](x, d) = Vu∗(x, d), this further implies (7.90) holds.

Second suppose u∗ satisfies the equality in (7.90). Then by the fixed point equality T[V ∗](x, d) =

V ∗(x, d), we immediately obtain the equation V ∗(x, d) = Tu∗ [V
∗](x, d) for any x ∈ X and d ∈ R.

since the fixed point solution to Tu∗ [V ](x, d) = V (x, d) is unique, we further show that T[V ∗](x, d) =
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V ∗(x, d) = Vu∗(x, d). Furthermore by Theorem 5.3.2 we have that

Vu∗(x, d) = min
π∈ΠH

Cπ(x)

subject to Dπ(x) ≤ d.

By using the policy construction formula in (5.2) to obtain the history dependent policy π∗H and following the

above arguments (where the augmented Markovian stationary policy u is replaced by u∗, and the risk-to-go

function d′ is replaced by d′,∗), this further implies

Cπ∗H (x) = Vu∗(x, d) = min
π∈ΠH

Cπ(x)

subject to Dπ(x) ≤ d,

and Dπ∗H (x) ≤ d, i.e., u∗ is an optimal augmented stationary Markovian policy.

7.5.3 Proof of Lemma 5.4.3

Before proving the main result, we first show the Lipschitz-ness of set-valued mapping U(x, a, P ) in the

following technical result.

Proposition 7.5.1. For any ξ ∈ U(x, a, P ), there exists a Mξ > 0 such that for some ξ̃ ∈ U(x, a, P̃ ), and

q(x′) = ξ(x′)P (x′|x, a), q̃(x′) = ξ̃(x′)P (x′|x, a),

∑
x′∈X

|q(x′)− q̃(x′)| ≤Mξ

∑
x′∈X

∣∣∣P (x′|x, a)− P̃ (x′|x, a)
∣∣∣ .

Proof. We know that U(x, a, P ) is a closed, bounded, convex set of probability mass functions. Since any

conditional probability mass function Q is in the interior of dom(U) and the graph of U(x, a, P ) is closed,

by Theorem 2.7 in [91], U(x, a, P ) is a Lipschitz set-valued mapping with respect to the Hausdorff distance.

Thus, for any ξ ∈ U(x, a, P ), the following expression holds for some Mξ > 0:

inf
q̂=ξ̂P :ξ̂∈U(x,a,P̃ )

∑
x′∈X

|q(x′)− q̂(x′)| ≤Mξ

∑
x′∈X

∣∣∣P (x′|x, a)− P̃ (x′|x, a)
∣∣∣ .

Next, we want to show that the infimum of the left side is attained. Since the objective function is convex,

and U(x, a, P̃ ) is a convex compact set, there exists ξ̃ ∈ U(x, a, P̃ ) such that infimum is attained.

Now we turn to the main proof of Lemma 5.4.3. First, we want to show that

α(a, d′) := D(x, a) + γρ(d′(x′))
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is a Lipschitz function. Define

{q∗(x′)}x′∈X ∈ arg maxq=ξP :ξ∈U(x,a,P (x′|x,a))

{
D(x, a) + γ

∑
x′∈X

q(x′)d′(x′)

}
.

Then, there exists a ξ̃ ∈ U(x, a, P (x′|x, ã)), q̃ = ξ̃P , such that the following expressions hold:

α(a, d′)− α(ã, d̃′)

=D(x, a) + γρ(d′(x′))−D(x, ã)− γρ(d̃′(x′))

≤D(x, a)−D(x, ã) + γ
∑
x′∈X

(q∗(x′)− q̃(x′))d′(x′) + γ
∑
x′∈X

q̃(x′)(d′(x′)− d̃′(x′))

≤|D(x, a)−D(x, ã)|+ γ
∑
x′∈X

|d′(x′)− d̃′(x′)|+ γmax
x∈X
|d′(x)|

∑
x′∈X

|q∗(x′)− q̃(x′)|.

(7.91)

The first equality follows from definitions of coherent risk measures. The first inequality is due to the rep-

resentation theorem (Theorem 1.3.3) and the definition of q∗ = ξ∗P , ξ∗ ∈ U(x, a, P (x′|x, a)). The second

inequality is due to the fact that q̃ is a probability mass functions with ξ̃ ∈ U(x, a, P (x′|x, ã)). Then, by

Proposition 7.5.1, there exists Mξ > 0 such that

∑
x′∈X

|q∗(x′)− q̃(x′)| ≤Mξ

∑
x′∈X

|P (x′|x, a)− P (x′|x, ã)| .

Furthermore, by Assumptions (7.3.2) to (5.4.2) and the definition of Φ(x′), expression (7.91) implies

α(a, d′)− α(ã, d̃′) ≤MA

(
|ã− a|+

∑
x′∈X

|d̃′(x′)− d′(x′)|
)

where

MA = max
{
MD + γMP dMξ, 1

}
.

By a symmetric argument, we can also show that

α(ã, d̃′)− α(u, d′) ≤MA

(
|ã− a|+

∑
x′∈X

|d̃′(x′)− d′(x′)|
)
.

Thus, by combining both arguments, we have shown that α(a, d′) is a Lipschitz function. Next, for any

(a, d′) ∈ F (x, d), where

F (x, d) =

{
(a, d′)| u ∈ A(x), d′(x′) ∈ Φ(x′), ∀x′ ∈ X , α(a, d′) ≤ d

}
,
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consider the following optimization problem:

Px,a,d′(d) = inf
(ã,d̃′)∈F (x,d)

|ã− a|+
∑
x′∈X

|d̃′(x′)− d′(x′)|.

Since (a, d′) is in F (x, d), it is a feasible solution to the above problem which yields Px,a,d′(d) = 0. By our

assumptions, bothA(x) and Φ(x′) are compact sets of real numbers. Note that both |ã−a|+∑x′∈X |d̃′(x′)−
d′(x′)| and α(ã, d̃′) are Lipschitz functions in (ã, d̃′). Also, consider the sub-gradient of f(ã, d̃′, d) :=

α(ã, d̃′)− d1:

∂f(ã, d̃′, d) =
⋂

(â,d̂′,d̂)∈dom(f)



g1

g2

g3

 ∈ R|U | × R|X | × R : f(â, d̂′, d̂) ≥ f(ã, d̃′, d) +


g1

g2

g3


T 


ã

d̃′

d

−

â

d̂′

d̂



 .

For any (g1, g2, g3) ∈ ∂f(u, d′, d), this implies

α(ã, d̃′)− α(â, d̂′) ≥ (g3 + 1)(d− d̂) + g1(ã− â) + gT2 (d̃′ − d̂′),

∀(â, d̂′, d̂) ∈ domf . Suppose g3 > −1, then there exists ε > 0 such that g3 + 1 = ε. Also, by the Lipschitz-

ness of α(ã, d̃′) and Cauchy Schwarz inequality, we get

(MA + |g1|)|ã− â|+ (1 + ‖g2‖)
∑
x′∈X

|d̃′(x′)− d̂′(x′)| ≥ ε(d− d̂), ∀ (â, d̂′, d̂) ∈ dom(f)

Since ã, â are finite and d̃′, d̂′ are bounded, the above inequality fails if d̂→ −∞. This yields a contradiction.

Similarly, by considering d̂ → ∞, we can also arrive at a contradiction for the case of g3 < −1. Therefore,

the set of the third element of ∂f(ã, d̃′, r) is a singleton and it equals to {−1}.
Since α(ã, d̃′) − d is differentiable on r, the third element of ∂f(ã, d̃′, r) is a singleton and it equals to

{−1}. Next, consider the sub-gradient of h(ã, d̃′, r) = |ã − a| + ∑
x′∈X |d′(x′) − d̃′(x′)|. By identical

arguments, we can show that the set of the third element of ∂h(ã, d̃′, r) is a singleton and it equals to {0}.
Therefore, Theorem 4.2 in [78] implies Px,a,d′(d) is strictly differentiable (Lipschitz continuous) in r 2.

Then, for any (a, d′) ∈ F (x, d), there exists MR > 0 such that

inf
(ã,d̃′)∈F (x,d̃)

|ã− a|+
∑
x′∈X

|d′(x′)− d̃′(x′)| ≤MR|d̃− d|.

Finally we want to show that the infimum on the left side of the above expression is attained. First,

|ã − a| + ∑x′∈X |d′(x′) − d̃′(x′)| is coercive and continuous in (ã, d̃′). By Example 14.29 in [111], this

1 A sub-gradient of a function f : X → R at a point x0 ∈ X is a real vector g such that for all x ∈ X , f(x)−f(x0) ≥ gT (x−x0),
∀x ∈ X .

2 Theorem 4.2 in [78] implies both ∂Px,a,d′ (d), ∂∞Px,a,d′ (d) ⊆ {0} for d ∈ Φk(d). This result further implies Px,a,d′ (d) is
strictly differentiable. For details, please refer to this paper.
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function is a Caratheodory integrand and is also a normal integrand. Furthermore, since F (x, d̃) is a closed

set (sinceA(x) is a finite set, Φ(x′) is a compact set and the constraint inequality is non-strict)and α(ã, d̃′)−d̃
is a normal integrand (see the proof of Theorem 5.3.6), by Theorem 14.36 and Example 14.32 in [111], one

can show that the following indicator function:

Ix(ã, d̃′, d̃) :=

{
0 if (ã, d̃′) ∈ F (x, d̃)

∞ otherwise

is a normal integrand. Furthermore, by Proposition 14.44 in [111], the function

gx(ã, d̃′, d̃) := |ã− a|+
∑
x′∈X

|d′(x′)− d̃′(x′)|+ Ix(ã, d̃′, d̃)

is a normal integrand. Also, inf ã gx(ã, d̃′, d̃) = inf(ã,d̃′)∈F (x,d̃) |ã − a| + ∑
x′∈X |d′(x′) − d̃′(x′)|. By

Theorem 14.37 in [111], there exists (â, d̂′) ∈ F (x, d̃) such that (â, d̂′) argmin gx(ã, d̃′, d̃). Furthermore, the

right side of the above equality is finite since F (x, d̃) is a non-empty set. The definition of Ix(â, d̂′, d̃) implies

that (â, d̂′) ∈ F (x, d̃). Therefore this implies expression (5.6) holds for any (a, d′) ∈ F (x, d).

7.5.4 Proof of Theorem 5.4.4

The proof of the main result of this paper relies on three technical lemmas. The first lemma provides a

sensitivity result for the value function V ∗(x, d).

Lemma 7.5.2. Suppose that F (x, d) and F (x, d̃) are non-empty sets for x ∈ X and d, d̃ ∈ Φ(x). Then, the

following expression holds:

0 ≤ V ∗(x, d̃)− V ∗(x, d) ≤
(
MC

1− γ +
MPCmax

(1− γ)2

)
︸ ︷︷ ︸

MV

MR(d− d̃), (7.92)

where MR is the constant defined in inequality (5.6).

Proof. First, when d̃ ≤ d, by the definition of the value function in problem OPT RC, we know that

V ∗(x, d̃) ≥ V ∗(x, d). The proof is completed if we can show that for d̃ ≤ d,

V ∗(x, d̃)− V ∗(x, d) ≤MVMR(d− d̃).

Now let

V0(x, d) =
Cmax

1− γ
be the initial value function estimate and the sequence of estimate is updated by value iteration, i.e.,

Vk+1(x, d) = T[Vk](x, d).
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From this update sequence one can immediately show that ‖Vk‖∞ ≤ Cmax/(1− γ) for every k.

Furthermore for any given x ∈ X , d ∈ Φ(x), let (a∗, d∗,′) be the minimizer of T[Vk](x, d). For notional

convenience here we omit the dependency of k in the set of minimizers (a∗, d∗,′). Then, there exists (â, d̂′) ∈
F (x, d̃), such that inequality (5.6) and the following expressions hold:

Vk+1(x, d̃)− Vk+1(x, d)

≤C(x, â)− C(x, a∗) + γ
∑
x′∈X

P (x′|x, â)Vk(x′, d̂′(x′))− γ
∑
x′∈X

P (x′|x, a∗)Vk(x′, d∗,′(x′))

=C(x, â)− C(x, a∗) + γ
∑
x′∈X

P (x′|x, â)
(
Vk(x′, d̂′(x′))− Vk(x′, d∗,′(x′))

)
+ γ

∑
x′∈X

(P (x′|x, â)− P (x′|x, a∗)) Vk(x′, d∗,′(x′))

≤γ‖Vk‖∞
∑
x′∈X

|P (x′|x, â)− P (x′|x, a∗)|+ γ
∑
x′∈X

{ ∣∣∣Vk(x′, d∗,′(x′))− Vk(x′, d̂′(x′))
∣∣∣ }

+ |C(x, â)− C(x, a∗)|.

The second inequality follows from
∑
x′∈X P (x′|x, â) = 1 and the definition of ‖Vk‖∞ ≤ Cmax/(1 − γ).

Now consider the following sequence of constants

MV,k =
1− γk
1− γ (MC +MPCmax/(1− γ)).

Obviously, at k = 0, using the results in Assumption 7.3.2 and Lemma 5.4.3, the above expression implies

V1(x, d̃)− V1(x, d) ≤ (MC +MPCmax/(1− γ))MR|d̃− d|.

Now at k = j by induction we assume

Vj(x, d̃)− Vj(x, d) ≤ 1− γj
1− γ

(
MC +MP

Cmax

1− γ

)
︸ ︷︷ ︸

MV,j

MR|d̃− d|.

Equipped with the induction’s assumption, at k = j + 1 the above expression further implies

Vj+1(x, d̃)− Vj+1(x, d) ≤(MC +MP ‖Vj‖∞)|â− a∗|+ γMV,j

∑
x′∈X

|d̂′(x′)− d∗,′(x′)|

≤(MC +MPCmax/(1− γ) + γMV,j)MR|d̃− d|
≤MV,j+1MR|d̃− d|. (7.93)

Thus by induction we have that Vk(x, d̃) − Vk(x, d) ≤ MV,kMR|d̃ − d|. Note that, due to the contraption

property of T, the sequence of value function estimates {Vk} converges to V ∗. Finally combining this
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property with the fact that limk→∞MV,k = MC/(1− γ) +MPCmax/(1− γ)2, one immediately shows that

expression (7.92) holds.

The second lemma shows that the “difference” between the dynamic programming operators TD[V ∗](x, d)

and T[V ∗](x, d) is bounded.

Lemma 7.5.3. For any x ∈ X and d ∈ Φ(x), the following inequality holds:

0 ≤ TD[V ∗](x, d)−T[V ∗](x, d) ≤ γMVMR∆

where MV is given in Lemma 7.5.2, MR is the constant defined in inequality (5.6), and ∆ is the step size for

the discretization of the threshold state d.

Proof. First, by the definition of FD(x, d), we know that FD(x, d) ⊆ F (x, d). Since, the objective func-

tions and all other constraints in TD[V ∗](x, d) and T[V ∗](x, d) are identical, we can easily conclude that

TD[V ∗](x, d) ≥ T[V ∗](x, d) for all x ∈ X , d ∈ Φ(x). The proof is completed if we can show

TD[V ∗](x, d)−T[V ∗](x, d) ≤ γMVMR∆.

By Theorem 5.3.6 we know that the infimum of T[V ∗](x, d) is attained. Let (a∗, d∗,′) ∈ F (x, d) be the

minimizer of T[V ∗](x, d). Also, for every fixed x′ ∈ X , let θ(x′) ∈ {0, . . . ,Θ} such that d∗,′(x′) ∈
Φ(θ(x′))(x′). Now, construct

d̃′(x′) := d(θ(x′)) ∈ Φ(θ(x′))(x′).

By definition of Φ(x′), we know that d̃′(x′) ∈ Φ(x′), ∀x′ ∈ X . Since d(θ(x′)) is the lower bound of

Φ(θ(x′))(x′), we have d(θ(x′)) ≤ d∗,′(x′). Furthermore, since the size of Φ(θ(x′))(x′) is ∆, we know that

|d(θ(x′)) − d∗,′(x′)| ≤ ∆ for any x′ ∈ X . By monotonicity of coherent risk measures,

D(x, a∗) + γρ(d̃′(xk+1)) ≤ D(x, a∗) + γρ(d∗,′(xk+1)) ≤ d.

Therefore, we conclude that (a∗, d̃′) ∈ FD(x, d) is a feasible solution to the problem in TD[V ∗](x, d). From

this fact, we get the following inequalities:

TD[V ∗](x, d)−T[V ∗](x, d) ≤γ
∑
x′∈X

P (x′|x, a∗)
(
V ∗(x′, d̃′(x′))− V ∗(x′, d∗,′(x′))

)
≤γ sup

x′∈X

{ ∣∣∣V ∗(x′, d̃′(x′))− V ∗(x′, d∗,′(x′))∣∣∣ }
≤γMVMR sup

x′∈X
|d̃′(x′)− d∗,′(x′))| ≤ γMVMR∆.

The first inequality is due to substitutions of the feasible solution of TD[V ∗](x, d) and the optimal solution of

T[V ∗](x, d). The second inequality is trivial. The third inequality is a result of Lemma 7.5.2 and the fourth
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inequality is due to the definition of d̃′(x′), for all x′ ∈ X . This completes the proof.

The third lemma characterizes the error bound between the dynamic programming operators T[V ∗](x, d)

and TD[V ∗](x, d).

Lemma 7.5.4. Suppose Assumptions (7.3.2) to (5.4.2) hold. Then,

‖TD[V ∗]−T[V ∗]‖∞ ≤ (1 + γ)MVMR∆, (7.94)

where TD[V ∗](x, d) is defined in equation (5.4), ∆ is the discretization step size, MV is given in Lemma

7.5.2 and MR is the constant defined in inequality (5.6).

Proof. For any given x ∈ X and d ∈ Φ(x), let θ ∈ {0, . . . ,Θ} such that d ∈ Φ(θ)(x). Then, by definition of

TD[V ∗](x, d) and Theorem 5.3.2, the following expression holds:

|TD[V ∗](x, d)−T[V ∗](x, d)| ≤ |V ∗(x, d(θ))− V ∗(x, d)|+ |TD[V ∗](x, d(θ))−T[V ∗](x, d(θ))|.

By Lemma 7.5.2 and 7.5.3, the above equation implies that

|TD[V ∗](x, d)−T[V ∗](x, d)| ≤MVMR∆ + γMVMR|d− d(θ)| ≤ (1 + γ)MVMR∆.

The last inequality follows from the fact that d ∈ Φ(θ)(x) implies |d(θ) − d| ≤ ∆, where d(θ) is the lower

bound for the discretized region of risk threshold Φ(θ)(x). By taking the supremum with respect to x ∈ X
and d ∈ Φ(x) on both sides of the above inequality, the proof is completed.

Now we turn to the main proof of Theorem 5.4.4. First from Lemma 7.5.4, we have that ‖TD[V ∗] −
T[V ∗]‖∞ ≤ (1 + γ)MVMR∆. This implies the following chain of inequalities:

‖V ∗D − V ∗‖∞ =‖TD[V ∗D]−T[V ∗]‖∞ ≤ ‖TD[V ∗D]−TD[V ∗]‖∞ + ‖TD[V ∗]−T[V ∗]‖∞
≤γ‖V ∗D − V ∗‖∞ + (1 + γ)MVMR∆.

The first equality is due to Theorem 5.3.2 and the fact that V ∗D(x, d) = TD[V ∗D](x, d). The second inequality

follows from triangular inequality and the third inequality follows from the contraction property in Lemma

5.3.1 and the arguments in Lemma 7.5.4.

Then one concludes the proof of this theorem by having the following inequality:

‖V ∗D − V ∗‖∞ ≤
1 + γ

1− γMVMR∆,

where MV is defined in Lemma 7.5.2, with its expression is given by:

MV =

(
MC

1− γ +
MPCmax

(1− γ)2

)
,
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and MR is the constant defined in inequality (5.6).

7.5.5 Proof of Theorem 5.4.7

The error bound analysis of the interpolated Bellman iteration is similar to the analysis of the discretized

Bellman iteration described in Theorem 5.4.4. Analogous to Lemma 7.5.3, we have the following technical

lemma.

Lemma 7.5.5. For any x ∈ X and d ∈ Φ(x), the following inequality holds:

−γMVMR∆ ≤ TI [V ∗](x, d)−T[V ∗](x, d) ≤ γMVMR∆

where MV is given in Lemma 7.5.2, MR is the constant defined in inequality (5.6), and ∆ is the step size for

the discretization of the threshold state d.

Proof. The proof of this lemma is split into two parts. First we want to show that

TI [V ∗](x, d)−T[V ∗](x, d) ≤ γMVMR∆. (7.95)

Before getting into the analysis directly, a crucial intermediate step is to derive the following inequality for

any function V : B(X × R)→ B(X × R):

TI [V ](x, d) ≤ TD[V ](x, d), ∀x ∈ X , d ∈ R. (7.96)

Obviously an equivalent re-formulation of optimization problem TD[V ](x, d) is given by:

min
a,d′

C(x, a) + γ
∑
x′∈X

P (x′|x, a)Ix′ [V ](d)

subject to a ∈ A(x), d′(x′) ∈ Φ(x′) forall x′ ∈ X , and D(x, a) + γρ(d′(x′)) ≤ d.

Using this relationship, at any state x ∈ X and constraint threshold d ∈ R, the optimizers of problem

TD[V ](x, d) are indeed feasible solutions to problem TI [V ](x, d), with integer-valued constraints. This

further implies that inequality (7.96) holds. From this fact, we get the following inequalities:

TI [V ∗](x, d)−T[V ∗](x, d) ≤TD[V ∗](x, d)−T[V ∗](x, d)

≤TD[V ∗](x, d)−T[V ∗](x, d)

≤γ sup
x′∈X

{ ∣∣∣V ∗(x′, d̃′(x′))− V ∗(x′, d∗,′(x′))∣∣∣ } ≤ γMVMR∆.

The second inequality follows from the non-increasing property of value function V ∗ in d and the definition

of TD. The third inequality and fourth inequality follow from the same lines of arguments in Lemma 7.5.3.
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On the other hand, by using analogous arguments, we can show that

T[V ∗](x, d)−TI [V ∗](x, d) ≥T[V ∗](x, d)−TD[V ∗](x, d)

≥− γ sup
x′∈X

{ ∣∣∣V ∗(x′, d̃′(x′))− V ∗(x′, d∗,′(x′))∣∣∣ } ≥ −γMVMR∆.
(7.97)

Therefore the proof of this lemma is completed by combining both inequality (7.95) and (7.97).

Equipped with this result, the rest of the error bound proof follows identical arguments from the proof of

Theorem 5.4.4 (and Lemma 7.5.4), with value function estimate V ∗D replaced by V ∗I and Bellman operator

TD replaced by TI . Details of these steps will be omitted for the sake of brevity.

On the other hand, we now show the claim V ∗I (x, d) ≤ V ∗D(x, d). Recall from inequality (7.96) and

the definition of discretized Bellman operator TD that TI [V ](x, d) ≤ TD[V ](x, d) ≤ TD[V ](x, d) for any

function V : B(X × R)→ B(X × R). By putting V = V ∗D and applying TI on both sides, we have that

T2
I [V ∗D](x, d) ≤ TI [V ∗D](x, d) ≤ V ∗D(x, d)

Repeating this procedure, and noticing that limN→∞TN
I [V ∗D](x, d) = V ∗I (x, d), the inequality V ∗I (x, d) ≤

V ∗D(x, d) is concluded.

Combining all the above arguments, the proof of this theorem is completed.



Bibliography

[1] B. Acciaio, H. Föllmer, and I. Penner. Dynamic convex risk measures, chapter 1, pages 1–34. Springer-

Verlag, 2011.
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