
Multi-objective optimal control for
proactive decision making
with temporal logic models

Journal Title

XX(X):1–22

c©The Author(s) 2018

Reprints and permission:

sagepub.co.uk/journalsPermissions.nav

DOI: 10.1177/ToBeAssigned

www.sagepub.com/

SAGE

Sandeep P. Chinchali1, Scott C. Livingston2, Mo Chen1, and Marco Pavone1

Abstract

The operation of today’s robots entails interactions with humans, e.g., in autonomous driving amidst human-driven

vehicles. To effectively do so, robots must proactively decode the intent of humans and concurrently leverage this

knowledge for safe, cooperative task satisfaction—a problem we refer to as proactive decision making. However,

simultaneous intent decoding and robotic control requires reasoning over several possible human behavioral models,

resulting in high-dimensional state trajectories. In this paper, we address the proactive decision making problem

using a novel combination of formal methods, control, and data mining techniques. First, we distill high-dimensional

state trajectories of human-robot interaction into concise, symbolic behavioral summaries that can be learned from

data. Second, we leverage formal methods to model high-level agent goals, safe interaction, and information-seeking

behavior with temporal logic formulae. Finally, we design a novel decision-making scheme that maintains a belief

distribution over models of human behavior, and proactively plans informative actions. After showing several desirable

theoretical properties, we apply our framework to a dataset of humans driving in crowded merging scenarios. For it,

temporal logic models are generated and used to synthesize control strategies using tree-based value iteration and

deep reinforcement learning (RL). Additionally, we illustrate how data-driven models of human responses to informative

robot probes, such as from generative models like Conditional Variational Autoencoders (CVAEs), can be clustered with

formal specifications. Results from simulated self-driving car scenarios demonstrate that data-driven strategies enable

safe interaction, correct model identification, and significant dimensionality reduction.

1 Introduction

Data-driven learning is a key ingredient of modern
autonomous systems (AS). However, in many practical
settings, from surgical robots to autonomous cars, this
learning and control must occur while seamlessly interacting
with other agents. This in turn requires understanding the
agents’ intents and behavioral models. While most current
strategies used by a robot to understand the plan of a
human rely on passive observations, recent work has started
to focus significant attention on proactive intent decoding
and decision making Knight (2016); Sadigh et al. (2016).
Examples include autonomous cars that gently nudge into
adjacent lanes to discern the driving style of nearby drivers
for lane-merging Sadigh et al. (2016) or use large signs
to proactively signal when pedestrians can safely cross at
intersections Knight (2016).

An important challenge of proactive decision making
coupled with concurrent robotic control is that the resulting
decision-making problem involves interaction with another

agent. A robot must optimize over several plausible models
of human behavior, which is especially complex if we
consider a high-dimensional set of trajectories that an agent
may enact to accomplish its goals. In this context, the
principal aim of this paper is to provide a tractable approach
for proactive decision making that exploits a combination
of formal methods, control, and data mining techniques for
dimensionality reduction.

Related work: Prior work has typically separately treated
the problems of intent decoding and strategy synthesis,
which describes how to best use learned information for
planning future actions. In Trautman and Krause (2010),
this gap is partially bridged by modeling interdependency of

1 Stanford University, Stanford CA 94305, USA
2 rerobots, Inc., Walnut CA 91789, USA

Corresponding author:
Marco Pavone, 496 Lomita Mall, Rm. 261 Stanford, CA 94305

Email: pavone@stanford.edu

Prepared using sagej.cls [Version: 2017/01/17 v1.20]

2 Journal Title XX(X)

human-robot planning using Gaussian processes. Recently,
Sadigh et al. (2016) show how a robotic car can identify
whether nearby human drivers are aggressive or cautious
by nudging into adjacent lanes for information gain.
Though promising, the scheme does not account for safety
constraints in probe selection and assumes a static human
driving style. A key motivation of our work is to incorporate
safety constraints and anticipate a rich variety of human
behaviors that may contextually change based on robot
interaction to enhance autonomy.

Proactive decision making can be cast as a Partially
Observable Markov Decision Process (POMDP) where
the hidden mode of a human must be estimated by a
robot, but POMDPs can only be solved efficiently for
small problems Madani et al. (1999); Papadimitriou and
Tsitsiklis (1987). Relevant prior work using POMDPs
includes hindsight optimization for grasping Javdani et al.
(2015), interactive POMDPs (I-POMDPs) Gmytrasiewicz
and Doshi (2005), and goal decomposition approaches
Nguyen et al. (2011). Recent work on temporal logic models
highlights their ability to capture safety constraints and
high-level interactions Jones et al. (2015); Raman et al.
(2015); Wongpiromsarn and Frazzoli (2012). In particular,
Wongpiromsarn and Frazzoli (2012) is especially relevant
since it casts human-robot interaction as an adversarial

Markov Decision Process (aMDP) where a robot must
synthesize a strategy to maximize the probability of
satisfying a formal interaction specification by reasoning
over several possible environment (human) behavioral
modes, which quickly becomes intractable for long-
interaction horizons with a plethora of plausible human
models. Unlike Wongpiromsarn and Frazzoli (2012), which
simply maximizes specification satisfaction probabilities,
we instead use an explicit reward signal in the aMDP
formulation to incentize information-seeking, proactive

decision making. Further, we use temporal logic as a tool
for dimensionality reduction by distilling complex human-
robot interactions into succint behavioral templates, which
we learn from real driving data.

Statement of contributions: This paper addresses control
problems with objectives that depend on interaction with
an unknown, possibly adversarial agent. Though this
setting appears to have high dimensionality, we show how
to significantly reduce the computational complexity of
proactive decision making using a novel combination of
formal methods and data mining. First, we show how to
filter high-dimensional state trajectories into a concise set of
behavioral models expressed using temporal logic formulae.
We construct concise states as belief distributions over

formal, symbolic models, as opposed to beliefs over a much
higher-dimensional set of state trajectories. Leveraging real
human driving data from the Stanford Drone Dataset (SDD)
Robicquet et al. (2016), we mine parameters for temporal
logic formulae that we select to be representative of key lane-
merging behavior. Our framework, however, is general and
can be extended to formulae that are automatically learned
from data. Based on these symbolic models, we synthesize
value iteration and reinforcement learning (RL) controllers
that proactively probe human intent for information gain
while minimizing control cost. Lastly, our approach is
demonstrated with generative models applied to simulations
of two cars in a highway lane merging scenario.

A preliminary version of this work appeared at the 2017
International Symposium on Robotics Research (ISRR). In
this revised and extended version, we provide the following
additional contributions: (i) a new generative modeling case
study of highway lane merging, (ii) characterization of
optimal policies in special cases, (iii) empirical study of
exploration-exploitation trade-off for an RL agent, and (iv)
proofs of all theoretical results.

Paper organization: The rest of the paper is organized as
follows. In Section 2, we introduce two motivating examples
of proactive decision making. We then introduce temporal
logic and our solution framework in Section 3. Next, we
show how to reduce problem complexity and provide a
theoretical analysis of our solution framework in Section
4. Sections 5 and 6 provide simulations from data-driven
models from the SDD and control strategies generated by
both value iteration and reinforcement learning. Finally, we
provide concluding remarks in Section 7.

2 Examples of Proactive Decision Making

Throughout this paper, we refer to the following examples
of proactive decision making to illustrate key technical
concepts.

Example 1. Cooperative lane-merging. A robotic car must
merge into a crowded roundabout with pedestrians and
bikers, such as in Figure 1(a) from the SDD Robicquet
et al. (2016). Such examples of human-robot interaction are
already starting to be addressed in industry. For example,
autonomous car startup drive.AI Knight (2016) has proposed
to equip vehicles with large signs that indicate when
pedestrians can safely cross at intersections. Inspired by
drive.AI’s proposal, the robotic car in our example can
proactively instruct pedestrians to wait, safely cross, or
choose not to signal. Pedestrians obey or disobey the robot’s
safety indication and cross based on their observations of

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 3

traffic and internal risk profile (cautious or daring). The
robot balances the cost of signaling, which represents a risk
probability of erroneously indicating safe conditions, with
exploitation of its current pedestrian model. Notably, we
mine key temporal logic formulae for this scenario from the
SDD.

Example 2. Adversarial car-pursuit. In Figure 1(b), a
robotic aid vehicle (green) is transporting medical supplies
in an urban warzone, where it might be followed by benign
civilian vehicles, an enemy surveillance car, or be directly
chased by an enemy pursuer (red). If the robot proactively

makes subtle route changes, it can differentiate benign
civilian cars from surveillance vehicles since it is highly
improbable civilians systematically follow the robot. Thus,
the robot must balance exploration of follower intent, which
comes with a control cost of extra travel time and fuel, with
exploitation of its currently assumed model for safe delivery
of supplies.

Example 3. Highway lane-merging. In Figure 1(c), a
robotic car (red) must switch lanes with a human driven
vehicle (green) within a short time span and length of a
highway. To negotiate this complex interchange, the robot
may accelerate to probe whether the human driver will
slow down and yield to the robot or whether the human
is aggressive, requiring the robot to slow down for the
human. Thus, the robot must balance exploration of human
driver style, which comes with a control cost on unsafe
accelerations, with exploitation of its currently assumed
model to smoothly change lanes.

3 Proactive Decision Making Framework

In this section, we formulate the problem of proactive
decision making with formal methods. First, a definition
is presented for sequences of interaction between multiple
agents. Next, the formal specification language used
throughout the paper, Bounded Linear Temporal Logic
(BLTL), is introduced. To model probabilistic interaction
between a robot and human, we introduce an adversarial

Markov Decision Process (MDP) with labelings that allow
it to be evaluated with respect to a formal specification.
Finally, we formulate Problem 1, which concerns finding an
AS control policy to disambiguate between several candidate
human models defined as adversarial MDPs with associated
formal specifications.

Consider a set of m agents operating in discrete time.
Let A = {1, . . . ,m} denote the set of agents, Act =

?

?

?

pursuer

1 2

333 4

Figure 1. Examples of Proactive Decision Making: (a, top) A
cooperative scenario, from the Stanford Drone Dataset
Robicquet et al. (2016), shows how cars must nudge into
crowded roundabouts. (b, middle) An adversarial scenario,
inspired by Chinchali et al. (2016), shows how a green robotic
car must safely swerve lanes to determine if it is being pursued
by a red adversarial car. (c, bottom) A robotic vehicle (red) must
proactively probe whether a human driven vehicle (green) will
allow it to swap lanes on a highway on-ramp.

Act1× · · · ×Actm denote their joint action space, and S

denote a joint state space.

Definition 1. Human-robot interaction sequence. An
interaction sequence is a sequence of state-action pairs
indexed by time and denoted by

HT (t) =
[
(st,at), . . . , (st+T−1,at+T−1), st+T

]
,

where HT (t) is said to begin at discrete time t and have
duration T , and where states are given by s ∈ S and actions
by a = (a1, . . . , am) ∈ Act. An interaction sequenceHT (0)

starting at t = 0 is called an interaction history and is also
denoted asHT .

As an example, in the car-following scenario, the set of
agents comprises the robot and the follower, states are the
lane occupancies of cars, and actions are decisions to stay
with the current trajectory or probe the follower by moving
to an adjacent lane.

Prepared using sagej.cls

4 Journal Title XX(X)

3.1 Bounded Linear-time Temporal Logic
(BLTL)

We now introduce formal specifications that are used to
model-check and reason about safety or high-level intent
encoded in interaction sequences. In this paper, formal
specifications of interaction sequences are defined for finite

durations that are well-suited to information gathering tasks.
We employ bounded linear-time temporal logic (BLTL),
which was introduced in Chinchali et al. (2016) and
summarized below. It is a fragment of metric temporal
logic (MTL), a general specification language for time-
dependent properties originally defined by Koymans (1990).
An introduction to basic concepts, including model checking
MDPs, can be found in the book by Baier and Katoen (2008).
The crux of BLTL is to first define the operator UI , where
I = [a, b] is a bounded interval on the nonnegative integers
N, to express constrained reachability over finite durations
of non-dense time. For Boolean formulae f and g that do
not contain temporal operators, f U[a,b] g is satisfied by a
sequence σ if f is true at each state beginning at time a,
until a state is reached where g is satisfied or the time b is
reached. A key feature of all BLTL formulae is that they can
be decided using a finite sequence of timesteps, since all such
intervals I are bounded.

To reason about interaction sequences, we need a
mechanism to check if high-level logical formulae,
constructed from a set of atomic propositions, are satisfied
at individual states. We denote a finite set of atomic

propositions by Π, where elements of Π are Boolean-
valued variables that, at each discrete time, evaluate to either
True or False. Atomic propositions associated with a self-
driving car might include Y = {Cx}Xx=1 to indicate the robot
occupies lane x of X total lanes.

BLTL syntax over interval I is given by the context-free
grammar

ϕ ::= True | p | ¬ϕ | ϕ ∧ ϕ | ©ϕ | ϕUI ϕ, (1)

where p is an atomic proposition p ∈ Π. Here, atomic
propositions p can be combined to describe logical formulae
ϕ by using standard logical connectives such as conjunction
(∧), disjunction (∨), negation (¬), and implication (=⇒),
coupled with temporal operators such as eventually (2I),
always (2I), and until (UI). The connective 2I ϕmeans that
ϕ is true at all positions of the word in the interval I of time
steps; the connective 2I ϕ means that ϕ eventually becomes
true within a finite time; the connective ϕ1 Uϕ2 means that
ϕ1 has to hold at each position in the word, at least until ϕ2

is true in interval I . Significant expressivity can be achieved
by combining temporal and Boolean operators in BLTL.

As an example, for a search and rescue mission triggered
by a flare, the operational behavior “once a flare is lighted,
always a drone is dispatched until a human-operated rescue
helicopter arrives within interval Th” can be expressed as:

flare =⇒ (drone U[0,Th] helicopter).

3.2 High-level Agent Intent Models

We now introduce a framework to capture probabilistic
interactions between a robot and human, which can be
model-checked using formal specifications. Henceforth, we
treat the case of two interacting agents – an autonomous
system that we control (denoted by AS), and an uncontrolled
adversary denoted by adv. Our framework is general and
the generic term adversary is used to denote an uncontrolled,
human agent. It can be either adversarial to the AS or
cooperative, but we refer to it as an adversary to address a
conservative case where the human agent may not want to
readily reveal its true intent to the robot. To reason about the
stochastic interaction of an AS and adversary, we use labeled

adversarial Markov Decision Processes (aMDPs), which are
defined similarly as in Wongpiromsarn and Frazzoli (2012)
in Definition 2.

Definition 2. Labeled adversarial MDP (aMDP).
A labeled adversarial MDP M is a tuple
(S, Init,Actc,Actu,P,Π, L), where S is a finite set of
states, Init ⊆ S is a set of possible initial states, Actc is a
mapping from states into sets of controlled actions, Actu is
a mapping from states into sets of uncontrolled actions (or
adversarial actions), Π is a finite set of atomic propositions,
the labelling function L : S→ 2Π maps states to atomic
propositions, and P : S×Actc×Actu×S→ [0, 1]

defines transition probabilities where for each state s ∈ S,
a ∈ Actc(s), and b ∈ Actu(s),

∑
s′∈S P(s, a, b, s′) = 1.

We now introduce a key assumption that allows both the
AS and adversary to take actions from every state to allow
for rich control policies.

Assumption 1. Enabled action sets. For every state s ∈ S,

Actc(s) 6= ∅ and Actu(s) 6= ∅.

Intuitively, this assumption stipulates that no dead-ends
exist, i.e., from every state, both the controlled robot and
the adversary have at least one possible action. For any
state s ∈ S, the actions in Actc(s) ∪Actu(s) are said to be
enabled.

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 5

3.3 Probability of Satisfaction and Agent-intent
Models

Now, we quantify the probability that a stochastic interaction
sequence satisfies each plausible human intent, which allows
the AS to infer the most likely human intent from its
observations. Let M be a labeled adversarial MDP. A
strategy is a partial function from an interaction history to
exactly one of the two action sets associated withM: Actc,
Actu. Let π be a strategy mapping into Actc, and let µ be a
strategy mapping into Actu. The set of interaction histories
consistent with these strategies is defined by

Hist(M, T, π, µ) =
{
HT | s0 ∈ Init ∧

∀τ < T : P(st, π (Hτ) , µ (Hτ) , st+1) > 0
}
. (2)

Using the labelling associated withM, the set of traces that
may occur under strategies π and µ is defined by

Traces(M, T, π, µ) ={
σ ∈ ΣT+1 | ∃HT ∈ Hist(M, T, π, µ) :

∀τ : 0 ≤ τ ≤ T ∧ σaτ = L(st)
}
, (3)

where Σ = 2Π. In words, Σ is the set of subsets of atomic
propositions. An atomic proposition q is said to be true at a
state s if and only if q ∈ L(s). The dependence of each σ ∈
Traces(M, T, π, µ) in (3) on some HT ∈ Hist(M, T, π, µ)

can be generalized to show there is a function L from
Hist(M, T, π, µ) onto Traces(M, T, π, µ) consistent with
the comprehension in (3), i.e., such that for all HT ∈
Hist(M, T, π, µ), L(HT) ∈ Traces(M, T, π, µ) and HT
realizes the existential quantification in (3).

Let ϕ be a BLTL formula defined in terms of atomic
propositions from Π. Recall that there is a minimal bound
T (ϕ) such that for any T ≥ T (ϕ) and for any σ ∈ ΣT , it
is decided whether σ |= ϕ or σ 6|= ϕ, i.e., the word σ has
sufficiently many positions to decide satisfaction of ϕ. Now,
define the expression HT |= ϕ to be true if and only if
L(HT) |= ϕ, which indeed is well-defined for T ≥ T (ϕ)

because Traces(M, T, π, µ) ⊆ ΣT+1.

The adversarial MDPM has finite state and action sets, so
for T <∞, it follows that the set Hist(M, T, π, µ) is finite
for any policies π and µ. Entirely similar observations hold
for Hist(M, T) and Traces(M, T, π, µ).

Each interaction history HT ∈ Hist(M, T, π, µ) defines
a finite sequence of states and actions. From (2), it follows
thatHT is equivalent to a finite sequence of state-action-state
triples, each of which is a transition of M. Recall that the
probability of each transition is defined by P. Computing

the product of these probabilities for each element of
Hist(M, T, π, µ) and normalizing provides a probability
mass function over Hist(M, T, π, µ). For sufficiently large
T , it can be decided for each element of Hist(M, T, π, µ)

whether it satisfies the BLTL formula ϕ, hence we define

PM,π,µ(Init |= ϕ) (4)

as the probability of satisfying ϕ when AS strategies and
adversarial strategies are applied to M. When Init is a
singleton, we write PM,π,µ(s |= ϕ).

We now define high-level agent-intent models and
assumptions on their behavior.

Definition 3. Agent-intent model. An agent-intent model is
a pair (M, ϕ), whereM is a labeled adversarial MDP and ϕ
is a BLTL formula.

The following assumption states that the adversary,
if following model (M, ϕ), will select a strategy that
maximizes the probability of satisfying ϕ. Such an
assumption is natural since the adversary’s own strategy
must be as concordant as possible with its true specification
since otherwise its specification is not an accurate description
for the adversary’s true behavior. To allow for unbiased

measurement uncertainty, we only assume satisfaction in
probability.

Assumption 2. Strategy matches specification. Let (M, ϕ)

be an agent-intent model. For any s ∈ Init, the adversarial

strategy is an element of

arg max
µ

min
π
PM,π,µ(s |= ϕ),

where PM,π,µ(s |= ϕ) is the probability that the labeled

Markov chain induced by finite-memory strategies π and µ

and with initial state s satisfies ϕ.

3.4 Proactive Decision Making with BLTL
constraints

We now introduce the problem of Proactive Decision Making
with BLTL formulae and adversarial MDPs. It involves
interaction between an autonomous system and an adversary,
referred to as adv. Our framework is general and allows
the uncontrolled adversary to be either cooperative or
adversarial. The AS must find a control policy πAS that
maximizes reward R despite possible interference from the
adversary enacting controller πadv. Reward function R :

HT 7→ R defines a scalar reward over interaction history
HT which incentivizes the AS to learn about the true
model (Mj , ϕj) of agent adv while minimizing the cost of

Prepared using sagej.cls

6 Journal Title XX(X)

information gain. Interaction histories must satisfy goal and
safety specifications encoded in BLTL formula ϕ.

Problem 1. ProDM-BLTL: Proactive Decision Making
with BLTL. Given a finite set of agent-intent models

{(M1, ϕ1), . . . , (MN , ϕN)}, find strategy π∗AS such that

π∗AS ∈ arg max
πAS

(
min
πadv

EMj ,πAS,πadv (R(HT))

)
where ground-truth model (Mj , ϕj) is fixed and known to

the agent adv but is unknown to the AS, and where πadv ∈
arg maxµ PMj ,πAS,µ(Init |= ϕj).

In terms of the car-following example, R is a weighted
sum of fuel and lane deviation cost coupled with a
metric of information gain. The cost in R could also
include distance to a destination, incentivizing goal-driven
behavior. Specifications ϕ govern how different follower
car models pursue the robot, while interaction sequences
HT are joint robot-follower lane trajectories. When the
ground-truth model is not in the finite set of initial models
{(M1, ϕ1), . . . , (MN , ϕN)}, the desired behavior of the
AS strategy is to identify the closest behaving model to
the observed behavior or, in extreme cases, declare that no
assumed models are concordant with the observed behavior
and enact a conservative control policy.

4 Dimensionality Reduction and Solution
Algorithm

Problem 1 is typically computationally intractable for large-
scale problems because, as a consequence of not knowing
the ground-truth model index j, we must optimize over
all possible agent-intent models (Mi, ϕi) and interaction
sequences HT . In this section, we present, solve, and
theoretically analyze a new problem based on dimensionality
reductions from Problem 1.

4.1 Action and Observation Space Reductions

Figures 2 and 3 illustrate the key insights behind
our dimensionality reduction approach in terms of the
mathematical notation we now introduce.

4.1.1 Action Space: Request-response formulae

The first dimensionality reduction comes from using formal
specifications to select a concise set of informative probes to
reduce the action space of proactive decision making. For
a special form of BLTL formulae that is defined below, we
are able to reduce the size of the action space of adversarial
MDPs. Let {(M1, ϕ1), . . . , (MN , ϕN)} be a set of agent-
intent models (recall Definition 3 in Section 3.3).

Definition 4. BLTL request-response formula. The
specification ϕi for agent-intent model i is said to be a BLTL
request-response formula if it has the form

ϕi =
∧

p∈{1,...,pi}

(
ψreq,p
AS,i =⇒ 2[0,Tp]

ψres,p
adv,i

)
=

∧
p∈{1,...,pi}

ϕpi ,

(5)

where each mode p represents an AS (robot) probe to agent
i given by ψreq,p

AS,i , ψres,p
adv,i is the adversary’s informative

response, and Tp is the maximum duration to wait for the
response.

BLTL request-response formulae are practically-
motivated because many real-life information-gathering
tasks generate a response within a bounded time.
Autonomous cars must wait a finite duration for pedestrians
or anomalous traffic patterns to reach normal states.
Deadlock situations, such as a pedestrian waiting infinitely
long at an intersection, rarely persist indefinitely. Even if
they do, AS, such as search and rescue drones, can employ
a flexible approach where they move to a new search
location after a timeout but can revisit target sites. In the
car-following example, a request is a lane-change and an
informative response is for an adversary to follow the robot
within a bounded interval Tp. In the definition of belief MDP
given later in this section, request-response formulae allow
us to define an abstract “impulse” action, thus reducing the
effective space of possible actions for policy selection.

4.1.2 Observation Space: Satisfaction Bitvectors

Given our goal of reasoning about likelihood among agent-
intent models, the effective state space for planning can
be reduced by abstracting it into outcomes of interaction,
which we now define. Figure 2 illustrates the definition using
Example 2 (adversarial car-pursuit).

Definition 5. Satisfaction bitvector observation. Consider
N high-level agent intent models Mi = (Mi, ϕi) (Def. 3
in Section 3.3) where each specification ϕi has pi BLTL
request-response formulae. Define Q =

∑
i pi, and T =

maxi T (ϕi). The satisfaction bitvector observation o is a
function that maps an interaction history HT to a vector of
dimension Q where the q-th element is 1 if HT satisfies
the qth interaction formula ϕq = ϕpi and is otherwise 0.
Observation space O = {o | o ∈ {0, 1}Q} comprises 2Q

possible bitvectors. Written in terms of the indicator function
1,

o(HT) = [1 (HT |= ϕ1
1), . . . ,1 (HT |= ϕpNN)]. (6)

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 7

Figure 2. Illustration of Bitvector Observations: Our key algorithmic insight, illustrated for the car-following example, is to plan in
the belief space over agent intent models (top panel) as opposed to the low-level state space (bottom panel). At the start of iteration
k, where the low level state is stk , the green robotic car probes the red follower’s intent by swerving lanes with action αk. Rather
than optimize over all possible interaction histories HT in the low-level state space that end with the follower pursuing the robot
(bottom right), we simply encode the information in bitvector ok. Concise bitvector observation ok describes whether interaction
history HT adheres to each possible model’s specification, which is then used to update the belief Bk over agent intents by solving
Problem 2.

After BLTL impulse actions, satisfaction bitvector
observations constitute the second key dimensionality
reduction technique presented in this paper. Rather than
reasoning about a continuum of interaction histories which
may reside in a high-dimensional state space of adversarial
MDPs, bitvector observations directly apply formal methods
to distill the interaction into its essence, namely which high-
level intents it is concordant with.

4.2 Reduced ProDM-BLTL Problem with Belief
MDPs

Leveraging the previous definitions, we reduce the dimen-
sionality of Problem 1 by constructing a new reward function
and belief MDP (defined below) where states are belief dis-
tributions over the N candidate agent-intent models, actions
are BLTL requests, and transitions depend on satisfaction
bitvector observations.

The belief MDP of a set of candidate agent-intent models
is defined as MB = (B̃0, B̃, Ã, Pb, τb) with the following
components:

1. B̃ = {B ∈ RN | B(i) ≥ 0 ∧ ∑iB(i) = 1}.
Belief states are probability distributions over the N
candidate models.

2. Ã = {ψreq,p
AS,i | i ∈ {1, . . . , N}, p ∈ {1, . . . , pi}}.

Abstract (impulse) actions are controlled requests for
any BLTL request-response formula. To reduce clutter
in the notation, we will often use the symbol α to
denote an element in Ã.

3. Pb : B̃ × Ã× B̃ → R
The belief transition function Pb is defined by

Pb(Bk, αk, Bk+1) = Pr(Bk+1 | Bk, αk)

=

(∑
ok∈O

Pr(Bk+1 | Bk, αk, ok)

)

·
(

N∑
i=1

Pr(ok | αk,Mi)Bk(i)

)

in which

Pr(ok | αk,Mi) =

Q∏
q=1

(
oqk Pr(HT (tk) |= ϕq | αk,Mi)

+ (1− oqk) Pr(HT (tk) 6|= ϕq | αk,Mi)
)
, (7)

where ok = (o1
k, . . . , o

Q
k) = o(HT (tk)) and ϕq are

from Def. 5. Notice that Pr(ok | αk,Mi) is the
joint probability of satisfaction or not, depending on
respective elements of the bitvector ok, for each agent-
intent model, given that the true model is (Mi, ϕi).

4. The belief update function τb : B̃ × Ã×O → B̃

maps belief state Bk, action αk, and resulting
observation ok to new belief vector Bk+1 by Bayes’
Rule. The belief update depends on the probability
of observation ok given an informative impulse
αk under each competing model Mi, i.e., Bk+1 =

Prepared using sagej.cls

8 Journal Title XX(X)

τb(Bk, αk, ok) where

Bk+1(i) = ηBk(i) Pr(ok | αk,Mi), (8)

and η is a normalization factor.
5. The initial state is a uniform probability distribution

overN possible models, i.e., B̃0 = B0 = [1
N , . . . ,

1
N].

6. The stage reward R is a weighted sum of control cost
and information gain. In this paper, we consider two
different stage rewards. The first stage reward is based
on entropy reduction in the belief vector:

RHk (Bk, αk, Bk+1) = −βCc(αk, Bk)

+ βI[H(Bk)−H(Bk+1)]. (9)

Here, c : Ã× B̃ → R is the control cost function, H
is the Shannon entropy, and βC > 0, βI > 0 weight the
control cost and information gain.
The second stage reward we consider is based on
the Kullback-Leibler divergence, and is useful in
situations, for example in simulation, when the true
adversarial MDP model is known:

RKL
k (Bk, αk, Bk+1) = −βCc(αk, Bk)

− βIKL(Bk+1, B̄), (10)

where KL is the Kullback-Leibler divergence, and B̄
is a belief vector with the element 1 in the position
corresponding to the true adversarial MDP model,
and 0 elsewhere. Without loss of generality, in this
paper we will assume that the true adversarial MDP
has an index of 1, so that B̄(1) = 1, B̄(j) = 0 for all
j = 2, 3, . . . , N . Since the KL divergence is always
positive, we penalize differences between Bk and B̄.

4.2.1 Intuition behind dimensionality reduction

Figure 2 illustrates the motivation behind the belief MDP

approach by contrasting the high-level belief space and the
possibly high-dimensional low-level state space in terms
of the car-following example. Figure 3 depicts the general
setting, where low-level state space featuring several possible
interaction sequences is on the left, and it is juxtaposed with
the simpler high-level belief space featuring a concise set of
bitvector observations on the right. In general, a transition of
MB occurs in two parts starting at an iteration k (Figs. 2 and
3.). First, we start at a belief state Bk at time tk when the
fully observable adversarial MDP state is stk . Note that here,
we are using the notation tk to denote the correspondence

between time indices in the adverarial MDP M, denoted t,
and time indices in the belief MDP MB , denoted k.

An action in the belief MDP αk is selected, corresponding
to a specific BLTL request-response formula for some model
i and high-level mode p. By selecting this action, we
assume model i is the true model and synthesize a strategy
corresponding to adversarial MDP Mi and interaction
formula ϕi, using Assumption 2 in Section 3.3.

Second, a finite-horizon play occurs, resulting in a final
state stk+T (ϕ) of the aMDP and an interaction sequence
from tk of length T (ϕ), HT (tk). The interaction sequence
can then be mapped to a satisfaction bitvector observation
ok = o(HT (tk)). Given current belief state Bk, action αk,
and satisfaction bitvector observation ok, we can construct
a new belief state Bk+1 by Bayes’ Rule. From new belief
stateBk+1 and underyling aMDP state stk+T (ϕ), the process
repeats.

4.2.2 Proactive Decision Making in Belief Space

We can now present the ProDM-BLTL problem solved in
this paper.

Problem 2. Belief-ProDM: ProDM-BLTL with Belief MDP.
Let {(M1, ϕ1), . . . , (MN , ϕN)} be a set of agent-intent

models, and let (B̃0, B̃, Ã, Pb, τb) be the belief MDP

corresponding to it. Given the reward functionRHk in (9) and

discounting factor γ < 1, solve

maximize
ᾱ

E

(
K−1∑
k=0

γkRk(Bk, αk, Bk+1)

)
subject to Pr(Bk+1 | Bk, αk) = Pb(Bk, αk, Bk+1)

for all k = 0, . . . ,K − 1

where ᾱ = {αk}Kk=0, and the reward Rk can be chosen to be
either RHk or RKL

k .

4.3 Value Iteration on BLTL Trees

A key challenge in solving Problem 2 is that there are
infinite belief states Bk. However, initial belief B0 is always
uniform, and there are a finite number of impulses αk ∈ Ã.
Notably, there are 2Q possible observations ok ∈ O, which
is much smaller than the number of interaction sequences
of length T (ϕ). Thus, at any iteration k, there are a finite

number of possible next belief states Bk+1.
Hence, we solve Problem 2 in a receding horizon fashion,

where at iteration k we construct a policy tree Braziunas
(2003) starting at initial belief Bk. The right of Figure 3
depicts such a policy tree. Each node in the tree is an impulse
αk, leaves are observations ok, and subsequent nodes are
actions αk+1 etc. Using value iteration on such policy trees

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 9

𝛼"#

ℋ%& 𝑡(𝑜#

𝐵#&
𝛼+#

𝑡(

𝑡(+ 𝑇(

𝑘(

𝑘(+ 1
𝛼"#01 𝛼+#01

𝑡(+ 𝑇(+ 𝑇1 𝑘(+ 2

𝑡(+ 1

𝑡(+ 2

𝑡(+ 3

𝐵#&01

ℋ%4 𝑡(+ 𝑇(𝑜#

𝑠6&0%&

𝑠6&

Figure 3. Illustration of dimensionality reduction through the belief MDP. (Left) Evolution of the possibly high-dimensional,
low-level state st in continuous time. Edges with a common color indicate interaction histories HT that correspond to the same
bitvector observation ok in terms of BLTL. (Right) Evolution of a Belief MDP in iterations k, each of BLTL time bound Tk. The key
insight necessary for dimensionality reduction is that several interaction histories can be clustered into a smaller set of bitvectors ok.

with a horizon of h actions, we can select an optimal
sequence of impulses αk to αk+h−1, and enact the plan
depending on observations ok. Finally, at belief node Bk+h

we construct a new tree and optimal policy, which avoids
optimizing over all possible belief vectors in B̃.

4.4 Size of BLTL trees

Satisfaction bitvectors provide significant reduction in the
number of BLTL trees, as illustrated in Figure 3 and shown in
this section. The set of policy trees with |Actc | actions, |O|
observations, and a horizon h has size |Actc |

|O|h−1
|O|−1 trees

Braziunas (2003).

We first calculate the number of BLTL trees with impulse
actions and observation bitvectors. The size of Ã, the
set of all impulses, is |Ã| = Q =

∑
i pi consisting of all

possible modes pi for each model i. There are also 2Q total
observation bitvectors in O, leading to

|Ã|
|O|h−1
|O|−1 = Q

2Qh−1

2Q−1 (11)

trees. We now consider the number of trees if we used
impulse actions, but observations were individual interaction
histories of length T (ϕ). Since the AS only acts with an
impulse, we need not look at all possible actions in the
interaction sequence, but rather just look at all possible state
trajectories. Let the set of all observation histories of duration
T (ϕ) to be H̃T (ϕ), where |H̃T (ϕ)| = |S|T (ϕ). Then, we must

optimize over

|Ã|
(|S|T (ϕ))h−1

|S|T (ϕ)−1 = Q
(|S|T (ϕ))h−1

|S|T (ϕ)−1 (12)

trees, which scales with the size of state space |S|, impulse
bound T (ϕ), and horizon h. Notably, the BLTL tree size
with bitvectors only scales with the size of a smaller set of
temporal logic formulae and horizon h. In Section 6, we
show how a concise set of BLTL trees allows us to solve
otherwise intractable problems. In particular, we show how
we can solve the car-following problem with a small set
of BLTL observation bitvector trees, but the same problem
using observation histories would have led to an integer
overflow (intractable) number of trees.

4.5 Analysis

In this section, we state the main theoretical results of this
paper. Proofs can be found in the appendix. We first address
the case of no control cost, given by control cost weight
βC = 0, in order to establish that the AS will converge to the
ground truth model when it is not penalized for probing agent
intent (Lemma 1 and Theorem 1). Then, to allow for strong
theoretical guarantees, we consider a simplified problem
setting in subsection 4.5.2 where the AS has a control cost
penalty for probes given by βC > 0 (Lemmas 2 and 3).

4.5.1 Convergence without control cost

Recall the definition of belief MDP from Section 4.2,

Prepared using sagej.cls

10 Journal Title XX(X)

and the distinction between actions and abstract actions, as
illustrated in Figure 3.

Lemma 1. Convergence to ground-truth. Suppose that

(M1, ϕ1) is the ground-truth agent-intent model. Further-

more, suppose there is some α ∈ Ã such that for each j 6= 1,

Pr(o | α,M1) 6= Pr(o | α,Mj) (13)

for some observation o.

Let ᾱ be any policy such that, for each j ∈ {1, . . . , N},
infinitely often an abstract action α is selected such that for

some satisfaction observation bitvector o,

Pr(o | α,Mj) 6= Pr(o | α,M1). (14)

Then, limk→∞Bk(1) = 1 if and only if the policy ᾱ is

used.

Remark 1. Policy construction. Note that it is possible to

construct a policy with this property without knowing that the

ground-truth model is M1 because the following stronger

requirement can instead be used. Because Pr(o | α,Mj)

can be computed for any j ∈ {1, . . . , N} (independently of

which candidate model corresponds to the ground-truth), a

modified form of (14) can be checked between each pair of

models. There will be at least one candidate model that can

take the role of M1 in (14). Thus, in general we can let ¯̄α

be a policy that selects infinitely often abstract actions that

realize all of those inequalities (i.e., for all of which were

found to be satisfiable).

Theorem 1. Optimality with no control cost. Any policy ᾱ

defined in Lemma 1 is optimal for Problem 2 when βC = 0

and γ = 1, with an infinite time horizon, K →∞.

4.5.2 Exploration-exploitation trade-off with control costs

For the case where βC > 0, we consider a finite horizon of
K discrete time steps, indexed by k. In addition, we simplify
the problem setup such that the robotic agent has only two
control actions:

• an “informative” action αk = 1, which gains informa-
tion about the candidate model, so that E [Bk+1(1)] ≥
Bk(1), but has a cost of c(1, Bk) = 1 for all Bk; and
• a “null” action αk = 0, which does not gain

information about the candidate model, so that
Bk+1 = Bk, but has no cost, c(0, Bk) = 0 for all Bk.

In addition to the results for the general case, the following
lemmas can be proven for this simplified two-action system,
which retains the main structure of the general case and,
for policy construction, provides an exploitation/exploration
trade-off.

Lemma 2. Parametrized family of solutions. Consider any

two policies ˜̄α and ˆ̄α that respectively generate sequences of

actions α̃0α̃1 . . . α̃M−1 and α̂0α̂1 . . . α̂M−1 for an M step

episode with
∑K
k=0 α̃k =

∑K
k=0 α̂k = N for any N ≤M .

The cumulative expected entropy reward under both

policies is equal:

E

[
K∑
k=0

RHk (B̃k, α̃k, B̃k+1)

]

= E

[
K∑
k=0

RHk (B̂k, α̂k, B̂k+1)

]
(15)

Lemma 3. Step-function policies. Consider the “step

function” policy ˜̄α with N informative actions, α̃k = 1 for

all k = 0, . . . , N − 1, and α̃k = 0 for all k = N, . . . ,M .

Any other policy ˆ̄α withN informative actions that has α̂k =

0 for at least one k = 0, . . . , N − 1 has lower cumulative

expected KL reward,

E

[
M∑
k=0

RKL(B̂k, α̂k, B̂k+1)

]

≤ E

[
M∑
k=0

RKL(B̃k, α̃k, B̃k+1)

]
. (16)

Lemma 2 allows us to parametrize policies using the
total number of informative actions αk = 1, and Lemma
3 states that for any policy with N informative actions,
choosing the first N actions to be informative, αk = 1, k =

0, . . . , N − 1 results in the lowest KL cumulative cost.
Since the entropy reward structure is a proxy for the
KL reward structure, we can assume that for a policy
withN informative actions, αk = 1, k = 0, . . . , N − 1. This
observation drastically reduces the policy search space.

Finally, in settings where simulation is used, the KL
reward structure is in particular amenable to use in
reinforcement learning (RL) algorithms. In other words,
the environment simulator can provide the agent feedback
in a reward signal that is proportional to deviation of
its belief from the ground-truth mode of the other agent.
The numerical experiments of Section 6 demonstrate this
application in RL.

5 Example Scenarios

In this section, we show how formal methods can capture
high-level agent intent in diverse examples ranging from
cooperative to adversarial, such as a high-speed car

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 11

chase (subsection 5.1) or cooperative lane-merging. In
particular, we emphasize a data-driven approach to either
mine parameters of temporal logic formulae from the
Stanford Drone Dataset (subsections 5.2 - 5.4) or learn
behaviors using generative models for highway lane-merging
(subsection 5.5). Collectively, the selected examples show
the generality of our approach in various settings and
how temporal logic allows us to filter high-dimensional
observations into concise behavioral summaries for tractable
decision making.

5.1 Robotic Car-following BLTL Specifications

Our first example is adversarial, where a robot transporting
medical supplies must make subtle, costly route deviations
to discern the nature of followers (Figure 1(b)). The
robot’s lane occupancy in one of X total lanes is denoted
by system variables Y = {C1, . . . , CX}. Likewise, the
follower’s lane is denoted by environment variables X =

{F1, . . . , FX}, leading to overall state st = [Cx,tFx,t] at
time t. Follower models are referred to as pursuant,
surveilz (for a surveillance car), or benign for a
civilian. The surveilz car represents surveillance behavior
since it must always stay within z lanes of the robot, yet is
allowed the flexibility of Tz time steps to do so. We expand
the BLTL formulae ϕ from Chinchali et al. (2016) by adding
control costs and more surveillance cars:

ϕbenign = True (17)

ϕsurveilz =
∧

x∈{1,...X}

2
(
Cx =⇒

2[0,Tz] Fx−z ∨ Fx−z+1 ∨ · · · ∨ Fx+z

)
(18)

ϕpursuant =
∧

x∈{1,...,X}

2

(
Cx =⇒ 2[0,Tpursuant] Fx

)
(19)

That civilian cars have no temporal logic constraint is
represented by (17). Notice that Tpursuant provides a time
bound in (19).

The robot can probe the follower by changing lanes which
incurs a lane-deviation and fuel cost of c(αk) = 1. Staying in
the same lane incurs no cost. By proactively changing lanes,
the robot learns if adversarial cars will eventually follow it
to satisfy formulae of the form (18) and (19). In large-scale
problems with many lanes and long BLTL time bounds T ,
Figure 2 shows how dimensionality reduction applies in car-
following using bitvector observations.

5.2 Stanford Drone Dataset (SDD)

The second example is cooperative and shows how data
mining can be used to learn parameters of temporal logic
formulae, such as BLTL time bounds. The SDD Robicquet
et al. (2016) is a series of trajectories of bikers, pedestrians,
and low-speed service carts that navigate crowded scenes on
Stanford University’s campus. Speed limits and restrictions
on outside traffic make the campus a prime testing ground for
autonomous vehicles. Though the dataset features entirely
human-human interactions of vehicles and pedestrians, we
use it to mine specification parameters on safe interaction
between agents to guide future autonomous vehicle design.

Specifically, we consider how low-speed robotic carts that
transport supplies across campus might merge into crowded
roundabouts such as in Figure 1(a) if they were allowed to
proactively signal their merging intent. We note that potential
cart-pedestrian accidents are only minorly injurious due to
speed restrictions. Indeed, the SDD shows carts aggressively
approaching pedestrians and the annotations and students
alike jokingly refer to the roundabout in Figure 1(a) as the
death circle only since it has not caused major accidents.
Thus, a robot can plan merging strategies that are richer than
avoiding accidents at all cost.

We performed extensive quality-control of over 69
GB of SDD data to identify high-quality motorized
trajectories, derive velocities, and compute intra-agent
distance distributions. SDD trajectories show how both
pedestrians and carts respond to rapidly changing traffic
densities and intra-agent distances to merge or cross at
opportune times (Figure 4). We mine such behavior from the
SDD and incorporate symbolic specifications into a scenario
where a robotic cart can proactively signal its merging intent
to nearby pedestrians. Such behavior is encoded in the
following specifications.

5.3 Car-merging BLTL Specifications

Let Ã = {s, u, n} denote the cart’s safe, unsafe, and no

signal control actions, respectively. Cross traffic density ρ ∈
R is defined as the number of pedestrians per frame that
travel perpendicular to the cart’s merging direction. State
S = [ρ, d, v] incorporates traffic density ρ, the cart’s speed
v ∈ R, and its distance to a closest pedestrian d ∈ R, as
exemplified in Figure 4(b). Pedestrian models are denoted by
m ∈ {cautious, daring}, which exhibit varied propensities to
cross based on traffic and robot signals. Boolean variables
ρ̃ ∈ {h, l} indicate if traffic is heavy (h = ρ > ρ0) or light
(l = ρ < ρ0), where ρ0 is a density threshold.

Given a traffic density ρ̃ and safety indication α ∈ Ã, a
pedestrian of modelmwill not cross for a time Tmρ̃,α to safely

Prepared using sagej.cls

12 Journal Title XX(X)

assess their surroundings, and after may cross based on their
internal risk profile. Such behavior is captured by formula
ϕmρ̃,α and an example for a daring pedestrian during heavy
traffic (ρ > ρ0) after the robot indicates safe is:

ϕdaring
h,s = 2[(ρ > ρ0)︸ ︷︷ ︸

heavy

∧ safe︸︷︷︸
impulse

] =⇒ ¬ cross U
[0,T

daring
h,s

]
True︸ ︷︷ ︸

can only cross after wait-time

(20)
The formula for a model m human covers all traffic

scenarios ρ̃ and signals α:

ϕm =
∧
α∈Ã

∧
ρ̃∈{h,l}

ϕmρ̃,α (21)

Crucially, BLTL time-bounds Tmρ̃,α allow the robot to
differentiate models based on their crossing probabilities.
For example, T daring < T cautious regardless of signal since
daring pedestrians deliberate for shorter times. Further,
pedestrians wait longer if unsafe is indicated or traffic is
light since the robot may merge. The robot waits a decision
interval T (ϕ) > Tmρ̃,α for any model m, traffic condition
ρ̃, and safety signal α to assess the pedestrian’s response.
Suppose the agent indicated safe during very heavy traffic
since it could not merge, yet it observed ¬ cross after T (ϕ).
Since the daring pedestrian is only constrained to not cross
for T daring

h,s << T (ϕ), the probability of observing ¬ cross

in a long interval might indicate a cautious model.

5.4 Robot Behavior and Dynamic Control
Costs

In the following specifications, density and distance
thresholds ρ0, d0, and speed multipliers M ,L are mined
from data ∗. We can learn such parameters automatically by
contrasting velocity and traffic distributions during merging
and steady-driving scenarios to find separating thresholds.
Formulae (22) and (23) capture scenarios like Figure 4,
where a cart cannot signal safe as it attempts to merge:

ϕslow = 2[(ρ > ρ0)︸ ︷︷ ︸
cross-traffic

∧ (d < d0)︸ ︷︷ ︸
biker close

∧ (v = v0)︸ ︷︷ ︸
speed

]

=⇒ 2[0,T slow]

(
v ≤ v0

M︸ ︷︷ ︸
decelerate

)
(22)

ϕmerge = 2[(ρ < ρ0)︸ ︷︷ ︸
light traffic

∧ (d > d0)︸ ︷︷ ︸
biker far

∧ (v = v0)]

=⇒ 2[0,Tmerge][(v ≥ Lv0︸ ︷︷ ︸
accelerate

) ∧ ¬ safe︸ ︷︷ ︸
disallow cross

] (23)

0 200 400 600 800 1000 1200 1400
0

500

1000

1500

2000
Biker, Pedestrian
Car

0
2
4
6
8

ρ

0
2
4
6
8

10
12

sp
ee

d
v

6500 6550 6600 6650 6700 6750 6800 6850
video frame

0
100
200
300
400

d

Figure 4. (a, top) Aerial view of an SDD scene where a car
(bold) rapidly accelerates to merge into a roundabout. (b,
bottom) The car rapidly accelerates, reflected in speed v, when
traffic ρ subsides after video frame 6700. Video frames are
used as a proxy for continuous time, which is not reported.

Control costs capture the risk of a worst-case scenario
where the cart causes an accident after indicating safe , so
c(s,Bk) > c(u,Bk) > c(n,Bk) for all k. Since the risk may
decrease as the agent is more certain about the true pedestrian
model, we also have c(α,Bk) ∝ H(Bk) for any action α.

5.5 Highway Lane Merging Example

The third example is cooperative, and illustrates how
distributions of human responses to informative robot probes
can be directly learned from data using generative models,
such as Conditional Variational Autoencoders (Sohn et al.
(2015)). Details of the data-driven approach are provided
later in Section 6.2.1.

Consider a highway on-ramp lane merge scenario,
depicted in Figure 1(c). One of the cars, denoted R and
illustrated in red, is the autonomous system we seek to
control in order to complete the lane changing task in a safe,

∗SDD provides annotations in terms of video frames and pixel distances,
without calibration data. As such, recovering metric distances was
infeasible, so we omit the units of these parameters.

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 13

smooth manner. The other car, denoted by H , is human-
driven, with an adversarial MDP model M1 indicating its
driving style which needs to be inferred by the robot. We
only assume that the human-driven car is described by one
of the adversarial MDPs in {M1,M2, . . .}.

Let xtH , x
t
R and `tH , `

t
R denote the longitudinal and lateral

positions of the vehicles along the length and across the lanes
of the highway at time t, respectively. Suppose that initially
x0
H = x0

R = 0 and `0H = 0.5, `0R = −0.5. Within some time
limit Tf and distance dend, the robot needs to switch lanes
with the human, requiring the human to slow down and yield
for the robot or the robot to speed up and overtake the human.
The robot and human can only swap lanes when they are far
enough, specifically when the difference of their longitudinal
positions is above a safety threshold dsafety, expressed by
|xtH − xtR| > dsafety.

Let the control cost for an interaction sequence Jtotal(HT)

(eq. 24) be the sum of the human and robot costs JH(HT)

(eq. 25) and JR(HT) (26). The costs penalize rash, last-
minute accelerations to switch lanes, where we normalize
accelerations by the maximum limit allowed of ẍlimit.

Jtotal(HT) = JH(HT) + JR(HT) (24)

JH(HT) =
1

T + 1

T∑
i=0

|ẍtH |
|ẍlimit|

(25)

The robot cost (eq. 26) not only penalizes accelerations,
but it also incorporates a lane-change incentive JR,swap(HT)

to penalize not swapping lanes especially as the cars
approach the road end dend and are not at least dsafety

distance apart.

JR(HT) = JR,acc(HT) + JR,swap(HT) (26)

JR,acc(HT) =
1

T + 1

T∑
i=0

|ẍtR|
|ẍlimit|

(27)

The lane-change cost only occurs if the final position
difference at time T (at the end of interaction history HT)
∆xT = |xTH − xTR| is above the safety threshold and depends
on whether the further vehicle position is before or after
the road-end dend, where the furthest position is indicated
by xTmax = max{xTH , xTR}. In the first case when either car
has surpassed the road-end, not meeting the safety distance
carries a large magnitude penalty given by Jcrash. In the
second case when both cars still have not reached the end, we
modulate by an “urgency” term indicating how much space
remains before the road end.

JR,swap(HT) =

Jcrash × 1(∆xT < dsafety) xTmax ≥ dend(
1− |dend−x

T
max|

dend

)
1(∆xt < dsafety) xTmax < dend

In order for the autonomous system to complete its goal
of swapping lanes with the human, it must predict the intent
of the human driver. For example, a driver in a hurry may
prefer not to let the other car pass in front; on the other
hand a passive driver may prefer to stay back and wait for
the other car to make its move. Combining the human’s a
priori unknown goal and unknown preference, we assume the
following BLTL formulas corresponding to the adversarial
MDPs:

Hswitch := 2[0,Tf](`H < −0.25)

∧2(xH ≥ dend =⇒ `H < −0.25),

∧2 ((`H < −0.25) =⇒ (|xH − xR| > dsafety)) ,

Hhurry-κ := 2

(
2[0,T](xH ≥ κxR) ∨ |`H − `R| ≥ 0.5

)
,

(28)

Hpassive-κ := 2

(
2[0,T](xH ≤ κxR) ∨ |`H − `R| ≥ 0.5

)
.

(29)

As an example, Equation (28) formalizes the goal of
“change lanes” for a human driver that has the preference
of “being in a hurry”. In other words, the human position
xH must eventually be at least κ times the robot position
xR within the BLTL time bound T in each decision making
iteration, corresponding to a finite time T of joint interaction
along the road. The lane-swap occurs over the duration of
several decision making iterations, each of BLTL time bound
T . Multiplicative factor κ is henceforth referred to as the risk

factor since aggressive drivers might have κ >> 1 indicating
they might want to stay quite ahead of the robot position.
In subsequent simulations, various degrees of aggressive
driving by human drivers in a hurry are referred to by BLTL
models hurry−κ.

Conversely, Equation (29) formalizes the goal of “change
lanes” for a human driver that has the preference of
“passively yielding to the robot”. In other words, the human
position xH must eventually be at least κ times below the
robot position xR within the BLTL time bound T . For
passive driving risk factor κ < 1, indicating the human wants
to stay behind the robot position. In subsequent simulations,
various degrees of cautious driving by passive human drivers
are referred to by BLTL models passive−κ.

Prepared using sagej.cls

14 Journal Title XX(X)

6 Simulation Results

The principal aim of our evaluation is to show how
dimensionality reduction can be used to solve otherwise
intractable adversarial MDPs using belief space planning
with increasingly sophisticated approaches. Starting from
initial examples that can be solved with tree-based value
iteration (subsection 6.1), we then address larger problems
with several competing models or cases where the ground
truth model is not in the candidate set. For these
larger examples, we employ data-driven methods such
as generative modeling (6.2) or RL with deep neural
networks 6.3. Source code that can be used to replicate
numerical examples of this section is available at https:
//github.com/StanfordASL/idwithtasks.

6.1 Value Iteration Tree Results

Figure 5 shows a proactive car-merging strategy solved by
BLTL tree value iteration. As introduced in Section 5.4,
control costs capture model uncertainty and risk probabil-
ities, so c(α,Bk) = c0(α)

2 (1 + |H(Bk)
H(B0) |) where co(safe) =

0.40, c0(unsafe) = 0.30, and c0(no signal) = 0 †. The cart
initially chooses the high-cost, but most informative safe
action when traffic ρ is heavy and precludes merging. As
the traffic subsides, the cart chooses the lower cost, but still
informative unsafe signal since it can now merge. BeliefBk
indicates we correctly identify the true cautious pedestrian
model and cost of informative controls decays over time as
we increase model confidence (Figure 5(b)). Eventually, the
agent chooses the zero cost no signal action once it has high
model confidence and has already merged.

Using bitvector observations instead of individual inter-
action histories allows tractable value iteration. Even a
simple car-following scenario with 4 lanes and time-bound
of T (ϕ) = 5 steps would have |S| = 42 = 16 joint robot-
follower lane occupancies and 45 = 1024 possible trajecto-
ries for the robot alone. If we consider only 3 BLTL formulae
for pursuit, surveillance, or civilian behavior, 3 possible con-
trol actions Ã = {left, right, stay}, and a horizon of H = 2

impulses, there would be an integer overflow number of trees
using interaction histories on a 64-bit computer. Notably,
with bitvector observations, we only have a tractable 243
trees, since the observation space does not scale with the lane
count or T (ϕ).

6.2 Generative Modeling of Human Behavior

6.2.1 Data modeling approach

In large scale problems, an AS must anticipate a wide
variety of human reponses to potential robot control

0 20 40 60 80 100

Iteration k

0.0

0.5

1.0

1.5

2.0

A
ct

io
n
a
k
,T

ra
ffi

c
ρ̃

true = cautious , βC = 0.7 , βI = 1.0

noSignal: 0 , unsafe: 1 , safe: 2
ρ > ρ0 : 1 , ρ < ρ0 : 0

0 20 40 60 80 100

Iteration k

0.0

0.2

0.4

0.6

0.8

1.0

C
os

t
c
(a

k
,
B
k
),

B
el

ie
fB

k

true = cautious , βC = 0.7 , βI = 1.0

c(safe, Bk)

c(noSignal, Bk)

c(unsafe, Bk)

Bk(cautious)

Bk(daring)

Figure 5. (a, top) The cart initially chooses the high-cost, but
most informative safe action when traffic ρ is heavy. As the
traffic subsides, the cart chooses the lower cost, but still
informative unsafe signal since it can now merge. (b, bottom)
Belief Bk indicates we correctly identify the true cautious
pedestrian and informative control signals decay in cost over
time as we increase model confidence. Eventually, the agent
chooses the zero cost no signal action once it has high model
confidence and has merged.

sequences in order to plan low-cost, informative probes.
Often, such a probability distribution over high-dimensional
human future responses to candidate robot control vectors
cannot be analytically modeled, requiring one to learn

such distributions from data. In particular, Schmerling
et al. (2018) shows promising results for a highway
on-ramp lane merging scenario where distributions of
human acceleration profiles conditioned on candidate robot
controls (accelerations) are learned using a deep-neural
network based generative model, Conditional Variational
Autoencoders (CVAEs), as demonstrated in prior work by
Sohn et al. (2015). (Also, consult the tutorial on VAEs by
Doersch (2016).)

We did not have access to a real lane-merging dataset
with recoverable temporal logic formulae codifying diverse

†This is just one representative example of control costs allowed by our
general framework.

Prepared using sagej.cls

https://github.com/StanfordASL/idwithtasks
https://github.com/StanfordASL/idwithtasks

Chinchali, Livingston, Chen, and Pavone 15

driver styles. Hence, we focused on a highway lane-
merging example where human behavior data is synthetically

generated according to agent-intents encoded in BLTL.
Although such generative models would need to be learned
from data in a real engineering use-case, the principal aim
of our study is to illustrate how even a high-dimensional
synthetic dataset can be used to inform a tractable control
algorithm using the lens of temporal logic.

6.2.2 Application to highway merging

As introduced in Section 5.5, robot and human control
vectors are accelerations along a lane, and a lane-swap can
only occur if the position of both vehicles is beyond a
minimum safety distance. In our simulations, initial lane
positions of the robot and human are given by x0

R = 5

and x0
H = 0 meters and both start at the same velocity of

ẋ0
R = 10 m/s2 and ẋ0

H = 10 m/s2. Each decision making
iteration for the belief space planner k lasts a BLTL time
bound of T = 6s of interaction between the robot and human
along the road. Every window of 2 seconds, the robot and
human can choose accelerations along the lane of ẍtH,R ∈
[0, 1, 3,−1,−3] m/s2. Hence, a probe αk for the robot is a
planned acceleration vector for T = 6s of 3 choices from the
discretized acceleration set, such as αk = [1,−1,−3] m/s2,
since an acceleration is applied on a window of 2s. For
simplicity of simulation, we do not explicitly solve for lateral
accelerations of the cars in the ` dimension. Rather, we make
the natural assumption that when the lane positions x are
sufficiently far apart past a safety distance dsafety, the robot
and human can safely swap lanes, codified by |xtH − xtR| >
dsafety.

If the robot and human are close in position and the robot
accelerates, aggressive human models of the form hurry−κ
must accelerate considerably to eventually remain ahead of
the robot in the BLTL time bound T . In particular, if the
risk factor κ increases, the set of feasible human responses
to a robot acceleration become increasingly constrained and
more aggressive to adhere to the specification.

We created generative models that provide a probability
distribution over feasible human accelerations conditioned
on a robot candidate acceleration and a BLTL model
such as hurry−κ. Given a future robot acceleration and
initial positions and velocities for the robot and human,
we use simple integrator dynamics to project the robot’s
future position. Searching over a discretized set of human
acceleration vectors, we return a probability distribution of
plausible human accelerations which yield joint human/robot
positions that adhere to the BLTL formula of interest such as
hurry−κ. The probability of feasible human accelerations is

weighted by the control cost to encode the notion that low-
cost, feasible human responses are more likely.

Figures 6(a) and 6(b) illustrate our generative model,
where samples from a probability distribution of human
accelerations (red) are shown in response to a planned
constant-acceleration robot control (dashed-blue) where the
robot and human start close together and at the same velocity.
As expected, a more stringent BLTL model of hurry−1.35

(Fig. 6(a)), where the human must stay ahead of the robot by
a larger margin than the hurry−1.20 model (Fig. 6(b)), leads
to fewer, but more aggressive feasible human responses.

6.2.3 Belief-space simulation leveraging generative

model

We conducted a simulation for the highway lane-merging
scenario introduced in Section 5.5, where a robot must
choose low-cost probes (acceleration vectors) to determine
if a human driver is passive or aggressive in order to
coordinate a lane-change. The robot has access to a
generative model for various human driver styles, such as
in Figure 6(a), which produces high-dimensional human
response distributions for planned robot probes over a BLTL
time duration T . Since accounting for such a continuum
of responses from generative models is intractable, the
robot clusters responses into concise observation bitvectors
describing distinct driver styles using the Belief MDP and
tree search approach introduced in Problem 2 and Figure 3.

As illustrated in Figure 7(a), the set of plausible candidate
models the robot assumes may occur, and therefore must
differentiate, includes three hurry−κ models where risk
factor κ ∈ [1.05, 1.09, 1.20] and two markedly different
passive−κ models where risk factor κ ∈ [0.90, 0.70].

Notably, the true human model of hurry−1.10 is not in
the robot’s set of plausible candidate models, so we test
whether it can identify the “best-fit” model of hurry−1.09.
Such a situation might often occur in practice when a robot’s
assumptions differ from operating conditions.

Figure 7 illustrates the results of a successful lane-
swap where the robot’s high-level belief over human driver
styles is shown in Figure 7(a) and its low-level state
and acceleration controls are given in Figure 7(b). In
this successful run, the robot is overtaken by a human
driver of BLTL model hurry−1.10, who hurries ahead and
creates ample distance for both agents to change lanes (Fig.
7(b), position plot). Initially, at iteration k = 0, the robot
believes all models to be equiprobable (belief plot, Fig.
7(a)) and chooses to accelerate until about t = 2 (Fig. 7(b),
acceleration plot). However, as the aggressive human driver
accelerates in response (red), the robot starts to realize a

Prepared using sagej.cls

16 Journal Title XX(X)

0 2 4 6 8 10

t

−4

−2

0

2

4
L

on
gi

tu
di

na
l

A
cc

el
er

at
io

n
hurry-1.20 human responses

robot future probe αk

human response ẍtH

0 2 4 6 8 10

t

−4

−2

0

2

4

L
on

gi
tu

di
na

l
A

cc
el

er
at

io
n

hurry-1.35 human responses

robot future probe αk

human response ẍtH

Figure 6. Generative model of human responses for various
BLTL formulae describing driver styles.

hurry model is more likely, after which it decelerates from
t = 2 to t = 10 to yield to the human and allow sufficient
room for a safe lane-change, after which it keeps a constant
velocity to minimize acceleration cost.

As desired, Figure 7(a) illustrates the robot places
highest belief in the “best-fit” model hurry−1.09 (green)
which is virtually indistinguishable from the true model
of hurry−1.10. The robot easily realizes that the human
driver is not passive nor too aggressive such as hurry−1.20.
Naturally, it places lower weight on a similar model of
hurry−1.05 (blue) since many trajectories that match this
model also match those of the true model, but not as closely
as the “best-fit” of hurry−1.09.

In essence, clustering high-dimensional interaction his-
tories from a generative model into observation bitvectors
allows for tractable planning in belief space, allowing simul-
taneous identification of true human driver style and a safe
lane-interchange in the highway example.

6.3 Reinforcement Learning (RL) Results

For complex problems with several candidates or an unan-
ticipated model, enumerating even high-level observations

0 1 2 3 4

Iteration k

0.0

0.2

0.4

0.6

B
el

ie
f
B
k

true model: hurry-1.10, βC = 0.15

hurry-1.05

hurry-1.09

hurry-1.20

passive-0.90

passive-0.70

0

200

400

Position x, true = hurry-1.10, βC = 0.15

human

robot

0 5 10 15 20 25 30

t

−2

0

2

Acceleration ẍ, true = hurry-1.10, βC = 0.15

Figure 7. (a, top) Belief distribution centers on closest human
model to the ground truth. (b, bottom) The human in a hurry
overtakes the robot to create ample distance for a lane-swap.

and their probabilities is infeasible. Thus, we train an AS
to tradeoff costly exploration with exploitation of the most
likely model, without explicitly knowing model observation
probabilities. Such a setting is a hallmark of RL, so we
train an RL agent in a series of training episodes of K
iterations. Each episode starts from a uniform belief B0 and
at step k, the agent chooses informative probe αk based on
current belief state Bk using parametrized control policy
πθ(Bk), where parameters θ are learned over time. The
environment generates observations ok under true modelM1

and provides a new belief vector Bk+1 and reward Rk+1 to
the agent, since the agent cannot compute the belief update
itself without model probabilities.

A proactive decision making scheme can first be trained
with an RL simulator where the environment updates the
belief vector for several ground-truth settings, and then the
agent can be deployed in practice. We developed simulators
for both examples using the openAI gym framework
Brockman et al. (2016). We used Google’s Tensorflow Abadi
et al. (2016) to learn a stochastic control policy using
the Actor-Critic (AC) RL learning algorithm Konda and

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 17

Tsitsiklis (2000), where the policy πθ(Bk) is encoded in
a neural network with parameters θ of 1 hidden layer of
50 units. Our general framework allows for deeper neural
networks to be used for problems with more complex human-
robot interaction models. Figure 8(b) illustrates model
convergence, where the shaded area shows the variance of
test episode rewards when the network policy is paused
periodically to evaluate learning.

6.3.1 RL Reward Structures

We now highlight several interesting properties of our
framework in the RL setting by comprehensively evaluating
its performance and convergence on different reward
functions or control costs. In addition to the entropy
based reward from the belief MDP setting (Eqn. 9), we
can formulate a reward that penalizes the KL divergence
between the true model “one-hot” vector B̄ = [1, 0, . . . 0]

and the current belief (Equation 10). The KL reward is
only appropriate in the RL scenario where the environment
simulator knows the true model and incentivizes the agent to
learn the ground-truth.

Interestingly, for a wide spectrum of weights βC, βI, the
policy learned under the KL reward converged faster than the
entropy reward for the same experimental settings (Figure
8(b)). Further, in a single test episode of K iterations, the
KL-learned policy led the agent to identify the true model
with more certainty (Figure 8(a)). Intuitively, if the expected
future entropy reduction is lower than the cost of informative
probes, the agent will stop probing but incur zero future
reward since the belief vector will saturate. However, the KL
reward converges better since it continually penalizes KL
divergence between the current belief and true distribution
throughout the episode, incentivizing longer exploration to
reduce uncertainty. As often seen in practical RL, many trials
of the entropy policy showed it does not learn for several
initial episodes as it explores sub-optimal policies, but sees a
sudden performance jump as it discovers a better set of policy
parameters (Figure 8(b)).

6.3.2 Trading off informative probes with control cost

We now show that our RL agent’s policies can flexibly
trade off exploration of human agent intent, which incurs
a control cost weighted by βC in the reward function, with
exploitation of the currently believed model. In particular,
as informative probes become costlier by larger weights βC ,
the agent should probe less, resulting in less certainty in the
true model measured in the belief distribution. As expected,
Figure 9 shows that as βC increases for a car-following
example solved with RL, the robot has less certainty but still
identifies the true model. The dependence of the converged

0 5 10 15 20
Iteration k

0.0

0.2

0.4

0.6

0.8

1.0

B
el

ie
fB

k

true = surveilz1
, βC = 0.15 , βI = 1.0

benign
surveilz0

pursuer

surveilz1

surveilz2

0 2 4 6 8 10 12 14 16
Training episodes

0.0

0.2

0.4

0.6

0.8

1.0

1.2

S
ca

le
d

re
w

a
rd

true = surveilz1
, βC = 0.15, βI = 1.0

KL

entropy

Figure 8. (a, top) In the car-following scenario solved with RL,
both KL and entropy rewards lead to correct model
identification, but the KL trained policy (solid) identifies true
model surveilz1 with higher certainty. (b, bottom) Normalized
RL learning curves for both reward functions indicates KL
converges faster with lower variance.

0.0 0.2 0.4 0.6 0.8 1.0
Control weight βC

0.70

0.75

0.80

0.85

0.90

0.95

1.00

C
o
n
v
e
rg

e
d

B
e
li

e
f

Figure 9. An RL agent adapts its policy to the reward function
weight for the control cost βC . As the control cost penalty βC
increases, the agent uses less informative probes but still
identifies the true model, albeit with less certainty in the belief
vector.

belief on control cost weight βC is not purely monotonic

Prepared using sagej.cls

18 Journal Title XX(X)

since the converged belief was the average of several runs
from a stochastic RL policy.

7 Conclusion

In this paper, we couple formal methods with data-driven
learning to provide a tractable framework for proactive
decision making. Formal methods are used to extract
meaningful symbolic interaction templates from complex
interaction sequences, such as traces of real human driving
data in the SDD. Leveraging advances in deep RL, we
then synthesize information-seeking controllers and provide
a theoretical analysis of their ability to distinguish models.

Future work centers on conducting experimental user
studies where a simulated autonomous cart signals its
merging intent to human pedestrian subjects using a ProDM
scheme, allowing us to explicitly probe for human risk
profiles. Such experiments will likely require us to expand
our specification mining approach to automatically derive
both the specifications and associated parameters from high-
dimensional datasets. In a real deployment, we would also
need to couple such automatically derived specifications
with a safety mechanism that defaults to a conservative AS
policy if experimental data deviate significantly from learned
models. We also plan to leverage the highway lane-merging
dataset generated by real humans and CVAE generative
model from Schmerling et al. (2018) for our temporal logic
based scheme. In particular, such an analysis would require
us to automatically mine concise temporal logic formulae
from their dataset.

As robots cooperate with humans on increasingly
complex tasks, techniques that distill a continuum of
high-dimensional interaction sequences into core essential
templates of interaction will be evermore indispensable.
Such a holistic approach to robot task planning may one day
allow robots to effectively cooperate with humans in diverse
settings ranging from factory assembly lines to freeways.

Acknowledgements

The authors were partially supported by the Office of Naval

Research, ONR YIP Program, under Contract N00014-17-1-2433.

References

Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin

M, Ghemawat S, Irving G, Isard M, Kudlur M, Levenberg

J, Monga R, Moore S, Murray DG, Steiner B, Tucker P,

Vasudevan V, Warden P, Wicke M, Yu Y and Zheng X (2016)

TensorFlow: A system for large-scale machine learning.

In: 12th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16). Savannah, GA: USENIX

Association. ISBN 978-1-931971-33-1, pp. 265–283. URL

https://www.usenix.org/conference/osdi16/

technical-sessions/presentation/abadi.

Baier C and Katoen JP (2008) Principles of Model

Checking. MIT Press. ISBN 9780262026499. URL

https://mitpress.mit.edu/books/principles-

model-checking.

Braziunas D (2003) POMDP solution methods. Techni-

cal report, Department of Computer Science, University

of Toronto. URL https://www.cs.toronto.edu/

˜darius/papers/POMDP survey.pdf.

Brockman G, Cheung V, Pettersson L, Schneider J, Schulman J,

Tang J and Zaremba W (2016) OpenAI gym. Available at

https://arxiv.org/abs/1606.01540.

Chinchali SP, Livingston SC, Pavone M and Burdick JW (2016)

Simultaneous model identification and task satisfaction in the

presence of temporal logic constraints. In: Proc. IEEE Conf.

on Robotics and Automation.

Doersch C (2016) Tutorial on variational autoencoders. Available

at: https://arxiv.org/abs/1606.05908.

Gmytrasiewicz PJ and Doshi P (2005) A framework for sequential

planning in multi-agent settings. Journal of Artificial

Intelligence Research 24: 49–79.

Javdani S, Srinivasa SS and Bagnell JA (2015) Shared autonomy

via hindsight optimization. In: Robotics: Science and Systems.

DOI:10.15607/RSS.2015.XI.032.

Jones A, Schwager M and Belta C (2015) Information-guided

persistent monitoring under temporal logic constraints. In:

American Control Conference. pp. 1911–1916.

Knight W (2016) New self-driving car tells pedestrians when

it’s safe to cross the street. MIT Technology Review URL

https://www.technologyreview.com/s/602267/

new-self-driving-car-tells-pedestrians-

when-its-safe-to-cross-the-street/.

Konda VR and Tsitsiklis JN (2000) Actor-critic algorithms. In:

Advances in Neural Information Processing Systems. MIT

Press, pp. 1008–1014. URL http://papers.nips.cc/

paper/1786-actor-critic-algorithms.pdf.

Koymans R (1990) Specifying real-time properties with metric

temporal logic. Real-Time Systems 2: 255–299. DOI:10.1007/

BF01995674.

Madani O, Hanks S and Condon A (1999) On the undecidability of

probabilistic planning and infinite-horizon partially observable

markov decision problems. In: Proc. AAAI Conf. on Artificial

Intelligence. URL https://www.aaai.org/Papers/

AAAI/1999/AAAI99-077.pdf.

Prepared using sagej.cls

https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/abadi
https://mitpress.mit.edu/books/principles-model-checking
https://mitpress.mit.edu/books/principles-model-checking
https://www.cs.toronto.edu/~darius/papers/POMDP_survey.pdf
https://www.cs.toronto.edu/~darius/papers/POMDP_survey.pdf
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1606.05908
https://www.technologyreview.com/s/602267/new-self-driving-car-tells-pedestrians-when-its-safe-to-cross-the-street/
https://www.technologyreview.com/s/602267/new-self-driving-car-tells-pedestrians-when-its-safe-to-cross-the-street/
https://www.technologyreview.com/s/602267/new-self-driving-car-tells-pedestrians-when-its-safe-to-cross-the-street/
http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
http://papers.nips.cc/paper/1786-actor-critic-algorithms.pdf
https://www.aaai.org/Papers/AAAI/1999/AAAI99-077.pdf
https://www.aaai.org/Papers/AAAI/1999/AAAI99-077.pdf

Chinchali, Livingston, Chen, and Pavone 19

Nguyen THD, Hsu D, Lee WS, Leong TY, Kaelbling LP, Lozano-

Perez T and Grant AH (2011) Capir: Collaborative action

planning with intention recognition. In: Seventh Artificial

Intelligence and Interactive Digital Entertainment Conference.

Papadimitriou CH and Tsitsiklis JN (1987) The complexity of

Markov decision processes. Mathematics of Operations

Research 12(3): 441–450.

Raman V, Donzé A, Sadigh D, Murray RM and Seshia SA (2015)

Reactive synthesis from signal temporal logic specifications.

In: Hybrid Systems: Computation and Control. pp. 239–248.

DOI:10.1145/2728606.2728628.

Robicquet A, Sadeghian A, Alahi A and Savarese S (2016) Learning

social etiquette: Human trajectory understanding in crowded

scenes. In: European Control Conference.

Sadigh D, Sastry SS, Seshia SA and Dragan A (2016) Information

gathering actions over human internal state. In: IEEE/RSJ

Int. Conf. on Intelligent Robots & Systems. pp. 66–73. DOI:

10.1109/IROS.2016.7759036.

Schmerling E, Leung K, Vollprecht W and Pavone M (2018)

Multimodal probabilistic model-based planning for human-

robot interaction. In: Proc. IEEE Conf. on Robotics and

Automation.

Sohn K, Lee H and Yan X (2015) Learning structured output

representation using deep conditional generative models.

In: Advances in Neural Information Processing Systems.

pp. 3483–3491. URL http://papers.nips.cc/

paper/5775-learning-structured-output-

representation-using-deep-conditional-

generative-models.pdf.

Trautman P and Krause A (2010) Unfreezing the robot: Navigation

in dense, interacting crowds. In: IEEE/RSJ Int. Conf. on

Intelligent Robots & Systems. pp. 797–803. DOI:10.1109/

IROS.2010.5654369.

Wongpiromsarn T and Frazzoli E (2012) Control of probabilistic

systems under dynamic, partially known environments with

temporal logic specifications. In: Proc. IEEE Conf. on

Decision and Control. pp. 7644–7651. DOI:10.1109/

CDC.2012.6426524.

Appendix

Details of Preliminaries and Formulation

In this section, additional details of the formulation presented
in Section 3 are provided for completeness. These are not
critical for understanding the main results, but some readers
may find them to be useful.

Let M be a labeled adversarial MDP. The set of
interaction histories of duration T and consistent with

strategies π and µ, which is denoted by Hist(M, T, π, µ),
is defined in (2). If the constraining strategies are removed,
we obtain the set of interaction histories of duration T that
can occur under some sequence of actions,

Hist(M, T) =
{
HT | s0 ∈ Init ∧
∀t < T : P(st, at,1, at,2, st+1) > 0,

where at,1 ∈ Actc, at,2 ∈ Actu
}
. (30)

Clearly Hist(M, T, π, µ) ⊆ Hist(M, T).

Construction, existence, and uniqueness of the label
function L that is introduced in Section 3.3 are shown here.

The dependence of each σ ∈ Traces(M, T, π, µ) in (3)
on some HT ∈ Hist(M, T, π, µ) can be generalized to
show that for each HT ∈ Hist(M, T, π, µ), there is a
unique σ ∈ Traces(M, T, π, µ) associated with it. There-
fore, we can define a function L from Hist(M, T, π, µ) onto
Traces(M, T, π, µ) consistent with the comprehension in
(3), i.e., such that for all HT ∈ Hist(M, T, π, µ), L(HT) ∈
Traces(M, T, π, µ) andHT realizes the existential quantifi-
cation in the definition of Traces.

The sketch of a proof for the existence and uniqueness of
L is as follows. Let HT ∈ Hist(M, T, π, µ). Observe from
the definition of interaction history that HT defines a finite
sequence of T + 1 states, call it S(HT), which is obtained by
removing the actions in HT . The labeling function L (from
the labelled adversarial MDP M) is defined on the domain
S, so applying L to each item in the finite sequence S(HT)

yields a finite sequence of T + 1 elements of 2Π = Σ. It is
immediate from this construction that this new sequence is
an element of Traces(M, T, π, µ).

7.1 Proof of Lemma 1

Forward direction: Using ¯̄α implies limk→∞Bk(1) = 1.

First, recall the belief update function given in (8),
rewritten here for convenience:

Bk+1(i) = ηBk(i) Pr(ok | αk,Mi)

Consider the special case when Pr(o | α,Mj) = 0 for
some j, while Pr(o | α,M1) > 0. If this action α is
infinitely often selected by ¯̄α, then with probability 1, α will
be chosen at some time k̂, and we would have Bk̄(j) = 0

at some finite k̄ = k̂ + 1. Furthermore, by (8), we also have
Bk(j) = 0 for all k ≥ k̄. Because this occurs independently
of the belief vector values and eventually occurs with
probability 1, it suffices to consider model indices j for
which this property does not hold.

Prepared using sagej.cls

http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf
http://papers.nips.cc/paper/5775-learning-structured-output-representation-using-deep-conditional-generative-models.pdf

20 Journal Title XX(X)

Next, we proceed with some definitions. For j 6= 1, define
the following functions into sets of satisfaction observation
bitvectors:

Uj(a) = {o | Pr(o | α,M1) > Pr(o | α,Mj)} (31)

Lj(a) = {o | Pr(o | α,M1) < Pr(o | α,Mj)} (32)

where α is any abstract action. By (14), for every j there
is some α such that |Uj(α)| > 0 and |Lj(α)| > 0. Now, for
an infinite sequence of satisfaction observation bitvectors
o0o1o2 · · · and an infinite sequence of abstract actions
α0α1α2 · · · , define the sequence of counting maps

Θk(Uj) =
∣∣∣{k̂ | 0 ≤ k̂ ≤ k ∧ ok̂ ∈ Uj(αk̂)

}∣∣∣ (33)

Θk(Lj) =
∣∣∣{k̂ | 0 ≤ k̂ ≤ k ∧ ok̂ ∈ Lj(αk̂)

}∣∣∣ (34)

for k ≥ 0. Note that the sequences of values are
nondecreasing, i.e., 0 ≤ Θk(Uj) ≤ Θt+1(Uj) and 0 ≤
Θk(Lj) ≤ Θt+1(Lj).

Now, we will complete the proof with the following two
steps:

1. Show that under ¯̄α, we have for all
j, limk→∞ (Θk(Uj)−Θk(Lj)) =∞.

2. Show that limk→∞ (Θk(Uj)−Θk(Lj)) =∞ implies
Pr (limk→∞Bk(1)) = 1.

For the first step, suppose the contrary, then there is some j
such that with positive probability,

∃m,∀K,∃k ≥ K : Θk(Uj)−Θk(Lj) ≤ m. (35)

Let o and α be a pair that satisfies (14) and such that the
abstract action α is infinitely often selected by ¯̄α. an estimate
of the distribution of Pr(o | α) can be obtained through ζk,
defined as follows:

ζk =

{
Countk(o,α)

CountActk(α) if CountActk(α) 6= 0

0 otherwise,
(36)

where Countk(o, α) is the number of occurrences of
o given α in the finite sequences o0o1 · · · ok and
α0α1 · · ·αk, respectively, and CountActk(α) is the number
of occurrences of α in the finite sequence α0α1 · · ·αk.
Notice that by construction of ¯̄α, CountActk(α) 6= 0 for
some k with probability 1.

From the Law of Large Numbers, we have limk→∞ ζk =

Pr(o | α). However, the hypothesis (35) implies that for
the given o and α, the ratio of the number of times that
Pr(o | α,M1) > Pr(o | α,Mj) occurs to the number of

times Pr(o | α,M1) < Pr(o | α,Mj) approaches equality.
Therefore, we must have Pr(o | α,M1) = Pr(o | α,Mj),
which contradicts the assumption in the statement of the
Lemma. This proves the first step.

For the second step, suppose that with the pol-
icy ¯̄α, limk→∞ (Θk(Uj)−Θk(Lj)) =∞ with probability
1. Recalling the belief update function in (8), also at the
beginning of this proof, and expanding the expression for
a sequence of satisfaction observation bitvectors o0o1o2 · · ·
and abstract actions α0α1α2 · · · , we have

Bk(i) = ηk−1Bk−1(i) Pr(ok−1 | αk−1,Mi)

= Bk−2(i) · ηk−2ηk−1·
Pr(ok−2 | αk−2,Mi) Pr(ok−1 | αk−1,Mi)

...

= B0(i)

k−1∏
k̂=0

ηk̂−1 Pr(ok̂ | αk̂,Mi)

where the · symbol denotes multiplication, and ηk̂ is the
normalization factor at time k̂ such that the sum of elements
of Bk̂+1 is 1.

From the above, we can divide Bk(i), i 6= 1 by Bk(1) and
obtain

Bk(i)

Bk(1)
=

k−1∏
k̂=0

lk̂, where

lk̂ =
Pr(ok̂ | αk̂,Mi)

Pr(ok̂ | αk̂,M1)

If limk→∞ (Θk(Uj)−Θk(Lj)) =∞, then the number
of times that Pr(o | α,M1) > Pr(o | α,Mj) occurs com-
pared to number of times Pr(o | α,M1) < Pr(o | α,Mj)

diverges. This implies that as k →∞, there are infinitely
many k̂ such that the ratio lk̂ is less than 1.

Furthermore, we must have that for all i, for all K, and
some M ,

Pr(ok | αk,M1) 6= 0 (38a)

(otherwise ok would never occur in response to αk),
(38b)

Pr(ok̂ | αk̂,Mi)

Pr(ok̂ | αk̂,M1)
≤M (38c)

(there are finitely many possible values of αk and ok).
(38d)

Therefore,

Prepared using sagej.cls

Chinchali, Livingston, Chen, and Pavone 21

lim
k→∞

Bk(i)

Bk(1)
= 0,

which implies Pr (limk→∞Bk(1)) = 1.
Reverse direction: Pr (limk→∞Bk(1)) = 1 implies a

policy ᾱ is used.
Suppose there is a policy ˆ̄α such that for some j 6= 1,

an abstract action is not infinitely often chosen that satisfies
(14). This means that there is some time K such that for all
k ≥ K, ˆ̄α selects abstract action α such that

Pr(o | α,Mj) = Pr(o | α,M1)

for all satisfaction observation bitvectors o.
Then, by the definition belief update function in (8), for all

k ≥ K, we have

Bk+1(j) = ηBk(j) Pr(ok | αk,Mj),

Bk+1(1) = ηBk(j) Pr(ok | αk,M1).

Dividing the Bk+1(1) by Bk+1(j), we obtain

Bk+1(1)

Bk+1(j)
=
Bk(1)

Bk(j)
(39)

This implies that limk→∞Bk(1) 6= 1, since otherwise
limk→∞Bk(j) = 0, and Bk(1)

Bk(j) would diverge, contradicting
(39). �

7.2 Proof of Theorem 1

Because γ = 1 and βC = 0 by hypothesis, the objective
function of the Problem 2 is

lim
k→∞

E

(
K∑
k=0

βI (H(Bk)−H(Bk+1))

)
.

We first simplify the objective function. Since β is positive
and constant, it can be moved outside the limit; in addition,
the set of optimal policies is the same for any positive
constant βI , so WLOG, let βI = 1. Thus,

lim
k→∞

E

(
K∑
k=0

(H(Bk)−H(Bk+1))

)
(40a)

= lim
k→∞

E (H(B0)−H(Bk)) (40b)

= H(B0)− lim
k→∞

E (H(Bk)) , (40c)

where the first equality is a result of repeated alternating
coefficients of 1 and −1, causing intermediate values to sum
to zero. The second equality is due to B0 being the fixed
uniform distribution according to Section 4.2, and therefore

constant under expectation. Since B0 is a constant, we
consider the following optimization problem, whose optimal
solutions are the same as those of Problem 2 with K →∞:

max
ᾱ

{
− lim
k→∞

E (H(Bk))

}
(41)

The standard definition of the entropy for the discrete
probability mass function that is represented by the belief
vector B is

H(B) = −
N∑
i=1

B log2B.

The set of minima of H is exactly the set of standard basis
vectors of RN , with B(j) = 1 for some j, and B = 0 for all
i 6= j. The set of minima of H is equal to the set of maxima
of −H .

Given any policy ¯̄α described in Lemma 1, we have
limk→∞Bk(1) = 1. So for all i 6= 1, limk→∞Bk(i) = 0,
and therefore ¯̄α is the optimal policy when βC = 0, γ = 1.
�

7.3 Proof of Lemma 2

In the null control case, αk = 0, we have Bk+1 = Bk with
certainty so the stage reward is

E
[
RH(Bk, αk = 0, Bk+1)

]
= −βCc(0) +H(Bk)−H(Bk) = 0. (42)

In the informative control case, αk = 1, the stage reward
is

E
[
RH(Bk, αk = 1, Bk+1)

]
= −βC + E [H(Bk)]− E [H(Bk+1)] . (43)

Let I and L be the sets of indices for which α̃k = 1 and
α̂k = 1, respectively.

With policy ˜̄α, the cumulative reward is

E

[
K∑
k=0

RHk (B̃k, α̃k, B̃k+1)

]

= E

[∑
k∈I

RHk (B̃k, α̃k, B̃k+1)

]
+ E

[∑
k/∈I

RHk (B̃k, α̃k, B̃k+1)

]
(44a)

= E
∑
k∈I

{
−βC +H(B̃k)−H(B̃k+1)

}
+
∑
k/∈I

0 (44b)

= −NβC + E

[∑
k∈I

{
H(B̃k)−H(B̃k+1)

}]
. (44c)

Prepared using sagej.cls

22 Journal Title XX(X)

With policy ˆ̄α, the cumulative reward is

E

[
K∑
k=0

RHk (B̂k, α̂k, B̂k+1)

]

= E

[∑
k∈L

RHk (B̂k, α̂k, B̂k+1)

]
+ E

[∑
k/∈L

RHk (B̂k, α̂k, B̂k+1)

]
(45a)

= E

[∑
k∈L

{
−βC +H(B̂k)−H(B̂k+1)

}]
+
∑
k/∈L

0 (45b)

= −NβC + E

[∑
k∈L

{
H(B̂k)−H(B̂k+1)

}]
. (45c)

The elements of {B̃k}k∈I and {B̂k}k∈L are equal,
since Bk+1 = Bk when αk = 0. Thus, ignoring
identical belief states Bk caused by the null actions
αk = 0, the two policies ˜̄α and ˆ̄α produce the same
sequence of unique belief states in expectation.
Thus, the two sums

∑
k∈I {H(Bk)−H(Bk+1)} and∑

k∈L {H(Bk)−H(Bk+1)} are equal in expectation. �

7.4 Proof of Lemma 3

Given any Bk, we have that

KL(Bk, B̄) =
∑
i

B̄(i) log
B̄(i)

Bk(i)

= − logBk(1)

For the ˜̄α with N informative actions, we have

E

[
M∑
k=0

RKL(B̃k, α̃k, B̃k+1)

]
(46a)

= −NβC + E

[
M∑
k=0

log B̃k(1)

]

= −NβC + E

[
N−1∑
k=0

log B̃k(1)

]
+ E

[
M∑
k=N

log B̃k(1)

]
(46b)

Let L be set of indices for which α̂k = 1. respectively.
Then, for the policy ˆ̄α, we have

E

[
M∑
k=0

RKL
k (B̂k, α̂k, B̂k+1)

]

= −NβC + E

[∑
k∈L

log B̂k(1)

]
+ E

[∑
k/∈L

log B̂k(1)

]
(47)

Since the belief vector only changes only when αk = 1,
the sets {B̃k}N−1

k=0 and {B̂k}k∈L are equal in expectation,
so the first two terms in (46b) and (47) are equal.

Thus, we only need to compare E
[∑M

k=N log B̃k(1)
]

and

E
[∑

k/∈L log B̂k(1)
]
.

For k < N , by assumption we have B̃k+1(1) ≥ B̃k(1)

in expectation, since α̃k = 1. In addition, for k ≥ N we
have B̃k = B̃N , since α̃k = 0. Thus, we have that for all
k < N, k′ ≥ N , B̃k ≤ B̃K′ = B̃N in expectation.

Since with policy ˆ̄α, α̂k = 0 for some k < N , it must be
the case that α̂k = 1 for some k ≥ N . Let the largestK such
that α̂k = 1 be denoted K ′, and we have K ′ ≥ N . Then,
we have that B̂K′ = B̃N in expectation. This implies that
B̂k ≤ B̃N in expectation for all k < K ′, and in particular
for all k < K ′ such that k ∈ L.

Therefore,

E

[∑
k/∈L

log B̂k(1)

]
≤ E

[
M∑
k=N

log B̃k(1)

]
. (48)

�

Prepared using sagej.cls

	1 Introduction
	2 Examples of Proactive Decision Making
	3 Proactive Decision Making Framework
	3.1 Bounded Linear-time Temporal Logic (BLTL)
	3.2 High-level Agent Intent Models
	3.3 Probability of Satisfaction and Agent-intent Models
	3.4 Proactive Decision Making with BLTL constraints

	4 Dimensionality Reduction and Solution Algorithm
	4.1 Action and Observation Space Reductions
	4.1.1 Action Space: Request-response formulae
	4.1.2 Observation Space: Satisfaction Bitvectors

	4.2 Reduced ProDM-BLTL Problem with Belief MDPs
	4.2.1 Intuition behind dimensionality reduction
	4.2.2 Proactive Decision Making in Belief Space

	4.3 Value Iteration on BLTL Trees
	4.4 Size of BLTL trees
	4.5 Analysis
	4.5.1 Convergence without control cost
	4.5.2 Exploration-exploitation trade-off with control costs

	5 Example Scenarios
	5.1 Robotic Car-following BLTL Specifications
	5.2 Stanford Drone Dataset (SDD)
	5.3 Car-merging BLTL Specifications
	5.4 Robot Behavior and Dynamic Control Costs
	5.5 Highway Lane Merging Example

	6 Simulation Results
	6.1 Value Iteration Tree Results
	6.2 Generative Modeling of Human Behavior
	6.2.1 Data modeling approach
	6.2.2 Application to highway merging
	6.2.3 Belief-space simulation leveraging generative model

	6.3 Reinforcement Learning (RL) Results
	6.3.1 RL Reward Structures
	6.3.2 Trading off informative probes with control cost

	7 Conclusion
	7.1 Proof of Lemma 1
	7.2 Proof of Theorem 1
	7.3 Proof of Lemma 2
	7.4 Proof of Lemma 3

