Multi-objective optimal control for proactive
decision-making with temporal logic models

Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

Abstract The operation of today’s robots increasingly entails interactions with hu-
mans, in settings ranging from autonomous driving amidst human-driven vehicles
to collaborative manufacturing. To effectively do so, robots must proactively decode
the intent or plan of humans and concurrently leverage such a knowledge for safe,
cooperative task satisfaction—a problem we refer to as proactive decision making.
However, the problem of proactive intent decoding coupled with robotic control is
computationally intractable as a robot must reason over several possible human be-
havioral models and resulting high-dimensional state trajectories. In this paper, we
address the proactive decision making problem using a novel combination of algo-
rithmic and data mining techniques. First, we distill high-dimensional state trajec-
tories of human-robot interaction into concise, symbolic behavioral summaries that
can be learned from data. Second, we leverage formal methods to model high-level
agent goals, safe interaction, and information-seeking behavior with temporal logic
formulae. Finally, we design a novel decision-making scheme that simply main-
tains a belief distribution over high-level, symbolic models of human behavior, and
proactively plans informative control actions. Leveraging a rich dataset of real hu-
man driving data in crowded merging scenarios, we generate temporal logic models
and use them to synthesize control strategies using tree-based value iteration and
reinforcement learning (RL). Results from two simulated self-driving car scenarios,
one cooperative and the other adversarial, demonstrate that our data-driven control
strategies enable safe interaction, correct model identification, and significant di-

Sandeep P. Chinchali
Stanford University, Stanford, CA, USA, e-mail: csandeep@stanford.edu

Scott C. Livingston
e-mail: slivingston@cds.caltech.edu

Marco Pavone
Stanford University, Stanford, CA, USA e-mail: pavone@stanford.edu

The authors were partially supported by the Office of Naval Research, ONR YIP Program,
under Contract N00014-17-1-2433.

2 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

mensionality reduction.
Keywords: Decision-making, formal methods, human-robot interaction, data-mining

1 Introduction

Data-driven learning and proactive decision making are key ingredients of modern
autonomous systems (AS). Robots, ranging from surgical assistants to autonomous
cars, must seamlessly interact with other agents, which requires understanding their
intents and behavioral models. While most current strategies used by a robot to un-
derstand the plan of a human rely on passive observations, recent work has focused
significant attention on proactive intent decoding and decision making [16, 9]. Ex-
amples include autonomous cars that gently nudge into adjacent lanes to discern the
driving style of nearby drivers for lane-merging [16] or use large signs to proactively
signal when pedestrians can safely cross at intersections [9].

A principal challenge of proactive decision making coupled with concurrent
robotic control is that the resulting decision-making problem is computationally in-
tractable. A robot must optimize over several plausible models of human behavior,
which is especially complex if we consider a high-dimensional set of trajectories
that an agent may enact to accomplish its goals. In this context, the principal aim
of this paper is to provide a tractable approach for proactive decision making that
exploits algorithmic and data mining techniques for dimensionality reduction.

Related work: Prior work has typically separately treated the problems of intent
decoding and strategy synthesis, which describes how to best use learned informa-
tion for planning future actions. In [17], this gap is partially bridged by modeling in-
terdependency of human-robot planning using Gaussian processes. Recently, Sadigh
et al. [16] show how a robotic car can identify whether nearby human drivers are
aggressive or cautious by nudging into adjacent lanes for information gain. Though
promising, the scheme does not account for safety constraints in probe selection and
assumes a static human driving style. A key motivation of our work is to incorpo-
rate safety constraints and anticipate a rich variety of human behaviors that may
contextually change based on robot interaction to enhance autonomy.

Proactive decision making can be cast as a Partially Observable Markov Decision
Process (POMDP) where the hidden mode of a human must be estimated by a robot,
but POMDPs can only be solved efficiently for small problems [13, 11]. Relevant
prior work using POMDPs includes hindsight optimization for grasping [7], inter-
active POMDPs (I-POMDPs) [6], and goal decomposition approaches [12]. Recent
work on temporal logic models highlights their ability to capture safety constraints
and high-level interactions [18, 8, 14]. In this paper, we use temporal logic as a tool
for dimensionality reduction by distilling complex human-robot interactions into
succint behavioral templates, which we learn from real driving data.

Statement of contributions: We significantly reduce the computational complex-
ity of proactive decision making using a novel combination of formal methods and
data mining. First, we show how to filter high-dimensional state trajectories into
a concise set of behavioral models expressed using temporal logic formulae. We
construct concise states as belief distributions over formal, symbolic models, as op-
posed to beliefs over a much higher-dimensional set of state trajectories. Leverag-
ing real human driving data from the Stanford Drone Dataset (SDD) [15], we mine
parameters for temporal logic formulae that we select to be representative of key

Proactive decision-making with temporal logic models 3

lane-merging behavior. Our framework, however, is general and can be extended to
formulae that are automatically learned from data. Based on these symbolic mod-
els, we synthesize value iteration and reinforcement learning (RL) controllers that
proactively probe human intent for information gain while minimizing control cost.
Simulated studies of two robotic car scenarios, ranging from adversarial to cooper-
ative, validate our approach, which we also characterize theoretically.

Paper organization: The rest of the paper is organized as follows. In Section 2,
we introduce two motivating examples of proactive decision making. We then in-
troduce temporal logic and our solution framework in Section 3. Next, we show
how to reduce problem complexity and provide a theoretical analysis of our solu-
tion framework in Section 4. Sections 5 and 6 provide simulations from data-driven
models from the SDD and control strategies generated by both value iteration and
reinforcement learning. Finally, we provide concluding remarks in Section 7.

2 Examples of Proactive Decision Making

Throughout this paper, we refer to the following two examples of proactive decision
making to illustrate key technical concepts.

Example 1, Cooperative lane-merging: A robotic car must merge into a crowded
roundabout with pedestrians and bikers, such as in Figure 1(a) from the SDD [15].
Inspired by autonomous car startup drive.AI’s [9] recent proposal, the robotic car
can proactively instruct pedestrians to wait, safely cross an intersection, or choose
not to signal. Pedestrians obey or disobey the robot’s safety indication and cross
based on their observations of traffic and internal risk profile (cautious or daring).
The robot balances the cost of signaling, which represents a risk probability of erro-
neously indicating safe conditions, with exploitation of its current pedestrian model.
Notably, we mine key temporal logic formulae for this scenario from the SDD.

Example 2, Adversarial car-pursuit: In Figure 1(b), a robotic aid vehicle (green)
is transporting medical supplies in an urban warzone, where it might be followed by
benign civilian vehicles, an enemy surveillance car, or be directly chased by an en-
emy pursuer (red). If the robot proactively makes subtle route changes, it can differ-
entiate benign civilian cars from surveillance vehicles since it is highly improbable
civilians systematically follow the robot. Thus, the robot must balance exploration
of follower intent, which comes with a control cost of extra travel time and fuel,
with exploitation of its currently assumed model for safe delivery of supplies.

3 Proactive Decision Making Framework

In this section, we formulate the problem of proactive decision making with for-
mal methods. First, a definition is presented for sequences of interaction between
multiple agents. Next, the specification language used throughout the paper is intro-
duced, followed by an adversarial Markov Decision Process (MDP) with labelings
that allow it to be evaluated with respect to a specification. Finally, a problem is
formulated for strategy selection and optimality of the adversarial MDP.

Consider a set of m agents operating in discrete time. Let &7 = {1,...,m} denote
the set of agents, Act = Act; X --- X Act,, denote their joint action space, and S
denote a joint state space.

4 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

2
?
-{‘
4

pursuer

Fig. 1: Examples of Proactive Decision Making: (Left) A cooperative scenario, from the Stanford
Drone Dataset [15], shows how cars must nudge into crowded roundabouts. (Right) An adversarial
scenario, inspired by [5], shows how a green robotic car must safely swerve lanes to determine if
it is being pursued by a red adversarial car.

Definition 1. An interaction sequence is a sequence of state-action pairs indexed by
time and denoted by

%(T) — [(S‘r’a‘r), e (S‘r+t—1’ar+t—1)’s‘r+t] ,

where 7#/(T) is said to begin at discrete time 7 and have duration ¢, and where states
are given by s € S and actions by a = (ay,...,a,) € Act. An interaction sequence
2#(0) is called an interaction history and is also written .7;.

In the car-following example, the set of agents comprises the robot and follower,
states are the lane occupancies, and actions are probing route deviations.

3.1 Bounded linear-time temporal logic (BLTL)

In this paper, formal specifications of interaction sequences are defined for finite
durations that are well-suited to information gathering tasks. We employ a frag-
ment of metric temporal logic (MTL) named bounded linear-time temporal logic
(BLTL),which was introduced in [5] and summarized below. The crux of BLTL is
to first define the operator Uy, where I = [a, b] is a bounded interval on the nonnega-
tive integers N, to express constrained reachability over finite durations of non-dense
time. For Boolean formulae f and g that do not contain temporal operators, f U, ;) &
is satisfied by a sequence o if f is true at each state beginning at time a, until a state
is reached where g is satisfied or the time b is reached. A key feature of all BLTL
formulae is that they can be decided using a finite sequence of timesteps, since all
such intervals / are bounded.

To reason about interaction sequences, we need a mechanism to check if high-
level logical formulae, constructed from a set of atomic propositions, are satisfied at
individual states. We denote a finite set of atomic propositions by I1, where elements
of IT are Boolean-valued variables that, at each discrete time, evaluate to either True
or False. Atomic propositions associated with a self-driving car might include %" =
{C,}%_, to indicate the robot occupies lane x of X total lanes.

BLTL syntax over interval / is given by the context-free grammar

p:=True|p|-@| oA |O¢|oU; 0, 1)

Proactive decision-making with temporal logic models 5

where p is an atomic proposition p € II. Here, atomic propositions p can be com-
bined to describe logical formulae ¢ by using standard logical connectives such
as conjunction (A), disjunction (V), negation (—), and implication (=), coupled
with temporal operators such as eventually (<)), always ((0;), and until (U;). The
connective [; ¢ means that @ is true at all positions of the word in the interval /
of time steps; the connective <>; ¢ means that ¢ eventually becomes true within a
finite time; the connective ¢ U ¢, means that ¢; has to hold at each position in the
word, at least until ¢, is true in interval /. Significant expressivity can be achieved
by combining temporal and Boolean operators in BLTL.

For a search and rescue mission triggered by a flare, the operational behavior
“once a flare is lighted, always a drone is dispatched until a human-operated rescue
helicopter arrives within interval 7;,” can be expressed as:

flare = (drone Ujoz] helicopter).

Interaction sequences (words) must be long enough to decide whether a BLTL
formula is satisfied. For any BLTL formula ¢, T(¢) denotes the minimum time at
which the satisfaction of ¢ by any interaction sequence can be decided, such as Tj,
in the drone example. T'(¢@) is constant, finite, always exists for each ¢, and is no
longer than the sum of the upper bounds of all intervals appearing in ¢. More details
on the semantics of BLTL are in [5] and on topics in model checking in [2].

3.2 High-level agent intent models

Henceforth we treat the case of two interacting agents, one of which we control.
The other agent is referred to as the adversary. To reason about their interaction, we
use labelled adversarial Markov Decision Processes (aMDPs), which are defined
similarly as in [18].

Definition 2. : A labelled adversarial MDP . is a tuple (S, Init, Act’, Act*, P, II, L),
where S is a finite set of states, Init C S is a set of possible initial states, Act® is a
mapping from states into sets of controlled actions, Act" is a mapping from states
into sets of uncontrolled actions (or adversarial actions), I is a finite set of atomic
propositions, the labelling function L : S — 2T maps states to atomic propositions,
and P : S X Act® x Act" xS — [0, 1] defines transition probabilities where for each
state s € S, a € Act’(s), and b € Act(s), YyesP(s,a,b,s") = 1.

Assumption 1 For every state s € S, Act®(s) # 0 and Act"(s) # 0.
Intuitively, this assumption stipulates that no dead-ends exist.

3.3 Interaction sequences and traces of adversarial MDPs

Let . be alabelled adversarial MDP. A strategy is a partial function from Hist(.#,T)
to exactly one of the two action sets associated with .Z: Act®, Act”. Let be a
strategy mapping into Act®, and let i be a strategy mapping into Act”. The set of
interaction histories consistent with these strategies is defined by

Hist(.#,T, 7, 1) = {7 | s e it A
VT < T:P(s", (), 10 (),s") >0} (2)

6 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

Using the labelling associated with ./, the set of traces that may occur under strate-
gies 7 and u is defined by

Traces(.#,T,m,u) = {c € =T 34 € Hist(A, T, 7, 1) :
VT:0<1<T Ao =L(s")}, (3)

where X = 21, In words, X is the set of subsets of atomic propositions. An atomic
proposition ¢ is said to be true at a state s if and only if ¢ € L(s). The depen-
dence of each o € Traces(.#,T,x, i) in (3) on some 7 € Hist(.#Z,T, 7, 1)
can be generalized to show there is a function ¢ from Hist(.#,T, 7, L) onto
Traces(.#,T,m,) consistent with the comprehension in (3), i.e., such that for all
A7 € Hist(A ,T,n, 1), L(H#7) € Traces(#,T,m,|t) and 47 realizes the exis-
tential quantification in (3).

3.4 Probability of satisfaction and agent-intent models

Let ¢ be a BLTL formula ¢ defined in terms of atomic propositions from I1. Recall
that there is a minimal bound T'(¢) such that for any 7 > T(¢) and for any ¢ €
X7 it is decided whether 6 |= ¢ or o [~ ¢, i.e., the word o has sufficiently many
positions to decide satisfaction of ¢. Now, define the expression .77 |= ¢ to be true
if and only if Z(J#7) = ¢, which indeed is well-defined for T > T(¢) because
Traces(.#,T,m,u) C X1+

Recall that the aMDP ./ has finite state and action sets. For T < oo, it follows
that the set Hist(.#,T, 7,) is finite for any policies 7 and u. Entirely similar ob-
servations hold for Hist(.#,T) and Traces(.#,T, T,).

Recall that each interaction history J¢7 € Hist(.#, T, m, 1) defines a finite se-
quence of states and actions. From (2), it follows that .77 is equivalent to a finite
sequence of state-action-state triples, each of which is a transition of .#Z. Recall
that the probability of each transition is defined by P. Computing the product of
these probabilities for each element of Hist(.#, T, &,) and normalizing provides a
probability mass function over Hist(.#, T, 7, 1t).

As shown earlier, for sufficiently large 7, it can be decided for each element of
Hist(.#,T, m, 1) whether it satisfies the BLTL formula ¢, hence we define

Py zp(Init = @))

as the probability of satisfying ¢ when AS strategies and adversarial strategies are
applied to .# . Notice that T does not need to be explicitly given above because once
satisfaction of ¢ is decided for an interaction history, any additional actions cannot
change the outcome. When Init is a singleton, we write P 4 7 ,, (s = @).

We now define high-level agent intent models and assumptions on their behavior.

Definition 3. An agent-intent model is a pair (4 , @), where .# is a labelled adver-
sarial MDP and ¢ is a BLTL formula.

The following assumption states that the adversary, if following model (., @), will
select a strategy that maximizes the probability of satisfying ¢. Such an assumption
is natural since the adversary’s own strategy must be as concordant as possible with
its true specification, but we allow for measurement uncertainty etc.

Proactive decision-making with temporal logic models 7

Assumption 2 Let (.4, Q) be an agent-intent model. For any s € Init, the adver-
sarial strategy is from the set

argmaxminP 4 (s = @),
u b

where Py 7 ,.(s = @) is the probability that the labeled Markov chain induced by
finite-memory strategies T and |1 and with initial state s satisfies .

3.5 Proactive Decision Making with BLTL constraints

We now introduce the problem of Proactive Decision Making with BLTL formu-
lae and adversarial MDPs. It involves interaction between an autonomous system
(AS) and an adversary, referred to as adv. The AS must find a control policy 7Tas
that maximizes reward R despite possible interference from the adversary enacting
controller 7.4,. Reward function R : % — R defines a scalar reward over inter-
action history ¢/ which incentivizes the AS to learn about the true model M; of
agent adv while minimizing the cost of information gain. Interaction histories must
satisfy goal and safety specifications encoded in BLTL formula ¢.

Problem 1. ProDM-BLTL: Proactive Decision Making with BLTL:
Given a finite set of agent-intent models {(.#1,1),...,(#n,@n)}, find strategy
T, such that
Thg € argmax (minE//,-,nAs,nadv (R(%)))
Tas Tagv
where ground-truth model j is fixed and known to the agent adv but is unknown to
the AS, and where 7.4, € argmax,, Rﬂj%s,u(lnit E 9)).

In terms of the ongoing example of the car-following scenario, R is a weighted
sum of fuel and lane deviation cost coupled with a metric of information gain and
specifications ¢ govern how different follower car models pursue the robot. Inter-
action sequences #7 are joint robot-follower lane trajectories.

4 Dimensionality Reduction and Solution Algorithm

Problem 1 is intractable because, as a consequence of not knowing the ground-
truth index j, we must optimize over all possible agent-intent models M; = (.#;, ¢;)
and interaction sequences 7. In this section, we present, solve, and theoretically
analyze a new problem based on complexity reductions from Problem 1.

4.1 Request-response formulae and satisfaction bitvectors

For a special form of BLTL formulae that is defined below, we are able to reduce
the size of the action space of the abstract system. Let {(.#1,¢1),...,(.#y,¢n)} be
a set of agent-intent models (recall Definition 3 in Section 3.4).

Definition 4. (BLTL request-response formula): The specification ¢; for agent-
intent model i is said to be a BLTL request-response formula if it has the form

o= N (Vi = Opnu™)= A)

re{l,...R;} re{l,...R;i}

8 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone
where each mode r represents an AS (robot) probe to agent i given by W, ™"
is the informative response, and T, is the maximum duration to wait for the response.

BLTL request-response formulae are practically-motivated because many real-
life information-gathering tasks generate a response within a bounded time. Au-
tonomous cars must wait a finite duration for pedestrians or anomalous traffic pat-
terns to reach normal states and deadlock situations rarely persist indefinitely. In the
car-following example, a request is a lane-change and an informative response is for
an adversary to follow the robot within a bounded interval 7,.. In the definition of
belief MDP given later in this section, request-response formulae allow us to define
an abstract “impulse” action, thus reducing the effective space of possible actions
for policy selection.

Given our goal of reasoning about likelihood among agent-intent models, the
effective state space for planning can be reduced by abstracting it into outcomes of
interaction, which we now define.

Definition 5. (Satisfaction bitvector observation): Consider N high-level agent in-
tent models M; = (;, ¢;) (Def. 3 in Section 3.4) where each specification ¢; has R;
BLTL request-response formulae. Define Q = Y; R;, and T = max; T (¢;). The satis-
faction bitvector observation o is a function that maps an interaction history %7 to
a vector of dimension Q where the g-th element is 1 if %7 satisfies the gth interac-
tion formula @, = @ and is otherwise 0. Observation space & = {o | 0 € {0,1}¢}
comprises 2€ possible bitvectors. Written in terms of the indicator function 1,

o(7) = [L (A7 E 9l),.... 1 (7 = o). (©6)
4.2 Reduced ProDM-BLTL Problem with Belief MDPs

Leveraging the previous definitions, we reduce the complexity of Problem 1 by
constructing a new reward function and belief MDP (defined below) where states
are belief distributions over the N candidate agent-intent models, actions are BLTL
requests, and transitions depend on satisfaction bitvector observations.

The belief MDP of a set of candidate agent-intent models is defined as M =
(By,B,A, Py, ;) with the following components:

1. B={BeRN |B(i)>0AY;B(i)=1}.
Belief states are probability distributions over the N candidate models.

2. A={y lie{l,... N}, re{l,...,Ri}}.
Abstract (impulse) actions are controlled requests for any BLTL request-response
formula.

3. B,:BxAxB—R
Belief transition function P, is defined as follows, where o = o(J%7(#.)) is a
satisfaction bitvector observation (Def. 5 in Section 4.1).

Py(Br,ax,Biy1) = Pr(Biy1 | Bi,ax)

N
= Z Pr(By41 ‘Bk,akyf)k)zpr(()k | ag, ;)By (i)
i=1

oxe0

where

Proactive decision-making with temporal logic models 9

[
Pr(ox | a,.) = T (of Pr#r () b= 0, | ax,)
g=1

(1= o) Pr(H7 (1) - 94 | o), (T)

where o, = (0},... ,og) and ¢, was in Def. 5. Notice that Pr(oy | ax,.#;) is the
joint probability of satisfaction or not, depending on respective elements of the
bitvector oy, for each agent-intent model, given that the true model is (.#;, ¢;).
4. The belief update function 7, : B x A x & — B maps belief state By, action a,
and resulting observation oy to new belief vector By | by Bayes’ Rule. The belief
update depends on the probability of observation oy given an informative impulse
a under each competing model M;, i.e., Byy1 = T, (By, ax,0x) where

By 1(i) = B (i) Pr(o | ax, A1), (®)

and 7 is a normalization factor.

5. The initial state is a uniform probability distribution over N possible models, i.e.,
EOZBOZ [%?a%]

6. The stage reward is a weighted sum of control cost and information gain, where
information gain is measured as entropy reduction in the belief vector

RY (Bx,ax, Bis1) = —ac(ag, By) + B[H(B) — H(Bii1)]-)

Here, ¢ : A x B — R is the control cost function, H is the Shannon entropy, and
a > 0, > 0 weight the control cost and information gain.

A transition of M occurs in two parts starting at an iteration k. First, we start at
a belief state By at time #; when the fully observable aMDP state is s, . An action
is selected as an impulse a;,, corresponding to a specific BLTL request-response
formula for some model i and high-level mode r. By selecting this action, we can
assume model i is the true model and synthesize a strategy corresponding to aMDP
#; and interaction formula ¢;, using Assumption 2 in Section 3.4.

Second, a finite-horizon play occurs, resulting in a final state s, , 7(¢) of the
aMDP and an interaction sequence from #; of length T(¢), 7 (t;). The interaction
sequence can then be mapped to a satisfaction bitvector observation oy = o(#7 (1;.))-
Given current belief state By, action a;, and satisfaction bitvector observation oy, we
can construct a new belief state By, by Bayes’ Rule. From new belief state By
and underyling aMDP state s; | 7(¢), the process repeats.

We can now present the ProDM-BLTL problem solved in this paper.

Problem 2. Belief-ProDM: ProDM-BLTL with Belief MDPs

Let {(.#1,¢1),...,(#y,®y)} be aset of agent-intent models, and let (By, B, A, P, 7)
be the belief MDP corresponding to it. Given the reward function R,i’ in (9) and dis-
counting factor y < 1, solve

10 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

K
lim E R (By,ax,B
max Klgio (ZV(k(ks Qs k+1)>

g k=0
such that o = o(J% (1))

Bi1 = (B, ak, 0k)
forallk=0,....K—1

4.3 Value Iteration on BLTL Trees

A key challenge in solving Problem 2 is that there are infinite belief states By. How-
ever, initial belief By is always uniform, and there are a finite number of impulses
ay € A. Notably, there are 2€ possible observations oy € ¢, which is much smaller
than the number of interaction sequences of length 7 (¢). Thus, at any iteration &,
there are a finite number of possible next belief states By 1.

Hence, we solve Problem 2 in a receding horizon fashion, where at iteration k
we construct a policy tree [3] starting at initial belief By. Each node in the tree is
an impulse a;, leaves are observations oy, and subsequent nodes are actions ay |
etc. Using value iteration on such policy trees with a horizon of H actions, we can
select an optimal sequence of impulses g to a; g, and enact the plan depending on
observations o. Finally, at belief node B,y we construct a new tree and optimal
policy, which avoids optimizing over all possible belief vectors in B.

4.4 Size of BLTL trees

Satisfaction bitvectors provide significant reduction in the number of BLTL trees.

The set of policy trees with | Act®| actions, || observations, and a horizon H has
!

size | Act| T71=T" trees [3]. We first calculate the number of BLTL trees. The size of

A, the set of all impulses, is |A| = Q = ¥; R; consisting of all possible modes R; for

each model i. There are also 2€ total observation bitvectors in &, leading to

|0 1 20H 4

|A| T = Q221 (10

trees. We now consider the number of trees if we used impulse actions, but ob-
servations were individual interaction histories of length T'(¢). Since the AS only
acts with an impulse, we need not look at all possible actions in the interaction
sequence, but rather just look at all possible state trajectories. Let the set of all ob-
servation. hi.stories of duration T (@) to be Hr(q), where |Hr(y)| = S|T(). Then, we
must optimize over
(8| T(P)HH (s|T(P)H
|A~‘ 1s/7(9) =0 1s/7(9) 11

trees, which scales with the size of state space |S|, impulse bound T (¢), and horizon

H. Notably, the BLTL tree size with bitvectors only scales with the size of a smaller
set of temporal logic formulae and horizon H. In Section 6, we show how a concise
set of BLTL trees allows us to solve otherwise intractable problems.

4.5 Analysis

Theorem 1 (convergence). Suppose that (.#1,®y) is the ground-truth agent-intent
model (without loss of generality, modulo permutation of indices of candidate mod-

Proactive decision-making with temporal logic models 11
els). Furthermore, suppose there is some a € A such that each j # 1,
Pr(o | a,.#1) #Pr(o | a, #) (12)

for some observation o. Then, for each optimal policy & that solves Problem 2 with
a =0, there is a time T such that for all time k > 7, the belief vector By, has maximum
value in the first position and no others, i.e., Bi(1) > By(j) for j # 1.

Proof (sketch). Because the agent-intent model (.7, ¢;) is the ground-truth by hy-
pothesis, the true probability density function according to which observations are
sampled is Pr(o | a,.#1) for each abstract action a. As such, (12) implies that there
is an abstract action such that every other candidate agent-intent model would yield
observation vectors that differ in their expected frequency compared to the ground-
truth (i.e., model 1). If @ = 0 in (9) (zero control cost), then from (8) it follows that
the belief will tend to accumulate mass in position 1, i.e., for the ground-truth.

When the ground-truth stochastic dynamics or behavior specification is not in
the set of candidate agent models, we may want the belief distribution to indicate
when there is no match. Intuitively, the fitting process of belief states attempts to fit
the distributions of satisfaction bitvectors per agent-intent model to the data. Thus,
if none of the candidates is a good match, the belief will remain with high entropy
and the AS can enact a conservative control policy. Due to space constraints, we
provide rigorous full proofs of several relevant theorems, including general cases
where o # 0, in an online supplement .

5 Example Scenarios

In subsection 5.1, we provide BLTL formulae for adversarial car-following. Then,
in 5.2, we show our approach extends to real SDD driving data. Finally, in 5.3.1, we
introduce control costs that decrease as a robot gains certainty over human models,
serving as a key contribution for modeling dynamic human-robot cooperation.

5.1 Robotic car-following BLTL specifications:

A robot transporting medical supplies must make subtle, costly route deviations
to discern the nature of followers (Figure 1(b)). Follower models are referred
to as pursuant, z-bound (for a surveillance car), or benign for a civilian.
The robot’s lane occupancy in one of X total lanes is denoted by system vari-
ables % = {Cy,...,Cx}. Likewise, the follower’s lane is denoted by environment
variables 2" = {Fi,...,Fx}, leading to overall state s, = [Cy,Fy,] at time 7. The
z-bound car represents surveillance behavior since it must always stay within z
lanes of the robot, yet is allowed the flexibility of 7 time steps to do so. We expand
the BLTL formulae ¢ from [5] by adding control costs and more surveillance cars:

1. @penign = True, i.e., civilian cars have no temporal logic constraint.
2. @:—bound = Axef1,.x3 U (€ = O FzVFEez1 Ve VFeiz)

3. @pursuant = A1, x} O (Cx = Q[OyTpursuant]Fx) with time bound T,y rsuant

! available at https://asl.stanford.edu/publications or directly,
https://asl.stanford.edu/wp-content/papercite-data/pdf/Chinchali.Livingston.Pavone.ISRR 17.pdf

12 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

The robot can probe the follower by changing lanes which incurs a lane-deviation
and fuel cost of ¢(a,) = 1. Staying in the same lane incurs no cost. By proactively
changing lanes, the robot learns if adversarial cars will eventually follow it to satisfy
formulae of the form 2 and 3.

5.2 Stanford Drone Dataset (SDD)

The SDD [15] is a series of trajectories of bikers, pedestrians, and low-speed ser-
vice carts that navigate crowded scenes on Stanford University’s campus. Speed
limits and restrictions on outside traffic make the campus a prime testing ground for
autonomous vehicles. We consider how low-speed robotic carts might merge into
crowded roundabouts such as in Figure 1(a) if they were allowed to proactively sig-
nal their merging intent. We note that potential cart-pedestrian accidents are only
minorly injurious due to speed restrictions. Indeed, the SDD shows carts aggres-
sively approaching pedestrians and the annotations and students alike jokingly refer
to the roundabout in Figure 1(a) as the death circle only since it has not caused
major accidents. Thus, a robot can plan rich, proactive merging strategies.

We performed extensive quality-control of over 69 GB of SDD data to identify
trajectories where pedestrians and carts respond to rapidly changing traffic densities
and intra-agent distances to merge or cross at opportune times (Figure 2).

5.3 Car-merging BLTL specifications

Let A = {s,u,n} denote the cart’s safe , unsafe , and no signal control actions, re-
spectively. Cross traffic density p € R is defined as the number of pedestrians per
frame that travel perpendicular to the cart’s merging direction. State S = [p,d, V]
incorporates traffic density p, the cart’s speed v € R, and its distance to a closest
pedestrian d € R, as exemplified in Figure 2(b). Pedestrian models are denoted by
m € {cautious ,daring }. Boolean variables p € {h,l} indicate if traffic is heavy

(h=p > po) or light (I = p < pp), where po is a density threshold.
Given a traffic density p and safety indication a, a pedestrian of model m will not
cross for a time Tlg’fa to safely assess their surroundings, and after may cross based on

their internal risk profile. Such behavior is captured by formula (pg’_a and an example
for a daring pedestrian during heavy traffic (p > po) after the robot indicates safe is:

(p}i‘;ﬂ"g =0[(p > po) A safe | = — cross U[O‘T;:Iaring] True (13)

heavy impulse .
can only cross after wait-time

The formula for a model m human covers all traffic scenarios p and signals a:

o"=N N o5, (14)

acA pe{nl}

Crucially, BLTL time-bounds Tﬁ’” allow the robot to differentiate models based

a

on their crossing probabilities. For example, 7948 < Tcautious regardless of sig-
nal since daring pedestrians deliberate for shorter times. Further, pedestrians wait
longer if unsafe is indicated or traffic is light since the robot may merge. The robot
waits a decision interval T'(¢) > Tg’fa for any model m, traffic condition p, and safety
signal a to assess the pedestrian’s response. Suppose the agent indicated safe dur-

Proactive decision-making with temporal logic models 13

2000 8

P . 6
i Biker, Pedestrian a4
- Car 2

0

speed v
[,
SRo0T

500 Siiiis 5 400
\ 300

| = 200 WML.___A_MAVL
, 100

0
0 . Y 6500 6550 6600 6650 6700 6750 6800 6850
0 200 400 600 800 1000 1200 1400 video frame

Fig. 2: A cart (bold) rapidly accelerates to merge when traffic p subsides after frame 6700.

ing very heavy traffic since it could not merge, yet it observed — cross after T ().

Since the daring pedestrian is only constrained to not cross for T8 << T(¢), the
probability of observing — cross in a long interval might indicate a cautious model.

5.3.1 Robot behavior and dynamic control costs

In the following specifications, density and distance thresholds py, do, and speed
multipliers M,L are mined from data 2. We can learn such parameters automatically
by contrasting velocity and traffic distributions during merging and steady-driving
scenarios to find separating thresholds. Formulae 1 and 2 capture scenarios like
Figure 2, where a cart cannot signal safe as it attempts to merge:

1. (pslow — D[(p > po) AN (d < do) N (V = Vo)] - <>[07Txlow] [(V < Yo)]

M
cross-traffic biker close speed decelerate
2. @"e =0[(p < po) A(d >do) A (v=0)] == o pmerse[(v > Lvg) A — safe]
—_— Y— — ~——
light traffic biker far accelerate disallow cross

Control costs capture the risk of a worst-case scenario where the cart causes an
accident after indicating safe , so c¢(s,By) > c(u,By) > ¢(n,By) for all k. Since the
risk may decrease as the agent is more certain about the true pedestrian model, we
also have c¢(a, By) o< H(By,) for any action a.

6 Simulation results

In subsection 6.1, we show how dimensionality reduction allows us to solve an
otherwise intractable belief MDP using value iteration. Then, in 6.2, we leverage
advances in deep RL to scale our framework to larger problems with several com-
peting models or cases where the ground truth model is not in the candidate set.

6.1 Value iteration tree results

Figure 3 shows a proactive car-merging strategy solved by BLTL tree value itera-
tion. As introduced in Section 5.3.1, control costs capture model uncertainty and risk

probabilities, so c(a,By) = %(l + |%|) where ¢, (safe) = 0.40, co(unsafe) =

2 SDD provides annotations in terms of video frames and pixel distances, without calibration data.
As such, recovering metric distances was infeasible, so we omit the values of these parameters.

14 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

2.0 true = cautious , @ = 0.7, 3 = 1.0 true = cautious , @« = 0.7, 3 = 1.0

== noSignal: 0, unsafe: 1, safe: 2
= p>po:l,p<po:0

2
Q Bos s

5 o 5 ‘.
& 3 " —— c(safe, By)
& Boel " c(noSignal, By)
PR T T e g —— c(unsafe, By)
g g o4y === Bj(cautious)
2 < \/‘\/\v/\ Bi(daring)
g
<0 Z 0.2 —

3

20 40 60 80 100 20 40 60 80 100
Iteration k Iteration k

Fig. 3: (Left) In car-merging, the cart repeatedly signals unsafe to merge only after traffic p
subsides. (Right) Control costs decrease as the cart quickly identifies the true cautious pedestrian.

0.30, and ¢o(no signal) = 0 3. The cart initially chooses the high-cost, but most in-
formative safe action when traffic p is heavy and precludes merging. As the traffic
subsides, the cart chooses the lower cost, but still informative unsafe signal since it
can now merge. Belief By, indicates we correctly identify the true cautious pedestrian
model and cost of informative controls decays over time as we increase model con-
fidence (Figure 3(b)). Eventually, the agent chooses the zero cost no signal action
once it has high model confidence and has already merged.

Using bitvector observations instead of individual interaction histories allows
tractable value iteration. Even a simple car-following scenario with 4 lanes and
time-bound of T (@) = 5 steps would have |S| = 42 = 16 joint robot-follower lane
occupancies and 4° = 1024 possible trajectories for the robot alone. If we consider
only 3 BLTL formulae for pursuit, surveillance, or civilian behavior, 3 possible con-
trol actions A = {left, right, stay}, and a horizon of H = 2 impulses, there would be
an integer overflow number of trees using interaction histories on a 64-bit computer.
Notably, with bitvector observations, we only have a tractable 243 trees, since the
observation space does not scale with the lane count or 7' ().

6.2 Reinforcement Learning (RL) results

For complex problems with several candidates or an unanticipated model, enumerat-
ing even high-level observations and their probabilities is infeasible. Thus, we train
an AS to tradeoff costly exploration with exploitation of the most likely model,
without explicitly knowing model observation probabilities. Such a setting is a hall-
mark of RL, so we train an RL agent in a series of training episodes of K iterations.
Each episode starts from a uniform belief By and at step k, the agent chooses infor-
mative probe a; based on current belief state By using parametrized control policy
7o (By). The environment generates observations o, under true model .#; and pro-
vides a new belief vector By and reward ry,| to the agent, since the agent cannot
compute the belief update itself without model probabilities.

We developed simulators for both examples using the openAl gym framework
[4]. We used Google’s Tensorflow [1] to learn a stochastic control policy using the
Actor-Critic (AC) RL learning algorithm [10], where the policy 7 (By) is encoded

3 This is just one representative example of control costs allowed by our general framework.

Proactive decision-making with temporal logic models 15

1.0 true=z;,aa=0.15,3 = 1.0 1.2 true = z;, « = 0.15, 8 = 1.0
0.8 < 1.0
2 308
Q0.6 g — KL
ko) = 0.6
304 4 b entropy
) g = 0.4
; 3
0.2 § N 0.2
0.0 N3t 0.0
0 5 10 15 20 0 2 4 6 8 10 12 14 16
Iteration k Training episodes

Fig. 4: (Left) Both KL and entropy rewards in the RL setting lead to correct model identification,
but the KL trained policy (solid) identifies true model z; with higher certainty. (Right) Normalized
RL learning curves for both reward functions indicates KL converges faster with lower variance.

in a neural network with parameters 0 of 1 hidden layer of 50 units. Figure 4(b)
illustrates model convergence, where the shaded area shows the variance of test
episode rewards when the network policy is paused periodically to evaluate learning.

6.3 RL reward structures:

In addition to the entropy based reward from the belief MDP setting (Eqn. 9), we
can formulate a reward that penalizes the KL divergence between the true model
“one-hot” vector B = [1,0,...0] and the current belief. The following reward is only
appropriate in the RL scenario where the environment simulator knows the true
model and incentivizes the agent to learn the ground-truth:

rKL(By,ax, Biy1) = —ac(ag, By) — BKL(Bis1, B), (15)

where KL is the Kullback-Leibler divergence, c : A x B — R is the control cost
function, and & > 0,3 > 0. Since the KL divergence is always positive, we weight
by —f to penalize excessive differences between By and B.

Interestingly, for a wide spectrum of weights «, 3, the policy learned under the
KL reward converged faster than the entropy reward for the same experimental set-
tings (Figure 4(b)). Further, in a single test episode of K iterations, the KL-learned
policy led the agent to identify the true model with more certainty (Figure 4(a)).
Intuitively, if the expected future entropy reduction is lower than the cost of infor-
mative probes, the agent will stop probing but incur zero future reward since the
belief vector will saturate. However, the KL reward converges better since it con-
tinually penalizes KL divergence between the current belief and true distribution
throughout the episode, incentivizing longer exploration to reduce uncertainty.

7 Conclusion

In this paper, we couple formal methods with data-driven learning to provide a
tractable framework for proactive decision making. Formal methods are used to
extract meaningful symbolic interaction templates from complex interaction se-
quences, such as traces of real human driving data in the SDD. Leveraging advances
in deep RL, we then synthesize information-seeking controllers and provide a theo-
retical analysis of their ability to distinguish models.

16 Sandeep P. Chinchali, Scott C. Livingston, and Marco Pavone

Future work centers on developing an experimental car-merging testbed. We plan
to conduct user studies where a simulated autonomous cart signals its merging intent
using a ProDM scheme and human subjects deliberate on whether to cross, allowing
us to directly determine human risk profiles when explicitly probed. Then, such
risk profiles can be combined with studies on the financial consequences of minor
accidents to select control costs that capture mutual human-robot trust. To solve
problems with a larger spectrum of agent types, we plan to use shared generative
models, such as pre-trained neural networks that capture general driver behavior.

As robots cooperate with humans on increasingly complex tasks, techniques that
distill a continuum of high-dimensional interaction sequences into core essential
templates of interaction will be evermore indispensable. Such a holistic approach to
robot task planning may one day allow robots to effectively cooperate with humans
in diverse settings ranging from factory assembly lines to freeways.

References

1. M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving,
M. Isard, et al. Tensorflow: A system for large-scale machine learning. In Proceedings of the
OSDI 2016. Savannah, Georgia, USA, 2016.

2. C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press, 2008.

3. D. Braziunas. POMDP solution methods: a survey. Technical report, Department of Computer
Science, University of Toronto, 2003.

4. G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

5. S. P. Chinchali, S. C. Livingston, M. Pavone, and J. W. Burdick. Simultaneous model identi-
fication and task satisfaction in the presence of temporal logic constraints. In /CRA, 2016.

6. P.J. Gmytrasiewicz and P. Doshi. A framework for sequential planning in multi-agent settings.
J. Artif. Intell. Res.(JAIR), 24:49-79, 2005.

7. S.Javdani, S. S. Srinivasa, and J. A. Bagnell. Shared autonomy via hindsight optimization. In
RSS, 2015.

8. A.Jones, M. Schwager, and C. Belta. Information-guided persistent monitoring under tempo-
ral logic constraints. In ACC, 2015, pages 1911-1916. IEEE, 2015.

9. W. Knight. New self-driving car tells pedestrians when it’s safe to cross the street. MIT
Technology Review, 2016.

10. V. Konda and J. Tsitsiklis. Actor-critic algorithms. In NIPS, volume 13, pages 1008-1014,
1999.

11. O. Madani, S. Hanks, and A. Condon. On the undecidability of probabilistic planning and
infinite-horizon partially observable markov decision problems. In AAAI/IAAI, pages 541—
548, 1999.

12. T.-H. D. Nguyen, D. Hsu, W.-S. Lee, T.-Y. Leong, L. P. Kaelbling, T. Lozano-Perez, and A. H.
Grant. Capir: Collaborative action planning with intention recognition. In Seventh Artificial
Intelligence and Interactive Digital Entertainment Conference, 2011.

13. C. H. Papadimitriou and J. N. Tsitsiklis. The complexity of markov decision processes. Math-
ematics of operations research, 12(3):441-450, 1987.

14. V. Raman, A. Donzé, D. Sadigh, R. M. Murray, and S. A. Seshia. Reactive synthesis from
signal temporal logic specifications. In Proceedings of the 18th International Conference on
Hybrid Systems: Computation and Control, pages 239-248. ACM, 2015.

15. A. Robicquet, A. Sadeghian, A. Alahi, and S. Savarese. Learning social etiquette: Human
trajectory understanding in crowded scenes. In ECCV, pages 549-565. Springer, 2016.

16. D. Sadigh, S. S. Sastry, S. A. Seshia, and A. Dragan. Information gathering actions over
human internal state. In /ROS, 2016.

17. P. Trautman and A. Krause. Unfreezing the robot: Navigation in dense, interacting crowds. In
Proceedings of IROS, 2010.

18. T. Wongpiromsarn and E. Frazzoli. Control of probabilistic systems under dynamic, partially
known environments with temporal logic specifications. In Proceedings of CDC, pages 7644—
7651, December 2012.

