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Abstract— We present a collaborative visual localization
method for rovers designed to hop and tumble across the sur-
face of small Solar System bodies, such as comets and asteroids.
In a two-phase approach, an orbiting primary spacecraft first
maps the surface of a body by capturing images from various
poses and illumination angles; these images are processed to
create a prior map of 3D landmarks. In the second phase,
a hopping rover is deployed to the surface where it uses a
camera to relocalize to the prior map and to perform on-
board visual simultaneous localization and mapping (SLAM).
Small bodies present several challenges to existing visual SLAM
algorithms, such as, high-contrast shadows that move quickly
over the surface due to the short (e.g. 1-12 hour) rotational
periods, and large changes in visual appearance between orbit
and the surface, where image scale varies by many orders
of magnitude (kilometers to centimeters). In this work, we
describe how to augment ORB-SLAM2—a state of the art
visual SLAM implementation—to handle large variations in
illumination by fusing prior images with varying illumination
angles. We demonstrate how a wide field of view (FOV) camera
on a hopping rover can relocalize to prior maps captured by a
narrow FOV camera taken from an orbiting spacecraft, and
how the growth of pose and scale errors can be corrected
through periodic loop closures during large hops. We evaluate
the proposed method with sequences of images captured around
a (1 meter) mock asteroid. The approach is shown to be robust
to varying illumination angles, scene scale changes, and off-
nadir camera pointing angles.

I. INTRODUCTION
The in-situ exploration of small Solar System bodies, such

as asteroids and comets, is an emerging frontier of scientific
interest, fundamental to improving our understanding of
the formation of the early Solar System [1]. Conventional
wheeled rovers are ineffective in microgravity environments
due to lack of traction, and so new mobility paradigms, such
as hopping and tumbling, are being investigated. To date, no
robotic mobility systems have been successfully deployed to
the surface of a small body; however, DLR’s MASCOTT
rover and JAXA’s MINERVA 2 rovers are currently en route
to Asteroid 162173 Ryugu aboard the Hayabusa 2 spacecraft
[2].

The authors have been developing “Hedgehog”, a
new internally-actuated hopping/tumbling rover concept.
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Fig. 1. Pose graph and 3D landmarks for a simulated mission to an asteroid.
Blue frustums represent keyframes (camera images), green lines indicate
the essential graph of landmark co-observations that connect keyframes,
magenta lines indicate loop closure, black points are 3D landmarks on the
surface of the body and red points are 3D landmarks that belong to the local
map for the tracking. Here, the outer ring of highly-connected keyframes
was obtained by a primary spacecraft in a prior mapping phase, while the
hopping rover’s trajectory can be seen near the surface. The rover relocalizes
itself to the prior map near the apogee of large hops, and these loop closures
help to correct for accumulated errors via pose graph optimization.

Equipped with three orthogonal flywheels, Hedgehog is able
to both controllably tumble by applying precise internal
torques and also hop large distances by abruptly releasing
stored energy in the flywheels via mechanical brakes. Recent
experiments in various micro-gravity test beds have demon-
strated the viability of Hedgehog’s mobility and control [3],
[4], and a notional mission architecture is proposed in [5]
and illustrated in Fig. 1.

On-board localization, which is required for autonomous
surface activities, is particularly challenging for hopping
rovers. On small bodies, vision-based localization must con-
tend with (1) high-contrast, rapidly moving shadows that
are characteristic of fast-rotating, airless bodies, (2) the
large image scale variations associated with large, ballistic
hops (centimeters to kilometers), (3) the inability to use
accelerometers and stereo cameras to observe absolute scale,
(4) detecting loop closures, or “relocalizing,” between wide-
FOV images taken onboard the rover and nadir-pointing
narrow-FOV images taken from the primary spacecraft, (5)
lack of variety in surface features (e.g. rocks are often locally
self-similar), (6) periods of rapidly rotating camera views as
the rover tumbles in flight, and (7) frequent visual occlusions.

In this paper, we propose a collaborative visual localization
method for hopping rovers that overcomes these challenges
by adapting ORB-SLAM2, a state-of-the-art visual SLAM
algorithm [6]. In a two-phase approach, a global map of



3D landmarks is first generated by an orbiting primary
spacecraft with a narrow FOV camera, and this prior map is
downloaded to the rover. After deployment to the surface, the
rover uses a wide-FOV camera to perform on-board visual
SLAM with reference to the prior global map. Specifically,
the adaptations to ORB-SLAM2 presented in this paper
demonstrate:

• Collaborative visual SLAM between a primary space-
craft and hopping rover in an asteroid-like environment,

• Wide-FOV cameras reliably relocalizing to a prior map
generated by a narrow-FOV camera,

• Robustness to varying surface illumination angles,
• Robustness to large image scale changes, and
• Robustness to off-nadir camera pointing.

In Section II, we review related approaches for localization
on small bodies and the state of the art in monocular
visual SLAM. Section III describes how we adapted ORB-
SLAM2 to handle the visual challenges faced by rovers
hopping on small bodies. In Section IV, we evaluate the
robustness and accuracy of our method with a series of
experiments using realistic images of a mock asteroid with
Sun-analog illumination and both narrow and wide FOV
cameras executing orbital and hopping motions.

II. RELATED WORK

In recent years, several techniques have been proposed
that combine visual and inertial sensors for the relative
localization of hopping/tumbling rovers at the surface of
small bodies. While the MINERVA rover never validated
its localization approach, in [7], Yoshimitsu et al. describes
how the rover was designed to estimate its attitude by fusing
observations of the Sun and integrating gyroscope measure-
ments. Relative velocities during hops were to be estimated
using optical flow from surface images. In [8], Fiorini et
al. propose a localization algorithm for hopping robots that
estimates a posteriori trajectories and the landing area of a
robot by fusing camera images and accelerometer, gyroscope,
and contact sensor measurements that were recorded during
jumps. Optical flow and visual odometry were explored by
So et al. in [9] for the relative localization of a hopping
rover. Their proposed algorithm works with tumbling camera
motion and without continuous tracking of surface features.
Estimates for the rover’s ballistic motion are computed from
visual odometry captured at the start of each hop.

The unobservability of absolute metric scale using on-
board sensors is a particularly insidious challenge for hop-
ping rovers. Grounded rovers have two key advantages
for scale estimation: the ability to fuse accelerometer data
with visual odometry [10], and a continuous close-proximity
vantage point to the surface for using stereo cameras—
both of which are largely unavailable for hopping rovers
during large ballistic (“acceleration-free”) trajectories. In
[9], So et al. describe how a stereo pair of cameras can
help recover absolute scale at the start of each hop, but
the small baselines afforded by hopping rovers (roughly
10 cm) provide very little information when hops exceed

10 meters in height. Thus, for the vision-based techniques
described in the literature, hopping rovers are highly prone
to accumulating errors in position and scale, or “drift.”

However, “loop closures,” or the ability to recognize the
same place when revisited, allows visual SLAM algorithms
to correct for drift. A thorough review of the state of
the art in visual SLAM can be found in [11]. In general,
early approaches estimated pose and landmarks online us-
ing extended Kalman filters, while newer approaches use
incremental batch optimization techniques such as bundle
adjustment [12] and pose graph optimization [13].

ORB-SLAM2 [6], the visual SLAM algorithm modified
for this work, integrates both bundle adjustment and pose
graph optimization approaches to create an implementation
that is robust and efficient. ORB-SLAM2 uses Lie group
Sim(3) to represent constraints in its pose graph optimiza-
tion, which allows it to explicitly parameterize and correct
for scale drift. For robust tracking and estimation, ORB-
SLAM2 uses Oriented Binary (ORB) features [6] to detect
and track landmarks in camera images; these ORB features
require minimal storage and are efficient to calculate, making
them well-suited for space applications, which often have
limited computation. ORB features describe landmarks with
3D position estimates that are compressed into words (here
integers) and placed in a bag-of-words database that is used
to quickly detect loop closure hypotheses [14].

III. PROPOSED METHOD

This section describes how to adapt the ORB-SLAM2
algorithm to enable collaborative localization for a typical
mission scenario to a small body. Refer to Fig. 2a for
an overview of mission phases. During a prior mapping
phase, the primary spacecraft images the body as it ro-
tates in view. Over many weeks or months, the spacecraft
maneuvers to image the entire surface from all longitudes,
θa, and from multiple relative surface illumination angles,
αs. After deployment to the surface, the rover hops and
tumbles, accumulating position and scale errors (the rover’s
attitude is constrained by gyroscope sensors and occasional
observations from a star tracker).

To reduce these errors, the rover occasionally performs
large hops to capture views of the surface that can be
matched to the prior map (see Fig. 2a). Relocalizing to the
prior map creates loop closure constraints in the pose graph
that, after maximum likelihood estimation, correct the rover’s
on-board pose estimates and reduce its pose uncertainty.

Both the primary spacecraft’s and rover’s maps are com-
posed of sets of keyframes K j and landmarks Xl . Each
keyframe stores the SE(3) pose relative to the world frame
wT j, the camera intrinsic, the ORB descriptors and their
image positions x j,l , which are possibly associated with
landmarks. Each landmark includes its world position wXl ,
the average viewing direction from all observations, the
ORB descriptor, and the maximum dmax and minimum
dmin distances at which the point is likely to be observed.
Landmarks can also be augmented with an estimate of the
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Fig. 2. (a) In a prior mapping phase, the primary spacecraft images the body as it rotates in view. Over many weeks or months, the spacecraft maneuvers
slowly to image the entire surface. Throughout this paper, longitude around the body’s rotational axis is denoted θa, while the relative surface illumination
angle is denoted αs. After the rover is deployed to the surface (red) its local illumination angle coninues to vary from sunrise (αs '−90◦) to noon (αs = 0◦)
and to sunset (αs ' 90◦). (b) Graphical model for the prior mapping phase. K j are keyframes, Pk are keyframe priors (e.g. ground-based pose estimates),
Xl are 3D landmarks and S j, j+1 are measurements of the relative Sim(3) transformation between keyframes.

local illumination angle αs from when they were observed.
An example of estimating landmark pose uncertainties in a
real mission is given in [15].

A. Prior mapping by the primary spacecraft

In a typical mission to a small body, a navigation team
on the ground uses additional measurements such as radio
doppler to estimate the primary spacecraft’s orbital trajectory.
These measurements facilitate the estimation of absolute
scale and, when combined with a star tracker, can also
provide SE(3) priors on the spacecraft’s pose during the
creation of the global map. These priors are added every n
camera frames, as shown in the graphical model in Fig. 2b.
The estimation of a spacecraft’s trajectory, or “orbit determi-
nation,” can achieve astonishing precision; for example, the
1σ uncertainties in attitude and position of Rosetta spacecraft
with respect to the comet at Philae separation were 0.015◦

and 10 m [16].
On the primary spacecraft, a prior adjustment thread has

been added to ORB-SLAM2 that promotes camera images
with SE(3) priors to keyframes and performs additional
pose graph optimizations. These pose graph optimizations
are performed over the essential graph. The essential graph
connects keyframes’ poses with estimated transformations,
or graph constraints. These constraints are either derived
by minimizing the reprojection error of the map points
with respect to the matched keypoints (e.g. in the tracking
front-end or during relocalization) or by finding a similarity
transformation using the method of Horn (e.g. in the loop
closing). These constraints are effectively derived from large
sets ORB features that have been co-observed between
keyframes, and they are represented by a Sim(3) Lie group.
sim(3) is the corresponding Lie algebra, represented by a
7-vector (ωωω,ννν ,σ), where ωωω = (ω1,ω2,ω3) is the axis-angle
representation of the rotation, ννν is the rotated version of the
translation t and σ = logs, s is the scale [17]. The relation

between sim(3) to Sim(3) is given byωωω

ννν

σ

= logSim(3)

[
sR t
0 1

]
. (1)

The pose graph optimization distributes residual errors
between the various constraints in the essential graph. A
residual is defined as

e j, j+1 = logSim(3)(
wS j, j+1

wS j+1,w
wS−1

j,w), (2)

where wS j, j+1 is the relative Sim(3) transformation between
the connected keyframes computed before the pose graph
optimization expressed in the world reference frame w, and
wS j,w is the Sim(3) transformation between the frame j and
the world reference frame.

During the pose graph optimization, a “virtual” constraint
is added between the tracked pose K j and the prior pose
Pk, and the relative transformation between them is set to
identity, wS j,k = I. The constraint error between a tracked
keyframe and its prior pose is defined as

e j,k = logSim(3)(I
wPk,w

wS−1
j,w), (3)

where wPk,w is the transformation between the prior pose and
the world reference frame. The cost function in the ORB-
SLAM2 essential graph optimization is augmented with the
pose priors,

χ
2(wS2,w, . . . ,

w Sm,w) = ∑
j

e>j, j+1e j, j+1 +∑
j

e>j,kΩ∆S j,k e j,k,

(4)
where Ω∆S j,k is the diagonal information matrix for each
prior, Ω∆S j,k = diag(σ2

r ,σ
2
r ,σ

2
r ,σ

2
t ,σ

2
t ,σ

2
t ,σ

2
s ). Here, σr, σt ,

σs are the priors’ rotation, translation and scale standard
deviation estimates, respectively. These values are manually
tuned to ensure pose graph convergence as they are sensitive
to the scene scale and camera parameters (FOV, resolution
etc.). After the essential graph optimization, keyframe poses
are adjusted, and a further global bundle adjustment is per-
formed to refine the keyframe poses and landmark estimates.
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Fig. 3. Block diagram of the adaptations made to ORB-SLAM2 to enable
robust visual localization for tumbling rovers. Based on ORB-SLAM2
diagram [6].

B. Rover relocalization on the prior map

The hopping rover’s relocalization approach is very similar
to that of ORB-SLAM2; first, a bag-of-words technique pro-
vides a set of candidate keyframe matches via a fast database
search [14]. These candidate keyframes are filtered using two
parameters, kwords and kscore, which provide a lower bound on
the number of shared words (ORB features), and a similarity
score, respectively. For each keyframe candidate that passes
the filters, the ORB image features are matched to the
current frame. A geometric consistency test is then performed
between the 2D image features and the 3D landmarks using
RANSAC and a PnP algorithm. If enough inliers are found,
the current frame is considered “relocalized” and the relative
pose is further optimized by considering all inliers. A search
is performed via the essential graph to establish additional
feature/landmark correspondences, and the keyframes and
landmarks are optimized using bundle adjustment.

The following measures have been adopted to make re-
localization more robust (parameters have been tuned ac-
cording to our experimental set-up). (1) By increasing the
number of pyramid levels of the ORB feature extractor
during mapping, it is possible to relocalize the rover from
the beginning of its descent. Since the spatial resolution
of the wide FOV images is far larger (6.2 times grater)
than that of the narrow FOV images, 11 pyramid levels
are needed in the narrow FOV feature extraction to match
the same feature scale as the wide FOV features (the scale
difference between ORB adjacent pyramid levels is 1.2). (2)
By reducing the minimum number of inliers in the RANSAC
test, it is possible to increase the number of relocalized
frames near the asteroid surface. As the relocalization occurs
in correspondence to the features presenting the finest scale,
only a sub-set of the extracted features is usable. Assuming
4000 features are extracted, only 385 belong to the first
pyramid level, and if the rover is in a 100 m hop while
the primary spacecraft is orbiting at 1000 m altitude only
1/16.5 of the first pyramid level features are visible from the
rover’s wide FOV camera. For these reasons, the threshold
on the minimum number of inliers is decreased from 50 to
10. (3) By disabling scale filtering, it is possible to track new
wide FOV frames after relocalization.

IV. EXPERIMENTAL EVALUATION

To demonstrate the proposed adaptations to ORB-SLAM2,
a series of experiments were performed around a 1.4 meter
diameter mock-asteroid in the JPL Robodome. To simulate
realistic illumination changes, a collimated light was placed
5 m away from the asteroid and the asteroid was mounted
so it could rotate around a single axis. Three configurations
were tested: (1) both prior mapping (primary spacecraft)
and visual SLAM (deployed rover) with static illumina-
tion, (2) prior mapping with the asteroid rotating (chang-
ing illumination) and visual SLAM with fixed illumination
and (3) both prior mapping and visual SLAM with the
asteroid rotating (most realistic). The prior mapping phase
was performed with the primary spacecraft orbiting close
to the asteroid’s equatorial plane. While the mock asteroid
had a diameter of 1.4 m, in order to compare the results
with real exploration missions, all measurements have been
normalized here to an asteroid with an effective diameter of
1000 m, which is around the estimated size of 162173 Ryugu
asteroid. A video attachment of the experiments is available
at https://youtu.be/acI0axPgJCY.

The rover’s wide FOV camera had a FOV of 100◦×82◦

and a resolution of 640× 480 pixels. The primary space-
craft’s narrow FOV camera had a FOV of 60◦ × 35◦ and
1920×1080 pixels resolution. Both cameras were calibrated
with Zhang’s calibration method [18]. The motion of both
cameras and the asteroid were tracked using a Vicon motion
capture system, which provided a 2 mm tracking accuracy.

In order to analyze the algorithm’s performance and gen-
erate the prior map, the timestamps of the camera and the
Vicon system must first be synchronized. Moreover, the two
trajectories are captured in two different reference frames:
the Vicon reference frame w and the camera reference frame
c. The ORB-SLAM2 trajectory is expressed with reference to
the first keyframe pose. In order to align the two timestamps,
we first estimate the time-shift by identifying some distinct
feature in the time-displacement plot. Then, the Vicon data
is interpolated at the camera timestamp values. With the
two sets of trajectory data now synchronized, we then
estimate the rotation matrix w

c R, translation wtc,w, and scale
sc,w between the camera and the Vicon reference frames,
and translation between the camera center and the camera
rig, rtc,r, by solving the following non-linear optimization
problem:

argmin
(w
c R,wtc,w,sc,w,rtc,r)

∑
i
‖wri−sc,w

w
c Rcri−w tc,w+

w
r Rrtc,r‖2, (5)

where w
r R is the pose of the camera rig in the Vicon frame

of reference.

A. Performance in an asteroid-like environment

The images required for the prior mapping were captured
by manually moving the narrow FOV camera, mounted on a
cart, around the asteroid in a circle (i.e. an “orbit”). The light
direction was kept fixed parallel to the asteroid orbital plane.
Vicon data was used to create priors. Two mapping sequences
were captured: the far sequence map, which was taken at a

https://youtu.be/acI0axPgJCY


distance of 160 cm from the asteroid (see Fig. 4), and the
three distance map, which was the result of three consecutive
sequences closer and closer to the asteroid (160 cm, 120 cm
and 80 cm, respectively).

Fig. 4. Successful rover relocalizations in the far sequence map. Keyframes
from the primary spacecraft’s prior map are shown in blue, with red vectors
indicating the camera’s optical axis. Dozens of simulated descents to the
surface were performed in this image sequence; magenta markers indicate
where single images from the rover’s wide FOV camera were successfully
relocalized in the primary spacecraft’s prior narrow-FOV images. The
projection of the camera’s optical axis onto the body (green) allows the
camera’s off-nadir pointing angle to be estimated. Distances are normalized
to a 1000 m asteroid.

Fig. 5 shows the wide FOV relocalization rates over prior
maps which were generated by setting the following tuning
parameters: prior insertion rate n, information matrix values
σr, σt and σs, and ORB features extracted for each image
N. The absolute trajectory estimation error for the narrow
FOV mapping is 3 m, while the accuracy of the (normalized)
motion capture ground truth is 1.4 m. These values have the
same order of magnitude as the accuracy with which we can
estimate the pose of the spacecraft using orbit determination
[19]. The angular error is only 0.2◦ along each axis.

B. Relocalizing a wide FOV camera to narrow FOV priors

The robustness of the algorithm to relocalize the wide FOV
camera to narrow FOV priors was tested with a sequence
of images simulating dozens of wide FOV camera descents
to the asteroid mock up surface (again, with a fixed light
direction). The wide FOV camera was moved by hand to
simulate the rover’s descent to and hops on the asteroid
surface. The reference trajectory was extracted by tracking
four retro-reflective markers on the camera. Despite the large
scale variations encountered during the drastic “in-and-out”
motions, Fig. 4 shows that about 40% of the 6100 wide
FOV images were relocalized. An example of a successfully
relocalized frame is shown in Fig. 6.

Relocalization rates were evaluated by varying the number
of map candidate keyframes returned by the BoW library,
changing the two parameters kwords and kscore, and by mod-
ifying the number of iterations performed in the RANSAC
scheme during the geometric consistency test. We focus on
the wide FOV relocalization rate for a rover hop height of
150 m. As we can see from Fig. 5, by filtering the candidate

Fig. 5. Percentage of successful rover relocalizations vs. the normalized
distance from the asteroid surface for the simulated descents shown in Fig. 4.
These histograms indicate the percentage of the rover’s wide-FOV camera
images that were successfully relocalized in the primary spacecraft’s narrow
FOV image priors in the three distance map (Map A) and far sequence
map (Map B). For both map priors, the best relocalization rates occurs
when the number of ORB features per frame is increased to N = 4000.
The parameters used in the bag-of-words keyframe candidate selection
and RANSAC geometry consistency tests are also varied. Distances are
normalized to a 1000 m asteroid.

Fig. 6. Example relocalization. Left: an image from a hopping rover’s
low-resolution wide-FOV camera (640× 480 pixels, f = 274 pixels). On
the right, this image has been successfully matched to a high-resolution
narrow-FOV camera image (1920×1080 pixels, f = 1527 pixels) from the
primary spacecraft’s prior map.

(a) (b)

Fig. 7. Relocalization error for the rover’s wide-FOV camera in the
simulated descents shown in Fig. 4 and the three distance map priors with
n = 20 and N = 4000. Distances are normalized to a 1000 m asteroid.
(a) Relocalization error vs. the normalized distance to the asteroid surface.
(b) Relocalization error vs. the off-nadir pointing directions, which occurs
when the rover tumbles.

map keyframes, the relocalization rate is 10%, which grows
up to 17% if we take all the keyframes in the map. The



(a) (b) (c)

Fig. 8. (a) Histogram of successful wide-FOV camera relocalizations in the simulated descents (from Fig. 4) vs. the rover’s longitudinal position θa above
the asteroid’s surface for three prior maps. The three prior maps were captured with different surface illumination angles as measured between the primary
spacecraft and the sun while the asteroid rotated (αs = 23◦, 53◦ and 82◦). The wide-FOV simulated descents were recorded with a fixed αs = 82◦. (b)
Wide FOV camera relocalization on a large map generated by fusing individual maps illuminated every αs = 5◦. Top: relocalization errors as function of
αs. Bottom: the number of localized frames for each αs map. (c) The final map and successfully relocalized wide FOV frames.

relocalization rate at 150 m is 38% if the far distance map is
built by extracting twice as many (4000) ORB features for
each image. By using the same map parameters to build the
three distance map, the rate grows up to 52%.

Fig. 7a illustrates the accuracy of the localization algo-
rithm as a function of the distance from the asteroid. The
mean localization accuracy ranges from 16 m to 26 m.

C. Robustness to off-nadir camera pointing

The localization accuracy of the wide FOV camera on
the prior map was evaluated as a function of the off-nadir
pointing direction, which is the angle difference between the
optical axis of the localized frame and the optical axis of the
corresponding keyframe in the reference map. As we can see
from Fig. 7b, ORB-SLAM2 can handle misalignments up to
about 45 degrees.

D. Robustness to illumination changes

To test the algorithm’s robustness to variations in surface
illumination angle, a series of maps was created by changing
the direction of the light source, and the wide FOV camera
was relocalized over them. Each of these maps was generated
by mounting the narrow FOV camera on a tripod while the
asteroid was rotated with respect to a fixed light source,
whereby the light source was relocated for each map. This
allowed the formation of perfectly circular mapping orbits
around the asteroid.

Fig. 8a shows a histogram of successfully relocalized wide
FOV frames as function of the longitude around the body’s
rotational axis θa for different relative surface illumination
angles αs. The wide-FOV simulated descents were recorded
with a fixed αs = 82◦, thus, when θa = 82◦−αs the wide
FOV frame had the same lighting conditions as the map
keyframe. The data in Fig. 8a suggests a robustness to
lighting angle of about ∆θa = 15 degrees.

While ORB features are relatively robust to illumination
angle (±15o), the ability to localize at any time of day

(i.e. ±180o) still requires a prior map with images from a
wide variety of illumination angles. To this end, a map was
generated by fusing a series of maps with the lighting angle
∆αs varying in increments of 5 degrees. Fig. 8b shows the
number of relocalized frames for each illumination condition
and the corresponding average relocalization errors. The data
suggests that some illumination angles are more favorable
than others for mapping. For example, if αs is close to 0o,
the sun is behind the camera and very few shadows (and
thus, features) are visible. On the other hand, if αs is close
to 90o, large portions of the asteroid surface are occluded
in shadow, also limiting the number of features. The “sweet
spot” for abundant features seems to be about 50o to 70o.

Fig. 9. Instantaneous pose errors for the long hopping sequence shown in
Fig. 1, where the rover uses its wide FOV camera to relocalize multiple times
to the prior map while hopping across the mock asteroid’s surface. Top:
wide FOV camera distance from the the mock asteroid’s surface. Bottom:
instantaneous pose errors, the red line represents the visual odometry results
(no loop closure) and the blue line represents the visual SLAM results (loop
closure enable at t = [23 23.35] h interval). The randomness results from
the RANSAC scheme are averaged over 10 runs. Starting from t = 23.35 h
without loop closure the error drifts over time. Distances are normalized to
a 1000 m asteroid.



Once the rover relocalizes over the prior map, the adapted
algorithm is able to do visual SLAM on the asteroid surface
and create loop closure constraints after large hops. Figure 9
demonstrates this capability, where the visual SLAM tracking
error with loop closure enabled (at t = [23 23.35] h interval)
corrects for about 20 m of drift compared to the tracking error
with loop closure disabled. At t = 39 h, even though most
of the asteroid surface is covered in shadows, and the error
grows, ORB-SLAM2 keep wide FOV camera pose track.

V. CONCLUSIONS
In this paper, we present a collaborative visual localization

framework for a rover designed to hop and tumble across
the surfaces of small solar system bodies. The proposed
method is adapted from the state-of-the-art ORB-SLAM2
algorithm, and is based on a two-phase approach: first, the
primary spacecraft maps the surface of a small body with its
narrow FOV camera. Then, the rover is deployed to the small
body surface and performs visual SLAM with its wide FOV
camera. We test the method using data collected around a
mock asteroid, where camera pose estimates are remarkably
consistent with ground truth despite the occasional “feature-
less” appearance of the asteroid.

We demonstrate the ability to relocalize a wide FOV
camera over a prior map captured by a narrow FOV camera,
and the ability to perform visual SLAM over the asteroid
surface by creating loop closure constraints during large
hops. When compared to ground truth motion capture data
and normalized to a reference scale of 1000 meters, errors
in trajectory estimates average 25 meters. It is important to
note however, that this normalized error is primarily due to
the focal length limitations of our mapping camera and the
inability of our wide FOV camera to get “very close” to the
surface. In practice (i.e. for a true 1000 m asteroid), the rover
may be able to localize much more precisely.

Experimental results suggest that the algorithm is robust
to large variations in scale, viewing angle, and lighting
angle. Relocalization occurs when the distance to the asteroid
surface is between 1087 m and 37 m, when the viewing angle
misalignment is less than 45◦, and when the difference in
lighting direction is less than 15◦. Finally, by fusing together
prior maps generated from a range of lighting angles, we
show that a rover can reliably localize at any time of day.

There are several ways in which this work can be extended
in the future. For one, this study assumed that the hopping
rover is able to use reaction wheels to stabilize its attitude
during hops. Future work will address the case where the
rover may be tumbling—a notable challenge since visual
features continuously rotate into and out of view. Also,
this study does not adequately assess the performance of
visual localization at varying latitudes, and in particular, the
challenges that may arise when attempting to relocalize near
polar regions for a map generated solely from an equatorial
vantage point. Finally, future studies should address the
synergies that onboard visual localization may have with
other mothership-in-the-loop methods such as radar Doppler
and ranging.
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